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Abstract

Large language models (LLMs) excel in most NLP tasks but also require expensive cloud
servers for deployment due to their size, while smaller models that can be deployed on lower cost
(e.g., edge) devices, tend to lag behind in terms of response quality. Therefore in this work we
propose a hybrid inference approach which combines their respective strengths to save cost and
maintain quality. Our approach uses a router that assigns queries to the small or large model
based on the predicted query difficulty and the desired quality level. The desired quality level
can be tuned dynamically at test time to seamlessly trade quality for cost as per the scenario
requirements. In experiments our approach allows us to make up to 40% fewer calls to the large
model, with no drop in response quality.

1 Introduction

Large language models (LLMs) have become the dominant force in natural language processing in
recent years [Zhao et al| 2023|. Their impact has been especially striking in generative applications
where it has extended beyond standard language understanding and question-answering benchmarks
like [Hendrycks et al., [2020, Srivastava et al. 2022| to several successful real-world deployments.
These include the wildly popular ChatGPT |OpenAl, |E|| and several other chatbots [Zheng et al.|
powered by different LLMs [Taori et all, 2023] [Touvron et al.| [2023], [OpenAll 2023], which
allow users to engage in natural language conversations and obtain informative responses on a range
of practically useful tasks like creative writing, translation, code completion, etc. An important
added attraction of these models is their accessibility. Users can input queries and receive responses
in natural language, without any specialized data or code, and this is what has created such a
widespread demand for their services across regions, professions, and disciplines.

The best performing LLMs are based on the transformer architecture of [Vaswani et al., [2017]
and generally have tens of billions of parameters. E.g., Alpaca [Taori et al., 2023| has 13 billion
parameters, the best version of Llama-2 |[Touvron et all) 2023| has 70 billion parameters, and

OpenAl's GPT-3.5 [OpenAl la], and GPT4 [OpenAl, [2023] are rumored to be much larger. Their
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Figure 1: We use a dataset of natural language queries from a range of tasks like question answering,
summarization, information extraction, etc. (See Section [4] for details). We observe that (a) smaller models
generally give poorer response quality or lower BART score [Yuan et al) [2021], (b) Llama-2 (13b) outperforms
GPT-3.5-turbo on around 20% examples, and (c) our router can make 22% fewer calls to GPT-3.5-turbo
(cost advantage) with 1% drop in response quality (BART score).

enormous size and the autoregressive nature of text generation in their transformer architectures
means that these models typically have a high compute and memory requirement that can only be
met by expensive cloud servers [Yu et al.,2022|. This can potentially impose an enormous cost on
developers and users as more LLM-based services are introduced. In response to this there has been
a surge of interest in designing smaller, cost-effective LLMs — e.g., [Touvron et al.l 2023| provides
multiple versions of Llama-2, with the smallest having only 7 billion parameters, small enough to
run on a laptopEL while the smallest offering of Google’s Palm-2 model can even run on mobile
devicesﬂ. However empirical evaluations in |Chung et al., 2022, Touvron et al., [2023| as well as our
own evaluation in Figure [Ta] show that smaller models generally lag behind in terms of response
quality.

Faced with this tradeoff between response quality and inference cost, we propose a hybrid
inference approach which provides the best of both worlds. Our approach is motivated by the
observation that most tasks for which LLMs are useful, like creative writing, translation, code
completion, etc., include a range of queries of different difficulty levels and there is always a subset
of “easy” queries for which responses of a small (inexpensive and weak) model may be comparable
to, and sometimes even better than those of a large (expensive and powerful) model. This is also
illustrated in Figure [Lb| where we plot the tail of the quality gap (defined in Section |3) between the 13
billion parameter version of Llama-2 and OpenAl’s GPT-3.5-turbo, the model that powers ChatGPT.
Quality gap is non-negative for examples where the response quality of Llama-2 is comparable to or
better than that of GPT-3.5-turbo which is the case for around 20% queries in our dataset (described
in Section .

We leverage this insight to train a router that takes a large model and a small model as input,
and learns to identify these easy queries as a function of the desired level of response quality, while
taking into account the generative nature of tasks, inherent randomness in LLM responses, and
response quality disparity between the two models. At test time, the router seamlessly adjusts to
different response quality requirements and assigns the corresponding “easy” queries to the small
model, leading to significant inference cost reduction with minimal drop in response quality. In

"https://github.com /microsoft /Llama-2-Onnx
https:/ /blog.google/technology /ai/google-palm-2-ai-large-language-model /
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Figure 2: Routing between edge and cloud.

Figure |Lc| our router assigns 22% of queries to Llama-2 (13b) E|With less than 1% drop in response
quality measured in BART scores [Yuan et al., [2021]. The gains are even higher for pairs where the
small model is closer in terms of response quality to the large model (see Section .

With the explosion in the complexity and costs of LLM deployments, small companies and
individual consumers, have started to rely on the pre-existing LLMs hosted on platforms like
HuggingFace and OpenAl . This is an instance of the broader Machine-Learning-
As-A-Service (MLaaS) paradigm, wherein users (small companies/individual consumers) interact
with the models through an API where they submit their queries [Kang et al., 2022| and have limited
visibility into the models themselves. In this context, our hybrid inference approach can reduce the
costs incurred by both consumers and platform owners because a) consumers can use it to route easy
queries to small models hosted on their edge devices (laptops/smartphones) and only call the API
for the more complex queries (illustrated in Figure [2)) and b) platform owners can automatically
route queries to lower cost models at the backend without affecting the user experience, as long as
the response quality levels are maintained. Thus our hybrid inference approach offers a flexible and
cost-effective solution for harnessing the full potential of LLMs while accommodating diverse cost
budgets and quality requirements.

The main technical contributions of this work are: a) we are the first to explore cost-effective
and quality-aware hybrid LLM inference, b) we design a novel query router which routes queries
based on an estimate of the response quality gap between models (Section , ¢) we incorporate
uncertainty due to randomness in LLM responses in our router design to improve performance
(Section , d) we identify challenges for our router when the small model is significantly weaker
than the large model and introduce a novel data transformation to address this issue (Section ,
and e) we provide extensive experimental results (Section [4]) on a large benchmark dataset of real
world natural language queries and responses |Jiang et al., 2023| thereby demonstrating the value of
the approach and its superiority over baseline approaches, enabling LLM providers and consumers
to cost-efficiently enable LLM-backed experiences.

*We term the fraction of queries routed to the small model as the cost advantage (see §2.3)



2 Problem Formulation

2.1 Related Work

Large Language Models (LLMs). The advent of LLMs has led to a paradigm shift in
the study of natural language processing (NLP), computer vision, information retrieval, and other
domains|Menghani, [2023], Chen et al., 2023| [Jiang et al., 2023|. The impressive effectiveness and
generalizability of LLMs has come at the price of a drastic increase in LLM sizes |Treviso et al., 2023]
and consequent challenges, including huge amounts of computational resources and data required to
train, and prohibitive expenses at both training and deployment stages [Bender et al., 2021].

Efficient Machine Learning (ML) Inference. LLMs belong to a class of models called
foundation models [Bommasani et al., 2021] — models that are trained once and can then be used
to serve a wide variety of tasks. As such, we expect inference cost to dominate the overall cost of
such models and hence focus on works that reduce the cost of ML inference [Menghani, 2023|. The
most common approach for efficient ML inference is model compression i.e., replacing a large model
with a smaller model of comparable accuracy. Common techniques for model compression include
(i) model pruning [Hassibi et al., |1993] LeCun et al., [1989] which drops parts of the model with
minimal accuracy loss, (ii) quantization |[Jacob et al., [2018| [Vanhoucke et al., [2011] which reduces
model memory footprints and inference latency by reducing the precision of data representation
(e.g., FP32 to INTS), (iii) knowledge distillation |Hinton et al., 2015, [Urban et al. [2016] which trains
small student models to mimic large teacher models, and (iv) Neural Architecture Search |Elsken
et al.l 2019, Zoph and Le, [2016] which tunes model architecture to improve model performance,
under inference cost constraints. Such static efficiency optimizations typically produce a fized model
with lower inference cost and lower accuracy compared to the large model which may not suffice
for foundation models like LLMs, whose core premise is that the same model will serve a range of
tasks, each with its own accuracy/cost constraints. This is already manifesting in inference platforms
described in Section [1| which need more dynamic optimizations to meet the demands of all users.

Hybrid ML Inference. Recent works |Kag et al., [2022, |Ding et al.| 2022| have introduced a
new inference paradigm called hybrid inference which uses two models of different sizes instead of a
single model for inference. The smaller model (e.g. Llama2 [Touvron et al., |2023|) generally has
lower inference cost but also lower accuracy than the larger model (e.g. GPT-4 |OpenAl, 2023|). The
key idea is to identify and route easy queries to the small model so that inference cost can be reduced
while maintaining response quality. By tuning a threshold on query difficulty we can dynamically
trade off quality and cost for the same inference setup. |Kag et al., 2022] study this setup for image
classification and propose to train the small model, large model, and router from scratch. However
LLM training is expensive and retraining LLMs from scratch for every scenario goes against the
very premise of inference with pre-trained foundation models. Moreover text generation [Igbal and
Qureshi, [2022] is often more ambiguous and challenging than image classification due to which novel
techniques are required for effective hybrid LLM inference for text generation.

Inference with Multiple LLMs. Some recent works |Jiang et al., [2023, |Chen et al., 2023,
Leviathan et all) 2023 Kim et al., [2023] use multiple LLMs for inference but these approaches
typically call more than one LLM for a single query that can incur significant computational
overheads. Specifically |Jiang et al., [2023| calls an ensemble of LLMs at inference time due to which
the inference cost will be proportional to the number of models in the system. |[Chen et al., 2023]
performs inference using a cascade of LLMs where responses to the query are generated sequentially
by the LLMs in the cascade until one of the models has a confidence score higher than a predefined



threshold. Our work provides high quality responses while always making a single LLM call for all
queries and will thus incur much lower computational cost than both of these works on average.
Speculative decoding, introduced in [Leviathan et al., 2023| Kim et al., 2023| speeds up decoding of
expensive models by invoking small-and-efficient decoders on the “easy” decoding steps. Instead, in
our work we are interested in query routing which assigns “easy” queries to small models to reduce
overall inference costs while maintaining high performance. While the two approaches have different
goals, an interesting line of future work would be to combine these so that our router assigns queries
to the small or large model based on query difficulty and then speculative decoding is applied on
top to speed up inference for queries assigned to the large model thereby leading to further cost
reduction.

2.2 Problem Setting

We extend the hybrid ML paradigm to LLM inference by routing queries between two models
with different inference costs and accuracy. This allows platforms |Face, OpenAl| c] to route queries
across backend LLMs to lower costs while dynamically tuning the ratio of queries assigned to each
model as per user quality requirements. It also allows users with small models on local (edge) devices
to only call the platform for hard queries (Figure , thus significantly reducing their expenses.

We use X and Z to denote the input query space and the set of all possible output responses
respectively. Let L : X — Z denote the large model and S : X — Z denote the small model.
Formally, the objective in our paradigm is to learn a router r : X — {0, 1} such that each user query
x € X is routed to the small model S(z) if r(z) = 0, and to the large model L(x), otherwise. Note
that we always route each query to a single LLM at inference time as opposed to using an ensemble
[Jiang et al., [2023] or a cascade |Chen et al., [2023] of LLMs, which may call multiple LLMs to resolve
a single query and incur significant computational overheads.

2.3 Evaluation Metric

Response Quality Automatic evaluation for text generation is a challenging and widely studied
problem. Traditional metrics, such as BLEU and ROUGE, initially designed for machine translation
and summarization, have been found to be of limited concordance with human judgment and
restricted applicability across diverse NLP tasks [Blagec et al.,[2022]. Significant research efforts have
been devoted to implementing task-agnostic evaluation metrics with neural networks. GPT-ranking
[Jiang et al., |2023|, as a representative example, employs GPT models (e.g., GPT-4 [OpenAl| 2023|)
to provide relative rankings between pairs of generated outputs. In spite of the high correlation with
human perception, GPT-ranking suffers from high computational costs and inability to distinguish
between examples with the same ranking. Instead, we use the BART score [Yuan et al. |2021] to
evaluate response quality of different models since (1) it is inexpensive to compute in comparison to
LLM-based metrics such as GPT-ranking, and (2) it has been shown in prior work |Jiang et al., 2023]
that this metric correlates well with the ground truth. We also provide a case study in Appendix
to empirically justify using BART score as the response quality metric. We use ¢(z), ¢: Z - R
to denote the BART score (response quality) of model responses z € Z.

Cost Advantage The absolute costs of running a model may not be known a priori, and may
be expressed using a variety of metrics, including latency, FLOPs, energy consumption, etc. In
LLM inference, however, each of these metrics is affected by several underlying confounders such
as different prompt templates, hardware capability, network connectivity, etc. Moreover different



platforms/users may be interested in different metrics. However the common underlying assumption
in this and previous works on efficient ML inference is that smaller models are more efficient than
larger models and therefore we expect to obtain an improvement in all the metrics by routing more
queries to the smaller model. Hence we define cost advantage as the percentage of queries routed to
the smaller model. Note that the notion cost advantage has been used as a generic efficiency metric
in previous hybrid ML work |[Kag et al., [2022|, where it is termed as coverage.

3 Hybrid LLM Inference

Easy Queries. We refer to queries for which the response quality of the small model is close to
the response quality of the large model as “easy” queries. The goal of our hybrid inference framework
is to identify the easy queries and route them to the small model thereby ensuring significant inference
cost reduction without much drop in response quality. Note that the easy queries as defined here,
need not necessarily be queries that are easy/inexpensive to respond to, they are just queries for
which the small model can match up to the large model. Examples of easy and hard queries as per
this definition are provided in Appendix [C.1]

Quality Gap. We define quality gap of a query x as H(z) := q(S(z)) —q(L(z)) i.e. the difference
in quality of the small model’s response S(z) and the large model’s response L(z). The quality
gap is a random variable since LLM responses are typically non-deterministic. This is illustrated in
Figure |3| below where the blue and orange plots correspond to the distribution of responses from
FLAN-t5 (800m) E| |[Chung et al., [2022] and Llama-2 (13b) |[Touvron et al., [2023] for a single query.

Proposed Orchestration Framework. Queries are
routed using a BERT-style encoder model (e.g., DeBERTa,

[He et all 2020]) which is trained on a dataset of rep- 44 o Tl'a”'ﬁz(?fgg:’
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significantly from the realizable cost advantage. BART scores (1)

Router Score. We design the router score to be large
for easy queries as defined above. Intuitively, an estimate Figure 3: Response quality distribution for
of Pr[H(x) > 0] is a suitable candidate since a large value FLAN-t5 (800m) and Llama-2 (13b) on the
of Pr[H(x) > 0] = Pr[q(S(x)) > q(L(gj))] corresponds query “How to identify the index of me-
to queries for which there is a high likelihood that the dian?”.measured in BART.SC(?YQS' Llama-2
response quality of the small model will be at least as high (13b) Vf”th transformation significantly over-
as that of the large model. However we show below that laps with FLAN-t5 (800m).
in scenarios where the large model is significantly more
powerful than the small model i.e. ¢(S(z)) << ¢(L(x)) in general, one can train more effective
routers by relaxing the definition of easy queries to Pr[H(x) > —t] = Pr[¢(S(x)) > ¢(L(x)) — t] for
an appropriate t > 0. At test time we achieve the desired performance accuracy tradeoff by tuning a
threshold on the score and routing queries with score above the threshold to the small model. For a

We use the FLAN-t5-large model from https://huggingface.co/google /flan-t5-large.



router with parameters w, we denote router score by py,(z), pw : X — [0,1]. We discuss different
router score designs in the rest of this section assuming a training set of IV queries x1,...,zxN.

3.1 Deterministic Router

Previous work on hybrid ML [Ding et al., 2022, Kag et al} 2022] makes the assumption that
neural models are deterministic functions that map input features to a single point in the output
space. To realize this for LLMs, we sample a single response per query from each model. We assign
boolean labels yi¢* = 1[q¢(S(x;)) > q(L(x:))], i = 1,..., N to each training query with the BART
score as the quality function ¢(.). Our router is trained by minimizing the binary cross-entropy loss
[Ruby and Yendapalli, 2020].

£ log(pw (1)) + (1 = yi'*) log(1 — pu () (1)

an

Observe that the assigned labels y%¢* can be viewed as an estimate for Pr[H (x;) > 0] given a single
response per query from each model and thus minimizing the above loss encourages the router score
pw(z) to be close to Pr[H (x) > 0] for test queries. We refer to this deterministic router as rges.

3.2 Probabilistic Router

The determinism assumption can be justified for tasks where the ground truth labels are often
explicit and unique such as image classification [Masana et al., [2022] and video segmentation |Yao
et al.,|2020]. When it comes to NLP tasks, however, there is usually no single best answer due to the
intrinsic ambiguity and complexity of natural languages. LLMs are widely used as non-deterministic
generators to capture the intrinsic uncertainty of NLP tasks, as shown in Figure [3| (ignore the dashed
curve for now). The non-determinism mainly comes from the randomness in the decoding phase.
Users typically control the level of uncertainty by choosing different decoding strategies such as
nucleus sampling |[Holtzman et al., [2019], as well as the values of the hyper-parameter temperature.
Intuitively, higher temperature values result in a higher level of randomness and diversity among the
generated responses. For black-box LLM APIs such as GPT-4 [OpenAl, [2023], it has been observed
that even upon setting temperature to the minimum value 0, it can still provide different responses
for the same input queries. The underlying mechanism is still an open problem while a recent study
hints at the instability of the MoE backbone |[Skyward} 2023].

We propose to incorporate the uncertainty due to the non-deterministic nature of LLM com-
parisons into the router tramlng loss by relaxing the hard labels ydet € {0,1} to the soft labels
Y™ = Pr[H(w;) > 0] = Prlg(S(xs)) > q(L(x))] = E[1[g(S(xs)) > q(L(x;))] where E denotes the
expectation. In practice, we estimate expectation by sampling 10 responses from each model and
computing the sample average of the corresponding indicator function values. Observe that the
hard label y{ is a higher-variance estimate of E[1[q(S(x;)) > q(L(z;))]] (since it is obtained from a
single sample) and hence we expect improved performance with the following training loss,

1 N

_ _N ( prob 1og Do xz)) + (1 Prob) log(]_ —pw(sz))) (2)

We refer to this probabilistic router as ;..
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Figure 4: Effect of data transformation on labels for training the router.

3.3 Probabilistic Router with Data Transformation

While so far we have designed scores that try to estimate Pr[H(xz) > 0], we observe that the
empirical estimate of Pr[H (z;) > 0] = E[1[q(S(z;)) > q(L(x;))]] tends to be extremely small when
the large model is significantly more powerful than the small model (0 for almost 90% of the queries
in Figure [fa] with Flan-t5 (800m) as the small model and Llama-2 (13b) as the large model). Because
q(S(z)) << q(L(x)) for most queries in this case, it provides an extremely weak signal for training
using Equation and as shown in Section {4 both 4. and 7y, fail to provide much improvement
over random query assignment in this case.

Traditional approaches for learning with imbalanced data have their own shortcomings |[Krawczyk|
2016]. Moreover our goal is to only design a router that can reduce inference cost while maintaining
response quality as much as possible and so we are not tied to a particular definition of class labels
to achieve this. We leverage this flexibility to introduce new labels y!*#"8(t) := Pr[H (z;) > —t] =
Prlq(S(x;)) > q(L(x;)) — t] for some t > 0. Since —t < 0, Pr[H(z) > —t] > Pr[H(z) > 0] by
definition of the tail distribution and so we expect this relaxation to provide a stronger signal for
router training while still allowing us to identify the easy queries i.e. those queries for which ¢(S(x))
has a high likelihood of being close to ¢(L(x)) (q¢(S(z)) > q(L(z)) —t). Visually, this corresponds
to comparing the distribution of the small model’s response with a shifted distribution of the large
model’s response to a query (dotted curve in Figure .

Now the question is how to choose the best relazation t ¢ Given that tail probability Pr[H (z) > —t]

lies in [0, 1], we choose t by maximizing the average pairwise differences between the transformed
labels to push them as far apart as possible and provide a strong signal for training. Thus we set,

= argmax Z | trans trans(t) | (3)

(i,2")

We currently solve the above optimization problem via grid-search and leave more sophisticated
approaches for future work. We plot the optimization objective for different values of ¢ for our
training dataset in Section and show the distribution of transformed labels y{"™"(¢*) in Figure
As we see, the distribution is 51gn1ﬁcantly more balanced now and we expect the resulting router to
be much more effective. Once again, we train the router by minimizing the loss

N
E(w):_%Z(yﬁrans(t*)log(pw(wi))+(1 Yo () log (1 — pu(2:))) (4)

i=1

and we refer to this probabilistic router as r.qns.
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Table 1: Cost advantage v.s. performance drop for model pairs of different performance gaps. Performance
drops are computed w.r.t. the all-at-large baseline.

4 Evaluation

4.1 Evaluation Setup

Dataset. We use the MixInstruct dataset from |Jiang et al.l [2023] to evaluate the effectiveness of
different routing strategies across a wide range of tasks (e.g., question answering, summarization,
information extraction). MixInstruct is a large-scale collection of real-world instructions and consists
of examples from four public datasets (see Table |5 in Appendix . The broad range of tasks in
the dataset enables us to train a generic router that will be effective across different scenarios. We
uniformly sample 10k training examples from the training split of MixInstruct, for each of which we
generate 10 responses from all LLMs under consideration. Our validation and test splits are the
same as the MixInstruct dataset, which consist of 5k instruction examples separately.

Router Model. We use DeBERTa-v3-large [He et al., 2020] (300M) as the backbone to train
our routers. We train each router with the corresponding loss from Section [3| for 5 epochs and
use the validation set to choose the best checkpoints for final evaluation. All experiments are
conducted with 1 NVIDIA A100 GPU of 80GB GPU RAM. We have made our source code available
at https://github.com/m365-core/hybrid llm routing.

Evaluation Measures. We use BART score [Yuan et al., 2021] as the quality metric and
use fraction of queries routed to the small model (cost advantage) as the efficiency metric (see
Section .

Baselines. To the best of our knowledge, there has been no prior work specifically on routing
between LLMs. We consider three straightforward baselines: all-at-large, all-at-small, and random.
All-at-large routes all queries to the large model, while all-at-small routes all queries to the small
model. Random generates a random number in [0,1] and selects the large model if it is below the
probability threshold.

Experiments. We investigate all three routers (see Section : the deterministic router rg., the
probabilistic router 7., and the probabilistic router augmented with data transformation 7 qns.
We select candidate model pairs from FLAN-T5 (800m), FLAN-T5 (11b), Llama-2 (7b), Llama-2
(13b), and GPT-3.5-turbo for our experiments. At test time the trained router (rget, Tprob, OF Ttrans)
takes a threshold value as input and routes all queries with router score higher than the threshold to
the small model as these are the easy queries. We evaluate the router performance in Section in
terms of both BART score and cost advantage (Figure [5| and Table , validate that the router is
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Figure 5: Error-cost tradeoffs achieved by rget, Tprob, and 7irqns for different performance gaps.

indeed routing easy queries to the small model in Section demonstrate that our routers are of
negligible compute overhead in Section [4:4] show how to choose routing thresholds in practice in
Section evaluate the effectiveness of our routers using a response quality metric other than the
BART score in Section [£.6] and test the generalizability of routers across model pairs in Section [4.7]

4.2 Router Performance Results

Small performance gap. LLMs of the same architectures are observed to be of small perfor-
mance gap such as Llama-2 (7b) v.s. Llama-2 (13b), as seen in Figure In this case, by trading
little to no performance drop, we show that (1) the deterministic router r4.; can achieve good cost
advantages, (2) 7prop consistently improves rger, and (3) 74rans is able to match or slightly improve
the performance of rp,,5. Numerical comparison results are summarized in Table |1} 4. routes 20%
(40%) queries to the small model i.e. Llama-2 (7b) with only 0.1% (0.2%) drop in response quality
w.r.t. the all-at-large baseline. Impressively rp.o; and 7¢qns achieve 20% cost advantages without
any quality drop, and r4.qps is able to achieve even 20% cost advantage without quality drop, which
can be attributed to these methods capturing the non-deterministic nature of LLMs.

Medium performance gap. Often there is only a moderate performance gap between leading
open-source LLMs like Llama-2 (13b) and state-of-the-art commodified LLMs, such as GPT-3.5-turbo
(Figure . In this case, all our routers deliver reasonable cost advantages with acceptable quality
drop. The effectiveness order between 7get, Tprop, and r4.qns resembles that in the small quality gap
case. All routers achieve 20% (40%) cost advantage with < 1% (< 4%) quality drop (Table[l). In
the 40% cost advantage regime, rp,qp slightly outperforms rge; and riyqns improves rp.qp, by 0.5% in
terms of quality drop.

Large performance gap. In the edge-cloud routing scenarios, edge devices often have very
limited resources and can only support small models of limited quality, which can be significantly
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Figure 6: Difference between average quality gap of queries routed to the small and large models with different
performance gaps.

outperformed by large models deployed on the cloud. We investigate how to effectively route queries
with LLM pairs of large performance gaps, such as FLAN-t5 (800m) and Llama-2 (13b) (Figure [5d).
Non-trivial routing is challenging in this situation since the large model dominates for a majority
of examples. Both rge; and 7.0, perform marginally better than the random routing baseline. In
contrast, ry.qans can still effectively distinguish relatively easy queries from the harder ones. 74pqns
achieves 40% cost advantages with 10.3% quality drop, which is 3.5% and 2.8% lower than rg4.; and
Tprob Tespectively (Table .
In the course of these experiments we made the following interesting observations:

1. When the cost advantage is modest (e.g., 10%) and the LLM performance gaps are not large
(e.g., Llama-2 (7b) v.s. Llama-2 (13b)) rp,.qp is able to achieve even better performance than
all-at-large which leads to the “negative quality drops” in Table [I] This is because, as seen
from the large value of Pr[H (z) > 0] in the tail distribution in Figure |5, the response quality of
the small model may be higher than that of the large model for several queries and by routing
these queries to the small model, the router is able to even beat all-at-large.

2. For lower cost advantages (< 10%) and small or moderate LLM performance gaps 7 qns
can be slightly outperformed by rge; or rpro. This might be due noise in the estimation of
the relaxation parameter ¢t from sample averages instead of expectation in Equation and
from the grid search process leading to suboptimal settings of r¢.qns. However we clearly see
that in more challenging routing scenarios with high cost advantage targets or large LLM
performance gaps, both 74 and 1, have difficulty in correctly routing queries, and 7¢qns
starts to dominate due to the benefits of the data transformation.

4.3 Router Validation Results

We also validate that the router is functioning as intended, that is, routing easy queries to the
small model and hard queries to the large model. To see this, in Figure [6] we plot the difference
between the average quality gaps of queries routed to the small model and those routed to the
large model for our router and the random baseline v/s different values of cost advantages (i.e., the
fraction of queries routed to the small model). Since the random baseline randomly assigns queries
the average difference is nearly always zero. However our router routes easy queries i.e. queries with
large quality gap (¢(S(x)) — ¢(L(z))) to the small model and queries with small quality gap to the
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large model. Hence the difference between the average quality gaps always has a significant positive
value indicating that more easy queries are routed to the small model than to the large model in our
approach as compared to the random assignment approach at all cost advantages.

4.4 Router Latency

We measure the latency of our router and compare it to the latency of the different LLMs —
Flan-t5 (800m), Llama-2 (7b), and Llama-2 (13b) that we use in our experiments for generating
responses to user queries. Note that the latency of all the routers 74es, Tprop, and 7¢rans Will be
the same since they use the same model (DeBERTa-v3-large [He et al., 2020]) and are just trained
differently. Also, we do not measure the latency of GPT-3.5-turbo since its responses are generated
by querying the OpenAl API [OpenAl ic| as the model weights are not publicly available due to
which it is not possible to disentangle the inference latency from the network latency, queueing
delay, latency of the API call, etc. However we note that the inference latency of all other LLMs
we consider is significantly larger than that of the router (see Table [2) and therefore we expect the
same to hold for GPT-3.5-turbo as well.

The latency results are reported in Table [2| where we measure the average latency per query
averaged over 200 randomly chosen queries from our dataset (confidence bounds correspond to one
standard error). As expected the router processes queries significantly faster than all the LLMs
(nearly 10x faster than the fastest LLM — FLAN-t5(800m)). This is both due to its smaller size
(300m parameters) and the fact that it performs a single forward pass over the query to generate
the score while the LLMs generate the response token-by-token in an autoregressive fashion due to
which the inference latency is proportional to the response length. Thus the router adds minimal
overhead to the inference cost due to its small size and extremely low latency.

Model Latency (seconds)
Router 0.036 + 0.002
FLAN-t5 (800m) 0.46 + 0.039
Llama-2 (7b) 7.99+0.15
Llama-2 (13b) 14.61 +0.27

Table 2: Latency Values for Different Models

4.5 Empirical Determination Of Routing Threshold

Recall that at test time the model owner is required to set a threshold on the router score which
serves to separate the easy queries from the hard ones (see Section . All queries with router score
higher than the threshold will be routed to the small model. Thus the threshold is a user-defined
parameter controlling the achieved efficiency-performance trade-off, to best serve the interests of
different users. In this section we show how to empirically choose thresholds on router scores to
achieve cost reduction with little to no performance drops. For this, we use a small calibration set to
recommend default thresholds to users. We investigate all three routers rges, 7prop, and rrens With
different LLM pairs that we use in our experiments. For each LLM pair, we randomly draw 500
samples from the validation set and use grid search to determine the threshold that delivers the
highest cost advantages i.e., cost savings on the validation set while keeping the performance drop
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S: Llama-2 (7b) S: Llama-2 (13b) S: FLAN-t5 (800m)

Router L: Llama-2 (13b) L: GPT-3.5-turbo L: Llama-2 (13b)
Perf. Drop Cost Adv. Perf. Drop Cost Adv. Perf. Drop Cost Adv.

. Val. 0.99% 98.20% 0.97% 15.20% 0.77% 5.40%
det Test 1.60% 98.56% 0.55% 15.15% 0.69% 4.89%
. Val. 0.92% 97.60% 0.56% 8.60% 0.70% 5.00%
prob est 1.42% 96.80% 0.11% 8.38% 0.57% 4.44%

., Val. 0.79% 96.00% 0.77% 17.00% 0.92% 4.00%
trans — pegt 1.39% 96.45% 0.49% 15.68% 1.02% 5.05%

Table 3: Test performance drops v.s. cost advantages achieved by thresholds chosen from 500 validation
samples with < 1% sampled performance drops.

(reduction in BART score) less than 1%. The limit on performance drop can be adjusted as per
user requirements. With the selected thresholds, we report the achieved performance drops and cost
advantages on the test sets, as summarized in Table [3]

As seen from the table the performance and the cost advantage obtained on the test sets closely
follows that on the validation sets for all categories of LLM pairs. This clearly illustrates that
a threshold chosen on the validation set generalizes well to the test set. We note that there is a
slight increase in the performance drop from the validation to the test set for the LLama-2 (7b)
and Llama-2 (13b) pair, i.e the LLM pair with small performance gap as per the categorization in
Section 4. However this is also the pair with the highest cost advantage or cost savings (> 96%
for all routers) and thus the issue can be addressed by just using a more conservative limit on the
performance drop while choosing the threshold which would still lead to very significant cost savings.

4.6 Alternate Evaluation Metrics

To provide a more comprehensive evaluation of our routers, we test the routing performance with
metrics in addition to BART score [Yuan et all 2021]. GPT-4-based evaluators have been found
to be well correlated with human assessments |Liu et al. 2023, Chase, 2022|. We generate GPT-4
evaluation scores (integer ratings from 1 to 10) for test responses from Flan-t5 (800m), Llama-2 (7b),
Llama-2 (13b), and GPT-3.5-turbo that we investigate in our experiments, using LangChain scoring
evaluator |Chase] 2022]. Recall that our routers are trained with BART score due to efficiency and
effectiveness reasons as discussed in Section Intuitively, if the quality gaps measured by BART
score and GPT-4 score are highly correlated, we could expect good routing performance even under
the GPT-4 score as we have seen in Section [£.2] We compute the correlation between quality gaps
measured by BART score and GPT-4 score, and report it along with routing performance evaluated
with GPT-4 score, as shown in Figure 7}

Aligned with our intuition, when the two metrics are well correlated (Figure , our routers
trained with BART score are still effective even when evaluated against GPT-4 score. Typically,
Tdet, Tprob, aNd Tirans are able to achieve 20% cost advantage with up to 1% performance drop,
and 40% cost advantage with up to 2.1% performance drop. As the correlation gets weaker, the
router performance gradually decays, as shown in Figure [7D] and This observation suggests a
simple-yet-effective strategy of using BART score in practice to save labelling costs while maintaining
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Figure 7: Routing performance evaluated with GPT-4 scores. Pearson (r) and spearman (p) correlation
coefficients between quality gaps measured by BART score and GPT-4 score are computed for each LLM pair.

routing performance. We can first compute the correlation between BART score and the target
metrics (e.g., human assessments) using a small sample and use BART score as training labels
whenever there is strong positive correlation with target metrics.

4.7 Generalizing To Different Model Pairs

We evaluate the generalizability of our routers by testing their routing performance on LLM
pairs different than the pairs they were trained with. We compute the correlation between quality
gaps of training and testing LLM pairs, and report it along with routing performance, as shown in
Figure

Similar to our observation in Section [4.6] our routers can generalize well if the quality gaps of
testing LLM pairs exhibit strong positive correlation with the quality gaps of the training pairs. In
Figure both pearson and spearman correlation coefficients exceed 0.7, and all three routers are
able to achieve 20% cost advantage with up to 1.6% performance drop, and 40% cost advantage with
up to 4.1% performance drop. As the correlation becomes weaker, the generalizability of our router
gets restricted and routing performance decays, as shown in Figure [8b] and B This observation
sheds light on using the quality gap correlation as an effective indicator to decide if our routers can
be applied to new LLM pairs in the early stage. Given a pair of LLMs (source pair) and a router
trained on this pair we can measure the correlation between the quality gap of the source pair and
the quality gap of any new target pair of LLMs to decide if the router will be effective on the target
pair.

5 Discussion and Conclusion

Motivated by the need to optimize the trade-off between LLM inference costs and response
quality, we have presented a hybrid inference approach based on quality-aware query routing. We
train a router to discriminate between “hard” and “easy” queries, enabling the LLM provider to make
cost-efficient decisions about which model should serve a given query. Our experimental results on a
variety of state-of-the-art LLMs of varying sizes show that such an optimization is possible and that
we can realize cost advantages of up to 40% with no significant drop in response quality.

To the best of our knowledge, this is the first work exploring the possibilities of cost-effective
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Figure 8: Routing performance on the testing LLM pairs that are different than the pairs routers were trained
with. Pearson (r) and spearman (p) correlation coefficients between quality gaps of the training and testing
LLM pairs are computed for each setting.

and quality-aware query routing between LLMs. We identify several important extensions for future
work: (1) Task-aware routing. Our current routers make routing decisions purely based on query
inputs. To improve routing effectiveness, we can provide more informative signals which help routers
distinguish easy queries from the hard ones, such as task labels for query examples and can also
identify tasks which may be more suited to routing for a given pair of LLMs. (2) Generalizing to
N-model routing. Modern MLaaS platforms typically host a large number of LLM instances of the
same or different configurations to efficiently serve users in different scenarios. This naturally forms
a more challenging routing problem with richer optimization opportunities (e.g., load balancing) (3)
Out-of-distribution (OOD) generalization. In this work, the model pair and data distribution
is fixed across training and testing. In the real-world it may be cumbersome /infeasible to train a new
router for every new model pair and for every new data distribution. Therefore there is a need for
techniques to generalize our approach to changes in the model pair and/or data distribution at test
time. (4) Novel evaluation metrics. Effective evaluation metrics are critical to train high-quality
routers. It is intriguing to see how to develop metrics of higher human-judgment correlation and to
which extent it will improve the routing performance.
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A Additional Experiments

A.1 More Router Performance Results

In this section, we provide more routing evaluation results on 4 LLM pairs. Typically, as shown
in Figure [9] the FLAN-t5 (800m) v.s. FLAN-t5 (11b) pair is another example of small performance
gaps, the Llama-2 (7b) v.s. GPT-3.5-turbo pair can be characterized as being of medium performance
gaps, while the routing between GPT-3.5-turbo and two FLAN-t5 models is of large performance
gaps. Qualitative comparison results are summarized in Table [4] which resemble our analysis in
Section In general, r4¢; is able to achieve noticeable cost advantages with little to no performance
drop when the the cost advantage targets are low or the performance gaps are small. As the routing
becomes challenging, the improvements over rge; by having rp.., become considerable and r¢pqns
starts to dominate the competition.

We also provide the quality gaps difference for each routing scenario, as shown in Figure [10]
where we consistently observe that our routing strategy correctly identifies easy queries and route
them to the small model.

Performance Drop (%)

Ad\(,jaonsttage S: FLAN-t5 (800m) | S: Llama-2 (7b) | S: FLAN-t5 (800m) | S: FLAN-t5 (11b) |
(%) L: FLAN-t5 (11b) | L: GPT-3.5-tubo | L: GPT-3.5-turbo | L: GPT-3.5-turbo |
Vet | Tprob | Terans | Tdet | Tprob | Tirans | Taet | Tprob | Ttrans | Tdet | Tprob | Ttrans |

| 10 |-02]-03] -02 |03] 03| 06 |36] 34| 36 |[38] 36| 3.3 |
|20 |-02]-02] -0.2 |15| 13 | 1.2 |87 | 87 | 7.9 [ 90| 89 | 7.3 |
| 40 [ 00 [-0.1] 00 |41] 41 | 3.6 |193]| 198 | 17.4 |19.2] 194 | 16.5 |

Table 4: Cost advantage v.s. Performance drop.

B Dataset Statistics

Our dataset consists of 20k instruction examples, as shown in Table 5] Especially, our training
split consists of 10k real-world queries uniformly sampled from MixInstruct dataset from [Jiang et al.|
2023|.

C Query Hardness and BART score

C.1 Query Hardness: A Case Study

In this section, we demonstrate the query hardness with real-world examples from our dataset.
We choose the FLAN-t5 (11b) v.s. GPT-3.5-turbo routing pair for illustration purpose.
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Figure 9: Error-cost tradeoffs achieved by rget, Tprob, and 7¢rqns When the small and large models are of

different performance gaps.
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Sources #Examples Source of Responses

Alpace-GPT4 4,179 GPT-4
Dolly-15K 1,381 Human
GPT4All-LAION 13,547 chatGPT
ShareGPT 567 chatGPT
Total 20K Mix of Above

Table 5: Dataset Statistics.

C.1.1 Easy Query Example

Input Query: “Rewrite the sentence so that it’s in the present tense. She had worked at the
company for the past 8 years”’
LLM Responses:

e FLAN-t5 (11b): “She works at the company for the past 3 years.”
e GPT-3.5-turbo: “She works at the company for the past 3 years.”

In this example, the small model (i.e., FLAN-t5 (11b)) is able to generate the same high quality
response as the large model (i.e., GPT-3.5-turbo), which makes it an easy query by definition.

C.1.2 Hard Query Example

Input Query: “What are the benefits of having a dog in the family?”
LLM Responses:

e FLAN-t5 (11b): “A dog is good for physical activity.”

e GPT-3.5-turbo: “Having a dog in the family can have numerous benefits, including:

1. Companionship: Dogs provide unconditional love and companionship, offering constant
emotional support and a sense of belonging.

2. Improved mental health: Being around dogs has been proven to reduce stress, anxiety, and
depression. They can also help alleviate loneliness and provide a sense of purpose.

3. Increased physical activity: Dogs require regular exercise, which encourages family members
to engage in physical activities such as walking, running, and playing. This promotes a healthier
lifestyle for both the dog and the family.

4. Teaching responsibility: Caring for a dog requires feeding, grooming, training, and regular
vet visits. Having a dog in the family can teach children valuable life skills and instill a sense
of responsibility.

5. Socialization: Dogs are known to be social creatures. Walking a dog or visiting dog parks
can provide opportunities for social interaction and help family members connect with other
dog owners in the community.

6. Teaching empathy and compassion: Nurturing and caring for a dog teaches children empathy,
compassion, and the importance of kindness towards animals.
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7. Home security: Dogs are natural protectors and can act as an early warning system, alerting
the family to potential intruders or dangers.

8. Health benefits: Interacting with dogs, such as petting or playing, has been shown to lower
blood pressure, decrease the risk of allergies and asthma in children, and boost the immune
system.

9. Improved family dynamics: The presence of a dog can strengthen family bonds by providing
shared experiences, fostering teamwork, and creating a common focus of love and care.

It is important to note that owning a dog requires time, effort, and financial responsibility.
Families should carefully consider their lifestyle, resources, and commitment before deciding to
bring a dog into their home.”

In this example, the response from the small model (i.e., FLAN-t5 (11b)) is clearly uninformative
and unpolished, while the large model (i.e., GPT-3.5-turbo) is able to provide comprehensive and
well-constructed arguments. We identify this example as a hard query.

C.2 BART score: A case study

In this section, we empirically examine the correlation between BART scores and human
judgments. We take the query “Where is the Aéronef A-1 Skyraider built?” as example
to which the expected answer is “The Aéronef A-1 Skyraider was primarily built by the
Douglas Aircraft Company in El Segundo, California.” We report the 5 random responses
from Llama-2 (13b) appended with the corresponding BART scores, as shown below.

Responses from Llama-2 (13b):

1. Where is the Aéronef A-1 Skyraider built? The Aéronef A-1 Skyraider was built by the Douglas
Aircraft Company in El Segundo, California, USA. (-0.927)

2. Where is the Aéronef A-1 Skyraider built? A-1 Skyraider is built by Douglas Aircraft Company,
located in El Segundo, California, USA. (-1.12)

3. Where is the Aéronef A-1 Skyraider built? The Aéronef A-1 Skyraider was built in the United
States by Douglas Aircraft Company. (-1.63)

4. Where is the Aéronef A-1 Skyraider built? The Aéronef A-1 Skyraider was built in the United
States. (-2.25)

5. Where is the Aéronef A-1 Skyraider built? The Aéronef A-1 Skyraider is a fictional aircraft, so
it is not built anywhere as it does not exist in reality. (-2.93)

As shown above, the best response of the highest BART score —0.927 provides all necessary
information such as the company name and the city name. As the BART scores decrease, it can be
observed that the quality of corresponding responses starts degrading as well. For example, the 3-th
response does not include the city information, the 4-th response further misses the company name,
while the last one is completely wrong. This example empirically justifies the effectiveness of using
BART scores as the response quality metric.
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