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Classification of Lattices Bounded by Large Surgeries of Knots

Ali Naseri Sadr

Abstract

We classify all the lattices realized as the intersection form of a positive definite four manifold with

boundary S3

n
(K) for a knot K in the three sphere and a positive integer n greater than 4g4(K) + 3. We

then use this result to define a concordance invariant and generalize a theorem of Rasmussen on lens

space surgeries.

1 Introduction

Inspired by the results in [2], we give a complete classification of the lattices arising as the intersection form

of a positive definite four manifold with boundary X , where the boundary Y is large surgery along a knot

K in S3. We then use this result to define a concordance invariant l(K) and examine how it behaves under

crossing change. In the last section, we generalize a result of Rasmussen from [11] on lens space surgeries

using our main theorem.

Definition. We say an oriented three manifold Y bounds a lattice L if there exists an oriented four manifold

X with no torsion in its homology such that ∂X = Y as an oriented manifold and QX is isomorphic to L.

Our first goal is to prove the following theorem.

Theorem 1.1. Consider a knot K in S3 and let n be an integer greater than 4g4(K) + 3 where g4(K) is

the slice genus of K. Suppose S3
n(K) bounds a lattice L. Then L is isomorphic to 〈n〉 ⊕ 〈1〉rk(L)−1.

We note that if K is slice, then we get a contractible four manifold bounding S3
1(K) by surgery along a

slice disk for K. This shows S3
1(K) can only bound the Euclidean lattice by Donaldson’s theorem. There

is a positive definite 2-handle cobordism from S3
n(K) to S3

1(K) when n is a positive number. Using this

cobordism and Donaldson’s theorem, one can prove the previous theorem for slice knots and positive integers

by induction on n. This heuristic shows if one can classify all the lattices bounded by S3
1(K), then one can

try to classify all the lattices bounded by S3
n(K) inductively. Indeed, this is the method used in [2] . However,

we use a classification result for non-unimodular lattices similar to the one proved by Elkies in [1] for the

unimodular ones and the proof follows from correction terms in Heegaard Floer homology; our proof is

similar to the proof of Donaldson’s theorem in [9] by Ozsvath and Szabo.

Now we can use Theorem 1.1 to define a concordance invariant l(K) for every knot K in S3.

Definition. Consider a knot K and let n be a positive integer. We say S3
n(K) bounds a non-standard lattice

if it bounds a lattice L that is not isomorphic to 〈n〉 ⊕ 〈1〉rk(L)−1.

Definition. Let K be a knot in S3. Define

l(K) := sup{n : S3
n(K) bounds a non-standard lattice}. (1)
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According to Theorem 1.1 this is a finite number less than or equal to 4g4(K)+3 and it vanishes for slice

knots. Let K be a non-trivial L-space knot and assume that the L-space surgery slopes are negative which

can be achieved by mirroring the knot if necessary. Using our main theorem, we prove

Theorem 1.2. Suppose S3
−n(K) admits a sharp negative definite filling for some positive integer n. Then

n ≤ l(m(K)), (2)

where m(K) denotes the mirror of K; in particular, we get n ≤ 4g(K) + 3.

Remark. This generalizes the main theorem in [11] since if we assume S3
−n(K) is a lens space, then it has a

sharp negative definite filling and our theorem implies n must be less than or equal to 4g(K) + 3.

Remark. Note that S3
−n(K) with the reversed orientation is the same as S3

n(m(K)); this three manifold

might have a sharp negative definite filling for arbitrary large n and the theorem does not hold for positive

surgeries; see Theorem 1.2 in [5].
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2 Surgery Formula for Correction Terms

We assume the reader is familiar with Heegaard Floer homology and Knot Floer homology as explained in

[12] and [10]. Let K be a knot in S3 and CFK∞(K) denote its Z⊕Z filtered knot complex. There are two

filtrations on this complex that we denote by i and j. Let B+ be the quotient complex corresponding to

all the elements with i ≥ 0 and let As denote the quotient complex corresponding to all the elements with

max(i, j − s) ≥ 0. The complex B+ is chain homotopic to CF+(S3) and the large surgery formula realizes

each As as CF+(Y, t) where Y is a large surgery along K and t is a SpinC structure on Y . In particular, we

have

H(B+) ∼= T +
0

where T + is the F[U ]-module F[U,U−1]/U · F[U ] and T +
0 means 1 is supported in grading 0. We also have

H(As) ∼= T + ⊕M

where M is a F[U ]-torsion module. There are natural chain maps vs : As → B+ defined by mapping the

generators with i < 0 in As to 0. The induced maps in homology take the tower part of H(As) to the tower

part of H(B+). Since this is a U -equivariant map from a tower to another one, it has to be multiplication

by a power of U ; we denote this power by Vs. In [12], Rasmussen proved for each K and i, we have

Vi(K)− 1 ≤ Vi+1(K) ≤ Vi(K).
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Rasmussen also proved

Vi(K) ≤

⌈
g4(K)− i

2

⌉
(3)

for 0 ≤ i < g4(K) and Vi(K) = 0 for i ≥ g4(K). Let n be a positive integer and consider the natural 2-handle

cobordism from S3 to S3
n(K); we denote this cobordism by Xn(K). Fix a Seifert surface Σ for K and cap it

off with a disk in Xn(K). We call the resulting closed surface Σ̃ and define a map ρ : SpinC(S3
n(K)) → Z/nZ

using this closed surface. Consider a SpinC structure t on S3
n(K) and extend it to a SpinC structure s on

Xn(K). We have

〈c1(s), Σ̃〉 − n ≡ 2i mod 2n.

Define ρ(t) := i. One can show this is independent of the choice of s and the Seifert surface Σ; it is also a

bijection and we will use ρ to identify SpinC(S3
n(K)) with Z/nZ. The following was proved by Ni and Wu

in [7].

Proposition 2.1. Suppose K is a knot in S3 and p, q are positive numbers. Then for 0 ≤ i ≤ p − 1, we

have

d(S3
p

q
(K), i) = d(L(p, q), i)− 2max(V⌊ i

q
⌋, V⌊ p+q−1−i

q
⌋), (4)

where L(p, q) is the p
q
surgery on the unknot.

Remark. The affine identification between SpinC(S3
p

q

(K)) and Z/pZ is slightly different from the one given

for integer surgeries when q is greater than one, but we only need the case of integer surgeries in this note.

3 A Characterisation of Non-Unimodular Definite Lattices

Consider a lattice L and let Q denote the pairing on L. We can extend this paring to L⊗Q by

Q∗(x⊗ p, y ⊗ q) := pqQ(x, y).

Define the dual lattice L∗ ⊂ L⊗Q by

L∗ = {x⊗ p : Q∗(x⊗ p, y) ∈ Z ∀y ∈ L}.

There is a natural inclusion from L to its dual and we call L∗/L the discriminant group of L. We define

det(L) to be |L∗/L|. An element ξ in L∗ is called a characteristic covector if

Q(x, x) ≡ Q(x, ξ) mod 2

for every x in L. We denote the set of characteristic covectors by char(L). The following was proved by

Owens and Strle in [8]; it is a generalization of Elkies’s theorem for unimodular lattices in [1].

Theorem 3.1. Let L be a positive definite lattice of rank r and determinant δ. Then there exists a charac-

teristic covector ξ in L∗ with

Q∗(ξ, ξ) ≤




r − 1 + 1

δ
if δ is odd

r − 1 if δ is even;
(5)

this inequality is strict unless L ∼= (r − 1)〈1〉 ⊕ 〈δ〉. Moreover, the two sides of the inequality are congruent
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modulo 4
δ
.

Remark. This theorem implies if L is a lattice of rank r and odd determinant δ with

r − 1 +
1

δ
≤ min

ξ∈char(L)
Q∗(ξ, ξ),

then L is isomorphic to (r− 1)〈1〉 ⊕ 〈δ〉. The analogous result holds for lattices with even determinant with

r − 1 in place of r − 1 + 1
δ
.

4 Classification of Lattices Bounded by Large Surgeries

Before stating the proof of Theorem 1.1, we need some preliminaries. Let X be a four-manifold with

boundary a rational homology sphere Y . Writing the long exact sequence for singular homology with integer

coefficients, we get

0 → H2(X) → H2(X,Y ) → H1(Y ) → H1(X). (6)

If we assume the homology ofX has no torsion, then QX is defined onH2(X)×H2(X) and Poincare-Lefschetz

duality proves H2(X,Y ) is isomorphic to the dual of this lattice; since there is no torsion in homology of X ,

the last arrow in the long exact sequence is zero and this proves

H1(Y ) ∼= L∗/L

where L denotes H2(X). In particular, we get |H1(Y )| = det(L).

The following was proved by Ozsvath and Szabo in [9].

Theorem 4.1. Suppose X is a compact oriented positive definite four-manifold with boundary a rational

homology sphere Y , and s is a SpinC structure on X. Then

−4d(Y, t) ≥ b2(X)− c1(s)
2, (7)

where t is the restriction of s to Y and c1(s) denotes the first Chern class of s.

Remark. If s is a SpinC structure on X , then c1(s) is in H2(X) ∼= H2(X,Y ) and the mod 2 reduction of

c1(s) is the second Stiefel Whitney class of X . Hence, c1(s) is a characteristic covector of the intersection

form of X and c1(s)
2 denotes Q∗

X(c1(s), c1(s)).

By Proposition 2.1, we can write

d(S3
n(K), i) = d(L(n, 1), i)− 2max(Vi, Vn−i)

for every knot K in S3 and positive integer n. The correction terms for L(n, 1) are given by

d(L(n, 1), i) =
(2i− n)2 − n

4n

for 0 ≤ i ≤ n− 1. Thus we get

d(S3
n(K), i) =

(2i− n)2 − n

4n
− 2max(Vi, Vn−i).

4



If g4(K) ≤ min(i, n− i), then both Vi and Vn−i are zero by equation (3) and we get

d(S3
n(K), i) =

(2i− n)2 − n

4n
.

Now define

β(n) :=





1
n
− 1 n = 1 mod 2,

−1 n = 0 mod 2.

We conclude that

β(n) ≤ 4d(S3
n(K), i)

for every i with g4(K) ≤ min(i, n− i) and every knot K in S3.

Lemma 4.2. Suppose K is a knot in S3 and n is a positive integer greater than 4g4(K) + 3. Then

β(n) ≤ 4d(S3
n(K), i) (8)

for every 0 ≤ i ≤ n− 1.

Proof. We know the inequality holds for i with g4(K) ≤ min(i, n− i); assume g4(K) > min(i, n− i). Since

d(S3
n(K), i) = d(S3

n(K), n− i),

without loss of generality, we can assume 0 ≤ i < g4(K). Using Proposition 2.1 and equation (3), we have

4d(S3
n(K), i) =

(2i− n)2 − n

n
− 8max(Vi, Vn−i) =

(2i− n)2 − n

n
− 8Vi ≥

(2i− n)2 − n

n
− 8

(g4 − i+ 1

2

)

= −1 +
4i2

n
+ (n− 4g4(K)− 4) ≥ β(n).

�

Proof of Theorem 1.1. Let K be a knot in S3 and consider an integer n greater than 4g4(K)+3. Suppose

S3
n(K) bounds a four-manifold X with no torsion in its homology and intersection form given by a lattice

L. By the long exact sequence in (6), we get

det(L) = n.

Moreover, every ξ in char(L) corresponds to a spinC structure s on X and we have

−4d(S3
n(K), t) ≥ rk(L)−Q∗

X(ξ, ξ)

by Theorem 4.1. Rewriting this inequality and using equation (8), we get

Q∗
X(ξ, ξ) ≥ rk(L) + β(det(L))

for every characteristic covector of L. We conclude L is isomorphic to 〈1〉rk(L)−1 ⊕ 〈n〉 by Theorem 3.1. �
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Remark. If one assumes X has torsion in its homology, but n is square free, then the last arrow in (6)

vanishes and H1(Y ) becomes isomorphic to the discriminant group of the lattice QX where the intersection

form is defined on H2(X)/Tor. Therefore, we get the following corollary.

Corollary 4.3. Let K be a knot in S3 and n a square free integer greater than 4g4(K) + 3. Suppose a

positive definite four-manifold X bounds S3
n(K). Then

QX
∼= 〈1〉b2(X)−1 ⊕ 〈n〉.

Remark. Consider the torus knot T (2, n) where n is odd and greater than 1. It is shown in [6] that

S3
2n+1(T (2, n))

∼= L(2n+ 1, 4)

This lens space bounds the linear lattice Λ(2n+ 1, 4). There is no element with self intersection one in this

lattice if n is greater than one. Hence, it cannot be isomorphic to 〈2n+ 1〉 ⊕ 〈1〉. Note that we have

2n+ 1 = 4g4(T (2, n)) + 3.

In particular, this shows the bound in Theorem 1.1 is sharp.

5 A Concordance Invariant

In this section, we investigate the invariant l(K) defined in the introduction.

Proposition 5.1. Let K be a knot in S3 and assume V0(K) is zero. Then l(K) is zero.

Proof. If V0(K) is zero, then

β(n) ≤ 4d(S3
n(K), i)

for every positive integer n and 0 ≤ i ≤ n− 1. Hence, the result follows from the proof of Theorem 1.1. �

Proposition 5.2. Let K1 and K2 be two concordant knots in S3. Then l(K1) = l(K2).

Proof. Fix a positive integer n and let Y1 and Y2 denote S
3
n(K1) and S3

n(K2) respectively. Consider a properly

embedded annulus A in S3 × I going from K1 to K2. We can extend n surgery along K1 and K2 to A and

the resulting four manifold will be a homology cobordism from Y1 to Y2. Denote this homology cobordism

by W . Let L be a positive definite lattice bounded by Y1 and X1 be the four manifold with intersection form

L and ∂X1 = Y1. We glue X1 to W along Y1 and call the resulting four manifold X2. This four manifold

has the same intersection form and homology as X1 since W is a homology cobordism. Hence, the lattice L

is also bounded by Y2. In particular, the sets of lattices bounded by Y1 and Y2 are the same; we conclude

that l(K1) = l(K2) �

Let T be a null-homologous knot in a three manifold Y and fix a positive integer n. Denote the 1
n
-surgery

on Y along T by Y 1
n
(T ). We can write 1

n
as a continued fraction given by

[1, 2, . . . , 2]−,

6



where there are n−1, 2’s in the continued fraction. We can use this to construct a two handle cobordism from

Y to Y 1
n
(T ). We denote this cobordism by X 1

n
(T ); this four manifold is positive definite and its intersection

form is isomorphic to 〈1〉n.

Definition. We say two definite lattices L1 and L2 are stably equivalent if there exist non-negative integers

b1 and b2 such that

L1 ⊕ 〈1〉b1 ∼= L2 ⊕ 〈1〉b2 .

This is an equivalence relation among positive definite lattices.

Definition. Fix a knot K in S3 and let n be a positive integer. We define L(K,n) to be the set of all

positive definite lattices that bound S3
n(K) up to stable equivalence.

Lemma 5.3. Let K be a knot in S3 and c a negative crossing of K. Consider a crossing disk D for c

and denote its boundary by T . Fix a positive integer m and let Km denote the knot obtained from K by

performing 1
m

surgery along T . We have

L(K,n) ⊆ L(Km, n)

for every positive integer n.

Proof. Let Y1 and Y2 denote n surgery on K and Km respectively. The knot T is a null-homologous knot

in Y1 since it has zero linking number with K. Consider the two handle cobordism X 1
m
(T ) from Y1 to Y2.

Suppose Y1 bounds a lattice L, X1 is a four manifold with intersection form L and ∂X1 = Y1. We glue X1

to X 1
m
(T ) along Y1 and denote the resulting four manifold by X2. Since T is a null-homologous knot in Y1,

we get

QX2
∼= QX1

⊕ 〈1〉m ∼= L⊕ 〈1〉m.

The four manifold X2 does not have torsion in its homology because X1 does not have torsion in its homology

by assumption and X 1
m
(T ) is a two handle cobordism. Hence, Y2 bounds L ⊕ 〈1〉m and we conclude the

claim. �

Corollary 5.4. For every positive integer m, we have

l(K) ≤ l(Km).

In particular, if K+ denote the knot obtained from another knot K− by changing a negative crossing c to a

positive one, then l(K−) ≤ l(K+).

Definition. A knot K in S3 is called negative if it admits a diagram without positive crossings.

Corollary 5.5. Let K be a negative knot. Then l(K) = 0 and S3
n(K) does not bound any non-standard

lattice.

We conclude this section with a remark about the invariant l(K). Consider a knot K with l(K) > 1

and let n be a positive integer less than l(K). The definition for l(K) does not imply that S3
n(K) bounds

a non-standard lattice, but this is in fact true. If we consider the natural positive definite two handle

cobordism from S3
l(K)(K) to S3

n(K) and glue it to the non-standard filling of S3
l(K)(K), we get a positive

definite filling of S3
n(K) with no torsion in its homology; it remains to prove the intersection form of this

7



filling is also non-standard and this follows from Lemma 3.1 in [2] and the inductive argument we mentioned

in the introduction. In other words, if the filling for S3
n(K) was standard, then the filling for S3

l(K)(K) would

be standard which contradicts the definition of l(K). Hence, we get

Proposition 5.6. Let K be a knot in the three sphere with l(K) greater than zero. Then for every positive

integer n less than or equal to l(K), the three manifold S3
n(K) bounds a non-standard lattice.

6 Lens Space Surgeries and Sharp Fillings

In [11], Rasmussen proved if a knot K admits an integer lens space surgery, then the absolute value of the

surgery slope is less than or equal to 4g(K)+3. In this section, we generalize this result to surgery of L-space

knots bounding sharp fillings. Let Y be a L-space and X a negative definite four manifold without torsion

in its homology bounding Y .

Definition. We say X is a sharp filling of Y if for every t in spinC(Y ), there is a spinC structure s on X

that restricts to t on Y and we have

d(Y, t) =
c1(s)

2 + b2(X)

4
. (9)

This is equivalent to ĤF (X \B4, s) being an isomorphism from ĤF (S3) to ĤF (Y, t).

Remark. For instance, the linear plumbing −X(p, q) is a sharp filling for L(p,−q).

Lemma 6.1. Let K be a L-space knot and assume S3
−n(K) is a L-space which admits a sharp negative

definite filling X for some positive integer n. If we have

QX
∼= 〈−n〉 ⊕ 〈−1〉b2(X)−1,

then K is the unknot.

Proof. Combining the long exact sequence in (6) with the isomorphism between QX and 〈−n〉⊕〈−1〉b2(X)−1,

we can find an affine isomorphism σ between spinC(L(n,−1)) and spinC(S3
−n(K)) such that

d(L(n,−1), i) = d(S3
−n(K), σ(i))

for every i because the filling X is sharp and has the same intersection form as −X(n, 1) up to stabilization.

Hence, we get

λ(L(n,−1)) =

n−1∑

i=0

d(L(n,−1), i) =

n−1∑

i=0

d(S3
−n(K), i) = λ(S3

−n(K)),

where λ denotes the Casson-Walker invariant. Using the surgery formula for Casson-Walker invariant, we

conclude

∆
′′

K(1) =
1

n
· (λ(S3

−n(K))− λ(L(−n, 1))) = 0.

The only L-space knot with vanishing ∆
′′

K(1) is the unknot; see the proof of Theorem 1.4 in [13] for more

details. �

Proof of Theorem 1.2. Since K is non-trivial, Lemma 6.1 implies that S3
−n(K) has a sharp filling X

8



where QX is not isomorphic to

〈−n〉 ⊕ 〈−1〉b2(X)−1.

Now consider the mirror of K; the four manifold −X is a positive definite filling for n surgery on the mirror

of K and this filling is non-standard in the sense of previous section. Therefore, we must have

n ≤ l(m(K)) ≤ 4g(K) + 3

by Theorem 1.1. �

Corollary 6.2. Suppose K is a non-trivial knot that admits an integer lens space surgery. Then the absolute

value of the surgery slope is less than or equal to 4g(K) + 3.

Proof. If necessary, we can mirror the knot K so that S3
−n(K) is a lens space; every lens space bounds a

sharp negative definite filling and the claim follows from Theorem 1.2. �

Remark. If a non-trivial knot K admits an integer lens space surgery L(p, q), then Λ(p, q) embeds as a

changemaker lattice in the Euclidean lattice with codimension one and we can find g(K) in terms of the

changemaker coordinates; this was proved by Greene in [3]. McCoy used this result and gave another proof

of corollary 6.2 in [4]

Remark. If S3
4g(K)+3(K) is a lens space, then it is possible to prove K is in fact an alternating torus knot;

see [11] for more details.

7 Conclusion

We conclude this note with some questions and speculations. There are two ways of generalizing Theorem

1.1; the first is one to ask whether such a result would hold for rational surgeries along a knot K with slopes

greater than a positive number N(K) depending on K. Assume r = p
q
is a positive rational number that

is large enough in comparison to g4(K). The three manifold S3
r (K) bounds a positive definite two handle

cobordism X with QX
∼= Λ(p, q).

Question 7.1. Suppose X
′

is a positive definite four manifold with no torsion in its homology and ∂X
′

=

S3
r (K) as an oriented manifold. Can one prove that

QX
′
∼= Λ(p, q)⊕ 〈1〉b

for some non-negative integer b?

In order to answer this question in affirmative, one would need a characterization result for Λ(p, q) similar

to the one given in [8] for 〈n〉 ⊕ 〈1〉b. The second way to generalize theorem 1.1 is finding a similar result for

integer surgeries along components of a link. Let L be a link in S3 with h components and consider a vector

v = (v1, v2, . . . , vh) in Zh
>0. Denote the three manifold obtained from performing vi-surgery along the i-th

component of L by S3
v(L) and let X be the trace of this surgery. If we have

i=h∑

i=1

vi >
∑

Ki 6=Kj∈L

lk(Ki,Kj),

9



then X is a positive definite four manifold.

Question 7.2. Fix a link L in S3. Does there exist a positive integer N(L) such that if vi is greater than

N(L) for every i, then every positive definite four manifold X
′

bounding S3
v(L) satisfies

QX
′
∼= QX ⊕ 〈1〉b

for some non-negative integer b?

Our last two questions are about the behaviour of l(K) under negative crossing changes and connected

sums.

Question 7.3. Let K+ be a knot with a positive crossing and K− denote the knot resulting from changing

the crossing. Is there a fixed positive integer N such that l(K+) ≤ l(K−) +N for every K+?

Question 7.4. Let K1 and K2 be two knots. Can one find a fixed positive integer N such that

l(K1#K2) ≤ l(K1) + l(K2) +N

for every pair of knots K1 and K2?
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