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Abstract 

Representation learning for the electronic structure problem is a major challenge of machine 

learning in computational condensed matter and materials physics. Within quantum 

mechanical first principles approaches, Kohn-Sham density functional theory (DFT) is the 

preeminent tool for understanding electronic structure, and the high-dimensional 

wavefunctions calculated in this approach serve as the building block for downstream 

calculations of correlated many-body excitations and related physical observables. Here, we 

use variational autoencoders (VAE) for the unsupervised learning of high-dimensional DFT 

wavefunctions and show that these wavefunctions lie in a low-dimensional manifold within the 

latent space. Our model autonomously determines the optimal representation of the electronic 

structure, avoiding limitations due to manual feature engineering and selection in prior work. 

To demonstrate the utility of the latent space representation of the DFT wavefunction, we use 

it for the supervised training of neural networks (NN) for downstream prediction of the 

quasiparticle bandstructures within the GW formalism, which includes many-electron 

correlations beyond DFT. The GW prediction achieves a low error of 0.11 eV for a combined 

test set of metals and semiconductors drawn from the Computational 2D Materials Database 

(C2DB), suggesting that latent space representation captures key physical information from the 

original data. Finally, we explore the interpretability of the VAE representation and show that 

the successful representation learning and downstream prediction by our model is derived from 
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the smoothness of the VAE latent space, which also enables the generation of wavefunctions 

on arbitrary points in latent space. Our work provides a novel and general machine-learning 

framework for investigating electronic structure and many-body physics. 

 

Recently, machine learning (ML) has emerged as a powerful tool in condensed matter and 

materials physics, achieving substantial progress across areas including the identification of 

phase transitions[1-7], quantum state reconstruction[8-10], prediction of topological order[11-

15], symmetry[16-22] and the study of electronic structure [23-26]. Among these ML 

applications, exploring the electronic structure of real materials is of particular interest, since 

it allows for the extension of computationally-intensive predictive quantum theories to 

understand the physics of larger and more complex systems, such as moire systems [16,27-35] 

and defect states[36-42], among others. Within atomistic first principles theories, density 

functional theory (DFT)[43] is the most commonly used approach for studying the electronic 

structure of materials. In principle, DFT gives accurate descriptions of the ground state charge 

density, but quantitative prediction of excited-state properties (including bandstructure and 

other spectroscopic properties) requires the introduction of the concept of elementary 

excitations, such as quasiparticles from the many-body ground state [44,45]. Nonetheless, DFT 

can be used as a starting point for many-body calculations, where the wavefunctions within 

Kohn-Sham DFT are used to construct correlation functions for the excited states[46,47]. 

Therefore, harnessing the rich information embedded in the Kohn-Sham (KS) wavefunction[43] 

becomes crucial for downstream ML applications. In this pursuit, a key challenge lies in 

distilling a succinct representation of the electronic structure while preserving the essential 

information[48]. 

 

In contrast to the notable achievements of ML descriptors for crystal geometry and chemical 

composition [49-53], the electronic structure of materials remains extremely challenging to 

learn for several reasons. Firstly, the high dimensionality of the KS wavefunction of real 

materials creates a complex data structure, making direct pattern detection challenging. 

Secondly, electronic structures are highly nonlinear and senstive to both the crystal 

configuration and intricate non-local correlations, making it difficult to develop a general ML 



model applicable across a broad spectrum of materials. Thus far, ML models for electronic 

structure have been mostly confined to the study of specific subsets of materials, such as 

molecules,[54] perovskites,[55-57] or layered transition metal dichalcogenides (TMDs) [58]. 

In most of these approaches, the ML has focused on prediciton of single valued properties, 

such as band gaps, largely due to the challenges of identifying well-defined, interpretable, and 

efficient representations of the electronic structure [59-61]. Recently, the development of 

operator representations, which capture more nuanced data about the underlying quantum 

states, has provided new opportunities for the prediciton of full band structures. These 

techniques involve the physically-informed selection of specific operators as “fingerprints.” 

Examples include the early successful use of energy decomposed operator matrix elements 

(ENDOME), combined with radially decomposed projected density of states (RAE-PDOS), to 

predict quasiparticle (QP) band structures[62], and the use of spectral operator representations 

to predict material  transparency[63]. However, the choice of descriptors in such approaches 

is informed by human physical intuition on the domain science side, inevitably introducing 

bias. This raises the question of whether more fundamental or generalizable descriptors can be 

learned, independent of human selection .  

 

Variational autoencoders (VAEs) [64,65], a class of probablistic models that combine 

variational inference with autoencoders used to compress and decompress high dimensional 

data, stand out as a promising tool for learning electronic structure in a way that allows for 

unsupervised training and thus avoids arbitrary feature engineering. The effectiveness of VAE 

compression has been demonstrated for various applications across condensed matter physics, 

including quantum state compression[66], detection of critical features in phase transitions[67] 

and decoupled subspaces[68,69]. In this work, we showcase for the first time that a well-crafted 

VAE is capable of representing KS-DFT wavefunctions on a manifold within a significantly 

compressed latent space, which is 103 − 104  times smaller than the original input. 

Importantly, these succinct representations still retain the full physical information inherent in 

the initial data. To validate the efficacy of the VAE latent space in practical applications, we 

then build a supervised deep learning model for downstream prediction of k-resolved 

quasiparticle energies within the many-body GW approximation [70,71], whose only input is 



the VAE representation of KS states. This model yields a mean absolute error (MAE) of 0.11 

eV, which is comparable to the intrinsic numerical error of the GW approach [35,47,72]. 

Moreover, the VAE inherently predicts a smooth, physically realistic band structure, in contrast 

with previous models, which required an additional manually-imposed smoothing function to 

remove unphysical variations[62]. Lastly, we address the interpretability of the VAE 

representation and show that the success of electronic structure representation learning and 

downstream GW prediction is derived from the smoothness of the VAE latent space, which 

corresponds to the smoothness of the wavefunction in k-space. Because of this property, the 

VAE can serve as a promising wavefunction generator capable of predicting realistic 

wavefunctions at arbitrary points in latent space, which has the potentitial to be used for both 

wavefunction interpolation in k-space and materials design and discovery across the 

compositional phase space. 

 

VAE for electronic structure representation 

As Fig. 1 (a) shows, the architecture of our VAE consists of the two complementary sets of 

NN: the encoder (𝑒𝜃) and the decoder (𝑑𝜃). The encoder maps the input of high-dimensional 

KS wavefunction moduli |𝜙𝑛�⃗� (𝑟 )|
 ∈ ℝ𝑅𝑥×𝑅𝑦×𝑅𝑧 to a low-dimensional vector (𝜇 ∈ ℝ𝑝 , 𝜎 ∈

ℝ𝑝) of variational mean and deviation in the latent space. Here, 𝑝 ≪ 𝑅𝑥 × 𝑅𝑦 × 𝑅𝑧, where 𝑝 

represents the dimension of the latent space, and 𝑅𝑥,𝑦,𝑧 is the dimension of the real-space 

wavefunction 𝜙𝑛�⃗� 
(𝑟 ) in the unit cell, where the wavefunction is indexed by the band n and 

the crystal momentum (k-point) �⃗� . Conversely, the decoder, mirroring the structure of the 

encoder, has an opposite function, which is to reconstruct the input wavefunction from its low-

dimensional latent vector (𝜇 , 𝜎 ). In essence, the VAE can be conceptualized as an “information 

bottleneck” for electronic structure, where the encoder acts as a data refinement process, 

discarding redundant information and noise from the input wavefunction. Meanwhile, the 

decoder ensures that vital physical information is still preserved for wavefunction recovery. 

Then, since the real space KS state is essentially a spatial distribution with local pattern, 

convolutional neural networks (CNN) [73-76] provide a practical framework for the first two 

layers of the encoder and decoder. Additionally, by imposing a distribution of latent variables 



close to a standard normal distribution 𝑁(0, 𝛪) during training, the VAE is capable of a 

smooth mapping from the connected KS states |𝑛, �⃗� ⟩ and |𝑛, �⃗� + ∆�⃗� ⟩ to nearby points in the 

latent space, enabling generative power after training. Here, we define the total VAE loss 

function as follows: 
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, where the first term is the mean squared error (MSE) of the reconstructed wavefunctions, and 

the second term is the Kullback-Leibler (KL) divergence, which forces the latent space to 

approach a 𝑁(0, 𝛪) distribution. The parameter 𝛽 is the weight of KL divergence, tuning the 

degree of regularization of the latent space. 𝑇 is the total number of KS states in the training 

set and, and 𝑗 is an index in the latent space. By feeding DFT wavefunctions to a well-trained 

VAE model, we can interpret the vector (𝜎 , 𝜇 ) in latent space as a low-dimensional effective 

representation associated with the individual KS state. The details of the VAE model are given 

in the SI. 

 

Downstream machine learning for GW band structures: 

Due to its ground-state nature, DFT calculations often yield inaccurate single-particle band 

structures and tend to underestimate the band gap of semiconductors compared to 

experiment[77-79]. To incorporate the many-electron correlation effects that are missing in 

DFT and obtain accurate quasiparticle (QP) bandstructures, one can replace the effective 

single-particle exchange correlation potential in DFT with a non-local and energy-dependent 

self energy calculated within the GW approximation in many-body perturbation theory 

[46,70,80,81]. This approach proves highly effective for computing high-accuracy QP 

bandstructures in a wide range of materials, spanning from weakly to moderately correlated 

quantum systems[46]. However, in practice, constructing a GW self-energy, even for small 

systems[72,80,82-85], is much more computationally expensive than DFT, and this remains a 

bottleneck to the broader adoption of the GW approach for high throughput studies. Therefore, 

in the context of understanding materials’ excited-state properties, a natural approach is to use 



low-fidelity techniques like density functional theory (DFT) to try and predict the results of 

high-fidelity, computationally intensive many-body calculations. Currently, most ML work in 

this field focus on the use of indirect predictors for model training, using, for instance, crystal 

geometrical structure, chemical composition, and the DFT bandgap as input [59-61]. These 

methods, however, are generally limited to single value prediction of the GW band gap, and 

only effective within specific subsets of materials, such as inorganic solids[86]. Operator 

fingerprint methods like ENDOME and RAD-PDOS extend predictive capability to k-resolved 

band structures, but the selection of features in these models heavily relies on human intuition, 

introducing inevitable bias and unphysical wiggles in band structures, which are then smoothed 

in post processing[62]. There have also been ML models dedicated to predicting the screened 

dielectric function [87,88], which can speed up GW calculations but don’t provide information 

that is generalizable to different systems. 

 

Due to the challenging nature of capturing non-local frequency-dependent correlations in the 

electronic structure, we select the downstream prediction of GW bandstructures as a proof of 

principle of the effectiveness of our VAE latent vector representation of the KS wavefunctions.  

We develop a supervised deep NN on top of the VAE latent space to predict many-body GW 

corrections. The goal of this NN is to successfully learn the diagonal part GW self-energy Σ𝑛𝑘
𝐺𝑊 

[70,71]: 
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where 𝐺  is a reciprocal lattice vector; 𝑞  is the difference between any two k-vectors �⃗� − �⃗� ′ 

and is integrated over the Brillouin zone (BZ); 𝜖  is KS-DFT energy, and 𝜌
𝑚�⃗� −�⃗� 
𝑛�⃗� (𝐺 ) =

⟨𝑛�⃗� |𝑒𝑖(�⃗� +𝐺 )𝑟 |𝑚�⃗� − 𝑞 ⟩ . 𝑊𝐺 𝐺 ′  is the screened Colomb interaction calculated within the 

random phase approximation, and 𝜔 is the frequency dependence of self energy. Notably, the 

calculation of the GW self energy includes a sum over infinite bands, m. In practice, the sum 

over states is treated as a convergence parameter, and the number of bands included in the 

summation is of the same order as the number of reciprocal lattice vectors 𝐺  included in 𝑊. 



 

The diagonal self-energy matrix element for a specific state |𝑛, �⃗� ⟩ shown in Eq.(2) can be 

expressed as: Σ
𝑛�⃗� 
𝐺𝑊 = 𝑓(𝜙𝑛�⃗� , 𝜀𝑛�⃗� , �⃗�

 , 𝜀  , 𝜌), where 𝜙𝑛�⃗� ∈ ℂ𝑅𝑥×𝑅𝑦×𝑅𝑧  and �⃗� ∈ ℂ𝑁×𝑅𝑥×𝑅𝑦×𝑅𝑧 

are the KS state vectors; 𝜌 ∈  ℝ𝑅𝑥×𝑅𝑦×𝑅𝑧  is the charge density; 𝑁 is the total number of 

occupied and unoccupied states |𝑛′, �⃗� ′⟩ used in GW calculations. 𝜀𝑛�⃗� ∈ ℝ1and 𝜀 ∈ ℝ𝑁 are 

the corresponding DFT eigenvalues. Here, we note that �⃗�  includes 𝜙𝑛�⃗�  and 𝜀  includes 𝜀𝑛𝑘, 

but we include both terms explicitly in the function f to make later steps more transparent. The 

output Σ
𝑛�⃗� 
𝐺𝑊 ∈ ℝ1 is the GW self energy. Due to the closed-form expression of the self-energy, 

mathematically, we expect that a simple dense NN can acquire an understanding of the non-

linear mapping from the KS wavefunction and energies to Σ𝑛�⃗� , which consists of the mapping 

of (ℂ(𝑁+1)×(𝑅𝑥×𝑅𝑦×𝑅𝑧), ℝ𝑅𝑥×𝑅𝑦×𝑅𝑧 , ℝ(𝑁+1) → ℝ1)[89,90].  

 

However, two significant challenges prevent the application of a simple NN model such as 

Σ̂
𝑛�⃗� 
𝐺𝑊 = 𝑓𝑁𝑁(𝜙𝑛�⃗� , 𝜀𝑛�⃗� , �⃗� , 𝜀  , 𝜌, 𝜂 ), where Σ̂

𝑛�⃗� 
𝐺𝑊 ∈ ℝ1  is the NN predicted self-energy, and 𝜂  

are the parameters of the model. (i) Due to the high computational cost of the GW algorithm, 

only a limited subset of GW energies near the Fermi level can be exactly calculated and used 

for the supervised learning training set, denoted as Σ⃗ 
𝑛�⃗� 
𝑡𝑟𝑎𝑖𝑛 ∈ ℝ𝑁𝑡𝑟𝑎𝑖𝑛 . As a result, 𝑁𝑡𝑟𝑎𝑖𝑛 ≪

(𝑁 + 1) × (𝑅𝑥 × 𝑅𝑦 × 𝑅𝑧), and overfitting is inevitable. (ii) The "curse of dimensionality” 

makes it formidable to learn the nonlinear mapping from a high-dimensional sparse �⃗�  

wavefunction space to the self-energy Σ⃗ 
𝑛�⃗� 
𝑡𝑟𝑎𝑖𝑛 space. To address these challenges, we adopt the 

manifold assumption[91-94] that the DFT electronic wavefunction in real space can be 

modeled as lying on a low-dimensional manifold. Additionally, we assume that two DFT 

wavefunctions mapped to nearby points on the manifold should have comparable contributions 

to the final GW energy corrections. If these two assumptions hold true, then the VAE is ideal 

for downstream prediction of GW self energies. 

 



Here, to capture the non-local correlation, the pseudobands approximation[95-97] is further 

employed for all states. That is, DFT wave functions with close energies are summed into 

effective super states (see SI). We assume that the manifold assumption also applies to the 

super states and charge density, and VAE are used to further remove redundant information in 

them. Eventually, our semi-supervised, physics-informed model reads: 

Σ̂
𝑛�⃗� 
𝐺𝑊 = 𝑓𝑁𝑁(𝑒𝜃(𝜙𝑛�⃗� (𝑟 )), 𝜀𝑛�⃗� , 𝑒𝜃𝑠𝑢𝑝 (�⃗� 𝑠𝑢𝑝(𝑟 )) , 𝜀 𝑠𝑢𝑝, 𝑒𝜃𝜌(𝜌) , 𝜂 )         (3) 

, where 𝑒𝜃, 𝑒𝜃𝑠𝑢𝑝 and 𝑒𝜃𝜌 are encoders exclusively trained for KS states, super states and 

charge density respectively. The schematic workflow of our model is shown in Fig. 1 (b). The 

output of the NN is the predicted GW diagonal self energies Σ̂
𝑛�⃗� 
𝐺𝑊 = 𝜀̂𝐺𝑊 − 𝜀𝐷𝐹𝑇 , and the 

inputs are the wavefunction of |𝑛, �⃗� ⟩, super bands corresponding to occupied and unoccupied 

states on a uniform k-grid, and the ground state energies. These inputs are identical to the input 

of an explicit GW calculation to eliminate bias due to feature selection. 

 

Results 

To benchmark the predictive power of our model, we select 302 materials from the 

Computational 2D Materials Database (C2DB)[98-100], which was also used in the work of 

Knøsgaard et al[62], for training and validation. The dataset includes both metals and 

semiconductors across all crystal systems (we note that previous ML for GW prediction in this 

database was restricted to the subset of semiconducting materials) with the number of atoms 

ranging from 3 to 4. For the unsupervised VAE training, our dataset is comprised of 68,384 

DFT electronic states sampled on a 6×6×1 uniform k-grid for 302 2D materials, which are 

randomly split into 90% training set and 10% test set. We include the same number of 

conduction states as valence states for each material in the VAE training, ensuring a 

comprehensive understanding of the electronic structure of both occupied and unoccupied 

states. The details of GW calculations for supervised training are provided in the SI. The entire 

GW energy dataset is randomly partitioned into two subsets: 10% (2201 electronic states) is 

allocated as the test set, while the remaining 90% (19801 electronic states) is designated as the 

training set. Here, we completely withhold another small subset of 30 materials from the 



training set for the VAE (see SI for further details), including three monolayer TMD materials 

MoS2, WS2 and CrS2 used to demonstrate the effectiveness of the model. 

 

Fig. 2(a) shows three DFT electronic wavefunctions, A, B, and C, for monolayer MoS2 within 

the x-y plane of the unit cell, which correspond to the dark blue circles shown in Fig. 2(e). Fig. 

2(b) shows the VAE-reconstructed wavefunction of states A, B and C, which are nearly 

identical to the original wavefunction after recovery from the low-dimensional latent space 

with high coefficients of determination 𝑟2 of 0.96, 0.94 and 0.91 respectively. Fig. 2(c) shows 

the VAE variational mean vector 𝜇  for states A, B and C respectively. Overall, the 𝑟2 of the 

VAE-reconstructed wavefunction is 0.92 across the test set when compared with the amplitude 

of the original DFT wavefunction. The results demonstrate that the original electronic 

wavefunction in the high-dimensional ℝ(𝑅𝑥=40)×(𝑅𝑦=30)×(𝑅𝑧=30) real space can be effectively 

compressed by 1200 times into a representing vector in ℝ𝑝=30 that still preserves the vital 

information needed for reconstruction. In addition, our autonomously determined 

representation is over 100 times more compact than previous electronic fingerprint 

approaches[62]. 

 

Fig. 2(d) shows the comparison between the GW corrections calculated explicitly and predicted 

by the downstream ML model, where orange (blue) dots represent the test (training) sets. The 

model yields a MAE of 0.06 eV (𝑟2 = 0.96) and 0.11eV (𝑟2 = 0.94) for the training and test 

set respectively, confirming that the representation of the DFT wavefunctions learning by the 

VAE contains sufficient information to describe the non-local GW self-energy. Here, the 

training set consists of 90% of all data points in the database composed of both metallic and 

insulating 2D materials with different symmetries. In addition, Fig. 2(e) shows the ML 

predicted GW band structure of monolayer MoS2, which agrees remarkably with results 

obtained by explicit GW calculation (red dots in the bandstructure). Due to the generative 

power of the VAE latent space[64], even in the absence of electronic states along the high-

symmetry path and MoS2 in the training set, our model can accurately predict a smooth GW 

bandstructure along Γ − M − K − Γ  for MoS2. In contract with previous approaches that 



apply a smoothing function or simple interpolation of the GW band structures [62], our method 

guarantees continuity in the ML GW band structures through the interpolation of high-

dimensional wavefunctions, which is a significantly more complex challenge. Fig. 2(f) shows 

how each individual input affects the accuracy of the GW NN model. We find that excluding 

the latent space representation of the wavefunction |𝑛, �⃗� ⟩ in training significantly reduces the 

𝑟2 value by 0.5, directly showing the importance of VAE representation of individual KS 

states in GW prediction (see SI for details about comparative benchmark). We note that GW 

calculations can also be accomplished through the self-consistent Sternheimer equation, 

utilizing solely the occupied electronic states[101-103], so in principle, inclusion of empty state 

information through the use of super bands is not strictly necessary. Here, excluding the super 

band states encoding the empty states reduces the 𝑟2 value by 0.05. 

 

Interpretability and Generative Power 

Next, to understand the generative power of our model, we open up the black box of the VAE 

and explore the meaning of the latent space obtained from unsupervised learning. We utilize a 

3D t-distributed stochastic neighbor embedding (tSNE) to visualize the VAE latent space for 

the electronic structure. As depicted in Fig. 3(a), the circles linked by green dashed lines 

represent for the latent points of the first valence band states along the Γ-K-M-Γ high symmetry 

path of monolayer MoS2. These points form a continous and enclosed trajectory in the latent 

space, corresponding to the smooth closed path in the k-space shown in the lower bandstructure 

of Fig. 3(b). For comparison, the latent trajectories from two other TMD monolayers WS2 (blue) 

and CrS2 (red), are also shown in Fig. 3(a). The similarity in the electronic structures of these 

three TMDs (see Fig. 3(b)) are encoded in the similarities of the paths in latent space. To further 

demonstrate the generative power of the VAE, Fig. 3(b) shows the continous evolution of 15 

VAE generated real-space KS wavefunction moduli from M-K in the first valence band of 

monolayer MoS2. The generated wavefunctions are constructed using the VAE decoder, which 

processes sampled points along a smooth curve from K to M in the latent space, denoted by the 

blue arrows in Figure 3(a). Notably, even though the VAE training set is only comprised of 

states sampled on a uniform k-point grid, and these three TMDs are entirely excluded from the 



training set, the generated wavefunction in Fig.3(b) can still have a high r2 around 0.9, showing 

the VAE accurately generates wavefunctions that the training has never seen. The underlying 

reason is that the three trajectories in Fig. 3(a) lie on the smooth latent surface learned by the 

well-trained VAE, where similar states are mapped to neighboring points in the latent space. 

Therefore, the smoothness and regularity of the VAE latent space can be used to quantify the 

extrapolative and generative power of our model and suggests that any sampled points from 

the learned latent surface are physically meaningful and can be reconstructed back to a 

wavefunction. Thus, the current VAE model can also serve as an effective generator of 

electronic wavefunctions. 

 

Additionally, to explain the success of our model in predicting GW corrections at arbitrary k-

points, we first investigate how the supervised training at certain k-points affects the GW 

prediction at untrained k-points in the BZ. Fig.3 (c) illustrate the average GW MAE for 

different k-points, as predicted by a dense NN that is only trained with GW energies at the Γ 

point (left panel) or a single finite momentum k point (right panel). Notably, the prediction 

error tends to be lower for k-points in proximity to the trained k-point, contrasting with higher 

errors for those farther away from the trained k-point. This trend originates from the 

smoothness of the VAE latent space, indicating that two states that are close in the latent space 

should contribute comparably to the GW corrections, as they are also expected to be close in 

the k-space as shown in Fig.3 (b). This explains the capability of our model to accurately predict 

k-resolved GW band structures when trained with the limited and uniform k-grid data.  

 

Finally, to further verify the “manifold assumption” for electronic structures in real materials 

and explore how GW energies correlate to the VAE-coded representation, we apply the 3D t-

SNE on top of the latent mean 𝜇  space for all 22002 states with GW labels, whose colors are 

coded to their calculated GW-correction labels, as Fig. 3(d) shows. The t-SNE analysis 

provides direct evidence for the manifold assumption: the VAE effectively maps the latent 𝜇  

space of the electronic wavefunction to a smooth spiraling manifold even for different materials. 

More intriguingly, even though the unsupervised VAE learning procedure is entirely 

independent of GW labels, the magnitude of the GW corrections exhibit a distinct pattern 



distributed across the width of the manifold, as opposed to a random distribution. As a result, 

the t-SNE analysis serves as a crucial validation, demonstrating that unsupervised 

representation learning can effectively capture the inherent statistical correlation between GW 

energies and the electronic wavefunction. Therefore, the unsupervised learning VAE plays a 

role as pre-learning, which can significantly lower the barrier for the subsequent supervised 

learning of GW self energies. 

 

Conclusion 

In summary, we demonstrate that a properly designed VAE model can unsupervisedly learn 

KS DFT wavefunctions, compressing them as a low-dimensional latent space, in a way that 

preserves fundamental information needed for downstream prediction of excited-state 

properties. Since our model autonomously determines the crucial information for preservation 

through the unsupervised reconstruction of wavefunction data, it can establish a low-

dimensional representation that avoids limitations due to feature engineering and selection in 

prior work. Our VAE model achieves a 𝑟2 of 0.92 when reconstructing the wavefunctions in 

the test set. To further test the effectiveness of the VAE representation of KS states, we train a 

supervised dense NN for downstream prediction of GW self-energies on top of the latent space 

of KS states. Notably, we feed our NN the latent space of the charge density, DFT 

wavefunctions and DFT energies, which also correspond to the physical inputs to an explicit 

GW calculation, avoiding any human bias in selecting inputs. The resulting model 

demonstrates a remarkably low MAE of 0.11 eV on a test set and can be used to predict both 

arbitrary k-points and materials held back from the training set. While other ML models have 

been used to predict GW bandstructure, the main advantage of our approach lies in our ability 

to interpret the smoothness of the latent space in relation to the completeness of our training 

set across both k-space and the space of material chemical and structural composition. This 

eliminates unphyiscal wiggles seen in previous models and allows us to confidently evaluate 

the generalizability of our model to states outside the training set improving its generative 

power. The smooth evolution of KS states in k-space can be mapped to a smooth trajectory in 

the latent space, and the sampled points from this continous trajectory are physically 

meaningful and can also be reconstructed, enabling the generation of wavefunctions (and 



related physical observables) at uncalculated points at no additional cost. As a result, despite 

being trained solely on uniformly sampled k-points, the k-resolved GW band structures can be 

accurately predicted by the NN. Here, in this first demonstration, we focus on predicting GW 

bandstructures of 2D materials, but we expect this framework to be generalizable to other 

crystalline systems and downstream applications, since it does not rely on the selection of 

specific features. 
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FIG. 1 (a) Schematic of the VAE. The encoder (green trapezoid) consists of two convolutional 

neural networks (CNN) and one flattened dense layer, mapping a real space wavefunction to a 

latent space vector of variational mean 𝜇  and variance 𝜎 . Z is the sampled latent vector, 

drawn from a variational Gaussian distribution using a “reparameterization trick”[64]. The 

decoder (blue trapezoid) has symmetric NN structures. The latent space serves as an 

information bottleneck for the VAE as its dimensions are only 1/1200 of the input and output 

(represented by the colormaps of the wavefunction in real space). (b) Schematic of the overall 

semi-supervised learning model, including both the unsupervised VAE and supervised dense 

neural networks (NN). The VAE inputs are the KS wavefunction modulus |𝜑𝑛�⃗� (𝑟 )|, all super 

states |𝜑𝑠𝑢𝑝(𝑟 )| and charge density 𝜌(𝑟 ) in real space. The input layer of the supervised 

dense NN is comprised of DFT energies, denoted as 𝜀𝐷𝐹𝑇 , along with low dimensional 

effective representations of 𝜑𝑛�⃗� (𝑟 ) , 𝜑𝑠𝑢𝑝(𝑟 )  and 𝜌(𝑟 )  denoted as 𝑒𝜃(𝜑𝑛�⃗� (𝑟 )) , 



𝑒𝜃𝑠𝑢𝑝(𝜑𝑠𝑢𝑝(𝑟 )) and 𝑒𝜃𝜌(𝜌(𝑟 )) respectively. These representations are encoded within the 

VAE latent space (yellow square) through an encoder with parameters 𝜃, 𝜃sup and 𝜃𝜌, which 

are unsupervisedly trained for all KS wavefunctions, super states and charge density.  

 

 

FIG. 2 (a) DFT calculated wavefunction of states A, B and C in MoS2 (see (e)) used as input 

to VAE encoder. (b) VAE reconstructed wavefunctions of states A, B and C through latent 

space decoding. (c) Low-dimensional variational mean latent space for states A, B and C. (d) 

parity plot comparing the exact calculated values (x-axis) to the ML predicted values (y-axis) 

of the GW correction for individual state. Blue (orange) dots represent training (test) sets. The 

MAE for the training set and test set are 0.06 and 0.11 eV respectively. (e) ML predicted GW 



band structures (blue solid curve) and calculated PBE band structures (blue dashed line) for 

monolayer MoS2. The red circles are the calculated GW energies. (f) Green (yellow) solid bars 

represent for R2 (MAE) of ML model without utilizing specific information, with the training 

process spanning 20,000 epochs. 

   

 

FIG.3 (a) 3D tSNE visulization of the 𝜇  latent space for KS wavefunctions in the first valence 

band along Γ − M − K − Γ for the TMD monolayers MoS2, WS2 and CrS2, as shown in the 

lower band structures in (b). The dots (latent points) are mapped from the high-dimensional 

electronic wavefunction with color coded by DFT energies. The blue, green and red dashed 

lines connect latent points corresponding to the KS states from the first valence band of MoS2, 

WS2 and CrS2 respectively. Blue arrows denote latent points of 15 near states along M − K 

from MoS2, as shown in (b). (b) Generated real-space wavefunction moduli obtained by 

inputing latent points, which are sampled from the smooth latent curve of monolayer MoS2, 

into decoder for each KS state from M − K in the first valence band. The inset white number 



represents the r2 value, showing the high correlation with the calculated wavefunction. The 

lower figure represents the DFT bandstructres of monolayer MoS2 (Blue), WS2 (Green) and 

CrS2 (Red). The blue arrows indicate the KS states shown in the upper figures. (c) MAE of GW 

prediction for different k-points and generative power for k-point interpolation. The model is 

trained exclusively using GW energies at the Γ (left panel) point or 𝑘 = (0.1667,0, 0) (right 

panel). The x-axis is the distance from the trained k-point to the untrained k-points in reciprocal 

space. (d) 3D t-SNE components of VAE latent 𝜇 vector of 22002 KS wavefunction with GW 

energy labels, whose color is mapped to the GW correction 𝜖𝐺𝑊 − 𝜖𝐷𝐹𝑇. 
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