
UncertaintyQuantification on Graph Learning: A Survey

CHAO CHEN∗, School of Computer Science, Harbin Institute of Technology (Shenzhen), China

CHENGHUA GUO∗, Key Laboratory of Trustworthy Distributed Computing and Service (MoE), Beijing University

of Posts and Telecommunications, Beijing, China

RUI XU∗, Artificial Intelligence Thrust, The Hong Kong University of Science and Technology (Guangzhou), China

XIANGWEN LIAO, College of Computer and Data Science, Fuzhou University, China

XI ZHANG, Key Laboratory of Trustworthy Distributed Computing and Service (MoE), Beijing University of Posts

and Telecommunications, Beijing, China

SIHONG XIE†, Artificial Intelligence Thrust, The Hong Kong University of Science and Technology (Guangzhou),

China

HUI XIONG, Artificial Intelligence Thrust, The Hong Kong University of Science and Technology (Guangzhou),

China

PHILIP YU, University of Illinois at Chicago, U.S.

Graphical models, including Graph Neural Networks (GNNs) and Probabilistic Graphical Models (PGMs), have demonstrated their

exceptional capabilities across numerous fields. These models necessitate effective uncertainty quantification to ensure reliable

decision-making amid the challenges posed by model training discrepancies and unpredictable testing scenarios. This survey examines

recent works that address uncertainty quantification within the model architectures, training, and inference of GNNs and PGMs.

We aim to provide an overview of the current landscape of uncertainty in graphical models by organizing the recent methods into

uncertainty representation and handling. By summarizing state-of-the-art methods, this survey seeks to deepen the understanding of

uncertainty quantification in graphical models, thereby increasing their effectiveness and safety in critical applications.

CCS Concepts: • Do Not Use This Code → Generate the Correct Terms for Your Paper; Generate the Correct Terms for Your

Paper ; Generate the Correct Terms for Your Paper; Generate the Correct Terms for Your Paper.

Additional Key Words and Phrases: Do, Not, Us, This, Code, Put, the, Correct, Terms, for, Your, Paper

ACM Reference Format:
Chao Chen, Chenghua Guo, Rui Xu, Xiangwen Liao, Xi Zhang, Sihong Xie, Hui Xiong, and Philip Yu. 2018. Uncertainty Quantification

on Graph Learning: A Survey. In . ACM, New York, NY, USA, 30 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Graphical models have emerged as fundamental tools in machine learning, and are employed across various domains,

such as spam detection [94] and recommendation systems [118], due to their capability to manage the complex relational

∗
Three authors are listed in alphabetical order with equal contributions to this work. Specifically, Chao primarily focused on Sec. 2, Sec. 5.1 and Sec. 5.2;

Chenghua primarily worked on Sec. 4; and Rui primarily handled Sec. 3, Sec. 5.2, Sec. 5.3, and Sec. 6.

†
Corresponding author: sihongxie@hkust-gz.edu.cn

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

Manuscript submitted to ACM

1

ar
X

iv
:2

40
4.

14
64

2v
1

 [
cs

.L
G

]
 2

3
A

pr
 2

02
4

https://doi.org/XXXXXXX.XXXXXXX

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato et al.

Fig. 1. Overview of the survey: the survey introduces the source of uncertainty in Sec. 3. Then, the survey will demonstrate the
state-of-the-art methods used for uncertainty representation and handling in Sec. 4 and Sec. 5, respectively. Besides, the evaluation
metrics used to assess the uncertainty will be discussed in Sec. 6.

dynamics among variables. Unlike traditional models that assume variables to be independent and identically distributed

(I.I.D.), graphical models reveal intricate relationships and conditional dependencies, thereby enhancing predictive

performance by considering both individual variables and their interconnections.

Handling uncertainty in graphical models is critical, as these models often encounter uncertainties stemming from

inherent data randomness, model training errors, and unforeseen test data distributions [114]. Effective uncertainty

quantification is especially essential for robust decision-making, especially in critical fields such as healthcare [97],

autonomous driving, and [104], where precise risk assessment and decisions under uncertainty are paramount. By mod-

eling and quantifying uncertainty, these systems provide confidence measures and explanations alongside predictions,

enhancing their reliability and safety.

This survey explores uncertainties in two primary types of graphical models: Graph Neural Networks (GNNs) and

Probabilistic Graphical Models (PGMs). GNNs extend the successes of deep learning to graph-structured data but face

challenges such as noisy links, missing nodes, or mislabeled data. Recent developments have incorporated uncertainty

quantification into the architecture and training of GNNs, improving their robustness and interpretability. PGMs,

including Bayesian Networks and Markov Random Fields, utilize probability theory to effectively handle uncertainty

and are particularly effective in scenarios that require joint probability modeling and causal relationship analysis.

Existing surveys on UQ can be categorized along two dimensions: the application scope, such as graph learning, and

the scope of coverage, ranging from general UQ topics to specific UQ aspects. The survey most closely related to the

present survey is [114], which also focuses on graph learning and covers general UQ topics. Similar to our survey, [114]

investigates the sources of uncertainty, evaluation methods, and various techniques for handling uncertainty in graph

learning. However, a key distinction between [114] and our survey is that the former does not include a discussion on

the representation methods for uncertainty. In more general application scopes, there are surveys that cover general

UQ topics. For example, [1, 32] explore uncertainty in deep learning, while [92] examines uncertainty in scientific

machine learning. These surveys provide valuable insights into the broader landscape of UQ across different application

domains. However, they do not delve deep into the uncertainty specifically in graph learning. Furthermore, several

surveys offer an in-depth analysis of specific aspects of UQ, but not in the context of graph learning. These include

surveys on sources of uncertainty [36, 53], optimization under uncertainty [85], and noise in machine learning [39].

2

UncertaintyQuantification on Graph Learning: A Survey Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Despite the valuable contributions of above works, they collectively lack a comprehensive overview of uncertainty

quantification on graph learning.

This survey aims to review various strategies and methodologies to model, measure, and mitigate uncertainty in

GNNs and PGMs. By examining state-of-the-art research, the survey provides a comprehensive understanding of how

current models address uncertainty and forecast future enhancements to increase their efficacy. Specifically, this survey

organizes the literature on uncertainty in graphs into four major parts, as demonstrated in Fig. 1. Specifically, we first

provide the preliminary knowledge concerning PGMs and GNNs in Sec. 2, and introduce the source of uncertainty in

Sec. 3. Then we discuss the methods used for uncertainty representation and handling in Sec. 4 and 5, respectively.

Besides, we will demonstrate widely used metrics for uncertainty evaluation in Sec. 6. Finally, the conclusion of the

survey will be made in Sec. 7.

2 PRELIMINARIES

In this section, we briefly introduce two key families of models for graphs, the Probabilistic Graphical Model and the

Graph Neural Network.

2.1 Probabilistic Graphical Model

A probabilistic graphical model (PGM) [9, 55] is widely used to represent the probability distribution of random variables,

whose relations can be depicted in a graph. PGMs aim to minimize the cost of establishing compatible dependency

relationships among all the variables. There are two distinct categories of PGMs, depending on whether the graph’s

edges are directed or undirected. Specifically, a Bayesian Network is employed for modeling a directed graph, where

edges represent causality. Conversely, a Markov Random Field (MRF) is utilized to model an undirected graph, where

edges signify the correlation between nodes. In an MRF, each node is conditionally independent of all other nodes,

except for its immediate neighbors.

Formally, a graph 𝐺 = (𝑉 , 𝐸) consists of a set of 𝑛 nodes representing 𝑉 = {𝑋1, . . . , 𝑋𝑛} random variables, and a set

𝐸 of edges each of which is a relationship between two variables. Each variable 𝑋𝑖 ∈ 𝑉 takes values from the discrete

sample space {1, . . . , 𝐾}. An MRF factorizes the joint distribution 𝑃 (𝑉) as

𝑃 (𝑉) = 1

𝑍

∏
𝑋𝑖 ∈𝑉

𝜙 (𝑋𝑖 = 𝑥𝑖)
∏

𝑋 𝑗 ∈N(𝑋𝑖)
𝜓 (𝑋𝑖 = 𝑥𝑖 , 𝑋 𝑗 = 𝑥 𝑗), (1)

where 𝑍 normalizes the product to a probability distribution. N(𝑋𝑖) represents the neighbors of 𝑋𝑖 within the graph

𝐺 . 𝜙 (𝑋𝑖 = 𝑥𝑖) denotes the prior probability of 𝑋𝑖 taking value 𝑥𝑖 , independent of other variables. The compatibility

𝜓 (𝑋𝑖 = 𝑥𝑖 , 𝑋 𝑗 = 𝑥 𝑗) is the preference of the pair (𝑋𝑖 , 𝑋 𝑗) jointly taking the value (𝑥𝑖 , 𝑥 𝑗), and capture the dependencies

between the two variables. The marginal distribution 𝑏 (𝑋𝑖), also known as belief, for any 𝑋𝑖 ∈ 𝑉 is given by

𝑏 (𝑋𝑖 = 𝑥𝑖) =
∑︁
𝑋1

· · ·
∑︁
𝑋𝑖−1

∑︁
𝑋𝑖+1

· · ·
∑︁
𝑋𝑛

𝑃 (𝑋1, 𝑋2, . . . , 𝑋𝑖 = 𝑥𝑖 , . . . , 𝑋𝑛). (2)

Computing𝑏 (𝑋𝑖 = 𝑥𝑖) for any node𝑋𝑖 ∈ 𝑉 by Eq. (2) has exponential complexity in general and the Belief Propagation

(BP) [9] algorithm is a dynamic programming algorithm that infers the beliefs much more efficiently. First, the message

𝑚𝑖→𝑗 (𝑋 𝑗 = 𝑥 𝑗) from 𝑋𝑖 to 𝑋 𝑗 is defined by

1

𝑍 𝑗

∑︁
𝑋𝑖=𝑥𝑖

𝜓 (𝑋𝑖 = 𝑥𝑖 , 𝑋 𝑗 = 𝑥 𝑗)𝜙 (𝑋𝑖 = 𝑥𝑖)
∏

𝑘∈N(𝑋𝑖)\{𝑋 𝑗 }
𝑚𝑘→𝑖 (𝑋𝑖 = 𝑥𝑖)

 , (3)

3

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato et al.

where 𝑍 𝑗 is a normalization factor so that𝑚𝑖→𝑗 is a probability distribution of 𝑋 𝑗 . The messages in both directions on

all edges (𝑋𝑖 , 𝑋 𝑗) ∈ 𝐸 will be updated iteratively. As the message converges (guaranteed when 𝐺 is acyclic [90]), belief

𝑏 (𝑋𝑖 = 𝑥𝑖) is given by

𝑏 (𝑋𝑖 = 𝑥𝑖) ∝ 𝜙 (𝑋𝑖 = 𝑥𝑖)
∏

𝑋 𝑗 ∈N(𝑋𝑖)
𝑚 𝑗→𝑖 (𝑋𝑖 = 𝑥𝑖) . (4)

For simplicity, we will omit 𝑋𝑖 in 𝜙 (𝑋𝑖 = 𝑥𝑖) and use 𝜙 (𝑥𝑖), and similarly for𝜓 (𝑥𝑖 , 𝑥 𝑗),𝑚 𝑗→𝑖 (𝑥𝑖) and 𝑏 (𝑥𝑖) if there is
no ambiguity.

2.2 Graph Neural Networks

Graph Neural Network (GNN) is a deep learning technique designed for graphs. Unlike traditional neural networks that

operate on grid-like data (such as images or sequences), GNN could learn from complex relationships and dependencies

in graphs.

Formally, given a graph𝐺 = (𝑉 , 𝐸),𝑉 is the set of nodes and 𝐸 is the set of edges connecting the nodes. LetN(𝑋𝑖) be
the set of neighbors of node 𝑋𝑖 ∈ 𝑉 , 𝑖 = 1, . . . , |𝑉 |. Assume that a GNN of 𝐿 layers is trained to predict class distributions

of the nodes on the graph𝐺 . On the 𝑙-th layer, 𝑙 = 1, . . . , 𝐿, GNN calculates h(𝑙)
𝑖

for node 𝑋𝑖 considering messages sent

from its neighborhood N(𝑋𝑖). Formally,

a(𝑙)
𝑖

= AGG

({
m(𝑙)
𝑗𝑖

|𝑋 𝑗 ∈ N (𝑋𝑖)
})
, (5)

h(𝑙)
𝑖

= UPDATE

(
a(𝑙)
𝑖
, h(𝑙−1)
𝑖

)
. (6)

The AGG function aggregates the messages sent from all 𝑋 𝑗 ∈ N (𝑋𝑖) to 𝑋𝑖 , which can be the element-wise average,

maximum of the messages, or a parametric layer [121]. The UPDATE function combines representations from the 𝑙 − 1

and the current 𝑙 layers. For example, it is defined as𝑊 ·
[
h(𝑙−1)
𝑖

, a(𝑙)
𝑖

]
with trainable matrix𝑊 in GraphSAGE [42]. h(0)

𝑖

is the input node feature for node 𝑋𝑖 , and the output of the GNN is h(𝐿)
𝑖

, which can be softmaxed to a class distribution

𝜋 (𝑋𝑖). The parameters of GNN, 𝜽 = {𝜃 (𝑙) , 𝑙 = 1, . . . , 𝐿 }, are trained in an end-to-end style using labeled nodes on 𝐺 .

3 SOURCES OF UNCERTAINTY

The total uncertainty in machine learning can be decomposed into aleatoric uncertainty and epistemic uncertainty
based on their sources [21]. Aleatoric uncertainty, which is irreducible with increasing amounts of data, represents the

randomness inherent to the data generation process [40]. However, epistemic uncertainty can be reduced by obtaining

more knowledge or data of events to better estimate the ground truth [53, 57]. The techniques for the disentanglement

of aleatoric and epistemic uncertainty are introduced by [107]. [79] formulated their mathematical expression in the

context of GNNs.

The perfect separation between aleatoric uncertainty and epistemic uncertainty is almost impossible [47]. For

example, flipping a coin is usually regarded as a purely random event, involving aleatoric uncertainty. However, if we

know the whole physics process of flipping a coin, including the flipping force, the coin’s mass, volume, initial position,

etc, we can simulate the process and predict whether it would be head or tail. Based on the simulation, randomness will

be reduced or even eliminated. Therefore, the identification of aleatoric and epistemic uncertainty must be built upon

the context of the selected model and available data.

Under the problem setup of supervised machine learning, we further explore the source of different kinds of

uncertainty and how they impact prediction reliability. Let 𝑋 ∈ X and 𝑌 ∈ Y denote input feature variables and the

4

UncertaintyQuantification on Graph Learning: A Survey Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

output label variable, which can take values 𝑥 and 𝑦. The underlying ground truth data probability model is 𝐹 and the

data generation mechanism is 𝑓 .

3.1 Aleatoric Uncertainty

Aleatoric uncertainty is only about data noises, so we do not need to consider the influence of model selection

and training issues and can investigate this problem under the view of statistics. When 𝑓 is conditioned on 𝑋 = 𝑥 ,

aleatoric uncertainty is the conditional probability distribution of 𝑌 , and its variance, 𝑉𝑎𝑟 (𝑌 |𝑥), can be applied for

quantification [36].

𝑌 |𝑥 ∼ 𝐹𝑌 |𝑋 (·|𝑋 = 𝑥) (7)

Four sources of aleatoric uncertainty are briefly introduced below. We refer the readers to [36] for a more comprehensive

and detailed taxonomy.

Omitted Features: Omitted features, which are investigated in the context of causal models [16], management

research [12], and model sensitivity analysis [17], are significant sources of aleatoric uncertainty. The omission may be

due to the unobservability of data or overlooking during data collection. Let 𝑍 ∈ Z denote an unobserved variable that

influences the value of 𝑌 , we can see the expectation of 𝑌 |𝑥 is a weighted integration of 𝐸𝑌 |𝑋,𝑍 on 𝑍 .

𝐸𝑌 |𝑋 (𝑌 |𝑥) =
∫
𝑦∈Y

∫
𝑧∈Z

𝑦𝐹𝑌 |𝑋,𝑍 (𝑦 |𝑥, 𝑧)𝐹𝑍 |𝑋 (𝑧 |𝑥)𝑑𝑧𝑑𝑦 =

∫
𝑧∈Z

𝐸𝑌 |𝑋,𝑍 (𝑌 |𝑥, 𝑧)𝐹𝑍 |𝑋 (𝑧 |𝑥)𝑑𝑧. (8)

[36] also claims 𝑉𝑎𝑟𝑌 |𝑋,𝑍 (𝑌 |𝑥, 𝑧) ≤ 𝑉𝑎𝑟𝑌 |𝑋 (𝑌 |𝑥) with at least one 𝑧 ∈ Z, indicating including the non-negligible

variables will reduce aleatoric uncertainty.

Feature Errors: We will likely lose information with improper measurements, like low-resolution cameras, low-

quality audio recorders, and uncalibrated gauges. These errors can cause biases and increased variance in feature

collection. [39] reviewed 79 works on identifying and handling data noise. Here we let 𝑍 represent feature variables by

faultless measurements and𝑋 denote those by inaccurate measurements, assuming𝑌 is independent of𝑋 |𝑍 . The change
of aleatoric uncertainty caused by noisy feature values is illustrated by [36] below. The first term of the right-hand side

is 𝑉𝑎𝑟𝑌 |𝑍 (𝑌 |𝑍) conditioned on 𝑋 = 𝑥 , and the second term is an increment.

𝑉𝑎𝑟𝑌 |𝑋 (𝑌 |𝑥) = 𝐸𝑍 |𝑋 (𝑉𝑎𝑟𝑌 |𝑍 (𝑌 |𝑍) |𝑥) +𝑉𝑎𝑟𝑍 |𝑋 (𝐸𝑌 |𝑍 (𝑌 |𝑍) |𝑥). (9)

Label Errors: Label errors can be introduced by human labeling with subjectivity. Label errors in training sets

will deviate models from correct gradient descent directions, and those in test sets will improperly evaluate models’

performance. [86] states that at least 3.3% error rate across the most commonly-used computer vision, natural language,

and audio datasets. If 𝑍 is the correct label variable and 𝑌 is the error-prone one, Eq. (7) can be rewritten below.

𝑌 |𝑥 ∼ 𝐹𝑌 |𝑋 (·|𝑥) =
∫
𝑧∈Z

𝐹𝑌 |𝑋,𝑍 (·|𝑥, 𝑧)𝐹𝑍 |𝑋 (𝑧 |𝑥)𝑑𝑧. (10)

Missing Data: Missing data indicates some entries in the dataset are incomplete [70]. If (𝑥𝑖 , 𝑦𝑖) is the 𝑖-th sample of

the dataset,𝑀𝑖 is its corresponding missing indicator.𝑀𝑖 = 0 means the sample is complete, and𝑀𝑖 = 1 otherwise. A

bias factor is explained by [36] as
𝑃 (𝑀=0 |𝑦,𝑥)
𝑃 (𝑀=0 |𝑥) to express the influence from incompleteness.

𝐹𝑌 |𝑋,𝑀 (𝑦 |𝑥,𝑀 = 0) = 𝑃 (𝑀 = 0|𝑦, 𝑥)
𝑃 (𝑀 = 0|𝑥) 𝐹𝑌 |𝑋 (𝑦 |𝑥). (11)

5

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato et al.

Fig. 2. Taxomony of methods for UncertaintyQuantification. Bayesian methods, including Bayesian representation learning and direct
inference methods, are introduced in Sec. 4.1. The state-of-the-art works handling uncertainty are discussed in Sec. 5. Specifically,
existing works related to out-of-distribution detection, conformal prediction, and calibration are discussed in Sec. 5.1, Sec. 5.2, and
Sec. 5.3, respectively. The large boxes in the bottom row demonstrate significant examples for each method.

3.2 Epistemic Uncertainty

Epistemic uncertainty is introduced by model selection and training, rooted in the lack of data and knowledge. [53]

clearly decomposed epistemic uncertainty into model and approximation uncertainty. Denote 𝑓 ∈ F is the ground

truth mapping relationship from 𝑋 to 𝑌 , ℎ ∈ H ⊂ F is the best possible predictor we can get, and
ˆℎ ∈ H is the induced

predictor in practice.

Model Uncertainty measures the difference between 𝑓 and ℎ, because we can only explore a limited function space

H , which may not include the true 𝑓 . Therefore, there can be a distance between the optimally trained predictor and

the real mapping function. Taking 𝑙 as the loss function during training, [53] explicitly defines 𝑓 and ℎ as follows.

𝑓 = arg min

𝑓 ∈F

∫
X

∫
Y
𝑙 (𝑦, 𝑓 (𝑥))𝐹𝑋,𝑌 (𝑥,𝑦)𝑑𝑦𝑑𝑥. (12)

ℎ = arg min

ℎ∈H

∫
X

∫
Y
𝑙 (𝑦,ℎ(𝑥))𝐹𝑋,𝑌 (𝑥,𝑦)𝑑𝑦𝑑𝑥. (13)

Approximation Uncertainty counts for the uncertainty due to the limited number of training samples. Assuming

we have 𝑁 samples available , the definition of
ˆℎ is listed as

ˆℎ = arg min

ℎ∈H
1

𝑁

𝑁∑︁
𝑖=1

𝑙 (𝑦𝑖 , ℎ(𝑥𝑖)). (14)

It is obvious that, unlike aleatoric uncertainty, model uncertainty and approximation uncertainty are reducible by

enlarging the function space 𝐻 and increasing sample size 𝑁 . We recommend [52, 64, 83] for the latest progress in

predicting, sampling, and quantifying epistemic uncertainty.

4 METHODS FOR UNCERTAINTY REPRESENTATION

4.1 Bayesian Methods

In the realm of UQ, Bayesian methods stand as a pivotal approach, offering a powerful framework for representing

uncertainty. At the heart of Bayesian UQ is the application of Bayes’ Theorem, which mathematically expresses how our

belief or knowledge about a certain parameter or model is updated with evidence. The theorem is elegantly encapsulated

6

UncertaintyQuantification on Graph Learning: A Survey Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

in the formula:

𝑃 (𝜽 |𝐷) = 𝑃 (𝐷 |𝜽)𝑃 (𝜽)
𝑃 (𝐷) , (15)

where 𝑃 (𝜽 |𝐷) is the posterior probability of the parameter 𝜽 given the data 𝐷 = {𝑋,𝑌 }, 𝑃 (𝐷 |𝜽) is the likelihood

of observing the data given the parameter, 𝑃 (𝜽) is the prior probability of the parameter, and 𝑃 (𝐷) is the marginal

likelihood of the data. This Bayesian paradigm shifts the focus from a single ’true’ model to a probabilistic distribution of

models, reflecting all possible values that the parameters can take, weighted by their likelihood. By incorporating prior

knowledge and continuously updating it with new data, Bayesian methods provide a dynamic and adaptive approach to

UQ, allowing for a more comprehensive understanding of uncertainty in models.

Advancing from the foundational Bayesian principles, two categories of uncertainty representation methods have

emerged. The first category directly applies Bayesian principles to specific tasks, inferring posterior probability

distributions to represent posterior uncertainty. In this survey, we refer to these methods as direct inference. The

second category is Bayesian representation learning, where methods use the Bayesian approach to discover useful

representations that inherently encode the uncertainty associated with them. In this context, the learned representations

are characterized not only by their ability to capture the underlying patterns in the data but also by their probabilistic

nature which quantifies the uncertainty in these representations.

4.1.1 Direct Inference for Graphs.

In the task of semi-supervised node classification on graphs, one approach that directly applies Bayesian methods

to infer the posterior probability distribution of nodes is as follows: First, a prior probability distribution is assigned

to each node, which is then updated with evidence propagated from other nodes to obtain the posterior distribution.

Yamaguchi et al. [124] assumed the node label is a categorical random variable as 𝑃 (𝑦𝑖 = 𝑘 |𝜽), where 𝜽 is the parameter

of the categorical distribution. Based on the smoothness hypothesis, they believed that a neighbor of node 𝑖 shares the

same parameter 𝜽 as 𝑖 . This leads to the multinomial likelihood function of labels of neighbors of 𝑖 𝑃 (�̂�𝑖 |𝜽) ∝ Π𝐾
𝑘=1

𝜃
𝑛𝑖𝑘
𝑘

and the conjugate Dirichlet prior 𝑃 (𝜽) ∝ Π𝐾
𝑘=1

𝜃
𝛼𝑘−1

𝑘
, where 𝑛𝑖𝑘 is the number of i’s neighbors whose label is 𝑘 ,

and 𝜶 = (𝛼1, 𝛼2, · · · , 𝛼𝐾)𝑇 is the parameter of Dirichlet distribution. Combining these, the posterior distribution of

𝜽 is 𝑃 (𝜽 |�̂�𝑖) ∝ Π𝐾
𝑘=1

𝜃
𝛼𝑘+𝑛𝑖𝑘−1

𝑘
. Beyond the smoothness hypothesis and label propagation, Eswaran et al. [26] used

compatibility matrices to represent the strength of connections between nodes and propagates multinomial messages

to support both homophily and heterophily network effects. To handle high-dimensional features of nodes, Stadler

et al. [100] employed MLP encoding and computes node-level pseudo-counts, then propagates them via PPR-based

message passing. All three methods utilize Dirichlet priors and posteriors, with the main difference being in the form of

multinomial distribution evidence propagated.

4.1.2 Bayesian Representation Learning Overview.

Representation learning constitutes a foundational component in the domain of machine learning, where the primary

aim is to transform raw data into a format that is more amenable for algorithms to process and extract meaningful

patterns. This transformation is crucial because it captures the underlying structures and features inherent in the data,

which are often not immediately apparent. The essence of representation learning is to discover such representations

that facilitate improved performance on various tasks such as classification, regression, or even generation of new

data instances. Shifting the focus towards Bayesian representation learning, this approach integrates the principles of

Bayesian inference with the process of learning data representations. Unlike traditional deterministic methods, Bayesian

representation learning seeks to model uncertainty in aspects such as model parameters and the learned representations

7

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato et al.

by treating them as random variables with associated probability distributions, rather than as fixed points. In this survey,

we focus on two prominent classes of Bayesian representation learning methods: variational autoencoders (VAEs) and

Bayesian neural networks (BNNs). VAEs are generative models that learn a probabilistic mapping between the input

data and a latent representation space. BNNs are discriminative models that extend traditional neural networks by

treating the model parameters as random variables.

Autoencoders typically consist of two main components: an encoder and a decoder. The encoder, denoted by the

function 𝑞𝜙 (z|x), maps the input data x into a latent representation z, while the decoder, denoted by 𝑝𝜃 (x|z), attempts

to reconstruct the input data from this latent representation. The aim is to minimize the reconstruction error, typically

measured by a loss function such as mean squared error for continuous input data or cross-entropy loss for binary

input data. VAEs build upon this structure but introduce a critical twist by incorporating a probabilistic model. The

encoder in a VAE becomes a variational encoder that learns the parameters (𝜇 and 𝜎2
) of a probability distribution,

typically a Gaussian, which represents the latent space. Thus, instead of directly outputting a fixed point z, the encoder
outputs parameters to a distribution from which z is sampled.

The basic principle of VAEs involves the estimation of the posterior distribution 𝑝𝜃 (x|z), which is typically intractable.
The intractability stems from the integral over all possible values of the latent variables z when trying to marginalize

them out to get the likelihood of the observed data x:

𝑝𝜃 (x) =
∫

𝑝𝜃 (x|z)𝑝𝜃 (z)𝑑z. (16)

To overcome this, VAEs maximize the Evidence Lower Bound (ELBO) on the marginal likelihood of the data. The ELBO

is given by the equation:

LELBO (𝜃, 𝜙 ; x) = E𝑞𝜙 (z |x) [log 𝑝𝜃 (x|z)] − KL[𝑞𝜙 (z|x)∥𝑝 (z)] . (17)

The first term is the expected log-likelihood, which encourages the decoder to reconstruct the data accurately. The

second term is the Kullback-Leibler (KL) divergence between the encoder’s distribution 𝑞𝜙 (z|x) and 𝑝 (z), the prior
distribution over the latent variables, which acts as a regularizer and enforces the latent space to resemble the prior.

The parameters 𝜃 and 𝜙 of the model are optimized to maximize the ELBO, leading to a balance between accurate

reconstruction and a well-formed probabilistic latent space. By optimizing this lower bound, VAEs are effectively

trained to produce representations that encapsulate the essential characteristics of the data, including its underlying

uncertainty.

Bayesian Neural Networks (BNNs) offer an intricate method that integrates the flexibility of neural networks with

the probabilistic rigor of Bayesian inference. BNNs are predicated on the notion of assigning probability distributions

to the neural network’s parameters 𝜽 , which encapsulates the model’s uncertainty. This is a departure from traditional

neural networks that often yield a single point estimate for parameters upon training completion. During the training

phase, BNNs aim to ascertain the posterior distribution of the parameters 𝑃 (𝜽 |𝐷). This is a result of updating the prior

distribution 𝑃 (𝜽) with the likelihood of the observed data 𝑃 (𝐷 |𝜽), as Eq. (15). In the context of predictions, BNNs

leverage Bayesian model averaging during the test phase. This is not merely based on a singular set of parameters but

rather an aggregation of multiple parameter sets sampled from the posterior distribution. For a given test sample x∗,
the prediction thereby incorporates the model uncertainty, yielding the predictive distribution:

𝑝 (𝑦∗ |x∗, 𝐷) =
∫

𝑝 (𝑦∗ |x∗, 𝜽)𝑝 (𝜽 |𝐷)𝑑𝜽 . (18)

8

UncertaintyQuantification on Graph Learning: A Survey Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Due to the general intractability of the integral, various techniques for inferring 𝑝 (𝜽 |𝐷) have been proposed. Gal et

al. [30] demonstrated that Monte Carlo dropout is equivalent to sampling from an approximate posterior of 𝜽 , allowing

Eq. (18) to be simplified to the following Monte Carlo integral:

𝑝 (𝑦∗ |x∗, 𝐷) ≈ 1

𝑆

𝑆∑︁
𝑖=1

𝑝 (𝑦∗ |x∗, 𝜽 𝑖), (19)

where dropout is used to obtain 𝑆 weights 𝜽 𝑖 . Hasanzadeh et al. [44] extended the concept of dropout to graphs, intro-

ducing Graph DropConnect (GDC) to more effectively leverage the topological structure of graphs. Another technique

for approximating the posterior distribution 𝑝 (𝜽 |𝐷) is variational inference (VI). The objective is to approximate a

distribution 𝑞𝜙 (𝜽) that is close to the posterior 𝑝 (𝜽 |𝐷). This can be achieved by minimizing the Kullback-Leibler

divergence KL(𝑞𝜙 (𝜽)∥𝑝 (𝜽 |𝐷)), and in practice, by maximizing the following evidence lower bound (ELBO) [10]:

LELBO (𝜙) =
∫

𝑞𝜙 (𝜽) log𝑝 (𝑌 |𝑋, 𝜽)𝑑𝜽 − KL(𝑞𝜙 (𝜽)∥𝑝 (𝜽))) (20)

Once 𝑃 (𝜽 |𝐷) is obtained, the uncertainty quantified by the above Bayesian framework can be elegantly decomposed

by the following relationship:[20]:

𝐼 (𝑦∗, 𝜽 |x∗, 𝐷)︸ ︷︷ ︸
𝐸𝑝𝑖𝑠𝑡𝑒𝑚𝑖𝑐

= H
[
E𝑃 (𝜽 |𝐷)

[
𝑃 (𝑦∗ |x∗, 𝜽)

]]︸ ︷︷ ︸
𝐸𝑛𝑡𝑟𝑜𝑝𝑦

−E𝑃 (𝜽 |𝐷)
[
H

[
𝑃 (𝑦∗ |x∗, 𝜽)

]]︸ ︷︷ ︸
𝐴𝑙𝑒𝑎𝑡𝑜𝑟𝑖𝑐

, (21)

where H(·) is Shannon’s entropy of a probability distribution. The entropy term represents the total uncertainty in the

prediction while the aleatoric term reflects the inherent noise in the data that cannot be reduced with more information.

The subtraction of aleatoric uncertainty from total uncertainty provides the measure of epistemic uncertainty, which

denotes the uncertainty in the model’s parameters and reduces as more data becomes available. This mathematical

demarcation between the uncertainties empowers BNNs to provide a nuanced understanding of prediction reliability

and decision-making under uncertainty.

4.1.3 Bayesian Representation Learning for Graphs.

The endeavor to encode the complexity of graph-structured data within a framework that acknowledges and quantifies

uncertainty has led to the evolution of Bayesian graph representation learning. This field extends beyond deterministic

embeddings, acknowledging that the inherent stochasticity of graphs—arising from irregular structures, noisy features,

and other factors—must be captured for a more faithful representation. GNNs lay the groundwork by leveraging

local neighborhood information, but their deterministic nature often falls short in representing the ambiguity and

unpredictability inherent in real-world graphs. To bridge this gap, Bayesian extensions to GNNs have emerged. One

route lies in integrating the principles of variational inference to explicitly model the uncertainties in graph data, thus

allowing for more nuanced and informative graph embeddings that facilitate enhanced downstream task performance

in the presence of uncertainty.

Kipf and Welling [59] introduced a pioneering framework for unsupervised learning on graph-structured data using

variational autoencoders. They proposed a GCN based encoder that effectively captures the probabilistic distribution of

latent variables representing the graph. The encoder transforms the input graph 𝐺 with nodes 𝑉 into a latent space Z,
mapping node 𝑖 to a latent vector z𝑖 with the variational posterior 𝑞(Z|X,A) approximated as a product of Gaussian

distributions for each node. The model defines the posterior as 𝑞(z𝑖 |x𝑖 ,A) = N(z𝑖 |𝝁𝑖 , diag(𝝈2

𝑖
)), where 𝝁 and log 𝝈2

are the outputs of a GCN applied to the graph’s adjacency matrix A and node features X. The objective function derived

9

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato et al.

from the ELBO (Eq. 17) to be optimized is

L = E𝑞 (Z |X,A) [log 𝑝 (A|Z)] − KL[𝑞(Z|X,A)∥𝑝 (Z)], (22)

where log 𝑝 (A|Z) is the reconstruction loss that encourages the model to reconstruct the graph adjacency matrix, and

KL[𝑞(Z|X,A)∥𝑝 (Z)] is the KL divergence acting as a regularizer, pushing the variational distribution towards a prior

𝑝 (Z), typically chosen to be a standard normal distribution.

To enhance the flexibility of Kipf and Welling’s work or to overcome some of its limitations, various methods have

been introduced. Hasanzadeh et al. [45] employed a hierarchical variational framework that enabled neighboring nodes

to share information, thereby facilitating improved generative modeling of the graph’s dependency structure. This

approach allowed the propagation of graph structural information and distribution uncertainty, which was essential for

capturing complex posterior distributions. To clearly explain what latent factors are and why they perform well, Li et

al. [66] introduced the Dirichlet Graph Variational Autoencoder (DGVAE) with graph cluster memberships as latent

factors. This study connects VAE-based graph generation with balanced graph cut and provides a new perspective for

understanding and enhancing the internal mechanisms of VAE-based graph generation. Ahn and Kim [3] observed

that existing autoencoders produce embeddings for isolated nodes that are close to zero, regardless of their content

features. To address this issue, they proposed a novel Variational Graph Normalized AutoEncoder (VGNAE) that utilizes

𝐿2-normalization to derive improved embeddings for isolated nodes. Grover et al. [35] proposed a method that augments

the decoder with an "iterative" GNN-based decoder to address the limitation of generating only node embeddings,

which is not conducive to sampling new graphs. Differing from the node-level VGAE mentioned above, Simonovsky

and Komodakis [99] proposed a graph-level VAE [43], named GraphVAE, which modifies the encoder and decoder

functions to work with graph-level latent representations, consequently facilitating the direct modeling of uncertainty

within graphs.

Leveraging the strength of graph variational autoencoders in representation and uncertainty modeling, some studies

have integrated them into GNNs for application in downstream tasks. Hajiramezanali et al. [41] developed a novel

hierarchical variational model that introduces additional latent random variables. This model jointly captures the

hidden states of a Graph Recurrent Neural Network (GRNN) to effectively represent both topological changes and

node attribute variations in dynamic graphs. To learn dynamic graph representations in hyperbolic space while also

modeling uncertainty, Sun et al. [103] devised a hyperbolic graph variational autoencoder based on the proposed TGNN.

This framework generates stochastic node representations from hyperbolic normal distributions.

Another route lies in transferring general Bayesian neural networks to GNNs. These works consider model parameters,

passed messages, etc., as distributions rather than fixed values, and propose a series of Bayesian Graph Neural Networks

(BGNNs). To address limitations in GCNs’ ability to handle uncertain graph structures, Zhang et al. [134] treated the

observed graph 𝐺𝑜𝑏𝑠 as a sample from a random graph family. As a result, the posterior probability of node (or graph)

labels can be computed by:

𝑝 (Z|YL ,X,𝐺𝑜𝑏𝑠) =
∫

𝑝 (Z|𝜽 ,𝐺,X)𝑝 (𝜽 |YL ,𝐺,X)𝑝 (𝐺 |𝜆)𝑝 (𝜆 |𝐺𝑜𝑏𝑠) 𝑑𝜽 𝑑𝐺 𝑑𝜆 . (23)

Here 𝜽 is a random variable representing the parameters of a Bayesian GCN over graph𝐺 , and 𝜆 denotes the parameters

that characterize a family of random graphs. YL and X represent the training label set and the node feature matrix,

respectively. 𝑝 (Z|𝜽 ,𝐺,X) can be modelled using a categorical distribution by applying a softmax function to the output

of the 𝐿-layer GCN Z = H(𝐿)
. Due to the intractability of the integral in Eq. (23), the authors employ the following

10

UncertaintyQuantification on Graph Learning: A Survey Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Monte Carlo approximation:

𝑝 (Z|YL ,X,𝐺𝑜𝑏𝑠) ≈
1

𝑁𝐺𝑆

𝑁𝐺∑︁
𝑖=1

𝑆∑︁
𝑠=1

𝑝 (Z|𝜽𝑠,𝑖 ,𝐺𝑖 ,X) . (24)

In this approximation, 𝑁𝐺 graphs 𝐺𝑖 are sampled from 𝑝 (𝐺 | ˆ𝜆), where ˆ𝜆 is the parameter of the random graph model

obtained through maximum a posteriori estimation
ˆ𝜆 = arg max𝜆 𝑝 (𝜆 |𝐺𝑜𝑏𝑠). 𝑆 weights 𝜽 are drawn from 𝑝 (𝜽 |YL ,𝐺𝑖 ,X)

using Monte Carlo dropout across the Bayesian GCN corresponding to 𝐺𝑖 .

Regarding the specific choice of the random graph model in Eq. (23), Zhang et al. [134] utilized an assortative mixed

membership stochastic block model (a-MMSBM) [34, 68]. To more effectively harness the information offered by node

features and training labels for the inference of graph topology, Pal et al. [88] introduced a generative model based on

node copying as an alternative to the a-MMSBM. Motivated by comparable considerations, Pal et al. [87] proposed a

non-parametric posterior distribution of the graph 𝐺 to infer the graph topology.

In addition to considering the observed graph as sampled from a random graph family, some studies also treat

the inputs and other elements within the GNN as random variables. To model the propagation of uncertainty in

message-passing mechanisms, Xu et al. [122] treated messages as multivariate Gaussian variables and employed GNNs

to predict their means. To align with the intuition that more neighboring nodes provide more evidence, they defined an

uncertainty propagation mechanism in GNNs for predicting the covariance of Gaussian distributions, which differs

from traditional message passing. The covariance ultimately provides the uncertainty of predictions. Zhao et al. [137]

viewed model parameters as variables and then obtained both epistemic uncertainty and aleatoric uncertainty based on

Eq. (21). Additionally, this work incorporates uncertainty from evidence theory, namely vacuity due to lack of evidence

and dissonance due to conflicting evidence, offering a richer representation of uncertainty. Elinas et al. [24]considered

the adjacency matrix A as a random variable. The prior distribution of the adjacency matrix A is given by:

𝑝 (A) = Π𝑖 𝑗𝑝 (𝐴𝑖 𝑗), with𝑝 (𝐴𝑖 𝑗) = Bern(𝐴𝑖 𝑗 |𝜌𝑜𝑖 𝑗), (25)

where Bern(𝐴𝑖 𝑗 |𝜌𝑜𝑖 𝑗) is a Bernoulli distribution over 𝜌𝑜
𝑖 𝑗
. The variational posterior, which takes a form similar to the

prior, is given by:

𝑞𝜙 (A) = Π𝑖 𝑗𝑞𝜙 (𝐴𝑖 𝑗), with𝑞𝜙 (𝐴𝑖 𝑗) = Bern(𝐴𝑖 𝑗 |𝜌𝑖 𝑗), 𝜌𝑖 𝑗 > 0, (26)

where 𝜌𝑖 𝑗 are free parameters then 𝜙 = {𝜌𝑖 𝑗 }. By relaxing the discrete distribution to a continuous Concrete distribution

[54, 74] and maximizing the ELBO, they are able to estimate the parameters 𝜙 of the posterior 𝑞𝜙 (A). Munikoti et al. [79]

considered probabilistic links, noise in node features, and modeling errors, treating node features, links between nodes,

and model parameters as variables. They propagated aleatoric uncertainty to the output by defining mechanisms for

the propagation of means and variances of the node embeddings in GNN, while also estimating epistemic uncertainty

through MC dropout.

5 METHODS FOR UNCERTAINTY HANDLING

5.1 Out of Distribution

Out-of-distribution (OOD) pertains to instances when the data encountered by a model substantially deviates from

the data upon which it was originally trained. It is especially significant for models deployed in real-world contexts,

where they are subjected to a diverse array of inputs that are unpredictable and uncertain, in stark contrast to the

controlled and uniform datasets used for training. Despite concerted efforts to encompass a wide range of data, these

efforts often fail to encapsulate the full extent of variability present in real-world environments. Consequently, when

11

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato et al.

models are exposed to OOD data, they may exhibit underperformance or unpredictable behavior, underscoring the

imperative for the development of models that are both robust and reliable. To address this problem, there has been a

surge of research focused on out-of-distribution (OOD) generalization. The strategies developed to mitigate the issues

posed by OOD generalization can be broadly classified into several categories [65], including distributionally robust

optimization (DRO), adversarial training (AT), self-supervised learning (SSL), and so on. Most of them primarily aim to

improve model performance under OOD conditions during test time, for example, recommendation systems make better

predictions on new item domains. However, this survey concentrates on examining the measurement, calibration, and

conformity of predictive uncertainty, areas often overlooked in OOD research. Thus, rather than delving into specific

model architectures, this survey will emphasize the way to integrate OOD and uncertainty studies, especially how to

measure and estimate the disagreement between training data and test data in OOD studies.

5.1.1 Distributionally Robust Optimization Overview.

Distributionally Robust Optimization (DRO) aims to enhance the model’s performance across a range of potential data

distributions, instead of the observed data distribution, e.g., training data. Specifically, DRO optimizes the objective

function under the “worst case” of the distributions where the loss will be maximized. Formally, DRO is formulated by

a bi-level optimization problem:

min

𝑓 ∈F
sup

𝑃∈P
E𝑥∼𝑃 [L0 (𝑓)], s.t. P := {𝑃 |𝐷 (𝑃, 𝑃0) ≤ 𝜌}. (27)

where L0 is a classification loss, such as cross-entropy. 𝑃0 is the observed data distribution, which could be estimated

by the empirical data distribution 𝑃0. The uncertainty set P is the set of distributions within the robust radius distance

𝜌 from 𝑃0. 𝐷 (·, ·) measures the distance between two distributions. Many measures 𝐷 of the distribution distance are

used in DRO.

𝑓 -divergence, also known as phi-divergence, is formally represented by the formula

𝐷 𝑓 (𝑃 | |𝑃0) =
∫

𝑓

(
𝑑𝑃

𝑑𝑃0

)
𝑑𝑃0 . (28)

This metric is widely utilized for quantifying the divergence between distributions in DRO [7, 8, 22]. It is noted that

the domain delineated by 𝑓 -divergence can be viewed as a statistical confidence region, and the inner maximization

problem is tractable for several choices of 𝑓 [8, 89].

KL-divergence, as one special case of 𝑓 -divergence, is also widely used as the distance metric in DRO, such as

the works [51, 117]. Especially, authors in [117] propose that DRO adopting KL-divergence as 𝐷 is equivalent to the

contrastive learning in some cases:

L𝐶𝐿−𝐷𝑅𝑂 = − E𝑃0

[
E(𝑥,𝑦+) [𝑓 (𝑥,𝑦+)] − min

𝛼≥0,𝛽
max

𝑃∈P
{𝛼 [𝐷𝐾𝐿 (𝑃 | |𝑃0) − 𝜂] + 𝛽 (E𝑃0

[
𝑃

𝑃0

]
− 1)}

]
=𝛼∗ (𝜂)L𝐼𝑛𝑓 𝑜𝑁𝐶𝐸 +𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 .

(29)

The possible limitation of metrics based on 𝑓 -divergence is that they may not be comprehensive enough to include

some relevant distributions, or they may fail to precisely measure the distance for extreme distributions. Alternatively,

some works adopt the Wasserstein distance to evaluate the distribution distance [31, 76, 136]. Formally, the Wasserstein

distance is defined by

𝐷𝑊 (𝑃, 𝑃0) := inf

𝛾 ∈𝑇 (𝑃,𝑃0)
E𝑝,𝑝0∼𝛾 [𝑐 (𝑝, 𝑝0)], (30)

12

UncertaintyQuantification on Graph Learning: A Survey Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

where 𝑇 (𝑝, 𝑝0) contains all possible couplings of 𝑝 and 𝑝0. 𝑐 (𝑝, 𝑝0) is some cost functions transferring from 𝑝 to 𝑝0 and

𝑐 (𝑝, 𝑝0) ≥ 0.

Besides that, authors in [101] study DRO with the uncertainty sets measured by maximum mean discrepancy (MMD).

The authors in [25] propose to define the uncertainty sets using the Prohorov metric.

5.1.2 Distributionally Robust Optimization for Graphs.

Manyworks have studiedDROwith various distributionmetrics on graphs. Authors in [15] assume that node embeddings

share the same label𝑚 adhere to an underlying distribution (𝑒𝑖 ∼ 𝑃𝑚 ∈ P𝑚,∀𝑖 : 𝑦𝑖 =𝑚), within an uncertainty set P𝑚
encompassing all potential distributions 𝑃𝑚 . Correspondingly, the objective function is given by

min

𝑓 ∈F
max

𝑃𝑚∈P𝑚,1≤𝑚≤𝑀
L0 (𝑓 ; 𝑃1, . . . , 𝑃𝑀) (31)

L0 =
∑𝑀
𝑚=1
E𝑒∼𝑃𝑚 [1−𝜋𝑚 (𝜉)] is the risk function. The uncertainty set P𝑚 for each label𝑚 is defined by theWasserstein

distance:

P𝑚 := {𝑃𝑚 |𝐷 (𝑃𝑚, 𝑃𝑚) ≤ 𝜌}, (32)

and the empirical distribution 𝑃𝑚 is defined by the Dirac point mass:

𝑃𝑚 :=
1

|{𝑖 : 𝑦𝑖 =𝑚}|

𝑛∑︁
𝑖=1

𝛿𝜉𝑖1{𝑦𝑖 =𝑚}, 𝑚 = 1, . . . , 𝑀, (33)

where 𝛿 is the Dirac delta function, and | · | is the cardinality of a set.

Authors in [96, 132] also utilize Wasserstein distance as distribution metric 𝐷 . Especially, authors in [132] address

data uncertainty by establishing an uncertainty set for the distributions of the observed data. They propose a graph

learning framework that employs Wasserstein DRO and two models based on two assumptions on the uncertainty of

the data, respectively. One presumes that every distribution within the uncertainty set is Gaussian, while the second

one does not rely on prior distributional assumptions.

Furthermore, authors in [113] study DRO in the field of recommendation systems, where the KL-divergence, 𝐷

is used to measure the distribution difference. The authors prove that LightGCN, 𝐸 (𝑘) = �̃�𝐸 (𝑘−1)
, conduct as a

Graph smoothness regularizer in the case of DRO and propose a regularization-based method to promote model

robustness/generalization.

5.1.3 AT and SSL for Graphs.

Besides DRO, it is noticeable that many other methods, such as adversarial training (AT) and self-supervised learning

(SSL) are proposed to mitigate OOD issues. However, most of these works adopt 𝐿𝑝 -norm or predefined perturbations

to quantify or mimic the uncertainty.

In essence, adversarial training on graphs addresses the following min-max optimization problem:

min

Θ
max

∥𝜖𝜃 ∥≤𝜌𝜃 ,∥𝜖𝑥 ∥≤𝜌𝑥 ,∥𝜖𝑎 ∥≤𝜌𝑎
L0 (Θ + 𝜖𝜃 , 𝑋 + 𝜖𝑥 , 𝐴 + 𝜖𝑎), (34)

where 𝜖𝜃 , 𝜖𝑥 , 𝜖𝑎 represent the perturbations applied to model parameters, input node features, and adjacency matrix,

respectively. In the most recent works, some focus on modifying the graph structure [28], other apply perturbations to

model parameters [119], and a few consider perturbations on both node feature and model parameters [123]. Regardless

of whether the input data or the model parameters are being perturbed, it is worth noting that perturbation magnitude

(uncertainty) is typically measured using the 𝐿𝑝 -norm, such as the 𝐿1, 𝐿2, or 𝐿∞ norm.

13

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato et al.

In the field of self-supervised learning (SSL) for graph analysis, the core idea entails the deliberate perturbation or

modification of graphs to construct a new, controlled dataset wherein the intrinsic information of the graphs remains

unchanged. These modifications are typically predefined and encompass augmentations at the node, edge, and subgraph

levels, facilitating the generation of positive pair instances. Such augmentations include, but are not limited to, node

masking [50], edge perturbation, attribute masking, subgraph sampling [127], and the utilization of random walks

for graph sampling [93]. Some work proposes the augmentation of graph data at both structural and attribute levels

[139]. Furthermore, the ambit of SSL objectives is diverse: authors in [126] propose a novel SSL task, centered on the

prediction of the d-pattern tree descriptor. Authors in [71] propose a collaborative framework between teacher and

student networks aimed at discovering and leveraging high-confidence, high-quality labeled data. However, these works

refrain from explicitly formulating the modifications, and thus cannot provide precise measurement of the uncertainty

for the changes.

5.2 Conformal Prediction

5.2.1 Conformal Prediction Overview.

Conformal Prediction (CP), or Conformal Inference, is an uncertainty quantification framework that can be applied to

almost any model. With a trained model and a pre-designed significant level 𝛼 , CP takes advantage of the experience of

the calibration data to provide the estimated confidence intervals of predicted outcomes based on the scoring equations,

which quantify the similarity, or conformity in other words, between the test data and calibration data. The theoretical

essentials of CP are illustrated in "Algorithmic Learning in a Random World" [111] by Vladimir Vovk and coauthors in

2005. In this section, we will offer readers a generalized introduction to CP. First, we would like to help readers develop

a basic understanding of the frameworks of CP on classification and regression models. Then, we talk about how to

generate adaptive CP, which is a trending topic in this domain. We will also cover some content about how to improve

the stability of CP and the combination of CP and Bayesian inference.

For CP on classification models, assume we have a trained classifier
ˆ𝑓 which can output the estimated probability

𝑦𝑖 = ˆ𝑓 (𝑋𝑖) ∈ Δ𝐾 , such as softmax. Another calibration set of size 𝑛, 𝐷𝑐𝑎𝑙 , including (𝑋𝑖 , 𝑌𝑖), 𝑖 = 1, .., 𝑛, is applied to

quantify how uncertainty the model
ˆ𝑓 would be.

Definition 5.1 (Exchangeability). For any 𝑧1, . . . , 𝑧𝑛 and any permutation 𝜁 of {1, . . . , 𝑛}, P
(
(𝑍𝜁 (1) , . . . , 𝑍𝜁 (𝑛)) = (𝑧1, . . . , 𝑧𝑛)

)
=

P ((𝑍1, . . . , 𝑍𝑛) = (𝑧1, . . . , 𝑧𝑛)) holds.

Theorem 5.2. With the model ˆ𝑓 and the calibration dataset 𝐷𝑐𝑎𝑙 , whose elements (𝑋𝑖 , 𝑌𝑖) and (𝑋𝑡𝑒𝑠𝑡 , 𝑌𝑡𝑒𝑠𝑡) are
exchangeable, the conformal score is defined as 𝑠𝑖 = 1 − ˆ𝑓 (𝑋𝑖). The empirical quantile of the conformal score set is below,

where 𝑆 is the score set including 𝑠𝑖 , 𝑖 = 1...𝑛.

𝑄1−𝛼 (𝑆, 𝐷𝑐𝑎𝑙) := (1 − 𝛼) (1 + 1/|𝐷𝑐𝑎𝑙 |)-th empirical quantile of 𝑆. (35)

The coverage of the prediction set, 𝐶 (𝑋𝑡𝑒𝑠𝑡) = {𝑦 | ˆ𝑓 (𝑋𝑡𝑒𝑠𝑡)𝑦 ≥ 1 −𝑄1−𝛼 }, is at least 1 − 𝛼 .

1 − 𝛼 ≤ 𝑃 (𝑌𝑡𝑒𝑠𝑡 ∈ C(𝑋𝑡𝑒𝑠𝑡)) ≤ 1 − 𝛼 + 1

(𝑛 + 1) (36)

The score function 𝑠 (𝑋,𝑦) measures how 𝑦 “conforms” to the prediction at 𝑋 . Selecting a suitable score function is

one of the challenges in conformal prediction, especially for conformal prediction in the graphs. One popular choice is

adaptive prediction sets (APS). APS first sorts the predicted distribution into descending order, such that 𝜋𝜁 (1) (𝑋) ≥
𝜋𝜁 (2) (𝑋) ≥ · · · ≥ 𝜋𝜁 (𝐾) (𝑋). Then score function is defined as 𝑠 (𝑋,𝑦) = ∑

𝑗 𝜋𝜁 (𝑗) (𝑋), and the corresponding prediction
14

UncertaintyQuantification on Graph Learning: A Survey Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

set is constructed as

C(𝑋) = {𝜁 (1), . . . , 𝜁 (𝑘∗)}, where 𝑘∗ = inf{𝑘 :

𝑘∑︁
𝑗=1

𝜋𝜁 (𝑗) (𝑋) ≥ 𝑄1−𝛼 }. (37)

One may utilize a uniform random value to break potential ties between scores [102].

The procedure of applying CP on a regression model is similar to the process mentioned above. However, the

prediction sets in this case become intervals instead of assembles of predicted labels. With a trained regressor 𝜇 and a

calibration dataset 𝐷𝑐𝑎𝑙 , to construct a prediction set that satisfies Eq. (36), we also need to calculate the conformal

score of 𝐷𝑐𝑎𝑙 , but this time it is the residual between the predicted values and the true value. 𝑟𝑖 = |𝜇 (𝑋𝑖) − 𝑌𝑖 |. The
empirical quantile on 𝑅, including 𝑟𝑖 , 𝑖 = 1, .., 𝑛, is

𝑄1−𝛼 (𝑅, 𝐷𝑐𝑎𝑙) := (1 − 𝛼) (1 + 1/|𝐷𝑐𝑎𝑙 |)-th empirical quantile of 𝑅. (38)

Finally, the predicted interval of i.d.d.𝑋𝑡𝑒𝑠𝑡 with given𝛼 can bewritten as𝐶 (𝑋𝑡𝑒𝑠𝑡) = [𝜇 (𝑋𝑡𝑒𝑠𝑡)−𝑄1−𝛼 (𝑅, 𝐷𝑐𝑎𝑙), 𝜇 (𝑋𝑡𝑒𝑠𝑡)+
𝑄1−𝛼 (𝑅, 𝐷𝑐𝑎𝑙)].

One weakness of traditional CP is that it takes all elements within the calibration set to quantify the uncertainty of

the trained model. This may cause the model to be overconfident in hard examples but underconfident in easy examples.

However, since we know the value of 𝑋𝑡𝑒𝑠𝑡 , we can make use of the information to make the prediction set 𝐶 (𝑋𝑡𝑒𝑠𝑡)
more adaptive to the test input.

The goal of improving the adaptiveness of CP is to reduce the size of prediction sets under the guarantee of prediction

coverage. Designing novel conformal score equations is a widely applied method to improve the adaptiveness of

prediction sets. In [95], the authors revised the traditional conformal score equation to generate adaptive prediction sets

for classification models. We follow the setup of the model
ˆ𝑓 discussed above. For each element 𝑋𝑖 in 𝐷𝑐𝑎𝑙 , the trained

model
ˆ𝑓 can output the softmax result for all potential 𝐾 classes,

ˆ𝑓 (𝑋𝑖)𝑦𝑘 = 𝜋𝑦𝑘 (𝑋𝑖), 𝑘 = 1, 2, .., 𝐾 . During this process,

we assign the indices {1, 2, .., 𝐾} to elements within the set (𝜋𝑦𝑘 (𝑋𝑖))𝑘∈[𝐾] from high to low, which means 𝜋𝑦1
(𝑋𝑖) is

the possibility of the most likely class of 𝑋𝑖 , whereas 𝜋𝑦𝐾 (𝑋𝑖) is the least possible output. Then, the conformal score is

defined as the summation of the first𝑀 elements where 𝑦𝑀 = 𝑌𝑖 , which is the true class of 𝑋𝑖 .

𝑠𝑖 =

𝑀∑︁
𝑗=1

𝜋𝑦 𝑗 (𝑋𝑖), where 𝑦𝑀 = 𝑌𝑖 . (39)

In other words, the score equation will keep including the softmax results from high to low until meets the true class.

We still define 𝑆 as the set of 𝑠𝑖 and then calculate the quantile of 𝑆 via Eq. (35). With this quantile value, we will form

the prediction set 𝐶 (𝑋𝑡𝑒𝑠𝑡) = {𝑦1, .., 𝑦𝑀 , 𝑦𝑀+1 |𝑀 : sup(∑𝑀
𝑗=1

𝜋𝑦 𝑗 (𝑋𝑖)) < 𝑄1−𝛼 }. 𝑦𝑀+1 is included in 𝐶 (𝑋𝑡𝑒𝑠𝑡) to avoid

empty sets. [4] is a well-cited publication using this adaptive prediction method for image classification tasks.

Applying localizers involved with the neighbor information of test data is also an effective way to make predicted

intervals more adaptive. For instance, in [37], the localizer for regression problems, with score 𝑟 , is defined as the

following, which can give conformal scores closer to the test input higher weights.

𝐻 (𝑋𝑡𝑒𝑠𝑡 , 𝑋𝑖) = 𝑒−5 |𝑋𝑖−𝑋𝑡𝑒𝑠𝑡 | . (40)

Let 𝛿𝑟 denote the point mass at 𝑟 . The weighted conformal score distribution according to the test input 𝑋𝑡𝑒𝑠𝑡 is

F𝑡𝑒𝑠𝑡 := (
𝑛∑︁
𝑖=1

𝑝𝐻𝑡𝑒𝑠𝑡,𝑖𝛿𝑟𝑖) for i = 1...n , where 𝑝𝐻𝑡𝑒𝑠𝑡,𝑖 =
𝐻𝑡𝑒𝑠𝑡,𝑖∑𝑛
𝑗=1

𝐻𝑡𝑒𝑠𝑡, 𝑗
. (41)

15

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato et al.

Some other work considers improving the adaptiveness of CP during the training step. For instance, [102] apply

conformalization on mini-batches during training to reduce prediction size.

Notice that all the algorithms above are built on the assumption that test data comes from the same distribution of

the calibration set, which means (𝑋𝑖 , 𝑌𝑖) and (𝑋𝑡𝑒𝑠𝑡 , 𝑌𝑡𝑒𝑠𝑡) are exchangeable. However, in the real world, the probability

distributions between calibration data 𝐷𝑐𝑎𝑙 and test data 𝐷𝑡𝑒𝑠𝑡 can be different, i.e., non-exchangeable.
Covariant shift is a typical situation in which the distribution of input values changes between 𝐷𝑐𝑎𝑙 and 𝐷𝑡𝑒𝑠𝑡 , i.e.,

𝑃𝐷𝑐𝑎𝑙 (𝑋) ≠ 𝑃𝐷𝑡𝑒𝑠𝑡 (𝑋), but their conditional probabilities of obtaining the same output are identical, i.e., 𝑃𝐷𝑐𝑎𝑙 (𝑌 |𝑋) =
𝑃𝐷𝑡𝑒𝑠𝑡 (𝑌 |𝑋). [106] introduced using the likelihood ratio between 𝑃𝐷𝑡𝑒𝑠𝑡 (𝑋) and 𝑃𝐷𝑐𝑎𝑙 (𝑋) to calculate the corresponding
weight of each conformal score from the calibration set. To be specific, we define𝑤 (𝑥) = 𝑑𝑃𝐷𝑡𝑒𝑠𝑡 (𝑋)

𝑑𝑃𝐷𝑐𝑎𝑙 (𝑋) , then the weights

are in Eq. (42). These weights will assign higher priority to conformal scores which are more likely to appear in the test

probability distribution. The quantile can be rewritten from Eq. (38) to illustrate the influence of 𝑝𝑐𝑎𝑙 , as Eq. (43).

𝑝𝑖
𝑐𝑎𝑙

(𝑥) = 𝑤 (𝑋𝑖)∑𝑛
𝑗=1

𝑤 (𝑋 𝑗) +𝑤 (𝑥) , and 𝑝𝑡𝑒𝑠𝑡 (𝑥) =
𝑤 (𝑥)∑𝑛

𝑗=1
𝑤 (𝑋 𝑗) +𝑤 (𝑥) . (42)

𝑄 (𝑥) = 𝑖𝑛𝑓 {𝑅 𝑗 ,
𝑗∑︁
𝑖=1

𝑝𝑖
𝑐𝑎𝑙

(𝑥)1{𝑅𝑖 < 𝑅 𝑗 } ≤ 1 − 𝛼}. (43)

Concept shift is another kind of probability distribution difference where the conditional probabilities between

calibration distribution and test distribution are inconsistent,i.e.,𝑃𝐷𝑐𝑎𝑙 (𝑌 |𝑋) ≠ 𝑃𝐷𝑡𝑒𝑠𝑡 (𝑌 |𝑋). For online prediction on

time series data, [33] proposed an adaptive conformal inference method that can adjust the miscoverage value 𝛼 and

prediction size according to the historical data. [120] takes a different method by aggregating bootstrap estimators to

calculate prediction sets based on the recent new samples. For the domain adaptation case, [13] defines that the joint

distribution of test data belongs to the f-divergence ball centered on the calibration distribution, and (1 − 𝛼) can be

guaranteed by calculating the worst-case prediction set. [6] summarized two sources of non-exchangeability, data is

not i.i.d and the training algorithm does not treat data symmetrically. It employed a fixed, rather than data-dependent,

weighted quantile to introduce robustness to the first source and designed a new randomization technique to swap

orders of samples for nonsymmetric algorithms.

In the previous discussion, we begin with a well-trained model
ˆ𝑓 , which is called inductive case, but in fact, how

to wisely split the known data 𝐷𝑘𝑛𝑜𝑤𝑛 into training data 𝐷𝑡𝑟𝑎𝑖𝑛 to train
ˆ𝑓 and calibration data 𝐷𝑐𝑎𝑙 to calculate

conformal score is a long-standing concern for CP. Below we briefly introduce the works for data processing and CP

implementation to improve CP’s reliability.

Full conformal prediction (FCP), also referred to as transductive case, is the first proposed method for conducting

CP. With training data 𝐷𝑡𝑟𝑎𝑖𝑛 of (𝑋𝑖 , 𝑌𝑖) and a test input 𝑋𝑡𝑒𝑠𝑡 , the trained model 𝑓 𝑧 is based on 𝐷𝑡𝑟𝑎𝑖𝑛 ∪ (𝑋𝑡𝑒𝑠𝑡 , 𝑧),
where 𝑧 is all possible 𝑌𝑖 labels appear in 𝐷𝑡𝑟𝑎𝑖𝑛 , so multiple models need to be trained. For each 𝑓 𝑧 , the conformal

scores are 𝑟𝑖 = |𝑌𝑖 − 𝑓 𝑧 (𝑋𝑖) | and 𝑟𝑡𝑒𝑠𝑡 = |𝑧 − 𝑓 𝑧 (𝑥𝑡𝑒𝑠𝑡) |. If 𝑟𝑡𝑒𝑠𝑡 is within the 1 − 𝛼 quantile of conformal scores, we put

the corresponding z to the prediction set of 𝑋𝑡𝑒𝑠𝑡 . FCP is computationally expensive and split conformal prediction

(SCP) is developed to reduce the cost. As we discussed, SCP divides the known data 𝐷𝑘𝑛𝑜𝑤𝑛 into training data 𝐷𝑡𝑟𝑎𝑖𝑛

and calibration data 𝐷𝑐𝑎𝑙 and calculates the prediction set based on the conformal scores from 𝐷𝑐𝑎𝑙 . However, such

division may lead to randomness and unreliability of prediction output due to the reduced sample size for training and

calibration phases. To solve this problem, [98] suggested that using between 70% and 90% of the data for training often

achieves a good balance between minimizing the size of the prediction intervals and the variability of practical coverage.

Some cross-validation-related works are also designed to improve prediction robustness, such as cross-conformal

16

UncertaintyQuantification on Graph Learning: A Survey Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

prediction [110, 112], and CP with jackkneif+ [5, 23]. Stable CP [82] states that the robustness of CP can be characterized

by the trained model’s stability 𝜏 .

A combination of CP and Bayesian method is proposed in [46]. With a trained Bayesian model
ˆ𝑓 (𝑦 |𝑋𝑡𝑒𝑠𝑡), which

estimates the posterior distribution of the true label 𝑌𝑡𝑒𝑠𝑡 with given input 𝑋𝑡𝑒𝑠𝑡 . Theoretically, the optimal prediction

set should be

𝐶 (𝑋𝑡𝑒𝑠𝑡) = {𝑦 :
ˆ𝑓 (𝑦 |𝑋𝑡𝑒𝑠𝑡) > 𝑡}, where t is chosen so

∫
𝑦∈𝐶 (𝑋𝑡𝑒𝑠𝑡)

ˆ𝑓 (𝑦 |𝑋𝑡𝑒𝑠𝑡)𝑑𝑦 = 1 − 𝛼. (44)

However, Eq. (44) is hard to calculate due to the limitation of sample numbers and approximated posterior distributions,

such as by Monte Carlo Dropout, so we can define the conformal score as 𝑠 (𝑋𝑡𝑒𝑠𝑡 , 𝑦) = − ˆ𝑓 (𝑦 |𝑋𝑡𝑒𝑠𝑡). After calculating
the quantile value 𝑄1−𝛼 on the calibration set, the prediction set of the input feature 𝑋𝑖 is

𝐶 (𝑋𝑡𝑒𝑠𝑡) = {𝑦 :
ˆ𝑓 (𝑦 |𝑋𝑡𝑒𝑠𝑡) > −𝑄1−𝛼 }. (45)

5.2.2 Conformal Prediction for Graphs.

For node classification tasks on graphs, the exchangeability may be violated for some specific settings [130]. First, in

the transductive settings, the model has access to the entire graph structure and all the node features during training,

calibration, and testing, but the labels of calibration and testing set are not available during training. In this case,

the union of calibration and the unlabeled sample is exchangeable. However, in the inductive settings, the model

only has access to the subgraph induced by the nodes in the training set D𝑡𝑟𝑎𝑖𝑛 during training. The assumption of

exchangeability does not hold in this case.

In the study [56], the uncertainty of a node 𝑋𝑖 inferred a GNN is defined by:

U(𝑋𝑖) = C+ (𝑋𝑖) − C− (𝑋𝑖), (46)

where C+ (𝑋𝑖) and C− (𝑋𝑖) are the lower and upper bound of the predictive confidence interval of node 𝑋𝑖 by the

jackknife method, respectively:

C+ (𝑋𝑖) = Quantile(1 − 𝛼 ; ∥ 𝑓 (𝑋𝑖 ;Θ∗
𝜖,𝑗)∥2 + 𝑒𝑟𝑟 𝑗 |∀𝑗 ∈ D𝑡𝑟𝑎𝑖𝑛\{𝑋 𝑗 }),

C− (𝑋𝑖) = Quantile(𝛼 ; ∥ 𝑓 (𝑋𝑖 ;Θ∗
𝜖,𝑗)∥2 − 𝑒𝑟𝑟 𝑗 |∀𝑗 ∈ D𝑡𝑟𝑎𝑖𝑛\{𝑋 𝑗 }),

(47)

where 𝑒𝑟𝑟 𝑗 = ∥𝑦 𝑗 , 𝑓 (𝑗,Θ∗
𝜖,𝑗

)∥2 is the leave-one-out (LOO) error of node 𝑋 𝑗 . Θ
∗
𝜖,𝑗

is the loss when upweighting the

importance of a node 𝑋 𝑗 with small constant 𝜖 :

Θ∗
𝜖,𝑗 = arg min

Θ
𝜖ℓ (𝑋 𝑗 , 𝑦 𝑗) +

1

|D𝑡𝑟𝑎𝑖𝑛 |
∑︁

𝑋𝑖 ∈D𝑡𝑟𝑎𝑖𝑛
ℓ (𝑋𝑖 , 𝑦𝑖), (48)

ℓ is a node-specific loss, such as cross-entropy. The influence function is considered to estimate the LOO loss and Θ∗
𝜖,𝑗

,

without retraining the model. Specifically, the influence function is defined as

Θ∗
𝜖,𝑗 ≈ Θ∗ + 𝜖𝐻−1

Θ∗ ∇Θℓ (𝑋 𝑗 , 𝑦 𝑗), (49)

where 𝐻Θ∗ is the Hessian matrix with respect to the model parameters, and Eq. (49) is effectively estimated by the

vectorization and the Hessian-vector product.

17

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato et al.

In the study [130], a diffused score function, namely Diffused Adaptive Prediction Sets (DAPS), is introduced. DAPS

exploits the graph structure based on neighborhood diffusion, and the diffused score function is defined as

𝑠 (𝑋𝑖 , 𝑦) = (1 − 𝜆)𝑠 (𝑋𝑖 , 𝑦) +
𝜆

|N𝑖 |
∑︁

𝑋 𝑗 ∈N𝑖
𝑠 (𝑋 𝑗 , 𝑦), (50)

where 𝜆 signifies the diffusion parameter. From a matrix perspective, given the original score matrix 𝐻 ∈ R |𝑉 |×𝐾
,

where each row is the conformal score for a node, the (1-hop) diffused score matrix is defined as

�̂� = (1 − 𝜆)𝐻 + 𝜆𝐷−1𝐴𝐻, (51)

where 𝐷 is the degree matrix. Extending it to a general 𝑘-hop diffused version, the formulation is given by

�̂� = 𝜆0𝐻 +
𝑘∑︁
𝑖=1

𝜆𝑖 (𝐷−1𝐴)𝑖 × 𝐻. (52)

Note that the diffused score function preserves exchangeability if the original scores are exchangeable. This diffusion

process proves particularly advantageous in homophilous graphs, where connected nodes exhibit similar ground truth

distributions. The rationale behind this is that for a node surrounded by mostly unperturbed neighbors, its probability

can be better estimated by using its neighbors’ vectors (information), as long as these vectors are sufficiently similar.

For the non-exchangeable conformal prediction cases, the procedure assumes a choice of deterministic fixed weights

𝑤1, . . . ,𝑤𝑛 ∈ [0, 1] [6]. The prediction set concerning the weighted quantiles of the score distribution

ˆC(𝑋) =
{
𝑦 ∈ Y : 𝑠 (𝑋,𝑦) ≤ 𝑞1−𝛼

(
𝑛∑︁
𝑖=1

𝑤𝑖𝛿𝑠𝑖

)}
(53)

The inductive cases are studied in [18], where the principle of exchangeability is not applicable. They integrate

non-exchangeable conformal prediction with the concept of homophily in graphs, leading to the development of three

distinct variants of Neighbourhood Adaptive Prediction Sets (NAPS) for the prediction set construction. The primary

variant, NAPS, assigns the weights in Eq. (53) to 𝑤𝑖 = 1 if 𝑋𝑖 ∈ N𝑇
𝑛+1

, where N𝑇
𝑛+1

includes all nodes within 𝑇 -hop

neighborhood of node 𝑋𝑛+1. The second one, NAPS-H, adopts a hyperbolic decay rate for𝑤𝑖 = 𝑡
−1

where 𝑡 is the 𝑡-hop

neighbor of node 𝑋𝑛+1. The third one, NAPS-G, uses a geometric decay rate for𝑤𝑖 = 2
−𝑡
.

5.3 Calibration

5.3.1 Calibration Overview.

Classification tasks by machine learning are preferred to output both the predicted label and the confidence of the

prediction, which can be regarded as the probability that the predicted label is correct. For example, with a trained

model 𝑓 , the estimation of correctness, or accuracy, of its predictions with confidence = 0.8 is expected to be 80%. The

calibration performance of modern neural networks has been proven poor due to a series of factors, including network

width, depth, batch normalization, and weight decay [38].

Calibration Formulation:
We begin with a classifier 𝑓 trained by feature set 𝑋 and corresponding label set 𝑌 whose label space isY = {1, ..., 𝐾}.

With 𝑛 inputs 𝑥𝑖 ∈ 𝑋 having true label 𝑦𝑖 , 𝑓 applies softmax operation to output a probability vector, v(𝑥𝑖) = v𝑖 =
(𝑣1

𝑖
(𝑥), ..., 𝑣𝐾

𝑖
(𝑥)),∑𝐾

𝑗=1
𝑣
𝑗
𝑖
= 1. The predicted label of 𝑥𝑖 , denoted by 𝑦𝑖 , is the element with the highest value, which is

18

UncertaintyQuantification on Graph Learning: A Survey Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

the confidence, 𝑝𝑖 , of the prediction.

𝑦𝑖 = arg max

𝑗∈𝐾
𝑣
𝑗
𝑖
, 𝑝𝑖 = max

𝑗∈𝐾
𝑣
𝑗
𝑖
. (54)

A model is well-calibrated if the probability of correct prediction equals the prediction confidence for all labels and all

confidence levels [38].

P(𝑦𝑖 = 𝑗 |𝑣 𝑗
𝑖
= 𝑝) = 𝑝, ∀𝑗 ∈ Y, ∀𝑝 ∈ [0, 1] . (55)

Calibration Method:
The processing of calibrating a model’s prediction can be post-processed (post hoc), or incorporated during the

model’s training. Based on this, we categorize calibration methods and introduce them as below.

(i) Post-processed Calibration: Post-processed calibration requires an unseen calibration set, which should not be the

same as the training set, as a model loss on training data would be biased compared with the loss on unseen data.

Histogram binning was initially proposed in [128] as a non-parametric calibration method of decision trees and naive

Bayesian classifiers, and this method can be generalized to almost all models. Assume we have a binary classification

task with label space Y = {0, 1} and 𝑝𝑖,1 as the confidence of sample 𝑖 in label 1. Here we slightly revise the definition

of 𝐵𝑚 . Instead of being the set of samples whose prediction confidences, 𝑝𝑖 , fall into (𝑚−1

𝑀
, 𝑚
𝑀
], now 𝐵𝑚 includes

samples whose 𝑝𝑖,1 is in the interval. Then, we try to minimize the equation below, where 𝜃𝑚 is the estimated number

of positive-class samples in the 𝐵𝑚 set. For a test sample 𝑥𝑡 whose 𝑝𝑡,1 belong to 𝐼𝑚 , 𝑝𝑡,1 should be replaced by 𝜃𝑚 as a

calibrated confidence.

min

𝜃1,...,𝜃𝑀

𝑀∑︁
𝑚=1

∑︁
𝑖∈𝐵𝑚

(𝜃𝑚 − 𝑦𝑖)2
(56)

𝐼𝑚 in histogram binning is usually assigned according to equal-width or equal-frequency methods with pre-defined

total bin number 𝑀 . Isotonic regression by [129] insists the number and size of 𝐼𝑚 should be optimized as well. We

write 𝐼𝑚 as an interval of (𝑎𝑚−1, 𝑎𝑚], and isotonic regression optimizes the following objective function.

min

𝜃1≤,...,≤𝜃𝑀
𝑎0≤,...≤𝑎𝑀=1

𝑀∑︁
𝑚=1

𝑛∑︁
𝑖=1

1(𝑎𝑚−1 ≤ 𝑝𝑖,1 ≤ 𝑎𝑚) (𝜃𝑚 − 𝑦𝑖)2 . (57)

[61] applied isotonic regression to deep learning models for regression tasks with promising performance. Both

histogram binning and isotonic regression can be applied to multi-class classification tasks using the one-vs-rest

strategy.

As we mentioned previously, v(𝑥) = (𝑣1 (𝑥), ..., 𝑣𝐾 (𝑥)) is the output vector where 𝑣𝑖 (𝑥) indicates the probability of

𝑥 ’s label 𝑦 = 𝑖 . This v is transformed from a logit vector z via softmax function 𝜎 (·).

v = 𝜎 (z) = (𝑒𝑧1 , ..., 𝑒𝑧𝐾)∑𝐾
𝑖=1

𝑒𝑧𝑖
(58)

Platt scaling is introduced by [91] as a parametric calibration method for support vector machines, and it can be

generalized by adding scale and location parameters as below, which can be optimized by NLL as discussed above.

v = 𝜎 (W · z + b) (59)

WhenW is a scaler as
1

𝑇
and b = 0, it is temperature scaling. We are using the same scale factor for different 𝑧𝑖 and

the predicted class remains unchanged. WhenW is a diagonal matrix ∈ R𝐾×𝐾
, it becomes vector scaling, assigning

different scale factors to classes.W can be an ordinary matrix as well, which is the most generalized form, but this form

may lead to overfitting by over-parameterization.

19

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato et al.

(ii) Calibration during Training: The true label of input sample 𝑥𝑖 can be represented as a one-hot vector y𝑖 where
the element corresponding to correct label 𝑦𝑖 is 1 and the rest elements are 0. The cross-entropy (CE) of predicted vector

v𝑖 and y𝑖 is listed below, where 𝑦
𝑗
𝑖
and 𝑣

𝑗
𝑖
denote j-th elements of vector y𝑖 and v𝑖 .

𝐶𝐸 (y𝑖 , v𝑖) = −
𝐾∑︁
𝑗=1

𝑦
𝑗
𝑖

log 𝑣
𝑗
𝑖

(60)

Label smoothing can be applied to calibration as stated in [78] by preventing over-confidence. Tuning parameter

𝛼 ∈ [0, 1], the one-hot vector y𝑖 will be smoother. When 𝛼 = 1, y’𝑖 will represent a uniform distribution. As we train

𝐶𝐸 (y’𝑖 , v𝑖), label smoothing encourages the model to be less confident, as it penalizes the model for assigning full

probability to the ground truth label.

y𝑖 = (𝑦1

𝑖 , ..., 𝑦
𝐾
𝑖) → y’𝑖 = ((1 − 𝛼)𝑦1

𝑖 +
𝛼

𝐾
, ..., (1 − 𝛼)𝑦𝐾𝑖 + 𝛼

𝐾
) (61)

Focal loss (FL) was introduced by [69] to address the problem of class imbalance and this loss function, as shown below,

was applied to calibration in [77].

𝐹𝐿(𝑥𝑖) = −(1 − 𝑣 �̂�𝑖
𝑖
)𝛾 log(𝑣 �̂�𝑖

𝑖
), 𝛾 ≥ 0 (62)

Focal loss only considers confidence in the true label and the loss value will decrease faster as we increase 𝛾 . Thus, it

can prevent being over-confident. If 𝛾 = 0, FL goes back to CE.

5.3.2 Calibration for Graphs.

Calibration on graph neural networks has started to draw people’s attention recently. GNNs for classification tasks can

generate softmax outputs that can be regarded as probabilities that the predicted results are correct. Accuracy alone is

not enough for high-stake decision-making. This section mainly focuses on GNNs’ confidence calibration for node

classification tasks. Some works concentrating on the calibration of fair graph learning and link prediction are also

mentioned at the end.

[105] is one of the first works investigating the calibration of GNNs. As it states, traditional calibration methods are

used for models with i.i.d. data. However, when dealing with graph data (relational data), the features or state of a node

can depend on the features or states of its neighbors. This is inherently a dependent structure because the properties of

one node are not solely determined by that node alone but also by its context within the graph. This dependence makes

the calibration of GNNs challenging. Besides, the class imbalance will cause collapsed predictions, so it is necessary to

rebalance classes during training by weighting loss function. This work trained Graph Convolutional Networks [58],

Graph Attention Networks [108], and Graph Graph Isomorphism Networks [121] on multiple datasets, concluding that

GNNs can be miscalibrated and existing methods can not recalibrate them. Compared with histogram binning and

isotonic regression, temperature scaling usually outputs the best calibration results in the experiment. Moreover, a new

ECE-derived metric, ECE≥50, is proposed as an ECE computed only over examples with confidence higher than 50%,

because people care more about the calibration on predicted labels.

CaGCN is a topology-aware post-hoc calibration GNN model developed by [116] under a validated assumption that

neighboured nodes share similar ground truth confidence levels. It observes that GNNs tend to be under-confident

in their predictions. This paper focuses on an undirected attributed graph, 𝐺 = (𝑉 , 𝐸), for semi-supervised node

classification tasks, with adjacent matrix A ∈ R𝑁×𝑁
and the node feature matrix X = [x1, ..., x𝑁]𝑇 . The output of a

𝑙-layer GCN before the softmax layer can be calculated below, where W(𝑙)
is the weight matrix of 𝑙-th layer and 𝜎 (·) is

20

UncertaintyQuantification on Graph Learning: A Survey Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

the activation function.

V = A𝜎 (...A𝜎 (AXW(1))W(2) ...)W(𝑙) = [v1, ..., v𝑁]𝑇 . (63)

CaGCN is a non-linear calibration model that takes topology information into account for relational data and can

preserve the accuracy of the original classification GCN. With V = [v1, ..., v𝑁]𝑇 , where v𝑖 = [𝑣𝑖,1, ..., 𝑣𝑖,𝐾] is the logit
output of node 𝑖 with 𝐾 potential labels. CaGCN works as another GCN on V to calibrate predictions as follows:

t = 𝜎+ (A𝜎 (...A𝜎 (AVW(1))W(2) ...)W(𝑙)) = [𝑡1, ..., 𝑡𝑁]𝑇 (64)

v’𝑖 = [𝑣𝑖,1/𝑡𝑖 , ..., 𝑣𝑖,𝐾/𝑡𝑖]𝑇 , z𝑖 = [𝜎𝑆𝑀 (𝑣 ′𝑖,1), ..., 𝜎𝑆𝑀 (𝑣 ′𝑖,𝐾)] (65)

Temperature 𝑡𝑖 for each node 𝑖 is a non-negative scalar, obtained by the final layer of CaGCN by 𝜎+ (𝑥) = 1/(1+𝑙𝑜𝑔(𝑒𝑥)),
which is an element-wise softplus activation function. With 𝜎𝑆𝑀 as a softmax function of v’𝑖 , 𝑝𝑖 = max𝑘 𝑧𝑖,𝑘 is the

confidence of prediction of node 𝑖 . As 𝑡𝐼 is only a scaler, temperature scaling on v’𝑖 does not influence the original
prediction accuracy. The optimization objective function of CaGCN is a combination of NLL loss and a customized

calibration loss on validation nodes, balanced by a hyperparameter.

Graph Attention Temperature Scaling (GATS) is developed by [49], introducing the attention mechanism in the

calibration model. By the experiment of GCN [58] and GAT [108] on seven datasets. It validated the general under-

confident tendency previously claimed by [116]. Also, relative confidence level, 𝛿𝑝𝑖 , and node homophily are proposed

as below to measure the confidence similarity and label similarity among neighbor nodes.

Relative confidence = 𝛿𝑝𝑖 = 𝑝𝑖 −
1

|𝑛(𝑖) |
∑︁
𝑗∈𝑛 (𝑖)

𝑝 𝑗 (66)

Node homophily = log(𝑛𝑎 + 1

𝑛𝑑 + 1

) (67)

𝑛(𝑖) indicates the neighbor nodes of node 𝑖 , 𝑛𝑎 is the number of agreeing neighbors, and 𝑛𝑑 is the number of disagreeing

ones. Experimental results show calibration error decreases as node homophily increases and absolute relative confidence,

|𝛿𝑝𝑖 | decreases, proving the insight from [116] as well. Based on the above discussion of influential factors, GATS

produce node-wise temperature, 𝑇𝑖 , as follows.

∀𝑖 ∈ 𝑉 ,𝑇𝑖 =
1

𝐻

𝐻∑︁
ℎ=1

softplus(𝑤𝛿𝑝𝑖 +
∑︁
𝑗∈𝑛 (𝑖)

𝛼𝑖, 𝑗𝛾 𝑗𝜏
ℎ
𝑗) +𝑇0 (68)

Global bias 𝑇0 accounts for the general under-confident tendency. Relative confidence,𝛿𝑝𝑖 , is incorporated with a

learnable parameter𝑤 as an additional contribution term. It also aggregates neighborhood influences 𝜏 𝑗 with attention

coefficient 𝛼𝑖, 𝑗 . Distance to training nodes is represented as a node-wise scaling factor 𝛾 𝑗 . Finally, the above expression

works on a multi-head formulation, and ℎ stands for ℎ-th attention head. Experiments demonstrate the overall perfor-

mance of GATS is better than CaGCN on eight datasets since CaGCN tends to have an overly complex architecture

similar to the original classification GCN.

Graph Calibration Loss (GCL) is introduced by [115] as an end-to-end calibration method for GNNs. DNNs are

vulnerable to overfitting during training and cause overconfidence due to their high framework capacity. However, to

prevent vanishing gradient issues as indicated by [67], GNNs prefer "shallow" architectures (usually less than 4 layers).

Inspired by this phenomenon, the authors point out that their low framework capacity may cause the under-confidence

of GNNs. As the number of network layers increases, GNNs change from being under-confident to overconfident. The

GCL is designed to assign up-weight loss to examples with high confidence as below, where K is the number of classes,

21

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato et al.

𝑝𝑦 and 𝑝𝑦 are the ground truth probability and predicted probability of the 𝑦-th class.

L𝐺𝐶𝐿 = −
𝐾∑︁
𝑦=1

(1 + 𝛾𝑝𝑦)𝑝𝑦 log𝑝𝑦 (69)

GCL is the lower bound of the summation of KL divergence and predicted entropy. Minimizing the predicted distribution

entropy 𝑝𝑦 will help calibrate the GNNs. Several representative GNNs and various datasets proved the effectiveness of

GCL in terms of ECE with M=20.

L𝐺𝐶𝐿 = KL(𝑝 | |𝑝𝑦) + 𝛾𝑝H[𝑝] ≤ KL(𝑝 | |𝑝𝑦) +H[𝑝] +H[𝑝] (70)

To investigate the effectiveness of multiple calibration techniques, [109] conducted experiments on Platt Scaling (PS)

and its extension, Temperature Scaling (TS) [63, 91], Monte-Carlo dropout (MC-dropout) [30], Model Ensemble [29],

Accuracy-versus-Uncertainty (AvU) [75], Graph Calibration Loss (GCL) [115], on GNN models with medical image

data. The primary result is that models generated by multi-class node classification tasks will be better calibrated and

more discriminative than those trained by binary tasks. Also, the overall performance of PS, TS, AvU, and GCL is better

than MC-dropout and model ensemble, which are based on the average prediction of multiple models. The limited

architectural diversity of GCNs may cause their underperformance.

Ratio-binned scaling (RBS), provided by [72], is also a topology-aware calibration method based on the similarity of

neighbor nodes’ labels. First, its experimental study shows that GNNs with wider layers tend to be better calibrated

and confirms [115]’s observation of the non-monotonic relationship between network depth and ECE. Moreover, it

finds out that GNNs are under-confident with early-stopping and will be overconfident with too many training epochs,

as they start to overfit. The same-class-neighbor ratio, the proportion of neighbors that have the same class as the

central node, is applied to quantify neighbors’ similarity to the central node. However, the conclusion is conflict to the

observations in [49]. The authors find that well-calibration is more likely to occur when the ratio is around 0.4 to 0.5.

Too low a same-class-neighbor ratio will cause over-confidence and too high a ratio will cause under-confidence. RBS

will first estimate the same-class-neighbor ratio of each node, group them into𝑀 bins, and finally learn a temperature

for each bin to re-calibrate them.

Automated graph learning [135] also draws much attention as the prediction accuracy of traditional GNNs can be

easily influenced by hyperparameter choices. Hyperparameter optimization is a mainstream direction of automated

GNNs, which can be formulated as a bilevel optimization problem [73] as the following, where ℎ and 𝜃 denotes

hyperparameters and parameters, L𝑇 and L𝑉 represent training loss and validation loss.

ℎ∗ = argmin

ℎ

L𝑉 (ℎ, 𝜃∗) s.t. 𝜃∗ = argmin

𝜃

L𝑇 (ℎ, 𝜃) (71)

HyperU-GCN is proposed by [125] as a bilevel uncertainty quantification model. The upper-level problem explains

uncertainties by developing probabilistic hypernetworks through a variational Bayesian lens. The lower-level problem

learns how hyperparameter distribution is propagated to the GCN weights. The optimization function of HyperU-

GCN is shown below, where 𝑝 (ℎ) is a pre-determined hyperparameter prior and 𝑞𝜙 (ℎ) is the variational distribution
parameterized by 𝜙 , learning the variance of ℎ.

min

ℎ,𝜙
L𝑉 (𝑞𝜙 (ℎ), 𝜃 (ℎ)) + 𝐾𝐿(𝑞𝜙 (ℎ) | |𝑝 (ℎ)) s.t. 𝜃 (ℎ) = argmin

𝜃

L𝑇 (𝜃 (ℎ), 𝑞𝜙 (ℎ)) (72)

To make GNNs robust to adversarial attacks and discriminatory biases, FairGNN [19], RobustGNN [138], and

NIFTY [2] are proposed to enhance the stability of GNNs. However, these methods will make GNNs either overconfident

22

UncertaintyQuantification on Graph Learning: A Survey Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

in incorrect predictions or biased to global graph noises. To address the problem, Multi-view Confidence-calibrated

NIFTY (MCCNIFTY) is introduced by [133]. Based on evidential theory, a novel node embedding learning module is

developed. It includes an intra-view evidence calibration, an inter-view evidence fusion, and an uncertainty-aware

message-passing process, optimizing for counterfactual fairness and stability at the sub-graph level.

Link prediction [131] is also an important downstream task for GNN node classification, whereas the calibration of

link prediction has not been explored extensively. [81] studies the calibration performance of link prediction and finds

that GNNs tend to be overconfident in negative link predictions but are underconfident in positive ones. To address the

issue, IN-N-OUT is proposed to parameterize the temperature for calibration. To be specific, two embeddings of an

edge will be obtained when we train the GNNs with and without the edge, and calculating the discrepancy between the

embeddings of the edge will help determine the value of temperature scaling.

6 UNCERTAINTY QUANTIFICATION EVALUATION

6.1 Calibration

The evaluation of calibration measures the difference between a model’s prediction confidence and the exact probability

that the predicted output is true. This section introduces two widely applied metrics.

Expected Calibration Error (ECE): We divide the entire confidence space [0,1] into𝑀 equal-size intervals 𝐼𝑚 =

(𝑚−1

𝑀
, 𝑚
𝑀
]. 𝐵𝑚 represents the set of samples whose confidences fall into 𝐼𝑚 . The accuracy and confidence of 𝐵𝑚 are

illustrated below, where 𝑦𝑖 and 𝑦𝑖 are the true and predicted label of input 𝑥𝑖 , and 𝑝𝑖 is the confidence of the prediction.

𝑎𝑐𝑐 (𝐵𝑚) = 1

|𝐵𝑚 |
∑︁
𝑖∈𝐵𝑚

1(𝑦𝑖 = 𝑦𝑖), (73)

𝑐𝑜𝑛𝑓 (𝐵𝑚) = 1

|𝐵𝑚 |
∑︁
𝑖∈𝐵𝑚

𝑝𝑖 . (74)

Expected Calibration Error (ECE) is designed to approximate the absolute difference between the two sides of Eq. (55)

using the accuracy and confidence of 𝐵𝑚 as below. We can also plot 𝑎𝑐𝑐 (𝐵𝑚) and 𝑐𝑜𝑛𝑓 (𝐵𝑚) called a reliability

diagram [84] to visualize a model’s calibration performance. The plot of a well-calibrated model should follow a

diagonal, indicating 𝑎𝑐𝑐 (𝐵𝑚) = 𝑐𝑜𝑛𝑓 (𝐵𝑚).

𝐸𝐶𝐸 =

𝑀∑︁
𝑚=1

|𝐵𝑚 |
𝑛

|𝑎𝑐𝑐 (𝐵𝑚) − 𝑐𝑜𝑛𝑓 (𝐵𝑚) |. (75)

Some works are extending the concept of ECE to make it suitable for different scenarios. [80] introduces Maximum

Calibration Error(MCE),𝑀𝐶𝐸 = max𝑚 |𝑎𝑐𝑐 (𝐵𝑚) − 𝑐𝑜𝑛𝑓 (𝐵𝑚) |, to compute the maximum gap between accuracy and

confidence. [62] designed classwise ECE (cwECE), 𝑐𝑤𝐸𝐶𝐸 = 1

𝐾

∑𝐾
𝑖=1

∑𝑀
𝑚=1

|𝐵𝑚 |
𝑛 |𝑎𝑐𝑐 (𝐵𝑚) − 𝑐𝑜𝑛𝑓 (𝐵𝑚) |, to see averaged

ECE on the class level.

Edge-wise ECE is designed by [48] as the authors state that node-wise ECE, used in [72, 105, 115, 116] is only suitable

for i.i.d test samples and ignores graph structure. With graph 𝐺 = (N , E), denote E𝑈 = {(𝑖, 𝑗) ∈ E|𝑖, 𝑗 ∈ 𝑈 } the subset
of edges E constrained to test nodes𝑈 . The confidence of edge (𝑖, 𝑗) is 𝑐 (𝑖, 𝑗) = max𝑙,𝑚 𝑝 (𝑦𝑖 = 𝑙, 𝑦 𝑗 =𝑚 |𝑥,𝑦𝐿), where
𝑦𝐿 = {𝑦𝑖 }𝑖∈𝐿=N\𝑈 and 𝑥 = {𝑥𝑖 }𝑖∈N . The calculation of edge-wise ECE is similar to node-wise ones. Each 𝑐 (𝑖, 𝑗) is

computed and assigned to corresponding bins. For accuracy, if the predicted 𝑙 and𝑚 are correct, the edge prediction is

23

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato et al.

accurate. The gap between confidence bins and accuracy is edge-wise ECE. Besides, ECE for agreeing node pairs and

disagreeing node pairs are also proposed.

Proper Scoring Rules: The constraint of ECE is the loss of accuracy due to the finite number of 𝐼𝑚 . Thus, the

continuous proper scoring rule can act as an alternative to ECE. For example, with training 𝑛 samples, we can apply

negative log-likelihood (NLL) as below, where 𝑝𝑖,𝑦𝑖 is the 𝑥𝑖 ’s confidence of the correct label 𝑦𝑖 .

𝑁𝐿𝐿 =
1

𝑛

𝑛∑︁
𝑖=1

log(𝑝𝑖,𝑦𝑖) (76)

NLL is minimized when the model assigns a high probability to the correct class for each instance, which means the

model is rewarded for being confident in its correct predictions. However, this does not necessarily mean that the model

is well-calibrated. A well-calibrated model not only makes accurate predictions but also outputs probability estimates

that reflect the true likelihood of the prediction being correct. As [60, 77] stated, miscalibration in machine learning

models has been linked to the overfitting of NLL.

Brier Score (BS) [11] is a more sophisticated metric as it considers a sample’s confidence in all labels. 𝑝𝑖, 𝑗 is the

confidence of sample 𝑖 in label 𝑗 .

𝐵𝑆 =
1

𝑛

𝑛∑︁
𝑖=1

𝐾∑︁
𝑗=1

(𝑝𝑖, 𝑗 − 1(𝑦𝑖 = 𝑗)) (77)

6.2 Conformal Prediction

The key contribution of conformal prediction is stated in Eq. (36), requiring the coverage of prediction sets. However, it

is not explicitly claimed but desired that a conformal prediction model can be adaptive for different conditions. As [4]

says, we want the CP procedure can distinguish the difficulty of quantifying the prediction uncertainty of each input,

and adaptively generate a larger prediction set as the difficulty increases. In other words, the (1 − 𝛼) coverage can be

robust and stable no matter how the test domain shifts. Let 𝐸1, ..., 𝐸𝑛 denote the 𝑛 sets of test inputs coming from the

corresponding test domains, and we want the coverage guarantee to always hold as below.

𝑃 (𝑌𝑡𝑒𝑠𝑡 ∈ C(𝑋𝑡𝑒𝑠𝑡)) ≥ 1 − 𝛼,𝑋𝑡𝑒𝑠𝑡 ∈ 𝑒,∀𝑒 ∈ {𝐸1, ..., 𝐸𝑛} (78)

This test domain can be characterized by an explicit feature in input data, an underlying environment variable related

to the data generation process, or just the sizes of prediction sets.

Conditional Coverage Metric calculate the worst coverage among multiple validation domains. Let I𝑒 represent
the sample index set of set 𝑒 and |I𝑒 | denote the number of samples in set 𝑒 [14, 27].

min

𝑒∈{𝐸1,...,𝐸𝑛 }
1

|I𝑒 |
∑︁
𝑖∈ |I𝑒 |

1{𝑌𝑖 ∈ C(𝑋𝑖)} (79)

If the metric value is much lower than the expected coverage (1 − 𝛼), we say the CP procedure performs poorly on

conditional coverage.

Coverage Correctness: The empirical coverage by split conformal prediction involves randomness due to the

limited number of available samples and possibly biased data splitting. Running conformal prediction multiple times

can help us determine the correctness and stability of prediction coverage. With 𝑛 labeled samples available, we can

randomly split them into 𝑛𝑐𝑎𝑙 samples for calibration and 𝑛𝑣𝑎𝑙 samples for validation, and calculate the empirical

coverage for 𝑇 times as below. 𝑌𝑖,𝑡 and 𝑋𝑖,𝑡 are the label and feature of the i-th element of 𝑛𝑣𝑎𝑙 validation samples at

24

UncertaintyQuantification on Graph Learning: A Survey Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Fig. 3. Marginal Coverage vs Conditional Coverage with (1-𝛼)=0.8. Marginal coverage can only guarantee the coverage on the overall
sample set, but conditional coverage can ensure at least 1-𝛼 coverage on different sub-domians

t-th time splitting.

𝐶𝑡 =
1

𝑛𝑣𝑎𝑙

𝑛𝑣𝑎𝑙∑︁
𝑖=1

1{𝑌𝑖,𝑡 ∈ 𝐶 (𝑋𝑖,𝑡)}. (80)

The final averaged empirical coverage, 𝐶 , will be

𝐶 =
1

𝑇

𝑇∑︁
𝑡=1

𝐶𝑡 . (81)

The variance of these empirical coverage values indicates the stability as
1

𝑇

∑𝑇
𝑡=1

(𝐶𝑡 −𝐶)2

7 CONCLUSION

In this survey, we carefully reviewed the uncertainty quantification within graphical models, specifically focusing on

Graph Neural Networks and Probabilistic Graphical Models. We examed existing methods for representing and handling

uncertainty, including Bayesian representation learning, conformal prediction, calibration and so on. The domain of

uncertainty in graphical models presents substantial opportunities for further innovation and advancement. Advancing

our understanding of uncertainty modeling in graph-based systems will empower machine learning systems to make

more reliable decisions in the presence of real-world noise. Such progress will not only improve the accuracy and safety

of AI applications but also promote trust and encourage the broader adoption of these technologies in practical settings.

REFERENCES
[1] Moloud Abdar, Farhad Pourpanah, Sadiq Hussain, Dana Rezazadegan, Li Liu, Mohammad Ghavamzadeh, Paul Fieguth, Xiaochun Cao, Abbas

Khosravi, U Rajendra Acharya, et al. 2021. A review of uncertainty quantification in deep learning: Techniques, applications and challenges.

Information fusion 76 (2021), 243–297.

[2] Chirag Agarwal, Himabindu Lakkaraju, and Marinka Zitnik. 2021. Towards a unified framework for fair and stable graph representation learning.

In Uncertainty in Artificial Intelligence. PMLR, 2114–2124.

[3] Seong Jin Ahn and MyoungHo Kim. 2021. Variational graph normalized autoencoders. In Proceedings of the 30th ACM international conference on
information & knowledge management. 2827–2831.

[4] Anastasios Angelopoulos, Stephen Bates, Jitendra Malik, and Michael I Jordan. 2020. Uncertainty sets for image classifiers using conformal

prediction. arXiv preprint arXiv:2009.14193 (2020).
[5] Rina Foygel Barber, Emmanuel J. Candès, Aaditya Ramdas, and Ryan J. Tibshirani. 2019. Predictive inference with the jackknife+. The Annals of

Statistics (2019). https://api.semanticscholar.org/CorpusID:147704029

[6] Rina Foygel Barber, Emmanuel J Candes, Aaditya Ramdas, and Ryan J Tibshirani. 2023. Conformal prediction beyond exchangeability. The Annals
of Statistics 51, 2 (2023), 816–845.

[7] Güzin Bayraksan and David K Love. 2015. Data-driven stochastic programming using phi-divergences. In The operations research revolution.
Informs, 1–19.

25

https://api.semanticscholar.org/CorpusID:147704029

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato et al.

[8] Aharon Ben-Tal, Dick Den Hertog, Anja De Waegenaere, Bertrand Melenberg, and Gijs Rennen. 2013. Robust solutions of optimization problems

affected by uncertain probabilities. Management Science 59, 2 (2013), 341–357.
[9] Christopher M Bishop and Nasser M Nasrabadi. 2006. Pattern recognition and machine learning. Vol. 4. Springer.
[10] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. 2017. Variational inference: A review for statisticians. Journal of the American statistical

Association 112, 518 (2017), 859–877.

[11] Glenn W Brier. 1950. Verification of forecasts expressed in terms of probability. Monthly weather review 78, 1 (1950), 1–3.

[12] John R Busenbark, Hyunjung Yoon, Daniel L Gamache, and Michael C Withers. 2022. Omitted variable bias: Examining management research with

the impact threshold of a confounding variable (ITCV). Journal of Management 48, 1 (2022), 17–48.
[13] Maxime Cauchois, Suyash Gupta, Alnur Ali, and John C Duchi. 2024. Robust validation: Confident predictions even when distributions shift. J.

Amer. Statist. Assoc. (2024), 1–66.
[14] Maxime Cauchois, Suyash Gupta, and John C Duchi. 2021. Knowing what you know: valid and validated confidence sets in multiclass and multilabel

prediction. Journal of machine learning research 22, 81 (2021), 1–42.

[15] Shuyi Chen, Kaize Ding, and Shixiang Zhu. 2023. Uncertainty-Aware Robust Learning on Noisy Graphs. arXiv preprint arXiv:2306.08210 (2023).
[16] Victor Chernozhukov, Carlos Cinelli, Whitney K Newey, Amit Sharma, and Vasilis Syrgkanis. 2021. Omitted variable bias in machine learned causal

models. Technical Report. cemmap working paper.

[17] Carlos Cinelli and Chad Hazlett. 2020. Making sense of sensitivity: Extending omitted variable bias. Journal of the Royal Statistical Society Series B:
Statistical Methodology 82, 1 (2020), 39–67.

[18] Jase Clarkson. 2023. Distribution free prediction sets for node classification. In International Conference on Machine Learning. PMLR, 6268–6278.

[19] Enyan Dai and Suhang Wang. 2021. Say no to the discrimination: Learning fair graph neural networks with limited sensitive attribute information.

In Proceedings of the 14th ACM International Conference on Web Search and Data Mining. 680–688.
[20] Stefan Depeweg, Jose-Miguel Hernandez-Lobato, Finale Doshi-Velez, and Steffen Udluft. 2018. Decomposition of uncertainty in Bayesian deep

learning for efficient and risk-sensitive learning. In International Conference on Machine Learning. PMLR, 1184–1193.

[21] Armen Der Kiureghian and Ove Ditlevsen. 2009. Aleatory or epistemic? Does it matter? Structural safety 31, 2 (2009), 105–112.

[22] John C Duchi and Hongseok Namkoong. 2021. Learning models with uniform performance via distributionally robust optimization. The Annals of
Statistics 49, 3 (2021), 1378–1406.

[23] Bradley Efron. 1982. The jackknife, the bootstrap and other resampling plans. SIAM.

[24] Pantelis Elinas, Edwin V Bonilla, and Louis Tiao. 2020. Variational inference for graph convolutional networks in the absence of graph data and

adversarial settings. Advances in Neural Information Processing Systems 33 (2020), 18648–18660.
[25] Emre Erdoğan and Garud Iyengar. 2006. Ambiguous chance constrained problems and robust optimization. Mathematical Programming 107 (2006),

37–61.

[26] Dhivya Eswaran, Stephan Günnemann, and Christos Faloutsos. 2017. The power of certainty: A dirichlet-multinomial model for belief propagation.

In Proceedings of the 2017 SIAM International Conference on Data Mining. SIAM, 144–152.

[27] Shai Feldman, Stephen Bates, and Yaniv Romano. 2021. Improving conditional coverage via orthogonal quantile regression. Advances in neural
information processing systems 34 (2021), 2060–2071.

[28] Fuli Feng, Xiangnan He, Jie Tang, and Tat-Seng Chua. 2019. Graph adversarial training: Dynamically regularizing based on graph structure. IEEE
Transactions on Knowledge and Data Engineering 33, 6 (2019), 2493–2504.

[29] Stanislav Fort, Huiyi Hu, and Balaji Lakshminarayanan. 2019. Deep ensembles: A loss landscape perspective. arXiv preprint arXiv:1912.02757
(2019).

[30] Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In international
conference on machine learning. PMLR, 1050–1059.

[31] Rui Gao and Anton Kleywegt. 2023. Distributionally robust stochastic optimization with Wasserstein distance. Mathematics of Operations Research
48, 2 (2023), 603–655.

[32] Jakob Gawlikowski, Cedrique Rovile Njieutcheu Tassi, Mohsin Ali, Jongseok Lee, Matthias Humt, Jianxiang Feng, Anna Kruspe, Rudolph Triebel,

Peter Jung, Ribana Roscher, et al. 2023. A survey of uncertainty in deep neural networks. Artificial Intelligence Review 56, Suppl 1 (2023), 1513–1589.

[33] Isaac Gibbs and Emmanuel J. Candès. 2021. Adaptive Conformal Inference Under Distribution Shift. In Neural Information Processing Systems.
https://api.semanticscholar.org/CorpusID:235266057

[34] Prem K Gopalan, Sean Gerrish, Michael Freedman, David Blei, and David Mimno. 2012. Scalable inference of overlapping communities. Advances
in Neural Information Processing Systems 25 (2012).

[35] Aditya Grover, Aaron Zweig, and Stefano Ermon. 2019. Graphite: Iterative generative modeling of graphs. In International conference on machine
learning. PMLR, 2434–2444.

[36] Cornelia Gruber, Patrick Oliver Schenk, Malte Schierholz, Frauke Kreuter, and Göran Kauermann. 2023. Sources of Uncertainty in Machine

Learning–A Statisticians’ View. arXiv preprint arXiv:2305.16703 (2023).
[37] Leying Guan. 2023. Localized conformal prediction: A generalized inference framework for conformal prediction. Biometrika 110, 1 (2023), 33–50.
[38] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. 2017. On calibration of modern neural networks. In International conference on machine

learning. PMLR, 1321–1330.

26

https://api.semanticscholar.org/CorpusID:235266057

UncertaintyQuantification on Graph Learning: A Survey Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

[39] Shivani Gupta and Atul Gupta. 2019. Dealing with noise problem in machine learning data-sets: A systematic review. Procedia Computer Science
161 (2019), 466–474.

[40] Ian Hacking. 2006. The emergence of probability: A philosophical study of early ideas about probability, induction and statistical inference. Cambridge

University Press.

[41] Ehsan Hajiramezanali, Arman Hasanzadeh, Krishna Narayanan, Nick Duffield, Mingyuan Zhou, and Xiaoning Qian. 2019. Variational graph

recurrent neural networks. Advances in neural information processing systems 32 (2019).
[42] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation learning on large graphs. NeurIPS (2017).
[43] William L Hamilton. 2020. Graph representation learning. Morgan & Claypool Publishers.

[44] Arman Hasanzadeh, Ehsan Hajiramezanali, Shahin Boluki, Mingyuan Zhou, Nick Duffield, Krishna Narayanan, and Xiaoning Qian. 2020. Bayesian

graph neural networks with adaptive connection sampling. In International conference on machine learning. PMLR, 4094–4104.

[45] Arman Hasanzadeh, Ehsan Hajiramezanali, Krishna Narayanan, Nick Duffield, Mingyuan Zhou, and Xiaoning Qian. 2019. Semi-implicit graph

variational auto-encoders. Advances in neural information processing systems 32 (2019).
[46] Peter Hoff. 2023. Bayes-optimal prediction with frequentist coverage control. Bernoulli 29, 2 (2023), 901–928.
[47] Stephen C Hora. 1996. Aleatory and epistemic uncertainty in probability elicitation with an example from hazardous waste management. Reliability

Engineering & System Safety 54, 2-3 (1996), 217–223.

[48] Hans Hao-Hsun Hsu, Yuesong Shen, and Daniel Cremers. 2022. A graph is more than its nodes: Towards structured uncertainty-aware learning on

graphs. arXiv preprint arXiv:2210.15575 (2022).
[49] Hans Hao-Hsun Hsu, Yuesong Shen, Christian Tomani, and Daniel Cremers. 2022. What Makes Graph Neural Networks Miscalibrated? Advances

in Neural Information Processing Systems 35 (2022), 13775–13786.
[50] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec. 2019. Strategies for pre-training graph neural

networks. arXiv preprint arXiv:1905.12265 (2019).
[51] Zhaolin Hu and L Jeff Hong. 2013. Kullback-Leibler divergence constrained distributionally robust optimization. Available at Optimization Online

1, 2 (2013), 9.

[52] Ziyi Huang, Henry Lam, and Haofeng Zhang. 2021. Quantifying epistemic uncertainty in deep learning. arXiv preprint arXiv:2110.12122 (2021).
[53] Eyke Hüllermeier and WillemWaegeman. 2021. Aleatoric and epistemic uncertainty in machine learning: An introduction to concepts and methods.

Machine learning 110, 3 (2021), 457–506.

[54] Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categorical reparameterization with gumbel-softmax. arXiv preprint arXiv:1611.01144 (2016).
[55] Michael I Jordan. 2004. Graphical models. (2004).

[56] Jian Kang, Qinghai Zhou, and Hanghang Tong. 2022. JuryGCN: quantifying jackknife uncertainty on graph convolutional networks. In Proceedings
of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 742–752.

[57] Alex Kendall and Yarin Gal. 2017. What uncertainties do we need in bayesian deep learning for computer vision? Advances in neural information
processing systems 30 (2017).

[58] Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[59] Thomas N Kipf and Max Welling. 2016. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308 (2016).
[60] Ranganath Krishnan and Omesh Tickoo. 2020. Improving model calibration with accuracy versus uncertainty optimization. Advances in Neural

Information Processing Systems 33 (2020), 18237–18248.
[61] Volodymyr Kuleshov, Nathan Fenner, and Stefano Ermon. 2018. Accurate uncertainties for deep learning using calibrated regression. In International

conference on machine learning. PMLR, 2796–2804.

[62] Meelis Kull, Miquel Perello Nieto, Markus Kängsepp, Telmo Silva Filho, Hao Song, and Peter Flach. 2019. Beyond temperature scaling: Obtaining

well-calibrated multi-class probabilities with dirichlet calibration. Advances in neural information processing systems 32 (2019).
[63] Fabian Kuppers, Jan Kronenberger, Amirhossein Shantia, and Anselm Haselhoff. 2020. Multivariate confidence calibration for object detection. In

Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops. 326–327.
[64] Salem Lahlou, Moksh Jain, Hadi Nekoei, Victor Ion Butoi, Paul Bertin, Jarrid Rector-Brooks, Maksym Korablyov, and Yoshua Bengio. 2021. Deup:

Direct epistemic uncertainty prediction. arXiv preprint arXiv:2102.08501 (2021).
[65] Haoyang Li, Xin Wang, Ziwei Zhang, andWenwu Zhu. 2022. Out-of-distribution generalization on graphs: A survey. arXiv preprint arXiv:2202.07987

(2022).

[66] Jia Li, Jianwei Yu, Jiajin Li, Honglei Zhang, Kangfei Zhao, Yu Rong, Hong Cheng, and Junzhou Huang. 2020. Dirichlet graph variational autoencoder.

Advances in Neural Information Processing Systems 33 (2020), 5274–5283.
[67] Qimai Li, Zhichao Han, and Xiao-Ming Wu. 2018. Deeper insights into graph convolutional networks for semi-supervised learning. In Proceedings

of the AAAI conference on artificial intelligence, Vol. 32.
[68] Wenzhe Li, Sungjin Ahn, and Max Welling. 2016. Scalable MCMC for mixed membership stochastic blockmodels. In Artificial Intelligence and

Statistics. PMLR, 723–731.

[69] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. 2017. Focal loss for dense object detection. In Proceedings of the IEEE
international conference on computer vision. 2980–2988.

[70] Roderick JA Little and Donald B Rubin. 2019. Statistical analysis with missing data. Vol. 793. John Wiley & Sons.

27

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato et al.

[71] Hongrui Liu, Binbin Hu, Xiao Wang, Chuan Shi, Zhiqiang Zhang, and Jun Zhou. 2022. Confidence may cheat: Self-training on graph neural

networks under distribution shift. In Proceedings of the ACM Web Conference 2022. 1248–1258.
[72] Tong Liu, Yushan Liu, Marcel Hildebrandt, Mitchell Joblin, Hang Li, and Volker Tresp. 2022. On calibration of graph neural networks for node

classification. In 2022 International Joint Conference on Neural Networks (IJCNN). IEEE, 1–8.
[73] MatthewMacKay, Paul Vicol, Jon Lorraine, David Duvenaud, and Roger Grosse. 2019. Self-tuning networks: Bilevel optimization of hyperparameters

using structured best-response functions. arXiv preprint arXiv:1903.03088 (2019).
[74] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. 2016. The concrete distribution: A continuous relaxation of discrete random variables. arXiv

preprint arXiv:1611.00712 (2016).
[75] PrerakMody, Nicolas F Chaves-de Plaza, Klaus Hildebrandt, andMarius Staring. 2022. Improving error detection in deep learning based radiotherapy

autocontouring using bayesian uncertainty. In International Workshop on Uncertainty for Safe Utilization of Machine Learning in Medical Imaging.
Springer, 70–79.

[76] Peyman Mohajerin Esfahani and Daniel Kuhn. 2018. Data-driven distributionally robust optimization using the Wasserstein metric: Performance

guarantees and tractable reformulations. Mathematical Programming 171, 1 (2018), 115–166.

[77] Jishnu Mukhoti, Viveka Kulharia, Amartya Sanyal, Stuart Golodetz, Philip Torr, and Puneet Dokania. 2020. Calibrating deep neural networks using

focal loss. Advances in Neural Information Processing Systems 33 (2020), 15288–15299.
[78] Rafael Müller, Simon Kornblith, and Geoffrey E Hinton. 2019. When does label smoothing help? Advances in neural information processing systems

32 (2019).

[79] Sai Munikoti, Deepesh Agarwal, Laya Das, and Balasubramaniam Natarajan. 2023. A general framework for quantifying aleatoric and epistemic

uncertainty in graph neural networks. Neurocomputing 521 (2023), 1–10.

[80] Mahdi Pakdaman Naeini, Gregory Cooper, and Milos Hauskrecht. 2015. Obtaining well calibrated probabilities using bayesian binning. In

Proceedings of the AAAI conference on artificial intelligence, Vol. 29.
[81] Erik Nascimento, Diego Mesquita, Samuel Kaskio, and Amauri H Souza. 2024. In-n-Out: Calibrating Graph Neural Networks for Link Prediction.

arXiv preprint arXiv:2403.04605 (2024).
[82] Eugene Ndiaye. 2022. Stable conformal prediction sets. In International Conference on Machine Learning. PMLR, 16462–16479.

[83] Vu-Linh Nguyen, Sébastien Destercke, and Eyke Hüllermeier. 2019. Epistemic uncertainty sampling. In Discovery Science: 22nd International
Conference, DS 2019, Split, Croatia, October 28–30, 2019, Proceedings 22. Springer, 72–86.

[84] Alexandru Niculescu-Mizil and Rich Caruana. 2005. Predicting good probabilities with supervised learning. In Proceedings of the 22nd international
conference on Machine learning. 625–632.

[85] Chao Ning and Fengqi You. 2019. Optimization under uncertainty in the era of big data and deep learning: When machine learning meets

mathematical programming. Computers & Chemical Engineering 125 (2019), 434–448.

[86] Curtis G Northcutt, Anish Athalye, and Jonas Mueller. 2021. Pervasive label errors in test sets destabilize machine learning benchmarks. arXiv
preprint arXiv:2103.14749 (2021).

[87] Soumyasundar Pal, Saber Malekmohammadi, Florence Regol, Yingxue Zhang, Yishi Xu, and Mark Coates. 2020. Non parametric graph learning for

bayesian graph neural networks. In Conference on uncertainty in artificial intelligence. PMLR, 1318–1327.

[88] Soumyasundar Pal, Florence Regol, and Mark Coates. 2019. Bayesian graph convolutional neural networks using node copying. In Proceedings of
the 36th International Conference on Machine Learning, Workshop on Learning and Reasoning with Graph-Structured Representations. ICML.

[89] Leandro Pardo. 2018. Statistical inference based on divergence measures. Chapman and Hall/CRC.

[90] Judea Pearl. 1988. Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann.

[91] John Platt et al. 1999. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Advances in large
margin classifiers 10, 3 (1999), 61–74.

[92] Apostolos F Psaros, Xuhui Meng, Zongren Zou, Ling Guo, and George Em Karniadakis. 2023. Uncertainty quantification in scientific machine

learning: Methods, metrics, and comparisons. J. Comput. Phys. 477 (2023), 111902.
[93] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang, and Jie Tang. 2020. Gcc: Graph contrastive coding

for graph neural network pre-training. In Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining.
1150–1160.

[94] Shebuti Rayana and Leman Akoglu. 2015. Collective opinion spam detection: Bridging review networks and metadata. In Proceedings of the 21th
acm sigkdd international conference on knowledge discovery and data mining. 985–994.

[95] Yaniv Romano, Matteo Sesia, and Emmanuel Candes. 2020. Classification with valid and adaptive coverage. Advances in Neural Information
Processing Systems 33 (2020), 3581–3591.

[96] Alireza Sadeghi, Meng Ma, Bingcong Li, and Georgios B Giannakis. 2021. Distributionally robust semi-supervised learning over graphs. arXiv
preprint arXiv:2110.10582 (2021).

[97] Silvia Seoni, Vicnesh Jahmunah, Massimo Salvi, Prabal Datta Barua, Filippo Molinari, and U Rajendra Acharya. 2023. Application of uncertainty

quantification to artificial intelligence in healthcare: A review of last decade (2013–2023). Computers in Biology and Medicine (2023), 107441.
[98] Matteo Sesia and Emmanuel J. Candès. 2019. A comparison of some conformal quantile regressionmethods. Stat 9 (2019). https://api.semanticscholar.

org/CorpusID:202565594

28

https://api.semanticscholar.org/CorpusID:202565594
https://api.semanticscholar.org/CorpusID:202565594

UncertaintyQuantification on Graph Learning: A Survey Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

[99] Martin Simonovsky and Nikos Komodakis. 2018. Graphvae: Towards generation of small graphs using variational autoencoders. In Artificial
Neural Networks and Machine Learning–ICANN 2018: 27th International Conference on Artificial Neural Networks, Rhodes, Greece, October 4-7, 2018,
Proceedings, Part I 27. Springer, 412–422.

[100] Maximilian Stadler, Bertrand Charpentier, Simon Geisler, Daniel Zügner, and Stephan Günnemann. 2021. Graph posterior network: Bayesian

predictive uncertainty for node classification. Advances in Neural Information Processing Systems 34 (2021), 18033–18048.
[101] Matthew Staib and Stefanie Jegelka. 2019. Distributionally robust optimization and generalization in kernel methods. Advances in Neural Information

Processing Systems 32 (2019).
[102] David Stutz, Ali Taylan Cemgil, Arnaud Doucet, et al. 2021. Learning optimal conformal classifiers. arXiv preprint arXiv:2110.09192 (2021).
[103] Li Sun, Zhongbao Zhang, Jiawei Zhang, Feiyang Wang, Hao Peng, Sen Su, and S Yu Philip. 2021. Hyperbolic variational graph neural network for

modeling dynamic graphs. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35. 4375–4383.
[104] Xiaolin Tang, Guichuan Zhong, Shen Li, Kai Yang, Keqi Shu, Dongpu Cao, and Xianke Lin. 2023. Uncertainty-aware decision-making for autonomous

driving at uncontrolled intersections. IEEE Transactions on Intelligent Transportation Systems (2023).
[105] Leonardo Teixeira, Brian Jalaian, and Bruno Ribeiro. 2019. Are graph neural networks miscalibrated? arXiv preprint arXiv:1905.02296 (2019).
[106] Ryan J Tibshirani, Rina Foygel Barber, Emmanuel Candes, and Aaditya Ramdas. 2019. Conformal prediction under covariate shift. Advances in

neural information processing systems 32 (2019).
[107] Matias Valdenegro-Toro and Daniel Saromo. 2022. A Deeper Look into Aleatoric and Epistemic Uncertainty Disentanglement.

arXiv:2204.09308 [cs.LG]

[108] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv
preprint arXiv:1710.10903 (2017).

[109] Iris Vos, Ishaan Bhat, Birgitta Velthuis, Ynte Ruigrok, and Hugo Kuijf. 2024. Calibration techniques for node classification using graph neural

networks on medical image data. In Medical Imaging with Deep Learning. PMLR, 1211–1224.

[110] Vladimir Vovk. 2012. Cross-conformal predictors. Annals of Mathematics and Artificial Intelligence 74 (2012), 9–28. https://api.semanticscholar.org/

CorpusID:51973287

[111] Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. 2005. Algorithmic learning in a random world. Vol. 29. Springer.
[112] Vladimir Vovk, Ilia Nouretdinov, Valery Manokhin, and Alexander Gammerman. 2018. Cross-conformal predictive distributions. In conformal and

probabilistic prediction and applications. PMLR, 37–51.

[113] Bohao Wang, Jiawei Chen, Changdong Li, Sheng Zhou, Qihao Shi, Yang Gao, Yan Feng, Chun Chen, and Can Wang. 2024. Distributionally Robust

Graph-based Recommendation System. arXiv preprint arXiv:2402.12994 (2024).
[114] Fangxin Wang, Yuqing Liu, Kay Liu, Yibo Wang, Sourav Medya, and Philip S Yu. 2024. Uncertainty in Graph Neural Networks: A Survey. arXiv

preprint arXiv:2403.07185 (2024).
[115] Min Wang, Hao Yang, and Qing Cheng. 2022. GCL: Graph calibration loss for trustworthy graph neural network. In Proceedings of the 30th ACM

International Conference on Multimedia. 988–996.
[116] Xiao Wang, Hongrui Liu, Chuan Shi, and Cheng Yang. 2021. Be confident! towards trustworthy graph neural networks via confidence calibration.

Advances in Neural Information Processing Systems 34 (2021), 23768–23779.
[117] Junkang Wu, Jiawei Chen, Jiancan Wu, Wentao Shi, Xiang Wang, and Xiangnan He. 2024. Understanding contrastive learning via distributionally

robust optimization. Advances in Neural Information Processing Systems 36 (2024).
[118] Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. 2022. Graph neural networks in recommender systems: a survey. Comput. Surveys 55, 5

(2022), 1–37.

[119] Yihan Wu, Aleksandar Bojchevski, and Heng Huang. 2023. Adversarial weight perturbation improves generalization in graph neural networks. In

Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 37. 10417–10425.
[120] Chen Xu and Yao Xie. 2021. Conformal prediction interval for dynamic time-series. In International Conference on Machine Learning. PMLR,

11559–11569.

[121] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How powerful are graph neural networks? ICLR (2019).

[122] Zhao Xu, Carolin Lawrence, Ammar Shaker, and Raman Siarheyeu. 2022. Uncertainty Propagation in Node Classification. In 2022 IEEE International
Conference on Data Mining (ICDM). IEEE, 1275–1280.

[123] Haotian Xue, Kaixiong Zhou, Tianlong Chen, Kai Guo, Xia Hu, Yi Chang, and Xin Wang. 2021. Cap: Co-adversarial perturbation on weights and

features for improving generalization of graph neural networks. arXiv preprint arXiv:2110.14855 (2021).
[124] Yuto Yamaguchi, Christos Faloutsos, and Hiroyuki Kitagawa. 2015. Socnl: Bayesian label propagation with confidence. In Advances in Knowledge

Discovery and Data Mining: 19th Pacific-Asia Conference, PAKDD 2015, Ho Chi Minh City, Vietnam, May 19-22, 2015, Proceedings, Part I 19. Springer,
633–645.

[125] Xueying Yang, Jiamian Wang, Xujiang Zhao, Sheng Li, and Zhiqiang Tao. 2022. Calibrate automated graph neural network via hyperparameter

uncertainty. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management. 4640–4644.
[126] Gilad Yehudai, Ethan Fetaya, Eli Meirom, Gal Chechik, and Haggai Maron. 2021. From local structures to size generalization in graph neural

networks. In International Conference on Machine Learning. PMLR, 11975–11986.

[127] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. 2020. Graph contrastive learning with augmentations.

Advances in neural information processing systems 33 (2020), 5812–5823.

29

https://arxiv.org/abs/2204.09308
https://api.semanticscholar.org/CorpusID:51973287
https://api.semanticscholar.org/CorpusID:51973287

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Trovato et al.

[128] Bianca Zadrozny and Charles Elkan. 2001. Obtaining calibrated probability estimates from decision trees and naive bayesian classifiers. In Icml,
Vol. 1. 609–616.

[129] Bianca Zadrozny and Charles Elkan. 2002. Transforming classifier scores into accurate multiclass probability estimates. In Proceedings of the eighth
ACM SIGKDD international conference on Knowledge discovery and data mining. 694–699.

[130] Soroush H Zargarbashi, Simone Antonelli, and Aleksandar Bojchevski. 2023. Conformal prediction sets for graph neural networks. In International
Conference on Machine Learning. PMLR, 12292–12318.

[131] Muhan Zhang and Yixin Chen. 2018. Link prediction based on graph neural networks. Advances in neural information processing systems 31 (2018).
[132] Xiang Zhang, Yinfei Xu, Qinghe Liu, Zhicheng Liu, Jian Lu, and Qiao Wang. 2021. Robust graph learning under Wasserstein uncertainty. arXiv

preprint arXiv:2105.04210 (2021).
[133] Xu Zhang, Liang Zhang, Bo Jin, and Xinjiang Lu. 2021. A multi-view confidence-calibrated framework for fair and stable graph representation

learning. In 2021 IEEE International Conference on Data Mining (ICDM). IEEE, 1493–1498.
[134] Yingxue Zhang, Soumyasundar Pal, Mark Coates, and Deniz Ustebay. 2019. Bayesian graph convolutional neural networks for semi-supervised

classification. In Proceedings of the AAAI conference on artificial intelligence, Vol. 33. 5829–5836.
[135] Ziwei Zhang, Xin Wang, and Wenwu Zhu. 2021. Automated machine learning on graphs: A survey. arXiv preprint arXiv:2103.00742 (2021).
[136] Chaoyue Zhao and Yongpei Guan. 2018. Data-driven risk-averse stochastic optimization with Wasserstein metric. Operations Research Letters 46, 2

(2018), 262–267.

[137] Xujiang Zhao, Feng Chen, Shu Hu, and Jin-Hee Cho. 2020. Uncertainty aware semi-supervised learning on graph data. Advances in Neural
Information Processing Systems 33 (2020), 12827–12836.

[138] Dingyuan Zhu, Ziwei Zhang, Peng Cui, and Wenwu Zhu. 2019. Robust graph convolutional networks against adversarial attacks. In Proceedings of
the 25th ACM SIGKDD international conference on knowledge discovery & data mining. 1399–1407.

[139] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2020. Deep graph contrastive representation learning. arXiv preprint
arXiv:2006.04131 (2020).

30

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Probabilistic Graphical Model
	2.2 Graph Neural Networks

	3 Sources of Uncertainty
	3.1 Aleatoric Uncertainty
	3.2 Epistemic Uncertainty

	4 Methods for Uncertainty Representation
	4.1 Bayesian Methods

	5 Methods for Uncertainty Handling
	5.1 Out of Distribution
	5.2 Conformal Prediction
	5.3 Calibration

	6 Uncertainty Quantification Evaluation
	6.1 Calibration
	6.2 Conformal Prediction

	7 Conclusion
	References

