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Abstract

This work proposes a Bayesian rule based on the mixture of a point mass

function at zero and the logistic distribution to perform wavelet shrinkage in non-

parametric regression models with stationary errors (with short or long-memory

behavior). The proposal is assessed through Monte Carlo experiments and il-

lustrated with real data. Simulation studies indicate that the precision of the

estimates decreases as the amount of correlation increases. However, given a

sample size and error correlated noise, the performance of the rule is almost the

same while the signal-to-noise ratio decreases, compared to the performance of

the rule under independent and identically distributed errors. Further, we find

that the performance of the proposal is better than the standard soft thresholding

rule with universal policy in most of the considered underlying functions, sample

sizes and signal-to-noise ratios scenarios.
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1 Introduction

In nonparametric regression problems, the usual approach is to represent the unknown

function in terms of a linear combination of some functional basis. In this way, the

statistical infinite dimensional problem of estimating the unknown function becomes a

finite dimensional problem of estimating the coefficients of the representation. There

are several functional basis widely applied in this regard such as polynomials, splines

and their expansions, Fourier basis, and wavelets, the focus of this work. The rep-

resentation of a function in wavelet basis brings several advantages in terms of its

coefficients. In fact, they are well localized in both time and frequency domains, i.e,

significant wavelet coefficients are found in important features of the function such

as peaks, discontinuities and oscillations. Furthermore, the coefficient vector is typ-

ically sparse, i.e, the wavelet coefficients located in smooth regions of the function

are equal to or very close to zero, which allows storing the main characteristics of

the represented function in terms of a few number of nonzero coefficients, a welcome

property from the computational and statistical estimation points of view. See Vi-

dakovic (1999) for more details about wavelet applications in statistical models, and

Daubechies (1992) and Mallat (1998) for theoretical developments of wavelets.

Due to the sparsity property of the wavelet coefficients, their estimation is usu-

ally done by wavelet shrinkage estimators. After the application of a discrete wavelet

transform (DWT) in the original data, the empirical wavelet coefficients are reduced

by a wavelet shrinkage in order to decrease their magnitudes, mainly if they are

sufficiently close to zero. The shrunk versions of the empirical coefficients are then

the estimates of the wavelet coefficients of the functional representation. The func-

tion estimate is obtained by the application of the inverse discrete wavelet transform

(IDWT). Several wavelet shrinkage rules have been proposed since the seminal works

of Donoho and Johnstone (1994) and Donoho and Johnstone (1995), who proposed

shrinkage rules based on thresholding, the so called soft and hard thresholding rules.

See for example ? and ? for proposed policies to perform wavelet thresholding

based on the false discovery rate and cross-validation method respectively and also

Vidakovic (1999) and ? for a general overview of wavelet shrinkage rules. Bayesian

wavelet shrinkage rules have also been considered by researches, since they allow the

incorporation of several features of the coefficients, such as the sparsity property and

their support, if they are bounded. For instance, see Chipman et al. (1997), Vi-
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dakovic and Ruggeri (2001), Angelini and Vidakovic (2004), Reményi and Vidakovic

(2015), Sousa et al. (2020), Sousa (2020) and Vimalajeewa et al. (2023) for a Bayesian

shrinkage rules review.

However, most of the proposed wavelet shrinkage rules were obtained and evalu-

ated under the assumption of independent and identically distributed (IID) and zero

mean normal errors. Since correlated noises arise in applications, the study of the

performance of shrinkage rules under this scenario is important. For example Wang

(1996) proposed a fractional Gaussian noise model to deal with nonparametric re-

gression with long-range dependency and established asymptotic properties for the

minimax risk. Johnstone and Silverman (1997) proposed a level-dependent threshold

choice to be applied in the Donoho-Johnstone soft thresholding rule when the data

have stationary correlated noise. Porto et al. (2016) also studied wavelet shrinkage

under random design and correlated noise also by adapting the soft thresholding rule

and ? surveyed the estimation of nonparametric regression models using wavelets.

Even though the studies above considered the thresholding rule in nonparametric re-

gression models under correlated noise, little attention has been given to Bayesian

shrinkage rules in this context. The present paper addresses this matter.

We propose a level-dependent Bayesian shrinkage rule based on a prior mixture

of a point mass function at zero and the symmetric around zero logistic distribution

to perform wavelet shrinkage in data with stationary correlated noise, specifically,

under an autoregressive process of order one (AR(1)) and autoregressive fractionally

integrated moving-average (ARFIMA) noises. This proposal is an extension of the

Bayesian shrinkage rule under logistic prior proposed by Sousa (2020) for the case of

IID Gaussian noise. The method takes advantage of the logistic distribution which is

very suitable as a prior to the wavelet coefficients, since it is unimodal and its hyper-

parameter controls the degree of shrinkage to be imposed on the empirical coefficients.

The proposal is assessed by Monte Carlo experiments involving the Donoho-Johnstone

test functions perturbed with correlated noises. In addition, the proposal is compared

to the widely known standard soft thresholding rule of Donoho and Johnstone (1994).

The remainder of the paper is organized as follows. In Section 2 we present

the model. Section 3 describes the proposal estimation procedure. This proposal

is assessed by Monte Carlo experiments in Section 4. An illustration is presented in

Section 5, and conclusions and final remarks are given in Section 6. Additional results

can be found in the Supplementary Material.
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2 Statistical Model

We consider n = 2J observations (x1, y1), · · · , (xn, yn) from the unidimensional non-

parametric regression model

yi = f(xi) + ei, (1)

where xi’s are scalars, f is an unknown squared integrable function, i.e, f ∈ L2(R) =
{f :

∫
f2 < ∞}, and ei denotes random errors that are assumed to be generated by

a stationary processes with zero mean and finite variance σ2e .

In this paper we consider three classes of stationary processes for {ei}. First,

independent and identically distributed (IID) processes with Gaussian distribution.

Second, autoregressive processes of order one, AR(1), defined by

ei = ϕei−1 + ηi, (2)

where the parameter ϕ ∈ (−1, 1), and {ηi} is an IID sequence with Gaussian distri-

bution, ηi ∼ N(0, σ2η). Third, autoregressive fractionally integrated moving-average

(ARFIMA) processes of order (0, d, 0) defined by,

(1−B)dei = ηi, (3)

where B is the backshift operator, (1 − B)d =
∑∞

j=0 bj(d)B
j with bj(d) = Γ(j −

d)/(Γ(j + 1)Γ(−d)) for j = 0, 1, . . . being Γ(·) the gamma function, and 0 < d <

0.5. ARFIMA processes were introduced by Granger and Joyeux (1980) and Hosking

(1981) to reproduce long-memory behavior, i.e., significant autocorrelations at high

lags, in contrast to short-memory models such as the autoregressive models that

exhibit autocorrelations with exponential decay.

On the other hand, the nonparametric standard procedure is to represent the

unknown function f in terms of some suitable functional basis. In this work, we

expand the function f in (1) in a wavelet basis

f(x) =
∑
j,k∈Z

θj,kψj,k(x), (4)

where {ψj,k(x) = 2j/2ψ(2jx− k), j, k ∈ Z} is an orthonormal wavelet basis for L2(R)
constructed by dilations j and translations k of a function ψ called a wavelet or mother

wavelet and θj,k are wavelet coefficients that describe features of f at spatial locations

2−jk and scales 2j or resolution levels j. Thus, according to the representation (4),
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the problem of estimating the function f is reduced to the problem of estimating a

finite number n of wavelet coefficients θj,k. For simplicity, the subindices j, k will be

dropped in the text without loss of interpretation.

We can rewrite the model (1) in vector notation as

y = f + e, (5)

where y = [y1, · · · , yn]′, f = [f(x1), · · · , f(xn)]′ and e = [e1, · · · , en]′. We apply a

discrete wavelet transform (DWT) of the original data to change them to the wavelet

domain. Although the DWT is usually performed by fast algorithms such as the

pyramidal algorithm, it is possible to represent it by a transformation matrix W

with dimension n×n which is applied on both sides of (5). Since the DWT is linear,

we obtain the following model in the wavelet domain

z = θ + ε, (6)

where z = Wy = [z1, · · · , zn]′ is the vector of empirical (observed) wavelet coeffi-

cients, θ = Wf = [θ1, · · · , θn]′ is the sparse vector of unknown wavelet coefficients

of f and ε = We = [ε1, · · · , εn]′ is the vector of random errors. Thus, we can con-

sider the empirical wavelet coefficients z as noisy versions of the unknown wavelet

coefficients θ. For more details about wavelet transforms in statistical models see

Vidakovic (1999).

3 Wavelet shrinkage rule and estimation

The estimation of the vector of wavelet coefficients θ is done coefficient by coefficient

under a Bayesian framework. In this sense, a prior distribution is assigned to a

single wavelet coefficient θ, which incorporates our knowledge about its sparsity and

symmetry around zero. Then, we consider the prior distribution π(·;α, τ) based on a

mixture of a point mass function at zero δ0(·) and a symmetric (around zero) logistic

distribution g(·; τ) as proposed by Sousa (2020):

π(θ;α, τ) = αδ0(θ) + (1− α)g(θ; τ), (7)

where

g(θ; τ) =
exp{−θ/τ}

τ(1 + exp{−θ/τ})2
IR(θ),
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α ∈ (0, 1), τ > 0 and IR(·) is the indicator function on the real set R. Thus, the prior

distribution has two hyperparameters to be elicited, α and τ . These hyperparameters

control the severity of the shrinkage imposed by the Bayesian rule on the empirical

coefficients. The empirical coefficients are shrunk more with higher values of α and

smaller values of τ since the prior distribution becomes more concentrated around

zero. Sousa (2020) suggested values of τ ≤ 10 and the elicitation of α according to

the level-dependent proposal of Angelini and Vidakovic (2004),

α = α(j) = 1− 1

(j − J0 + 1)γ
, (8)

where J0 ≤ j ≤ J−1, J0 is the primary resolution level, J is the number of resolution

levels, J = log2(n) and γ > 0. They also suggested that in the absence of additional

information, γ = 2 can be adopted.

To obtain the Bayesian shrinkage rule δ(·) under the prior (7), we assume the

quadratic loss function L(δ, θ) = (δ − θ)2. Then, Bayes rule gives the expected value

of θ|z, i.e, δ(z) = Eπ(θ|z).1 In this paper, in order to account for level dependency

that arises for stationary errors, we propose the following version of the shrinkage

rule of Sousa (2020),

δj(z) =
(1− α)

∫
R(σ̂ju+ z)g(σ̂ju+ z; τ)ϕ(u)du

α
σ̂j
ϕ( z

σ̂j
) + (1− α)

∫
R g(σ̂ju+ z; τ)ϕ(u)du

, (9)

where ϕ(·) is the standard normal density function and σ̂j is the estimate of the

standard deviation of the empirical wavelet coefficients at resolution level j,

σ̂j = MAD{zjk, k = 1, · · · , 2j}/0.6745, (10)

where MAD denotes the median absolute deviation. This MAD estimator was pro-

posed by Donoho and Johnstone (1994). In practice, the shrinkage rule (9) is obtained

numerically. Figure 1 shows the shrinkage rule (9) under the prior (7) for σ = 1, τ = 5

and for α ∈ {0.6, 0.7, 0.8, 0.9}. Note that the rule more severely shrinks large values of

α. This property is especially important for application at different resolution levels,

since finer levels require higher shrinkage of their coefficients.

[Figure 1 around here]

1See Robert (2007) for a complete description of Bayesian procedures.

6



Thus, we estimate a single wavelet coefficient θ by applying the shrinkage rule (9)

on its associated empirical coefficient z, i.e

θ̂ = δ(z).

Finally, we apply the inverse discrete wavelet transform (IDWT) of the estimated

wavelet coefficients vector θ̂ to estimate the function values f(xi). Since the wavelet

transform is orthogonal, the IDWT can be represented by the transpose matrix W t

and the estimator of f is calculated by

f̂ = W tθ̂.

3.1 An example with simulated data

We illustrate the estimation process by an example involving a Donoho-Johnstone

test function called Doppler as underlying function. From model (1) we generated

n = 1024 = 210 equally spaced points using the Doppler function and added random

noise following the ARFIMA(0,0.4,0) process (3). The variance of the process was

chosen to obtain a signal-to-noise ratio (SNR) of 5. Figure 2 (top - left) shows the

Doppler function and the generated data. A DWT under a Daubechies basis with

ten null moments was applied to the data according to (6) and the empirical wavelet

coefficients are represented by resolution level in Figure 2 (top - right). Estimates of

the standard deviation of the empirical coefficients by resolution level were calculated

and are displayed in Figure 2 (bottom - left). As noted by Johnstone and Silverman

(1997), the standard deviation of the empirical coefficients typically decreases when

the resolution level increases, which suggests that the parameters of the shrinkage

rule should be adjusted by resolution level under stationary processes. Finally we

applied the shrinkage rule (9) under the prior (7) with τ = 5 and α according to (8)

on the empirical coefficients and the IDWT to obtain the estimated function, which

is shown in Figure 2 (bottom - right).

The method’s success in terms of the decorrelation property of the DWT can be

viewed in Figure 3. The autocorrelation function of the generated ARFIMA (0,0.4,0)

random noise is shown in Figure 3 (top - left). In fact, we observe significant auto-

correlations until the lag equals 40. On the other hand, Figure 3 (top - right) and

(bottom - left) show the autocorrelation function of the empirical coefficients at res-

olution levels 8 and 9 respectively, indicating the reduced correlation in the wavelet
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domain. Furthermore, the cross-correlation function between the empirical coeffi-

cients in those resolution levels are represented in Figure 3 (bottom - right). Again

we see the decorrelation action of the wavelet transformation. This property justifies

the application of the shrinkage rule in the estimation process.

[Figures 2 and 3 around here]

4 Simulation studies

We conducted simulation studies to evaluate the performance of the shrinkage rule

under logistic prior in nonparametric models with stationary errors. We generated

data from model (1) with errors under the AR(1) process with ϕ = 0.25, 0.5 and 0.9 in

(2) and under the ARFIMA(0, d, 0) process with d = 0.2 and 0.4 in (3). Furthermore,

the variances of the generated errors were chosen according to three signal-to-noise

ratios (SNR), SNR = 3, 5 and 7, and three sample sizes n = 512, 1024 and 2048. The

goal was to evaluate how good the shrinkage rule works under different correlation

structures of the errors, level of noise present in the data, which is controlled by

the signal-to-noise ratios, and different sample sizes. The hyperparameters of the

rule were adopted according to (8) and τ = 5. We also considered the generation

of IID errors, the standard case, to compare the performance with correlated and

non-correlated errors.

The four Donoho - Johnstone (D-J) test functions in the interval [0, 1] called

Bumps, Blocks, Doppler and Heavisine, were considered as underlying functions to

be estimated in model (1). These functions, which are the benchmark functions in

wavelet studies, are defined as follows:

(a) BUMPS.

f(x) =
11∑
l=1

hlK

(
x− xl
wl

)
, (11)

where K(x) = (1 + |x|)−4 and

(xl)
11
l=1 = (0.1, 0.13, 0.15, 0.23, 0.25, 0.40, 0.44, 0.65, 0.76, 0.78, 0.81)

(hl)
11
l=1 = (4, 5, 3, 4, 5, 4.2, 2.1, 4.3, 3.1, 5.1, 4.2)

(wl)
11
l=1 = (0.005, 0.005, 0.006, 0.01, 0.01, 0.03, 0.01, 0.01, 0.005, 0.008, 0.005)
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(b) BLOCKS.

f(x) =

11∑
l=1

hlK(x− xl), (12)

where K(x) = (1 + sgn(x))/2 and

(xl)
11
l=1 = (0.1, 0.13, 0.15, 0.23, 0.25, 0.40, 0.44, 0.65, 0.76, 0.78, 0.81)

(hl)
11
l=1 = (4,−5, 3,−4, 5,−4.2, 2.1, 4.3,−3.1, 2.1,−4.2)

(c) DOPPLER.

f(x) =
√
x(1− x) sin

(
2.1π

x+ 0.05

)
. (13)

(d) HEAVISINE.

f(x) = 4 sin(4πx)− sgn(x− 0.3)− sgn(0.72− x). (14)

Plots of the D-J test functions are depicted in Figure 4. These functions have

important features to be recovered in the wavelet estimation process such as peaks

(Bumps), discontinuities (Blocks), oscillations (Doppler) and cusps (Heavisine).

[Figure 4 around here]

For each scenario, defined as the combination of underlying function, noise dis-

tribution, sample size and signal to noise ratio, 200 replications were generated. We

used the mean squared error (MSE) as the performance measure. Thus, for each

generated replication we computed:

MSE(m) =
1

n

n∑
i=1

[f̂ (m)(xi)− f(xi)]
2,

where f̂ (m)(·) is the estimate of the function at a particular point in the m-th replica-

tion, m = 1, · · · , 200. Then, for each scenario the mean (AMSE), standard deviation,

median and interquartile range of MSE(1), . . . ,MSE(200) were calculated.

Tables 1, 2, 3 and 4 contain the results for the four underlying functions Bumps,

Blocks, Doppler and Heavisine, respectively. Overall, the performance of the shrinkage

rule under logistic prior was similar for all the underlying functions. Thus, for fixed

sample size and SNR, the mean and the standard deviation of the MSEs increased as

the parameter ϕ increased, under AR errors. The same occured under ARFIMA errors

9



when the parameter d moved from 0.2 to 0.4. Therefore, as expected, the precision of

the estimates decreased as the correlation became stronger. Moreover, the means of

the MSEs were bigger for AR errors with ϕ = 0.9 than for ARFIMA(0,0.4,0) errors and

the standard deviations were smaller for the former in all scenarios2. Thus, among the

considered error models, the shrinkage rule worked worse, compared to the IID case,

for estimating functions under AR errors with ϕ = 0.9. In addition the signal-to-noise

ratio had a strong impact on the performance of the shrinkage rule. For example,

under the Bumps function in Table 1, n = 512 and AR errors with ϕ = 0.9, the

mean of the MSE was 5.062 for SNR = 3 and 1.144 for SNR = 7. Similar conclusions

were obtained based on the medians, see the Supplementary Material. Besides, the

standard deviations became smaller as the SNR increased, for fixed sample size and

noise process.

[Tables 1, 2 3 and 4 around here]

Figure 5 shows the boxplots of the MSEs of the shrinkage rule under logistic

prior for n = 512 and SNR = 3. Here we observe that the higher MSEs occurred

under AR with ϕ = 0.9 and ARFIMA(0,0.4,0) error noises. Indeed, the highest

variability occurred in those scenarios. In addition, note that the MSEs under AR

with ϕ = 0.25 and ϕ = 0.5 and ARFIMA(0,0.4,0) errors are closer than those of the

IID case compared to the AR with ϕ = 0.9 and ARFIMA(0,0.4,0) errors. Table 5

reports the ratios between the mean of the MSEs under the correlated noises over

the mean corresponding to the IID case for the underlying Bumps function. Here,

for fixed sample size and SNR, the rates increased with stronger correlation. Thus,

in the AR class, the rates increased as ϕ increased and the same happened in the

ARFIMA class when d increases. In addition, for fixed SNR and error noise process,

we observed a small increase in the rates as the sample size increased, except for the

ARFIMA(0,0.4,0) case where the increase was moderate. This was because the AMSE

of the rule under ARFIMA(0,0.4,0) errors decreased more slowly than its AMSE under

IID errors as the sample size increased. To illustrate this, for the Heavisine function

and SNR = 3, the AMSE under IID errors decreased from 0.799 (n = 512) to 0.602

(n = 2048), a reduction of 24.6%, while under ARFIMA(0,0.4,0) errors, the AMSE

declined from 3.015 (n = 512) to 2.831 (n = 2048), a reduction of 6.1%. Moreover,

2These findings also held when we considered the median instead the mean and the interquartile

range instead the standard deviation, see the Supplementary Material.
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for fixed sample size and error noise process the ratios were similar across the SNR

values. For instance, for n = 2048, the ratios under ARFIMA(0,0.4,0) errors were

2.61, 2.58 and 2.69 for SNR = 3, 5 and 9 respectively. Qualitatively similar results

were obtained for the Blocks, Doppler and Heavisine functions, see the Supplementary

Material.

[Figure 5 around here]

Furthermore, we compared the performance of the proposed method with the

standard soft thresholding rule ηS(·) proposed by Donoho and Johnstone (1994),

ηS(z) =

0, if |z| ≤ λ

sgn(z)(|z| − λ), if |z| > λ,
(15)

where λ > 0 is a threshold value and sgn(z) represents the sign of z. The threshold

value λ in (15) was chosen to be the level-dependent universal threshold according to

Johnstone and Silverman (1997) for correlated noise,

λj = σ̂j
√
2 log(n),

where σ̂j is obtained from (10). Figure 6 shows the results for n = 512 and SNR= 3

with errors following AR with ϕ = 0.9 and ARFIMA(0,0.4,0) processes. Comparison

of the boxplots of the MSE’s shows that the logistic shrinkage rule worked clearly

better than the thresholding rule (15) for the Bumps and Blocks functions for both

error structures considered. Under the Doppler function, the proposed rule was still

better than the thresholding rule, even though these methods had almost the same

performance for AR errors with ϕ = 0.9. For the Heavisine function, the rules had

similar results for ARFIMA(0,0.4,0) errors but the soft thresholding was better for AR

with ϕ = 0.9 errors. The same conclusions were obtained for the remaining scenarios

(combinations of sample sizes and signal-to-noise ratios). Therefore, in general, the

logistic shrinkage rule performed better than the soft thresholding rule under the

level-dependent universal threshold.

[Figure 6 around here]
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5 Illustration

We applied the shrinkage rule under logistic prior to estimate the light curve for the

variable star RU Andromeda. The dataset consisted of n = 256 magnitudes collected

at irregularly spaced times from Julian Day 2,440,043 to 2,441,592, corresponding

to July 5, 1968 to October 1, 1972. The data were gathered from the interna-

tional database of the American Association of Variable Star Observers (AAVSO)

at www.aavso.org. Sardy et al. (1999) analyzed this dataset with uncorrelated er-

rors and Porto et al. (2016) took the correlated errors into account and applied the

thresholding rule (15) to estimate the light curve.

Figure 7 (top-left) shows the estimates of the standard deviation of the errors ac-

cording to (10) from the primary resolution level (J0 = 4) until the highest resolution

level (J = 7). The estimates decreased as the resolution level increased, which usually

occurs in wavelet domains with correlated noises. The empirical wavelet coefficients

after the application of a DWT under the Daubechies basis with ten null moments

are depicted in Figure 7 (top-right). The significant coefficients are in the coarser res-

olution levels. In this sense, most of the coefficients at finer resolution levels should

be shrunk more drastically.

The original dataset contains two or even three measures of magnitudes on some

Julian days. In these cases we considered the median of the magnitudes, as in Porto

et al. (2016). Figure 7 (bottom-left) provides the data considered and the light curve

estimate by the shrinkage rule under logistic prior. The estimated curve captures the

signal of the data. Moreover, the estimated curve has peak magnitudes on the Julian

days 2,440,183 (November 22, 1968); 2,440,415 (July 12, 1969); 2,440,452 (August 18,

1969) and 2,441,394 (March 17, 1972), with magnitudes greater than 13.0. Finally,

Figure 7 (bottom-right) shows the autocorrelation function of the estimated errors.

Although there is almost no correlation structure, we rejected the hypothesis of non-

correlation among the residuals according to the Box-Ljung (BL) test based on 10

autocorrelations. The observed BL test statistic is 38.846 with associated p-value

less than 0.001. This indicates the presence of a nonzero correlation structure in the

errors.

[Figure 7 around here]
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6 Conclusions

In the present work, we proposed a Bayesian rule based on the mixture of a point

mass function at zero and the logistic distribution to perform wavelet shrinkage in

nonparametric regression models with stationary errors. The rule is an adaptation of

Sousa (2020), which is level-dependent, i.e, the severity of the shrinkage depends on

the resolution level of the coefficients. The hyperparameters of the prior distribution

also control the shrinkage level of the rule, which facilitated their elicitation.

Simulation studies indicated that the precision of the estimates decreased as the

correlation level increased. In addition, given a sample size and error correlated noise,

the performance of the rule was almost the same as the SNR decreased, compared to

the performance of the rule under IID errors. Furthermore, under AR(1) with ϕ = 0.9

and ARFIMA(0,0.4,0) errors, the performance of the proposal was better than that

of the standard soft thesholding rule with universal policy in most of the considered

underlying functions, sample sizes and signal-to-noise ratios scenarios. This suggests

that the proposed procedure is a useful alternative to perform wavelet shrinkage under

correlated errors with short or long memory processes.

The impact of the chosen wavelet basis on the performance of the shrinkage rule

and the proposition of Bayesian rules that act asymmetrically in the shrinkage process

under correlated errors are suggestions for possible future works.
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n Noise process SNR = 3 SNR = 5 SNR = 7

512 IID 2.580 (0.226) 1.040 (0.092) 0.599 (0.050)

AR(1) (ϕ = 0.25) 2.833 (0.298) 1.176 (0.109) 0.670 (0.055)

AR(1) (ϕ = 0.5) 3.369 (0.419) 1.381 (0.138) 0.791 (0.079)

AR(1) (ϕ = 0.9) 5.062 (1.048) 2.041 (0.382) 1.144 (0.211)

ARFIMA(0,0.2,0) 2.970 (0.354) 1.243 (0.140) 0.711 (0.071)

ARFIMA(0,0.4,0) 4.395 (2.032) 1.802 (0.792) 0.973 (0.327)

1024 IID 1.832 (0.136) 0.731 (0.048) 0.406 (0.029)

AR(1) (ϕ = 0.25) 2.121 (0.184) 0.861 (0.072) 0.485 (0.043)

AR(1) (ϕ = 0.5) 2.703 (0.246) 1.073 (0.094) 0.601 (0.055)

AR(1) (ϕ = 0.9) 4.613 (0.659) 1.796 (0.248) 0.975 (0.141)

ARFIMA(0,0.2,0) 2.257 (0.234) 0.931 (0.104) 0.513 (0.045)

ARFIMA(0,0.4,0) 3.749 (1.866) 1.545 (0.594) 0.807 (0.317)

2048 IID 1.261 (0.080) 0.475 (0.031) 0.264 (0.017)

AR(1) (ϕ = 0.25) 1.527 (0.106) 0.576 (0.043) 0.321 (0.021)

AR(1) (ϕ = 0.5) 2.084 (0.182) 0.790 (0.056) 0.434 (0.036)

AR(1) (ϕ = 0.9) 4.029 (0.510) 1.578 (0.187) 0.843 (0.092)

ARFIMA(0,0.2,0) 1.740 (0.161) 0.665 (0.665) 0.363 (0.032)

ARFIMA(0,0.4,0) 3.285 (1.621) 1.227 (0.539) 0.709 (0.301)

Table 1: Mean (standard deviation) of the MSEs of the shrinkage rule under logistic

prior with the underlying Bumps function in the simulation studies.
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n Noise process SNR = 3 SNR = 5 SNR = 7

512 IID 2.246 (0.199) 0.937 (0.098) 0.506 (0.053)

AR(1) (ϕ = 0.25) 2.532 (0.265) 1.072 (0.112) 0.589 (0.058)

AR(1) (ϕ = 0.5) 3.158 (0.383) 1.318 (0.137) 0.712 (0.076)

AR(1) (ϕ = 0.9) 5.329 (1.052) 2.033 (0.359) 1.078 (0.189)

ARFIMA(0,0.2,0) 2.772 (0.327) 1.166 (0.145) 0.626 (0.077)

ARFIMA(0,0.4,0) 4.617 (2.274) 1.724 (0.795) 0.923 (0.366)

1024 IID 1.537 (0.124) 0.613 (0.052) 0.354 (0.030)

AR(1) (ϕ = 0.25) 1.795 (0.150) 0.727 (0.066) 0.415 (0.036)

AR(1) (ϕ = 0.5) 2.407 (0.263) 0.959 (0.103) 0.530 (0.048)

AR(1) (ϕ = 0.9) 4.421 (0.760) 1.731 (0.257) 0.938 (0.131)

ARFIMA(0,0.2,0) 2.020 (0.221) 0.823 (0.090) 0.465 (0.046)

ARFIMA(0,0.4,0) 3.510 (1.493) 1.453 (0.673) 0.766 (0.304)

2048 IID 1.163 (0.084) 0.439 (0.032) 0.241 (0.016)

AR(1) (ϕ = 0.25) 1.390 (0.109) 0.535 (0.037) 0.292 (0.022)

AR(1) (ϕ = 0.5) 1.921 (0.170) 0.746 (0.065) 0.406 (0.032)

AR(1) (ϕ = 0.9) 3.922 (0.522) 1.522 (0.184) 0.817 (0.088)

ARFIMA(0,0.2,0) 1.601 (0.150) 0.632 (0.066) 0.342 (0.032)

ARFIMA(0,0.4,0) 3.181 (1.370) 1.306 (0.699) 0.685 (0.303)

Table 2: Mean (standard deviation) of the MSEs of the shrinkage rule under logistic

prior with the underlying Blocks function in the simulation studies.
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n Noise process SNR = 3 SNR = 5 SNR = 7

512 IID 1.181 (0.154) 0.465 (0.067) 0.247 (0.036)

AR(1) (ϕ = 0.25) 1.392 (0.219) 0.568 (0.080) 0.297 (0.043)

AR(1) (ϕ = 0.5) 1.874 (0.355) 0.742 (0.114) 0.400 (0.067)

AR(1) (ϕ = 0.9) 3.915 (1.012) 1.496 (0.345) 0.757 (0.180)

ARFIMA(0,0.2,0) 1.611 (0.298) 0.645 (0.116) 0.340 (0.059)

ARFIMA(0,0.4,0) 3.067 (2.139) 1.264 (0.774) 0.700 (0.505)

1024 IID 0.880 (0.113) 0.302 (0.038) 0.164 (0.018)

AR(1) (ϕ = 0.25) 1.073 (0.142) 0.379 (0.051) 0.206 (0.026)

AR(1) (ϕ = 0.5) 1.547 (0.227) 0.578 (0.094) 0.302 (0.041)

AR(1) (ϕ = 0.9) 3.540 (0.684) 1.356 (0.250) 0.712 (0.119)

ARFIMA(0,0.2,0) 1.258 (0.187) 0.452 (0.074) 0.254 (0.039)

ARFIMA(0,0.4,0) 2.886 (1.985) 1.062 (0.598) 0.596 (0.343)

2048 IID 0.714 (0.069) 0.218 (0.023) 0.106 (0.013)

AR(1) (ϕ = 0.25) 0.895 (0.089) 0.286 (0.030) 0.140 (0.016)

AR(1) (ϕ = 0.5) 1.369 (0.141) 0.473 (0.054) 0.234 (0.029)

AR(1) (ϕ = 0.9) 3.341 (0.501) 1.255 (0.180) 0.656 (0.092)

ARFIMA(0,0.2,0) 1.050 (0.143) 0.369 (0.054) 0.191 (0.029)

ARFIMA(0,0.4,0) 2.786 (1.859) 0.979 (0.505) 0.515 (0.245)

Table 3: Mean (standard deviation) of the MSEs of the shrinkage rule under logistic

prior with the undrlying Doppler function in the simulation studies.
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n Noise process SNR = 3 SNR = 5 SNR = 7

512 IID 0.799 (0.143) 0.290 (0.050) 0.164 (0.024)

AR(1) (ϕ = 0.25) 0.979 (0.185) 0.358 (0.064) 0.208 (0.037)

AR(1) (ϕ = 0.5) 1.443 (0.288) 0.550 (0.114) 0.291 (0.053)

AR(1) (ϕ = 0.9) 3.450 (0.929) 1.357 (0.379) 0.714 (0.179)

ARFIMA(0,0.2,0) 1.191 (0.302) 0.446 (0.109) 0.250 (0.055)

ARFIMA(0,0.4,0) 3.015 (2.354) 1.084 (0.754) 0.579 (0.374)

1024 IID 0.686 (0.086) 0.213 (0.030) 0.109 (0.017)

AR(1) (ϕ = 0.25) 0.849 (0.133) 0.280 (0.044) 0.145 (0.023)

AR(1) (ϕ = 0.5) 1.315 (0.206) 0.459 (0.073) 0.239 (0.040)

AR(1) (ϕ = 0.9) 3.319 (0.702) 1.252 (0.263) 0.638 (0.119)

ARFIMA(0,0.2,0) 1.043 (0.231) 0.362 (0.076) 0.193 (0.042)

ARFIMA(0,0.4,0) 2.712 (1.614) 0.952 (0.591) 0.558 (0.320)

2048 IID 0.602 (0.062) 0.170 (0.022) 0.079 (0.010)

AR(1) (ϕ = 0.25) 0.756 (0.087) 0.229 (0.029) 0.107 (0.015)

AR(1) (ϕ = 0.5) 1.222 (0.138) 0.402 (0.053) 0.199 (0.025)

AR(1) (ϕ = 0.9) 3.188 (0.491) 1.210 (0.192) 0.601 (0.093)

ARFIMA(0,0.2,0) 0.942 (0.130) 0.305 (0.055) 0.156 (0.028)

ARFIMA(0,0.4,0) 2.831 (1.739) 0.928 (0.516) 0.487 (0.301)

Table 4: Mean (standard deviation) of the MSEs of the shrinkage rule under logistic

prior with the underlying Heavisine function in the simulation studies.
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n Noise process SNR = 3 SNR = 5 SNR = 7

512 IID 1.00 1.00 1.00

AR(1) (ϕ = 0.25) 1.10 1.13 1.12

AR(1) (ϕ = 0.5) 1.31 1.33 1.32

AR(1) (ϕ = 0.9) 1.96 1.96 1.91

ARFIMA(0,0.2,0) 1.15 1.20 1.19

ARFIMA(0,0.4,0) 1.70 1.73 1.62

1024 IID 1.00 1.00 1.00

AR(1) (ϕ = 0.25) 1.16 1.18 1.19

AR(1) (ϕ = 0.5) 1.48 1.47 1.48

AR(1) (ϕ = 0.9) 2.52 2.46 2.40

ARFIMA(0,0.2,0) 1.23 1.27 1.26

ARFIMA(0,0.4,0) 2.05 2.11 1.99

2048 IID 1.00 1.00 1.00

AR(1) (ϕ = 0.25) 1.21 1.21 1.22

AR(1) (ϕ = 0.5) 1.65 1.66 1.64

AR(1) (ϕ = 0.9) 3.20 3.32 3.19

ARFIMA(0,0.2,0) 1.38 1.40 1.38

ARFIMA(0,0.4,0) 2.61 2.58 2.69

Table 5: Ratios of the AMSEs of the shrinkage rule under logistic prior for autor-

regressive and ARFIMA noise processes in relation to the IID noise process for the

underlying Bumps function.
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Figure 1: Shrinkage rules (9) under the prior (7) for σ = 1, τ = 5 and for α ∈
{0.6, 0.7, 0.8, 0.9}.
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Figure 2: Generated data (n = 1024) from the Doppler function with random noise

according to an ARFIMA(0,0.4,0) process (top - left). Empirical wavelet coefficients

by resolution level (top - right). Estimates of the standard deviation of the empirical

coefficients also by resolution level (bottom - left). Estimated curve by the application

of the shrinkage rule (9) under prior (7) (bottom - right).
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Figure 3: Autocorrelation function of a generated random noise under

ARFIMA(0,0.4,0) process (top - left), empirical coefficients in the resolution levels

8 (top - right) and 9 (bottom - left). Cross-correlation function between empirical

coefficients in resolution levels 8 and 9 (bottom - right).
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Figure 4: The four Donoho-Johnstone test functions called Bumps, Blocks, Doppler

and Heavisine considered as underlying functions in the simulation studies.

23



Figure 5: Boxplots of the MSEs of the shrinkage rule under logistic prior according to

the errors: 1-iid, AR(1) with 2-ϕ = 0.25, 3-ϕ = 0.5 and 4-ϕ = 0.9 and ARFIMA with

5-d = 0.2 and 6-d = 0.4. Results for the Donoho-Johnstone test underlying functions

with n = 512 and SNR = 3.
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Figure 6: Boxplots of the MSEs of shrinkage rule under logistic prior according to

AR(1) with ϕ = 0.9 (ar-log) and ARFIMA(0,0.4,0) (arf-log) errors and the MSEs of

the soft thresholding rule with level-dependent universal threshold (15) according to

the same respective errors structures (ar-uni and arf-uni). Results of the Donoho-

Johnstone test of underlying functions with n = 512 and SNR = 3.
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Figure 7: Estimates of the standard deviations of the errors by resolution level for

the variable star RU Andromeda dataset application. The primary resolution level

adopted was J0 = 4 (top-left), empirical wavelet coefficients by resolution level (top-

right), dataset (n = 512) of light magnitudes of the variable star RU Andromeda

considered in the application and the estimated light curve (in red) by the shrinkage

rule under logistic prior (bottom-left) and autocorrelation function of the estimated

errors in time domain (bottom-right).
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