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HYPERGRAPH MODELS FOR POLITICAL STRUCTURES

ISMAR VOLIĆ AND ZIXU WANG

Abstract. Building on [18], this paper extends the modeling of political structures from simplicial complexes
to hypergraphs. This allows the analysis of more complex political dynamics where agents who are willing to
form coalitions contain subsets that would not necessarily form coalitions themselves. We extend topological
constructions such as wedge, cone, and collapse from simplicial complexes to hypergraphs and use them to study
mergers, mediators, and power delegation in political structures. Concepts such as agent viability and system
stability are generalized to the hypergraph context, alongside the introduction of the notion of local viability.
Additionally, we use embedded homology of hypergraphs to analyze power concentration within political systems.
Along the way, we introduce some new notions within the hypergraph framework that are of independent interest.
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1. Introduction

Hypergraphs are generalizations of both graphs and simplicial complexes in that they allow edges to connect an
arbitrary number of vertices (like simplices in a simplicial complex do), but subsets of vertices that form hyperedges
do not necessarily have to form hyperedges themselves (which is a requirement in simplicial complexes). This
flexibility makes them a convenient tool for studying complex, non-binary relational systems, with applications in
fields ranging from computational biology to network science [2, 4, 6, 10, 12, 13, 17, 19, 21, 22, 23] (a further
list of applications can be found, for example, in [3]).

In this paper, hypergraphs model relationships among agents in a political system. Agents are represented by
vertices, and if a subset of agents is willing to negotiate or enter a coalition, a hyperedge determined by those
vertices is formed. In [18], the same situation was modeled by a simplex in a simplicial complex, which imposed
a somewhat unnatural condition that any subset of agents that form a coalition also must form a coalition. This,
of course, is not the case in reality since some agents might only be willing to negotiate if other agent(s) are
present. If such cohesive agents leave, the entire coalition might collapse. The case of a mediator brought in for
coalition-building among feuding agents is an example of this. Hypergraphs do not impose a condition of closure
under taking subsets, which allows for a more realistic model developed here.
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2 ISMAR VOLIĆ AND ZIXU WANG

Once the transition from simplicial complexes to hypergraphs is established, we devote the bulk of the paper
to translating and carrying over the results from [18] to this new setting. This is sometimes straightforward
and sometimes not since the topology of hypergraphs is not as established or well studied as that of simplicial
complexes; hypergraphs are in the literature usually treated with extensions of graph-theoretic tools rather than
topological ones. Our point of view is geometric, namely that hypergraphs are simplicial complexes embedded in a
Euclidean space but with some faces missing, and this provides intuition for extending some basic topological no-
tions to them: cone, suspension, join, wedge, and (strong) collapse, among others. As in [18], these constructions
are then translated into phenomena such as mergers, introduction of mediators, and delegation of power.

Homology is another important topological notion for us, but the standard construction of completing a hypergraph
to a simplicial complex and then taking its homology turns out to be insufficient. This is because the closure of
a hypergraph adds faces/coalitions that are not there in the actual political structure. Luckily, a more suitable
notion of embedded homology for hypergraphs already exists [7] and this allows us to say something about the
possible viabilities, the dynamics of relationships, and concentration of power in a political structure.

To assess the impact of different operations, we import the ideas of agent viability and system stability from [18]
into the hypergraph framework. The results describing the interplay between these notions and various topological
operations translate to hypergraphs in a straightforward way. We also introduce local viability that captures the
importance of an agent within their framework of coalitions. As we will argue, this idea turns out to carry richer
information for hypergraphs than when restricted to simplicial complexes.

Much like [18], this paper only initiates the study of political structures via hypergraphs. Further avenues of
investigation are suggested along the way, and the last section is also devoted to this. We feel that hypergraphs
are a potentially fruitful approach to studying political structures with possible exciting extensions to other topics
in game theory and social choice theory.

1.1. Acknowledgments. Ismar Volić is grateful to the Simons Foundation for its support.

2. Hypergraphs

This section introduces fundamental hypergraph concepts, with definitions that diverge slightly from those con-
ventionally adopted in classical graph theory because we aim to establish a closer correspondence with simplicial
complexes. This review is by no means exhaustive; these are many resources for further details, including, for ex-
ample, [5, 8]. Some definitions, like domination and elementary collapses, do not seem to appear in the literature,
but are natural extensions of the same notions for simplicial complexes.

2.1. Basic definitions.

Definition 2.1. A hypergraph H is a pair H = (V,E), where

• V is a finite set whose elements are called vertices;
• E is a finite set whose elements are non-empty subsets of V called hyperedges. The set of hyperedges

must include all singleton subsets of V , i.e., every vertex v ∈ V is also a hyperedge {v} ∈ E.

Remarks 2.2.

(1) In the usual definition of a hypergraph, vertices are not required to be in the hyperedge set. In our setup,
vertices will correspond to agents and hyperedges to coalitions, and we want a single agent to be a valid
coalition; hence the inclusion of elements of V in E.

(2) A simplicial complex is a hypergraph with the additional condition that the edge set be “downward
closed,” i.e. closed under taking subsets. Thus if e ⊂ V is a hyperedge (or a simplex in the language
of simplicial complexes), so are all subsets of e (its faces). For a review of simplicial complexes, see
Appendix A of [18].

Since the vertex set is contained in E, we will often refer to a hypergraph H just by its hyperedge set E. For a
hypergraph H with k vertices, we label the vertices v1, . . . , vk, without prioritizing the order of the enumeration.



HYPERGRAPHS AND POLITICAL STRUCTURES 3

Example 2.3. Let H = (V,E) be the hypergraph with the vertex set V = {v1, v2, v3, v4, v5} and the hyperedge
set

E = {{v1}, {v2}, {v3}, {v4}, {v5}, {v1, v2}, {v1, v5},

{v2, v4}, {v3, v4}, {v1, v3, v4}, {v1, v2, v3, v4}}.

This can be visualized in a standard way with vertices drawn as nodes and hyperedges depicted as closed curves
containing the appropriate vertices. To simplify the visualization, we do not draw hyperedges that consist of a
single vertex. Following this convention, the hypergraph in this example is represented by Figure 1.

v1 v2

v3 v4

v5

Figure 1. A visualization for the hypergraph of Example 2.3.

Definition 2.4. The degree of a vertex v in H is given by

deg(v) = |{e ∈ E | v ∈ e}| − 1.

Remark 2.5. The usual way to define the degree of v is as the number of hyperedges that contain it, but we
subtract one because we do not want to include the hyperedge consisting of v alone in the count. Isolated vertices,
namely those that are not elements of any edges of size two of greater, thus have degree 0.

Example 2.6. For the hypergraph described in Example 2.3, deg(v4) = 4.

Definition 2.7.

• The size of a hyperedge e in a hypergraph H is |e|, namely its cardinality.
• The dimension of H , dim(H), is the maximum size of a hyperedge, i.e.

dim(H) = max
e∈E

|e|.

.
• The s-vector of H is a vector (s1, s2, . . . , sdim(H)), where si denotes the number of hyperedges of size i.
• The s-vector of vertex v, denoted by (s1(v), s2(v), . . . , sm(v)(v)), is a vector with si(v) denoting the

number of hyperedges of size i in H that contain the vertex v and m(v) is the size of the largest
hyperedge containing v.

Example 2.8.

• The dimension of the hypergraph in Example 2.3 is 4 because its largest hyperedge contains four vertices.
Its s-vector is (5, 4, 1, 1). The s-vector of v1 is (1, 2, 1, 1).

• A 2-dimensional hypergraph is an ordinary graph.

It is immediate from the definitions that
∑dim(H)

i=1 si = |E| and
∑m(v)

i=1 si(v) = deg(v) + 1.

Definition 2.9. The neighborhood of a hyperedge e is the set of hyperedges in H that have e as a subset:

N(e) = {h ∈ E | e ⊂ h}.

Note that e could be a vertex v, in which case the above defines a neighborhood N(v) of v. It follows that
deg(v) = |N(v)|− 1. In case the hypergraph is a simplicial complex, the notion of a neighborhood coincides with
the star of the hyperedge/face e, denoted by st(e).
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Definition 2.10. Two vertices are adjacent if there exists a hyperedge containing both. The adjacency count of
a vertex v is the number of vertices adjacent to v, namely

ac(v) = |{u ∈ V \ v | there exists e ∈ E with v, u ∈ e}|.

Definition 2.11. A hypergraph with the set of hyperedges E = P0(V ), namely the set of nonempty subsets of
V , is called complete.

In the terminology of simplicial complexes, if |V | = k, then the complete hypergraph on V is a standard (k− 1)-
simplex ∆k−1.

Definition 2.12. Given a hypergraph H , its (simplicial) closure, denoted by KH , the smallest simplicial complex
containing H .

Thus KH is obtained by adding all subsets of elements already in H to H . There is a natural inclusion map
H → KH , providing a useful functor from the category of hypergraphs to the category of simplicial complexes.

Definition 2.13. A maximal hyperedge is a hyperedge that is not contained in another hyperedge.

Example 2.14. For the hypergraph in Example 2.3, {v1, v3, v4} is not a maximal hyperedge because it is a subset
of the hyperedge {v1, v2, v3, v4}, while the latter is a maximal hyperedge.

Definition 2.15. Let vi and vj be vertices in a hypergraph. We say that vi is dominated by vj , denoted as
vi � vj , if the following conditions hold:

(1) Every maximal hyperedge that contains vi also contains vj .
(2) There exists a hyperedge {vi, vj}.

A hypergraph without any dominated vertices is called minimal.

Remark 2.16. In the realm of simplicial complexes, domination is defined using only the first condition. However,
for our purposes it also makes sense to impose the second one. Namely, if an agent is dominated by another
agent in a political structure, we will want to consider the situation when the former relinquishes their power to
the latter; this is modeled by the elementary strong collapse defined below. But for this, we want to assume that
the two agents are willing to talk to each other, namely be in a coalition of their own, and this is represented by
an edge containing them.

Example 2.17. For the hypergraph in Example 2.3, v3 is dominated by v4, and v5 is dominated by v1. However,
v1 is not dominated by v4 because there does not exist a hyperedge that contains precisely v1 and v4.

Definition 2.18. The deletion of a vertex v in a hypergraph H , denoted by H \ v, is the subhypergraph of H
obtained by removing the neighborhood of v from it, i.e. retaining all hyperedges in H that do not contain v:

H \ v = {e ∈ E | v /∈ e}.

Definition 2.19.

• The deletion of a dominated vertex v from a hypergraph H is called an elementary strong collapse,
denoted by H ցցH \ v.

• A sequence of elementary strong collapses is a strong collapse.
• The inverse of a strong collapse is a strong expansion.
• If H1 and H2 are related by a sequence of strong collapses and expansions, then they have the same

strong homotopy type.
• A hypergraph H is strongly collapsible if it has the strong homotopy type of a hypergrph consisting of a

single vertex.

Example 2.20. Figure 2 below gives an example of a strong collapse.

In a minimal hypergraph, no elementary strong collapses are possible. Each hypergraphs admits a unique minimal
subhypergraph via a strong collapse called the core of H and denoted by Hc. For example, picture (E) of Figure
2 (single vertex) is the core of all the hypergraphs before it.
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Definition 2.21. A hypergraph map φ : H1 → H2 between hypergraphs H1 to H2 is a function that sends
vertices to vertices and hyperedges to hyperedges. A bijective hypergraph map whose inverse is also a hypergraph
map is an isomorphism.

2.2. Geometric realization. The standard way to visualize and topologize a simplicial complex K is to associate
to it its geometric realization |K|. Each simplex of K of cardinality n+ 1 corresponds to the standard geometric
n-simplex in Euclidean space (and topologized as its subset), and the simplices are glued along common faces.
The same procedure can be performed for hypergraphs. One way to think about the realization |H | of H is to
first take the geometric realization |KH | of the simplicial closure of H , and then remove faces corresponding to
elements of KH \H .

Example 2.22. The geometric realization of the hypergraph in Example 2.3 is given in picture (A) of Figure 2.
Dashed lines indicate that the corresponding 2-vertex hyperedges do not exist. The filled-in triangle indicates that
the hypergraph contains the hyperedge {v1, v3, v4}. Uncolored triangles indicate that the 3-vertex hyperedges
corresponding to those faces do not exist. Additionally, there is a tetrahedron determined by vertices v1, v2, v3, v4
because there is a hyperedge {v1, v2, v3, v4}. We refrained from trying to color in the tetrahedron in order to
make the picture simpler.

The rest of Figure 2 gives an illustration of a strong collapse. Since the last pictures is that of a single vertex,
the hypergraph is strongly collapsible.

v1

v4

v3

v2

v5

(a)

v1

v4

v3

v2

(b)

v1

v4

v2

(c)

v1

v2

(d)

v1

(e)

Figure 2. Illustration of a strong collapse on a sequence of geometric realizations.

From now on, we will use H for a hypergraph H and its realization |H | and will not distinguish between the two.

2.3. Operations on hypergraphs. There are several standard constructions that can be performed on simplicial
complexes, and they have straightforward generalizations to hypergraphs.

Definition 2.23. Let H1 and H2 be hypergraphs with distinguished vertices v and w. Define the wedge of H1

and H2, denoted by H1 ∨H2, to be the the union of H1 and H2, except that one of v or w is removed (and the
remaining one is relabeled if necessary).

Geometrically, H1 ∨H2 is obtained as a quotient space

H1 ∨H2 = (H1 ⊔H2)/(v ∼ w),
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where ⊔ denotes disjoint union. Thus H1 ∨H2 is simply the space obtained by identifying v and w, i.e. “attaching”
H1 and H2 along these points.

One can also attach hypergraphs along common subhypergraphs in a more general construction called the pushout.

Another general construction is the join, obtained by taking the union of H1 and H2 as well as the unions of the
elemens of all the possible pairs of hyperedges from H1 and H2. A special case is

Definition 2.24. Suppose {c} is a hypergraph consisting of a single vertex. The cone on a hypergraph H is the
hypegraph CH given by

CH = H ⊔ {c} ⊔ {e ∪ c : e ∈ H}.

Vertex c is the cone vertex or the cone point.

In terms of realizations, the cone is the quotient (H × I)/(H × {1}), where I = [0, 1].

Example 2.25. Figure 3 gives an illustration of the cone construction. All three vertices from H are connected to
the cone point c by the edges {v1, c}, {v2, c}, and {v3, c}. The edges {v1, v2} and {v1, v3} of H form hyperedges
{v1, v2, c} and {v1, v3, c} in CH . Since the edge {v2, v3} is missing in H , the face {v2, v3, c} is also absent.
The hyperedge {v1, v2, v3} of H leads to the hyperedge {v1, v2, v3, v4} in CH , and as a result, the tetrahedron
is solid.

v1 v2

v3

H

v1

C

v3

v2 CH

Figure 3. Illustration of the cone operation.

2.4. Hypergraph homology. The standard way to arrive at the homology of a hypergraph H is to regard it as
a poset (ordered by inclusion) and then construct the nerve of that poset. The homology of the resulting space is
the homology of the H . It turns out that this homology is isomorphic to the standard homology of the simplicial
complex KH obtained by the closure of the hypergraph.

However, we find this definition insufficient for our purposes because we wish for homology to “remember” which
faces are missing. Instead, a more relevant notion of the homology of hypergraphs is that of embedded homology
[7] (which generalizes path homology [15]). In brief, the chain complex that computes the embedded homology
of H is the smallest subcomplex of the singular chain complex for KH that contains the graded group generated
by the hyperedges of H . In case H is a simplicial complex, this produces the usual homology. But H and KH can
in general have different homology groups, as illustrated in the example below. We will denote the nth embedded
homology o a hypergraph H by Hemb

n (H).

Example 2.26. Figure 4 shows a hypergraph H and its closure KH . It turns out that Hemb
0 (H) = Z⊕ Z while

H0(KH) = Z (see [7] for details). Adding one of the two missing edges to H would change its 0th homology to
Z (as calculated in [14, Example 3.7]). Intuitively, this makes sense since contracting the single edge in H would
produce two vertices, i.e. two componenents, while both H with an added edge and KH are contractible and
hence consist of one component.

3. Modeling political structures with hypergraphs

The premise of [18] is that, given a collection of agents in a political system (voters, political parties, members
of a board of directors, etc.), we can regard those as vertices of a simplicial complex and simplices as potential
coalitions. The presence of a simplex indicates that the agents represented by its vertices are willing to negotiate
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v1 v2

v3

H

v1 v2

v3

KH

Figure 4

or vote the same way on a resolution. Various topological ideas and constructions on simplicial complexes then
have interpretations and consequences for the functioning of the political system.

In this section, we extend much of what was done in [18] to hypergraphs. One restrictive assumption in that paper
is that any subset of agents in a viable configuration also forms a viable configuration. This had to be true as
simplicial complexes require closure under subsets. Current extension to hypergraphs eliminates this assumption,
as it should since there is no guarantee a coalition will stay intact after one or more agents leave it. If an
agent departs a coalition, other agents might do so as well or the entire coalition might fall apart. Dropping the
requirement that every subset of a hyperedge is also a hyperedge allows for this possibility.

3.1. Political structures. This section is a straightforward extension of the basic dictionary set up in [18]. We
follow the terminology from that paper.

We make the following definition after [1, Definition 1] and [18, Definition 3.1].

Definition 3.1. A political structure P is an ordered pair P = (A, C), where

• A is a finite set whose elements are called agents;
• C is a collection of non-empty subsets of A called viable configurations which includes all elements of A,

i.e., every agent a ∈ A forms a viable configuration {a} on their own.

A correspondence between political structures and hypergraphs should be clear; vertices are agents and hyperedges
are viable configurations, which should be thought of a coalitions. From now on, we will blur the disctinction
between the two and will use the terms political structure and hypergraph interchangeably.

A map P → Q between political structures is simply a hypergraph map of underlying hypergraphs. Such a map
might capture a change, represent a transformation of the system after an event, a consolidation of agents, or
an embedding of one structure into another. In particular, agents are sent to agents, but not necessarily in an
injective of surjective way, meaning that multiple agents might have been consolidated or merged, or that new
agents have been introduced. Since hyperedges map to hyperedges, viable configurations are mapped to viable
configuration, indicating that, if agents were compatible before, they are still compatible after the event modelled
by the map.

If there are k agents and all configurations are viable, then we get the complete hypergraph or a (k − 1)-simplex
∆k−1. We say the structure is in this case fully viable. If no coalitions are possible, we get a 0-dimensional
hypergraph consisting only of k vertices and no other hyperedges. If all viable configurations are of size 2, the
structure is modeled by an ordinary graph.

We can interpret various other definitions from Section 2 in the context of political structures.

Definition 3.2.

• The dimension of a political structure is the size of its largest viable configuration.

• A viable configuration is maximal if it is not contained in any other configuration.

• An agent aj is more central than agent ai if ai is dominated by aj in the corresponding hypergraph.
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3.2. (Local) viability and stability. One of the main goals of modeling political structures by hypergraphs (or
simplicial complexes) is that their topology, geometry, and combinatorics allow us to define and quantify how
stable the system is and how well-positioned its agents are individually or in coalitions. This can then in turn be
used for deciding how the structure can be further stabilized or where the most urgent interventions are.

To make this precise, we provide the following three definitions. The notion of local viability is new, while the
other two appear in [18, Definition 3.8] and are modified appropriately to hypergraphs here.

Definition 3.3. Given a political structure P = (A, C) with the set of agents A = {a1, ..., ak}, k ≥ 2, and the
set of hyperedges C, define the

• viability of ai to be

via(ai) =
|N(ai)| − 1

2k−1 − 1
;

• local viability of ai, where ai is not an isolated agent (i.e. |N(ai)| > 1) to be

lvia(ai) =
|N(ai)| − 1

2ac(ai) − 1
;

In case ai is isolated, define lvia(ai) = 0.
• stability of P to be

stab(P ) =
|C| − k

2k − k − 1
.

The viability of ai is determined by the number of hyperedges that contain ai as a vertex, normalized to range
between 0 and 1. A higher value of via(ai) means that ai has many coalition options and is well-connected
or well-trusted in the system. An isolated agent has viability 0. On the other hand, an agent who forms every
possible coalition with other agents has viability 1. The minimal hypergraph for which this is possible is the the
(k − 1)-simplex ∆k−1 with the face {a1, ..., âi, ..., ak} removed (where âi indicates the omission of ai). Thus if
P is represented by ∆k−1, i.e. it is fully viable, every agent has viability 1.

The local viability of ai again counts the number of hyperedges that include ai as a vertex, but now normalized
relative to the number of vertices in its neighborhood. Since there is no dependence on k, this provides a more
local metric compared to viability. Low local viability indicates that an agent prefers or is only able to form small
coalitions. For example, if an agent only forms coalitions with one other agent at a time (so its neighborhood looks
like a graph), local viability is 0. Higher local viability indicates an agent’s willingness to form many coalitions
with its adjacencies, demonstrating more flexibility. As an extreme, we have

Proposition 3.4. The local viability of an agent a is 1 if and only if the agent forms all possible coalitions with
its adjacencies.

Proof. Local viability of an agent a is 1 if and only if |N(a)| = 2|ac(a)|, and this is true if an only if a forms a
hyperedge with every subset of its adjancencies. �

One way to think about the above is that, if local viability is 1, then a and its adjacencies form a ∆|ac(a)|, possibly
with the face determined by the adjacencies alone (the face “opposite” a) and some or all of its subfaces missing.
If any of the other faces are missing, |N(a)| decreases and local viability is strictly less than 1. In the case when
H is a simplicial complex, this means that an agent has local viability 1 if they belong to exactly one maximal
coalition.

We will make some further comments about local viability and its relation to viability after working out some
examples.

The stability of P is the total number of hyperedges of P , again normalized. This is essentially the sum of the
viabilities of all the agents, but taking into account the overcount of hyperedges. Greater stab(P ) indicates more
compatibilities among agents and more willingness to form coalitions. As one would expect, a fully viable system
(simplex) has stability 1 while the system with no coalitions has viability 0.
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Example 3.5. Consider political structures P1, P2, P3, P4, each containing five agents a1, a2, a3, a4, a5. In each,
the neighborhood N(a1) of a1 has 4 elements:

In P1 : N(a1) = {{a1}, {a1, a2}, {a1, a3}, {a1, a2, a3}}

In P2 : N(a1) = {{a1}, {a1, a2}, {a1, a2, a3}, {a1, a4}}

In P3 : N(a1) = {{a1}, {a1, a2, a3}, {a1, a4, a5}, {a1, a2, a3, a4, a5}}

In P4 : N(a1) = {{a1}, {a1, a2}, {a1, a3}, {a1, a4, a5}}

The viability of a1 is the same in all four, since, in each structure,

via(a1) =
4− 1

25−1 − 1
=

1

5
.

However, the local viability of a1 differs:

In P1 : ac(a1) = 2, and lvia(ai) is 1. This makes sense in light of Proposition 3.4 because the neighborhood of
a1 consists of all possible hyperedges that contain one or both of a2 and a3.

In P2 : ac(a1) = 3, and lvia(a1) is 3/7.

In P3 : ac(a1) = 4, and lvia(a1) is 1/5. Note that this value is the same as a1’s viability. This is because a1 is
connected to all other agents so the local and global measures coincide.

In P4 : ac(a1) = 4, and lvia(a1) is 1/5.

While local viability offers more insight than viability in this example, it still cannot distinguish between the cases
of P3 and P4. To further detect differences between P3 and P4, one might consider bringing in the s-vector of a
vertex.

The following example illustrates that viability, with its global view of the position of an agent, can also provide
a more nuanced view than local viability.

Example 3.6. Consider these political structures:

P1 = {{a1}, {a2}, {a3}, {a1, a3}, {a1, a2, a3}}

P2 = {{a1}, {a2}, {a3}, {a4}, {a5}, {a1, a3}, {a1, a2, a3}, {a3, a4}, {a3, a5}, {a4, a5}, {a2, a3, a5}}

The local viability of a1 is equal in the two structures since the neighborhoods of a1 are the same.

However, their viabilities are:

In P1: via(a1) =
3−1

23−1−1 = 2
3 .

In P2: via(a1) =
3−1

25−1−1 = 2
15 .

Small viability indicates a low overall level of interaction between an agent and the other agents. If local viability
is simultaneously high, this agent forms many coalitions, but with a small subset of agents. This might point to
the existance of a clique or a faction within a political structure with the agent in question as the ringleader.

Example 3.7. For a complete hypergraph ∆k−1, |N(ai)| = 2k−1 for all ai so the viability of each agent is 1.
The adjacency count of each agent is k − 1, so the local viability of each agent is also 1. Since the number of
hyperedges in a complete hypergraph is 2k − 1, the stability is also 1.

At the other extreme is the situation where the structure consists of k isolated vertices so no agents are compatible.
Now | deg(ai)| = 0 for all ai, and the viability of each agent is 0. For any agent, |N(ai)| = 1, as the hyperedge
containing the vertex itself is the sole hyperedge in its neighborhood. Consequently, the local viability of each
agent is 0. Since the only hyperedges are those consisting of a single vertex, |P | = |V (P )| = k and so the stability
of P is 0.
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3.3. Operations on political structures. Hypergraph constructions from Section 2.3 carry over into the setting
of political structures in a straightforward way. This section explains how and establishes some results about the
interplay between the notions of the previous section and these constructions.

Suppose a political structure P with k ≥ 2 agents consists of two distinct path-connected components, P1 and
P2, so P = P1 ∐ P2. Suppose an agent a0 ∈ P1 and an agent b0 ∈ P2 decide to merge or join forces, effectively
becoming a single agent. If we rename the newly formed agent by a, we then have a situation that corresponds
to the wedge of hypergraphs P1 ∨ P2 (see Definition 2.23).

Proposition 3.8. If agents are merged from two path-connected components of a political structure, the viability
of the newly formed agent is greater than that of each agent individually. In fact,

via(a) > via(a0) + via(b0).

Proof. From the definition of viability, |N(a0)| = (2k−1 − 1) · via(a0) + 1. Similarly for b0. By definition of the
wedge, |N(a)| = |N(a0)| + |N(b0)| − 1, where the subtraction of 1 is because the hyperedge containing only
the wedge vertex itself should be counted only once. Additionally, the number of agents decreases by 1 after the
wedge operation.

Hence

via(a) =
1

2k−2 − 1
· (|N(a0)|+ |N(b0)| − 2)

=
1

2k−2 − 1
·
(
(2k−1 − 1) · via(a0) + 1 + (2k−1 − 1) · via(b0) + 1− 2

)

=
1

2k−2 − 1
·
(
(2k−1 − 1) · (via(a0) + via(b0))

)

=
2k−1 − 1

2k−2 − 1
· (via(a0) + via(b0))

Since 2k−1−1
2k−2−1 > 1 when k > 2, it follows that via(a) > via(a0) + via(b0). �

For local viability, the situation is different. The discrepacy comes from the fact that k is the same for both a0
and b0 in the above, while the adjacency count for the two can be different.

Proposition 3.9. If agents are merged from two path-connected components of a political structure, the local
viability satisfies

lvia(a) =
2ac(a0) − 1

2ac(a0)+ac(b0) − 1
· lvia(a0) +

2ac(b0) − 1

2ac(a0)+ac(b0) − 1
· lvia(b0).

In particular, since the two fractions are less than 1 for ac(a0), ac(b0) ≥ 1, we have

lvia(a) < lvia(a0) + lvia(b0).

Proof. As in the above proof, we have |N(a0)| = (2ac(a0) − 1) lvia(a0) + 1 and similarly for b0. Since ac(a) =
ac(a0) + ac(b0),

lvia(a) =
1

2ac(a0)+ac(b0) − 1
· (|N(a0)|+ |N(b0)| − 2)

=
1

2ac(a0)+ac(b0) − 1
·
(
(2ac(a0) − 1) · lvia(a0) + 1 + (2ac(b0) − 1) · lvia(b0) + 1− 2

)

=
2ac(a0) − 1

2ac(a0)+ac(b0) − 1
· lvia(a0) +

2ac(b0) − 1

2ac(a0)+ac(b0) − 1
· lvia(b0)

�

Proposition 3.10. Merging agents from different path-connected components of a political structure increases
stability:

stab(P1 ∐ P2) < stab(P1 ∨ P2).
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Proof. The stability before the merging of the agents is given by

stab(P1 ∐ P2) =
1

2k − 1− k
· (|P1 ∐ P2| − k)

where by | · | we as usual mean the number of hyperedges of the structure. After the merging, there is one fewer
agent and hence one fewer hyperedge. Therefore, the stability after the merging is

stab(P1 ∨ P2) =
1

2k−1 − 1− (k − 1)
· (|P1 ∐ P2| − 1− (k − 1))

or

stab(P1 ∨ P2) =
1

2k−1 − k
· (|P1 ∐ P2| − k)

Since 2k − 1− k > 2k−1 − k when k > 2, 1
2k−1−k

< 1
2k−1−k

. Therefore, stab(P1 ∐ P2) < stab(P1 ∨ P2). �

Two political structures can also merge along two matching substructures (subhypergraphs). This is known as
the pushout and it would be interesting to generalize Proposition 3.10 to that situation.

A similar yet distinct situation that can also be modeled using the wedge model is that, instead of being two
components of one political structure, P1 and P2 are initially two separate political structures and are then merged
along two agents. There seems to be no easy relationship between the stability of the individual structures and
the merged one.

For example, if

P1 = {{v1}, {v2}, {v3}, {v1, v2}, {v2, v3}, {v1, v2, v3}}

P2 = {{w1}, {w2}, {w3}, {w1, w3}, {w1, w2, w3}}

then merging along v1 and w1 produces a structure whose stability is lower than that of P1 and P2 individually.
On the other hand, if P1 consists of ten agents and a single viable configuration containing all of them while P2

is a 5-simplex, then the merged structure (along any two vertices) has stability greater than P1 but less than P2.

Sometimes we want to introduce a mediator into a political structure P . This is a new agent who is willing to
negotiate or enter coalitions with any existing agents of viable configurations. This is modeled by CP , the cone
on P . It is easy to show that the stability in this case increases, and in fact the proof of the same result for
simplicial complexes, [18, Proposition 3.14], applies here.

The question of introducing a mediator into a substructure of P is less straightforward (and more interesting).
Such a scenario could arise, for instance, when certain agents are deeply divided, necessitating separate mediation
to facilitate their participation in broader discussions. This situation can be modeled by taking a cone on a
subhypergraph of P . In this case, the stability of the political structure does not necessarily increase, which
may seem counterintuitive. The weakening occurs as the mediator strenghtens the viable configuration structure
among some agents but may have the effect of isolating them from the rest of the system. For details, see
Proposition 3.15 in [18] whose proof applies when simplicial complexes are replaced by hypergraphs.

Remark 3.11. In [18], an extension to weighted political structures is considered. This is the model for the
scenario where agents are deciding their position on more than one issue and each simplex is labeled by how many
issues the agents forming that coalition agree on. Weighted versions of viability and stability for hypergraphs can
be defined the same way they are for simplicial complexes and all the results about weighted political structures
from [18] carry over to the setting of hypergraphs in the same way.

3.4. Homology and political structures. In this section, we initiate a study of how embedded homology can be
used to extract information about the dynamics in a political structure. One observation is that all the results of
[18, Section 3.5] hold in the case of hypergraphs and embedded homology since this homology defines cycles the
same way as standard homology (the difference is that there are fewer of them in embedded homology). Thus in
particular, a non-zero Betti number (rank of a homology group) points to non-viabilities among certain subsets
of agents.

However, it is also helpful to play embedded and standard homology off each other. Neither is robust enough to
be sufficiently useful on its own; homology is homotopy invariant, and in much of what we do, we want to keep
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track of structures that are not preserved by homotopy equivalences. For example, if we know Hemb
0 (H) = Z⊕Z,

this means that the agents are partitioned into two subsets with no hyperedges of size 2 between them. If there
are k agents, we can say that H is missing at least k − 1 hyperedges from a complete hypergraphs, but that is
about all the information we can extract.

But if we know both embedded and singular homology of a hypergraph, we can extract more information about
the possible viable configurations in the structure. For example, for the left image in Figure 4, Hemb

0 (H) = Z⊕Z.
However, this homology would be the same even if the viable configuration {v1, v2, v3} was not there. On the
other hand, the standard homology of the closure of that figure (the right side of Figure 4) is H0(KH) = Z. But
if the hyperedge {v1, v2, v3} was not there, then H0(KH) = Z ⊕ Z. In fact, it is not hard to see that zeroth
and first embedded and singular homology groups together completely determine the political structure on three
agents.

Here is a sample result of what we believe could be a fruitful line of investigation. The statement is about the
0th homology (i.e. path-connected components), but a generalization to higher homology groups is also possible.

Let βemb
0 (H) and β0(KH) be the 0th Betti numbers, i.e. ranks of Hemb

0 (H) and H0(KH), respectively.

Proposition 3.12. For any hypergraph H ,

• βemb
0 (H) ≥ β0(KH).

• If the above is an equality, then the structure is path connected, i.e. there is a path through hyperedges
of cardinality 2 from any agent to any other agent.

• If the inequality is strict, then there are hyperedges of size greater than two whose union contains vertices
from βemb

0 (H)− β0(KH) different components of the hypergraph.

Proof. Zeroth homology in general count the number of path-connected components of a space, i.e. it keeps track
of paths of edges of cardinality 2. Taking the closure of a hypergraph might introduce such edges as faces of other
hyperedges. Thus KH might contain more paths than H itself and introduce edges of size 2 between distinct
path-components of H , thereby decreasing their count. The only way this can happen is if there are hyperedges
of size 3 or greater containing vertices from different components. These hyperedges provide new paths once the
closure is taken. �

If the difference in Betti numbers is small, this indicates a fragmentation in the structure with lots of clusters
of agents but few coalitions between the clusters. If the number is high, this means that the coalitions between
clusters exist, but they are potentially large. Note the extreme case when there is a single large coalition containing
all agents. Then β0(KH) = 1.

3.5. Delegating power. In political structures, agents often delegate or cede authority to other, more favorably
positioned agents. In [1], the better-posioned agent is said to be more central and is modeled in the simplicial
complex setting by a more dominant vertex. An elementary strong collapse is then precisely the the model for
relinquishing authority. This is called a friendly delegation [1]. It was shown in [18] that the notion of viability
and the process of delegating power interface in a compatible way, namely the viability of an agent increases if
another agent delegates power to them, as one would expect.

We extend this result below to the setting of hypergraphs. We could quote the proof of [18, Theorem 4.1(1)] and
say that it goes through the same way here, but instead we offer a more streamlined version.

Proposition 3.13. Suppose P is a political structure with k agents and agent b is dominated by agent a. Relabel
agent a as a′ after a friendly delegation from b to a. Then

via(a′) ≥ via(a).

Proof. The viability of agent a is initially

via(a) =
|N(a)| − 1

2k−1 − 1
.
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After the friendly delegation from b to a, the number of agents decreases by 1. There is also a decrease in |N(a)|;
denote the difference by n, so that

via(a′) =
|N(a)| − n− 1

2k−2 − 1
.

Since n is the number of edges involving both a and b before the friendly delegation, n ≤ 2k−2. We also have
|N(a)| ≤ 2k−1. Using these two inequalities, it is easy to deduce that via(a′) ≥ via(a). �

Equality is achieved when |N(a)| = 2k−1 and n = 2k−2, resulting in via(a) = 1. I.e. equality only occurs when
a is fully viable to begin with.

The situation with local viability is not as straighforward. For example, consider the political structure

P = {{a}, {b}, {c}, {d}, {a, b}, {b, c}, {b, d}, {c, d}, {b, c, d}, {a, b, c, d}}.

Here a is more central than b, but after b delegates to a, the resulting structure is {{a}, {b, c}}. Now a is an
isolated agent with its local viability going down to 0 from 2/7. But if we amend P by adding in the configuration
{{a, c}} and then delete b, producing the structure {{a}, {a, c}, {b, c}}, a’s viability increases from 3/7 to 1.

The difference between these two situations is that, in the first, agent a had no connections to agents c or d, so
when b delegated power to a, both a and the pair {c, d} became isolated. In a sense, the structure of the system
was damaged because of b’s poor judgement to delegate to a. This does not happen in the second example since
a and c form a coalition prior to delegation. Another measure of this is that the stability of P in both examples
decreases, but the decrease is smaller in the second situation.

Note that, in the first example, a is also dominated by b, so that a could also delegate to b. This would increase
the local viability of b, indicating that this is a better move since the coalition structure would be stronger after
this delegation. This provides a potential delegation strategy – delegation should only occur if the local viability
of the agent being delegated to increases.

4. Future work

This paper sets up the basic framework of modeling political structures by hypergraphs and there are still many
potential directions of further investigation. For example, one could take any of the standard notions and con-
structions from the theory of hypergraphs (and simplicial complexes) and try to translate them into this setting.
One such is the clustering coefficient [11, 16] which, in its various forms, can be defined to measure both local
hypergraph structure or provide aggregated infromation about the entire hypergraph (some even result in ap-
proximations as necessitated by computational complexity). Our notion of local viability could in particular be
upgraded to some kind of a clustering coefficient which might be a more powerful tool of gauging the power of
an agent. Especially interesting would be a connection to the game-theoretic approach to hypergraph clustering
[20] since the work in this paper borders game theory and social choice theory.

We would also like to extend the Banzhaf and Shapley-Shubik power indices from simplicial complexes, as was done
in [9], to hypergraphs. This would supply a refined notion of power distribution in weighted voting systems where
certain coalitions are unfeasible or forbidden. In addition, each hyperedge is geometrically a simplex emebedded
in some Euclidean space, so one could interpret the position in the simplex as influence of each agent in the
corresponding coalition. This information could be added to the calculation of power indices.

Our elementary foray into (embedded) homology deserves to be explored further. Higher homology groups should
be incorporated into the picture. The existence of a homology cycle indicates incompatibilities among a subset of
agents. While this was relatively easy to describe in the case of simplicial complexes, hypergraphs are a different
story because of the many ways subsets of agents forming a cycle may or may not form (sub)coalitions. What is
likely required is a consideration of all homology groups at the same time, suggesting a combinatorial difficulty
but also a structural richness and potential for a powerful tool.

We have not examined maps between hypergraphs, but they could play an important role. A hypergraph map
sends hyperedges to hyperedges (and faces to faces) and as such captures a change in a political system that
causes agents or substructures to be consolidated or introduces new ones. The collection of hypergraphs with
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hypergraph maps forms a category, which means that political structures inherit a category structure as well. This
could provide a useful framework and an organizing mechanism to study political structures. Hypergraphs are are
category-theoretically related to simple games from social choice theory and political structures can also easily be
brought into that framework.
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[9] Anastasia Brooks, Franjo Šarčević, and Ismar Volić, Weighted simple games and the topology of simplicial complexes, Submitted.
[10] Anton Eriksson, Daniel Edler, Alexis Rojas, Manlio de Domenico, and Martin Rosvall, How choosing random-walk model and

network representation matters for flow-based community detection in hypergraphs, Communications Physics 4 (2021), no. 1.
[11] Ernesto Estrada and Juan A. Rodrigues-Velázquez, Complex networks as hypergraphs, 2005, arXiv:0505137.
[12] Nicholas Franzese, Adam Groce, T M Murali, and Anna Ritz, Hypergraph-based connectivity measures for signaling pathway

topologies, PLoS Computational Biology 15 (2019), no. 10.
[13] Jun Fu, Chen Hou, Wei Zhou, Jiahua Xu, and Zhibo Chen, Adaptive hypergraph convolutional network for no-reference 360-

degree image quality assessment, Proceedings of the 30th ACM International Conference on Multimedia (New York, NY, USA),
MM ’22, Association for Computing Machinery, 2022, p. 961–969.

[14] Jelena Grbic, Jie Wu, Kelin Xia, and Guo-Wei Wei, A unified topological approach to data science, 2021, arXiv:2103.16926.
[15] Lin Y. Muranov Y Grigor’yan, A. and S.-T. Yau, Homologies of path complexes and digraphs, 2012, arXiv:1207.2834.
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