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We propose to implement tunable higher-order topological states in a heterojunction consisting
of a two-dimensional (2D) topological insulator and the recently discovered altermagnets, whose
unique spin-polarization in both real and reciprocal space and null magnetization are in contrast
to conventional ferromagnets and antiferromagnets. Based on symmetry analysis and effective edge
theory, we show that the special spin splitting in altermagnets with different symmetries, such
as d-wave, can introduce Dirac mass terms with opposite signs on the adjacent boundaries of the
topological insulator, resulting in the higher-order topological state with mass-domain bound corner
states. Moreover, by adjusting the direction of the Néel vector, we can manipulate such topological
corner states by moving their positions. By first-principles calculations, taking a 2D topological
insulator bismuthene with a square lattice on an altermagnet MnF2 as an example, we demonstrate
the feasibility of creating and manipulating the higher-order topological states through altermagnets.
Finally, we discuss the experimental implementation and detection of the tunable topological corner
states, as well as the potential non-Abelian braiding of the Dirac corner fermions.

Introduction.—Topological insulators (TIs), which
have the helical edge states protected by time-reversal
symmetry (TRS), set off an upsurge in topological matter
research [1, 2]. Recently, the introduction of higher-order
topological states has expanded the topological matter
research [3–32]. For the traditional first-order topolog-
ical states like TIs, the difference between the dimen-
sions of the topological boundary states and the bulk
states is referred to as the codimension dc which sat-
isfies dc = 1. In contrast, the higher-order topologi-
cal states have a codimension dc greater than one. For
example, a second-order topological insulator in d di-
mensions exhibits the topologically protected hallmark
boundary states of lower dimensionality (d − 2), such
as corner states in two dimensions (2D) or hinge states
in three dimensions (3D). Currently, only a few mate-
rials, such as SnTe [9], bismuth [8], EuIn2As2 [17] and
MnBi2nTe3n+1 [26], are predicted to be 3D higher-order
topological insulators (HOTIs). Experimental observa-
tion of the hinge states has so far been limited to bis-
muth [8, 32]. As for 2D HOTIs, various candidates
have been proposed [33–41], including hydrogenated and
halogenated 2D hexagonal group-IV materials [33, 34],
Kekulé-ordered graphenes [33, 42], 2D transition metal
dichalcogenides [35, 36], and twisted moiré superlattices
[37, 38], but the experimental confirmation of their cor-
ner states is still lacking.

Usual approaches employed to achieve HOTI states in-
clude introducing a Zeeman field into a first-order TI [3,
23, 25, 27] or harnessing the magnetic proximity effect
to induce an exchange field within the TI [4, 12, 24, 43].
However, in the existing approaches, the manipulation
of the topological corner states (TCSs) is a big chal-
lenge, which impedes their potential application such as
in quantum information processing [44–47].

∗ ccliu@bit.edu.cn

FIG. 1. Left panel: A 2D topological insulator with the heli-
cal edge states protected by time-reversal symmetry. Middle
panel: A proximitized altermagnet induces altermagnetism
in the 2D topological insulator and breaks time-reversal sym-
metry. We take a d-wave altermagnet as an example. Right
panel: When the Néel vector lies in the plane, the helical
edge states open a gap with two in-gap states localized at the
corners appearing, i.e. the topological corner states (in or-
ange). The manipulation of these corner states (in red) can
be achieved by adjusting the Néel vector around the [11̄] di-
rection, as indicated by the red arrow.

In recent years, a new class of magnetic materials has
emerged, known as altermagnets [48]. These materi-
als exhibit collinear-compensated magnetic order, which
goes beyond the traditional binary classification of fer-
romagnets and antiferromagnets. In altermagnets, the
opposite spin sublattices are connected through rota-
tion rather than inversion or translation, leading to
non-relativistic anisotropic spin splitting in the Brillouin
zone. Experimentally, altermagnetism has been found
in both metallic materials such as RuO2 [48, 49] and
Mn5Si3 [50], and insulating materials such as MnF2 [51,
52] and MnTe [53]. The altermagnets have a unique spin
splitting, leading to a wide range of fascinating phenom-
ena [54–64], such as Andreev reflection [60], crystal Hall
effect [52, 61], finite-momentum Cooper pairs in alter-
magnet/superconductor heterojunctions [63], and topo-
logical superconductivity [49, 62, 65]. Given the features
of altermagnets, an interesting question arises: can we
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utilize the novel altermagnets to create and manipulate
the higher-order topological states?

In this work, we make a positive response to this ques-
tion. Specifically, we design a heterostructure made of
a TI and an altermagnet to create and manipulate the
higher-order topological states, as illustrated in Fig. 1.
By the effective model and edge theory, we find that when
the in-plane Néel vector is around the [11̄] direction, the
original helical edge states protected by TRS are gapped
with in-gap states localized at the two corners along the
[11] direction, i.e., TCSs, as shown in Fig. 1. Further-
more, by changing the orientation of the Néel vector, we
can effectively manipulate these TCSs. The two TCSs
can be moved to the other two corners with the Néel
vector rotated around the [11] direction. Based on first-
principles calculations, we propose an experimental setup
that involves placing 2D buckled bismuth on the surface
of the altermagnetic material MnF2 [51, 52] to realize
and tune such TCSs. The magnetic proximity effect [43]
plays a crucial role in inducing altermagnetism and spin
splitting within the 2D TI. We confirm the existence of
corner states in the MnF2/Bi/MnF2 sandwich structure
and demonstrate the tunability of these TCSs. This in-
triguing setup provides a new platform for realizing non-
Abelian statistics by using TCSs [44–47].

Model.— We first introduce a first-order TI model de-
fined on a square lattice with the Hamiltonian expressed
in momentum space as

H0(k) =M(k)σz +Ax sin kxsyσx −Ay sin kysxσx, (1)

where M(k) = (m0 − tx cos kx − ty cos ky), σi and sj are
Pauli matrices acting on the orbital (a, b) and spin (↑, ↓)
degree of freedom, respectively. The 2D TI protected
by TRS T = isyK, where K is the complex conjugate,
has inversion symmetry P = σz. The Z2 topological
invariants can be obtained from the parity eigenvalue on
the time-reversal invariant momentum points (Γi) [66].
When m2

0− (tx+ ty)
2 < 0 is satisfied, the TI with Z2 = 1

has TRS-protected helical edge states, as shown by the
blue dashed line in Fig. 2 (a).

The spin splitting of altermagnets exhibits various
forms, including d-wave, g-wave, and i-wave [48]. We
take the proximity-induced d-wave spin splitting as an
example which reads

HAM(k) = 2J0(cos kx − cos ky)s · n̂, (2)

where the vector n̂ = (sin θ cosφ, sin θ sinφ, cos θ) rep-
resents the direction of the Néel vector. Here the in-
plane Néel component (θ = π/2) is considered with the
out-of-plane component left in the Supplemental Mate-
rial (SM) [67]. As shown in Fig. 2 (a), the original gapless
helical edge states develop a gap when the in-plane Néel
vector aligns along the [11̄] direction. We further calcu-
late the energy spectrum of a finite-size square sample, as
displayed in the inset of Fig. 2 (b). One can observe that
two in-gap states emerge in the edge gap. We plot the
wave function distribution of these in-gap states and find

FIG. 2. (a) The edge spectrum for a cylinder geometry. The
blue dotted lines represent the gapless helical edge states
of the topological insulator. The red solid lines denote the
gapped helical edge states after the altermagnet is turned on.
(b) Inset: Two in-gap states emerge with the Néel vector
along the [11̄] direction. The real spatial distribution of their
wave function is plotted. (c) Same as (b) but with the Néel
vector along the [11] direction. (d) The tangents L(α), on
which we will develop the generic edge theory, mark different
boundaries with the clockwise rotation angle α. (e) (f) The
change of the boundary Dirac mass with the rotation angle
α when the Néel vector is along the [11̄] direction and the
[11] direction, respectively. (g) The topological invariant ν
is plotted as a function of the m0. (h) Schematic diagram:
The boundary of the mirror symmetry operation connection
has opposite Dirac mass, and the TCSs originate from differ-
ent mirror subspaces. (i) The mirror-graded winding number
νMxy is plotted as a function of the m0. Common parame-
ters: m0 = 1.0, tx = ty = Ax = Ay = 2.0, J0 = 0.5.

them to be localized at two corners of the square sample,
as depicted in Fig. 2(b), which means the two localized
in-gap states are possible TCSs. This provides evidence
for the presence of the HOTI state in the system when al-
termagnetism is activated, indicating a topological phase
transition from a first-order TI to a HOTI state.

When the Néel vector is directed along the [11] direc-
tion, the system also exhibits the HOTI states with the
hallmark TCSs but on the other corners, as depicted in
Fig. 2 (c). Therefore, by rotating the orientation of the
Néel vector, we offer an effective method to manipulate
the TCSs, enabling dynamic control and repositioning of
these states within the system. In practical experiments,
the orientation of the Néel vector can be controlled by
applying an electric field or a spin-orbit torque [68–70].
Thus, this proposal opens up new possibilities for real-
izing non-Abelian statistics of Dirac fermions with frac-
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tional charge [46].
Symmetry analysis & Edge theory.— Our proposed

model exhibits C2zT = sxK symmetry and falls within
the Stiefel-Whitney (SW) class with its topology charac-
terized by the second SW number w2 [71, 72]. Applying
a unitary transformation U = exp(iπ/4sx) to H(k) =
H0(k) +HAM(k), a real form can be obtained [67]. We
calculate the SW number w2 by using the Wilson loop
method with w2 = 1, signifying a non-trivial HOTI [67].

The centrosymmetric topological insulator we con-
sider has particle-hole symmetric energy bands and thus
can be considered to have chiral symmetry C approx-
imately [24, 27]. The introduction of altermagnetsim
into the topological insulator breaks T , while P and C
remain intact. Such higher-order topological states be-
long to the Z2 classification [14]. The topological in-
variant characterizing the higher-order topology reads as
ν =

∑
Γi
n−(Γi)/2 mod 2, where n−(Γi) is the num-

ber of occupied states with negative pairty eigenvalue
at time-reversal invariant points (Γi). We calculate the
topological invariant ν, as shown in Fig. 2(g), and ν = 1
with m0 ∈ (−4, 4) indicates a HOTI.

The origin of these TCSs and their tunability in
real space as the Néel vector changes can be under-
stood through the edge theory. We use the Hamiltonian
H(k) = H0(k)+HAM(k) to describe the HOTI. Expand-
ing H(k) at Γ = (0, 0) to the second order yields

Heff(k) = (m+
tx
2
k2x +

ty
2
k2y)σz +Axkxσxsy

−Aykyσxsx − J0(k
2
x − k2y)s · n̂,

(3)

where m = m0 − tx − ty. We consider an arbitrary
boundary L(α), which is the tangent with the clock-
wise rotation angle α, as shown in Fig. 2(d). The co-
ordinate axes need to be rotated to obtain the new mo-
mentum k∥ and k⊥. In the new coordinates, when the
strength of the altermagnets is smaller than the bulk
gap, the Hamiltonian can be decomposed as Heff(k) =
H0(k) + Hp(k) (see details in the SM [67]). Con-
sider the semi-infinite plane x⊥ ∈ (−∞, 0], where a
boundary exists at x⊥ = 0. The momentum k⊥ is
replaced by −i∂⊥ and the eigenequation H0ψα(x⊥) =
Eαψ(x⊥) is solved with the boundary condition ψ(0) =
ψ(−∞) = 0. Two solutions for Eα = 0 are obtained with
ψα(x⊥) = N⊥ sin(κ1x⊥)e

κ2x⊥eik∥x∥χα, where the nor-
malization constant is given by |N⊥|2 = 4|κ2(κ21+κ22)/κ21|
and the eigenvector χα satisfies (sinαsy +cosαsx)σyξ =

ξ. We choose χi as χ1 = 1/
√
2(−ie−iα, 0, 0, 1)T and

χ2 = 1/
√
2(0, ie−iα, 1, 0)T and project perturbation Hp

onto the bases (ψ1, ψ2), and obtain the boundary Hamil-
tonian for any boundary L(α) and any Néel vector with
polar θ and azimuthal φ angles

Heff(x⊥, k∥) = Ak∥ηz +M(α, θ, φ)ηy, (4)

where ηi are Pauli matrices act on ψi.
The Dirac mass term that arises from altermagnets is

given by

M(α, θ, φ) ∼ J0 sin θ cos(2α) cos (φ− α) . (5)

Our research primarily concentrates on the in-plane com-
ponent of the Néel vector with θ = π/2, while the out-
of-plane component of the Néel vector does not influ-
ence the edge states (see details in the SM [67]). For the
scenario that the Néel vector is along the [1̄1] direction
(φ = 3π/4), we calculate and plot the Dirac mass at any
edge L(α), as depicted in Fig. 2 (e). One can observe
that at the clockwise rotation angles of α = 3π/4 and
7π/4, there exist domains in the Dirac mass that host
zero-energy bound states resembling Jackiw-Rebbi zero
modes [73], which is consistent with the numerical re-
sults of a square sample shown in Fig. 2 (b). Although
the Dirac mass M(α) vanishes at α = π/4 and 5π/4,
the lack of a mass domain prevents the formation of the
TCSs. When the Néel vector is aligned with the [11] di-
rection, two mass domains are formed at α = π/4 and
5π/4, respectively, as plotted in Fig. 2 (f). The two TCSs
can be moved by rotating the Néel vector. Consequently,
we can not only create TCSs but also manipulate them
by an altermagnet.

It is worth noting that when the Néel vector is along
the [11] direction, the system has extra mirror sym-

metry Mxy = i
√
2/2(sx + sy) along line defined by

kx = −ky. Along the mirror-invariant line, the Hamilto-
nian H(k) = H0(k) + HAM(k) can be decomposed into
distinct mirror subspaces labeled by the ±i. In each sub-
space, the Hamiltonian expressed as H±i = q±i(k) · σ,
which are two 1D SSH model with opposite winding num-
ber ν+i = −ν−i [67]. Intuitively, the non-trivial SSH
model will result in two end states at an endpoint. How-
ever, when the Néel vector deviates from [11], mirror
symmetry Mxy is broken, the gap of the system is main-
tained. This indicates that regardless of the presence
or absence of Mxy, the system is in the same topologi-
cal phase and has the Z2 classification [6, 14], only one
end state stable at one corner. As a result, the system
will only exhibit two corner states instead of four. Fur-
thermore, the chiral symmetry C = szσx which satisfies
{Mxy, C} = 0 implies that the two corner zero modes
originate from different mirror subspaces, as shown in
Fig. 2(h). In the presence of mirror symmetry, the non-
trivial second-order topology can currently be character-
ized by a mirror-graded winding number, which is defined
as νMxy = (ν+i−ν−i)/2. A nonzero νMxy indicates that
the system has a nontrivial second-order topology [74].
The calculated νMxy is shown in Fig. 2(i), which is con-
sistent with Fig. 2(g), confirming the non-trivial topology
of the system. The investigation of the Néel vector along
[11̄] is similar [67].

The TCSs still robustly exist when the Néel vec-
tor deviates from the [11] or [11̄] direction. As long
as the condition M(α, π/2, φ)M(α + π/2, π/2, φ) < 0
or M(α, π/2, φ)M(α − π/2, π/2, φ) < 0 is met, the
system will have TCSs. Since M(α + π/2, π/2, φ) =
−M(α − π/2, π/2, φ), the condition is equivalent to
M(α, π/2, φ)M(α + π/2, π/2, φ) ̸= 0, i.e., φ /∈
{3π/2− α, π − α, π/2− α, α}. In principle, TCSs will
exist as long as the condition holds. However, along
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FIG. 3. (a) Side view of the optimized crystal structure of the MnF2/Bi/MnF2 configuration. (b) The 2D Brillouin zone
with high-symmetric points and lines. (c) The spin-polarized energy bands of the MnF2/Bi/MnF2 sandwich structure, where
the blue-solid/red-dashed lines represent the spin-up/spin-down. (d) The d-wave spin-polarized band splitting induced in
bismuthene from our DFT calculation. (e) Helical edge states are calculated via DFT in the absence of altermangetism. (f)
Gapped edge states obtained by the DFT calculation with the Néel vector aligned along the [11̄] direction. (g) and (h) Néel
vector along the [11̄] and [11] directions, respectively. Inset: Two in-gap topological corner states emerge. The small arrows
depict the direction of the Néel vector. The real spatial distribution of their wave function is plotted.

these two directions φ = π/4 − α and φ = 3π/4 − α,
corresponding to [11] or [11̄] directions with α = 0, the
edge gap is large, which is convenient for experimental
observation of TCSs.

We also derive the general boundary Hamiltonian for
the other anisotropic spin splittings with non-zero angu-
lar momentum quantum numbers, such as g-wave and
i-wave, and the isotropic spin splitting of s-wave with
zero angular momentum. The previous proposals to in-
duce TCSs by using the Zeeman field can be considered
as the special isotropic s-wave case in our proposal [67].

Material realization.— Based on first-principles cal-
culations, as a demonstration, we propose that a
MnF2/Bi/MnF2 sandwich with optimized structure de-
picted in Fig. 3 (a) can achieve such tunable TCSs (see
details in the SM [67]). Previous studies have shown
the potential of two-dimensional bismuthene, with its
honeycomb lattice structure, to be used as a material
for TIs [75–78]. And bismuthene has been successfully
synthesized on SiC substrates [78]. To ensure lattice
alignment between bismuthene and MnF2, we utilize bis-
muthene with a buckled square lattice structure. This
specific configuration of bismuthene, as a first-order TI,
has an energy gap of approximately 0.69 eV [79], making
it suitable for observing the TCSs. Through the mag-
netic proximity effect [43], magnetism can be induced in
the buckled bismuthene. We employ a sandwich struc-
ture with [C2][S4] symmetry where S4 connects the sub-
lattices with opposite spin in real space and C2 inverse

the spins in spin space [48], ensuring that the magnetic
moment produced through the proximity effect satisfies
the restriction of altermagnetism, as illustrated in Fig. 3
(a). Based on first-principles density functional theory
(DFT) calculations, we present the spin-polarized en-
ergy bands in Fig. 3(c) (see details in the SM [67]).
Notably, along a horizontal line (S1X1S2) in the Bril-
louin zone, as shown in Fig. 3 (b), the energy band ex-
hibits the unique spin splitting with spin-up/down in
blue-solid/red-dashed lines, demonstrating the character-
istic behavior of d-wave spin splitting, as shown in Fig. 3
(d). This spin splitting, approximately 30 meV, confirms
the effective induction of altermagnetism in bismuthene
through the magnetic proximity effect.

To better investigate the electronic structure and topo-
logical properties, we construct an ab initio tight-binding
model based on DFT and Wannier function [80, 81]. The
model can take into account the effect of altermagnetism
in MnF2. Additionally, we build a minimal tight-binding
model based on symmetry to capture the physics of the
DFT results [67]. In the absence of altermagnetism, we
observe gapless edge states within the bulk gap of the
buckled bismuthene, as shown in Fig. 3 (e). However, by
activating the altermagnetism of MnF2 with the in-plane
Néel vector along the diagonal direction, the helical edge
states acquire a gap of approximately 30 meV, as shown
in Fig. 3 (f). A similar phenomenon is observed when the
Néel vector along the off-diagonal direction [67]. These
indicate the breakdown of the first-order topology of the
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system and possibly the higher-order topology induced
by the altermagnet. We calculate the energy spectrum of
a finite-size square sample of the MnF2/Bi/MnF2 sand-
wich structure, as shown in Figs. 3 (g) and (h). When
the Néel vector has an in-plane component, it can be
observed that two in-gap states emerge in red and the
corresponding distribution of wave function is localized
at two corners of the sample. Consequently, despite the
altermagnetism causing the first-order topology of the
system to be trivial, the system exhibits a non-trivial
second-order topology. Moreover, the position of the
corner states can be manipulated by rotating the Néel
vector. This observation is consistent with our theoreti-
cal model results. Additionally, upon enabling spin-orbit
coupling, the sandwich structure exhibits C2zT symme-
try with its nontrivial second SW number w2 confirmed
via the Wilson loop method [67]. Therefore, by employ-
ing DFT calculations, we demonstrate the capability to
achieve and modulate the TCSs through manipulation of
the Néel vector direction and provide a candidate mate-
rial setup.

Discussion.—Motivated by the unique spin-polarized
band splitting in altermagnetic materials, we propose a
route to create and manipulate TCSs by altermagnets.
Our DFT calculations have confirmed that the magnetic
proximity effect induces a spin-polarized band splitting
in TIs and suggest a MnF2/Bi/MnF2 sandwich structure
as a candidate material setup for realizing our proposal.
The braiding of TCSs can be facilitated by constructing
a cross-shaped or T -shaped geometry [82]. A gate elec-
trode is positioned at the intersection point, allowing the
generation and fusion of TCSs to be achieved by con-
trolling the channel’s opening and closing through gate
voltage control [47]. Our proposal expands the possi-
bility of TCS manipulation by controlling the Néel vec-
tor, which can employ gate voltage control to enable
more intricate braiding operations and pave the way for
topological quantum computing. In the experiment, the
direction of the Néel vector in altermagnets like other
antiferromagnetic materials can be manipulated and de-
tected using techniques such as current, voltage [69, 83],
strain [84, 85], and spin-orbit torques [86]. Moreover,

altermagnetic materials exhibit robustness to external
magnetic field perturbations, and their ultrafast response
due to the absence of a coercivity field [87]. These fas-
cinating properties open up the exciting possibility of
achieving non-Abelian braiding of Dirac fermions [45–47],
providing new avenues for future research and technolog-
ical applications.

The existence of charged TCSs can be detected using
scanning tunneling microscopy (STM) [88]. Additional
evidence for the presence of TCSs can be provided by
exploiting the ability of the Néel vector to modulate the
topological states. In the case where the Néel vectors are
oriented along the z axis (θ = 0), the system has gapless
edge states. When the energy of the STM probe ap-
proaches that of the edge states, a broadening peak can
be observed along the boundary. By adjusting the Néel
vector to open a gap in the edge state, sharp peaks can be
observed at the corners of the sample using STM. Con-
sequently, the observation of changing energy spectrum
peaks with STM can serve as strong evidence for the ex-
istence of corner states. Furthermore, by manipulating
the Néel vector, it is possible to control the movement of
the corner states along the boundary and achieve a quan-
tum charge pump independently of the bulk state [89].
This effect can be precisely measured through transport
experiments, further supporting the understanding of the
influence of the Néel vector on the topological properties
of the system. The ability to control the movement of
corner states and achieve a quantum charge pump holds
potential implications for applications in quantum infor-
mation processing and topological devices.
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I. Kounta, R. Schlitz, D. Kriegner, P. Ritzinger, M. Lam-
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This supplementary material is divided into six sections. Section I provides the edge theory derivation with the Néel
vector along an arbitrary direction and demonstrates the manipulation of the topological corner states by rotating
the Néel vector. Section II includes mirror-graded winding number when Néel vector along [11̄] direction. Section III
provides the general edge Hamiltonian for g-wave, i-wave as well as s-wave spin splitting. Section IV contains the
computational details of the DFT. Section V introduces a sandwich structure consisting of a 2D TI and altermagnets.
In Section VI, an effective model is constructed using DFT and Wannier functions, and the manipulation of the
corner states by changing the direction of the Néel vector is verified. In Section VII, a minimal tight-binding model
was constructed based on the symmetry of the sandwich structure, which well simulates the modulation of the Néel
vector on the corner states. In Section VIII, the topological classification of the system is discussed and the second
Stiefel-Whitney number w2 is determined using the Wilson loop method.

I. EDGE THEORY

In this section, we investigate the edge theory for the d-wave case with the Néel vector oriented in any direction.
Figure S1(c) visually depicts this scenario, where n̂ denotes the Néel vector, θ represents the polar angle, and φ
represents the azimuthal angle.

Firstly, our focus is on the scenario wherein solely in-plane Néel vector components are present, i.e. azimuth angle
θ = π/2. The low-energy Hamiltonian at the Γ point reads as follows

H(k) =

(
m+

tx
2
k2x +

tx
2
k2y

)
σz +A0(kxsy − kysx)σx − J0(k

2
x − k2y)(sin θ cosφsx + sin θ sinφsy), (S-1)

where m = m0 − tx − ty, J
x
0 = J0 sin θ cosφ and Jy

0 = J0 sin θ sinφ. We consider an arbitrary edge L(α), which needs
to rotate the coordinate axis clockwise to obtain new momentum k∥ and k⊥, as shown in Fig. S1(a). The relationship
between the coordinates before and after the rotation can be described as follows(

kx
ky

)
=

(
cosα − sinα
sinα cosα

)(
k∥
k⊥

)
. (S-2)

FIG. S1. (a) Schematic diagram of rotation of the coordinate system. The tangent line L(α) represents any boundary with the
rotated coordinates (x||,x⊥) and an angle α to the horizontal axis. (b) The schematic diagram illustrates the edge coordinate
ℓ and defines the counterclockwise direction as the positive direction. The four edges, labeled I, II, III, and IV, are delineated
for application in the edge theory. (c) The unit vector n̂ of the Néel vector with the polar angle θ and azimuthal φ angles in
the spherical coordinates.
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FIG. S2. The variation of the Dirac mass term for the boundary direction α induced by an in-plane altermagnets. (a) The
Néel vector is oriented along the [11̄] direction, while in (b), it is along the [11] direction.

In the new coordinate system, the low-energy Hamiltonian, as given by Eq. (S-1), can be expressed as follows

H(k∥, k⊥) =M(k∥, k⊥)σz +A
[
k∥ (cosαsy − sinαsx)− k⊥ (sinαsy + cosαsx)

]
σx

− Jx
0

[
cos 2α(k2⊥ − k2∥) + 2 sin 2αk∥k⊥

]
sx

− Jy
0

[
cos 2α(k2⊥ − k2∥) + 2 sin 2αk∥k⊥

]
sy.

(S-3)

When the strength of the altermangetism is small compared to the bulk gap, the Hamiltonian can be divided into
two parts, H0 and Hp

H0(k∥, k⊥) =M(k∥, k⊥)σz −Ak⊥ (sinαsy + cosαsx)σx,

Hp(k∥, k⊥) = −Jx
0

[
cos 2α(k2⊥ − k2∥) + 2 sin 2αk∥k⊥

]
sx − Jy

0

[
cos 2α(k2⊥ − k2∥) + 2 sin 2αk∥k⊥

]
sy

+Ak∥ (cosαsy − sinαsx) .

(S-4)

Consider the semi-infinite system bounded by x⊥ = 0 and occupying the space x⊥ ∈ (−∞, 0]. We begin by solving
the eigenequation H0(k∥ = 0,−i∂⊥)ψ(x⊥) = Eψ(x⊥). When the boundary condition ψ(0) = ψ(−∞) = 0 is satisfied,
one can obtain two zero-energy solutions

ψα(x⊥) = N⊥ sin(κ1x⊥)e
κ2x⊥eik∥x∥ξα, (S-5)

where the normalization parameter is given by |N⊥|2 = 4
∣∣κ2(κ21 + κ22)/κ

2
1

∣∣. The parameters κ1 and κ2 can be expressed
as follows

κ1 =

√∣∣∣∣2mt0
∣∣∣∣− A2

t20
, κ2 =

A

t0
. (S-6)

The ξα satisfy eigenequation (sinαsy + cosαsx)σyξα = ξα. One can obtain the following solutions

ξ1 =
1√
2

 −ie−iα

0
0
1

 , ξ2 =
1√
2

 0
ie−iα

1
0

 . (S-7)

Subsequently, the Hp is considered as perturbations and projected onto the basis vectors ξ1,2 to yield

⟨ξi|Ak∥(cos θsy − sin θsx)σx|ξj⟩ = Ak∥

(
1 0
0 −1

)
,

⟨ξi| − Jx
0 (cos(2α)(k

2
⊥ − k2∥))sxσ0|ξj⟩ = −Jx

0 cos(2α) cos(α)

(
0 i
−i 0

)
k2⊥,

⟨ξi| − Jy
0 (cos(2α)(k

2
⊥ − k2∥))syσ0|ξj⟩ = −Jy

0 cos(2α) sin(α)

(
0 i
−i 0

)
k2⊥.

(S-8)
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From Eq. (S-8), the edge Hamiltonian can be expressed as

Heff(x⊥, k∥) = Ak∥ηz +M(α, θ, φ)ηy, (S-9)

where the Dirac mass term reads as

M(α, θ, φ) ∼ cos(2α) [J0 sin θ cosφ cos(α) + J0 sin θ sinφ sin(α)] . (S-10)

When the magnetization in the in-plane Néel order along the [11] direction, characterized by θ = π/2 and φ = π/4,
the Dirac mass term contribution depends on the edge direction α. This dependence is illustrated in Fig. S2(b),
where the Dirac mass terms near α = 3π/4 and 7π/4 exhibit opposite signs. This sign difference gives rise to the
emergence of corner states localized at the boundaries between regions with opposite signs of mass. In the case of the
magnetization in the in-plane Néel order along the [1̄1] direction, i.e., θ = π/2 and φ = π/4, the mass domain wall
occurs at α = π/4 and 5π/4, coinciding with the positions of the corner states, as shown in Fig. S2(a).

FIG. S3. (a) The Dirac masses of boundaries I and II are displayed as a function of the azimuth angle φ. (b) The Dirac masses
of boundaries I and IV are shown. For (c) and (d), the variation of the Dirac mass term induced by in-plane altermagnets is
depicted for the boundary direction α. (c) The azimuth angle of the Néel vector is set to φ = 0.8π. (e) The azimuth angle is
φ = 0.2π. The real-space energy spectrum and wavefunction distribution of zero-energy modes are examined for two scenarios:
(d) with φ = 0.8π, (f) with φ = 0.2π.

It is important to note that even when the Néel order deviates from alignment with the [11] or [1̄1] direction, the
presence of a domain wall persists. Considering the square geometric structure, it is convenient to designate each
boundary segment as I, II, III, and IV, corresponding to the angles α of 0, π/2, π, and 3π/2, respectively, as illustrated
in Fig. S1(b). By utilizing Eq. (S-10), one can calculate the contribution to the Dirac mass term associated with each
edge. Importantly, when the Dirac mass contributions on adjacent boundaries exhibit opposite signs, satisfying

M
(
αi,

π

2
, φ

)
×M

(
αj ,

π

2
, φ

)
< 0, i = I, III; j = II, IV, (S-11)

a Jackiw-Rebbi-like bound state emerges at the corner [73], i.e., corner states. Figures S3(a) and (b) illustrate the
dependence of the Dirac mass contributions along boundaries I, II, and IV on the azimuth angle φ. It has been
observed that a mass domain emerges at the intersection of boundaries I and II when the azimuth angle φ satisfies
the condition

φ ∈
(
0,
π

2

)
∪
(
π,

3π

2

)
. (S-12)
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Consequently, whenever the azimuth angle of the Néel vector satisfies Eq. (S-12), a corner state manifests at the
corner along the [11̄] direction. Additionally, when the rotation of the Néel vector satisfies the condition

φ ∈
(π
2
, π

)
∪
(
3π

2
, 2π

)
, (S-13)

a distinct mass domain emerges at the intersection of boundaries I and IV, as depicted in Fig. S3(b). Taking the
azimuth angle φ = 0.8π as an illustrative example, it is intriguing to observe that under this specific orientation, the
mass domains at α = 3π/4 and 7π/4 persist, as demonstrated in Fig. S3(c). This noteworthy observation is further
bolstered by the real-space energy spectrum and wavefunction distribution, as exemplified in Fig. S3(d), thereby
providing compelling and convincing evidence for the continued existence of these domains. The conclusion remains
valid even when the Néel vector shifts near the [11] direction, as demonstrated in Figs. S3(e) and (f). Hence, our
proposal does not require strict alignment of the Néel vectors along the [11] or [1̄1] directions. Even with deviations
from these directions, as long as the Néel vector is not parallel to the x or y direction, the system still exhibits the
distinguishing characteristics of a high-order topological insulator. Notably, when the Néel vector aligns with the [11]
or [1̄1] direction, the system attains the maximum boundary gap, facilitating the detection of corner states.

In the case where the Néel vector along the z direction (θ = 0), the Hamiltonian in momentum space can be
expressed as follows

H(k) =M(k)σz +Ax sin kxsyσx −Ay sin kysxσx + J0(cos kx − cos ky)sz, (S-14)

where the last term contributed from altermagnets, and M(k) = m0− tx cos kx− ty cos ky. Similarly, by transforming
the Hamiltonian Eq. (S-14) into the new coordinates O − k⊥k∥, one can obtain

H(k∥, k⊥) =M(k∥, k⊥)σz +A
[
k∥ (cosαsy − sinαsx)− k⊥ (sinαsy + cosαsx)

]
σx

− J0

[
cos 2α(k2⊥ − k2∥) + 2 sin 2αk∥k⊥

]
sz,

(S-15)

where M(k⊥, k∥) = m + 1/2t0(k
2
∥ + k2⊥). When the strength of the altermagnetism is small compared with the bulk

gap, the Hamiltonian Eq. (S-15) can be separated into two components, namely H0 and Hp

H0(k∥, k⊥) =M(k∥, k⊥)σz −Ak⊥ (sinαsy + cosαsx)σx,

Hp(k∥, k⊥) = −J0
[
cos 2α(k2⊥ − k2∥) + 2 sin 2αk∥k⊥

]
sz +Ak∥ (cosαsy − sinαsx) .

(S-16)

After projecting the perturbation term Hp onto the subspace spanned by ξ1,2 in the new coordinate system, we obtain
the following results

⟨ξi|Ak∥(cos θsy − sin θsx)σx|ξj⟩ = Ak∥

(
1 0
0 −1

)
,

⟨ξi| − J0 cos(2α)(k
2
⊥ − k2∥)szσ0|ξj⟩ = 0.

(S-17)

Therefore, even in the presence of altermagnetism, which breaks time-reversal symmetry, the system still retains edge
states without energy gaps when the Néel vector aligns with the z direction.

FIG. S4. The real-space energy spectrum of the Néel vector as it undergoes rotation within the plane, along with the corre-
sponding distribution of the zero-energy state wave function. (a) φ = π/2. (b) φ = 3π/4. (c) φ = π. (d) φ = 7π/4. (e)
φ = π/2.

From a symmetry perspective, it can be deduced that in the absence of altermagnets (J0 = 0), the Hamiltonian
Eq. (S-14) exhibits an additional mirror symmetry Mz = iszσz, alongside the inherent time-reversal symmetry
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T = isyK. This intriguing observation suggests that the helical edge state is protected by both T and Mz symmetries.
However, the introduction of an in-plane Néel component breaks both the time-reversal symmetry T and the mirror
symmetry Mz, resulting in the generation of a gap in the edge states. For the case of a Néel component along
the out-of-plane direction, it solely breaks the time-reversal symmetry T , while the mirror symmetry Mz remains.
Consequently, the edge state can persist in its gapless nature due to the protection provided by the remaining mirror
symmetry Mz.
Based on the edge theory analysis, it has been determined that the characteristics of the edge states are predom-

inantly determined by the in-plane component of the Néel vector. Consequently, our attention is directed towards
investigating the effects of rotating the Néel vector within the plane. Upon careful examination, it becomes appar-
ent that as the Néel vector undergoes rotation within the plane, the corner states experience a gradual transition,
eventually transforming into edge states. However, as the rotation continues, the corner states reappear at a different
spatial position, as shown in Fig. S4. This intriguing observation hints at the potential for constructing systems that
possess non-Abelian statistics by manipulating the position of the corner states [46, 47].

II. MIRROR-GRADED WINDING NUMBER WHEN NÉEL VECTOR IS ALONG [11̄] DIRECTION

In this section, we focus on calculating the mirror-graded winding number for the Néel vector along the [11̄] direction.
For this specific configuration, the Hamiltonian of the system takes the following form

H(k) = [m0 − 2t(cos kx + cos ky)]σz + 2A0(sin kxsy − sin kysx)σx − J(k)sxσ0 + J(k)syσ0, (S-18)

where J(k) = J0(cos kx − cos ky). The reflection operation Mxȳ = i
√
2/2(sx + sy) maps (kx, ky) to (ky, kx). Along

the reflection symmetry line kx = ky, the Hamiltonian H(k) can be decomposed into different mirror subspaces based
on the eigenvalues ±i

H±i(k) = − (m0 − 4t cos k) ηz ± 4A sin kηx, (S-19)

where ηi are Pauli matrice act on mirror eigenvectors. In each mirror subspace, the Hamiltonian can be expressed in
a compact form H±i = q±i(k) · σ, the calculated winding numbers are, respectively, ν+i = +1 and ν−i = −1. Thus,
the mirror-graded winding number [74] can be calculated by νMxȳ

= (ν+i − ν−i)/2 with

ν±i =
i

2π

∫
L

dk
{
Tr

[
q±i(k)∂kq

∗
±i(k)

]}
. (S-20)

According to Eq. (S-20), we plot the variation of the mirror-graded winding number with the m0 in Fig. S5. It is
observed that the Néel vector aligns with [11̄], when the m0 ∈ (−4, 4), the mirror-graded winding number νMxȳ = 1
indicates the presence of a nontrivial topological phase, indicating the existence of TCSs.

FIG. S5. The mirror-graded winding number is plotted as a function of the m0. Common parameters: µ = 1.0, tx = ty =
1.0, A = 1.0, J0 = 0.5.
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III. THE EFFECTIVE HAMILTONIAN OF ANY BOUNDARY FOR THE HETEROSTRUCTURE OF
ALTERMAGNETS WITH g-WAVE AND i-WAVE AS WELL AS s-WAVE SPIN SPLITING

FIG. S6. (a) The tangent line L(α) represents any boundary with the rotated coordinates (x||,x⊥) and an angle α to the
horizontal axis. (b) The unit vector n̂ of the Néel vector with the polar angle θ and azimuthal φ angles in the spherical
coordinates. (c)-(f) Variation of the Dirac mass L(α, θ = π/2, φ) on any boundary L(α) with the azimuth of the Néel vector
(or magnetization direction). (c) Zeeman filed (s-wave spin splitting). (d) d-wave spin splitting. (e) g-wave spin splitting. (f)
i-wave spin splitting. The red dashed line denotes a zero mass term. A domain wall emerges and localizes a corner state when
the sign of the masses on the left/right of the red dashed lines is opposite.

For the heterostructures of altermagnets with the spin splitting of other symmetries, including g-wave, and i-
wave [48] which corresponding orbital quantum number l = 4, 6, respectively, the boundary Hamiltonian can be
obtained by rotating the coordinate system as done for the d-wave in the text. We derive the boundary Hamiltonian
of the spin splitting with a non-zero orbital quantum number for any boundary L(α) and any Néel vector with polar
(θ) and azimuthal (φ) angles

Heff(x⊥, k∥) = Ak∥ηz + L(α, θ, φ)ηy, (S-21)

where  l = 2 : L(α, θ, φ) ∼ cos(2α) sin(θ) cos (φ− α) d− wave,
l = 4 : L(α, θ, φ) ∼ sin(4α) sin(θ) cos (φ− α) g − wave,
l = 6 : L(α, θ, φ) ∼ sin(6α) sin(θ) cos (φ− α) i− wave,

(S-22)

and ηi are Pauli matrices. According Eq. (S-22) one can obtain that for a Néel vector confined to the plane (θ = π/2),
the Dirac mass is equal to zero when φ− α = (2n+ 1)π/2, n ∈ Z, where boundary L(α) is perpendicular to the Néel
vector. This situation is independent of the form of spin splitting. Roughly speaking, the Dirac mass can be divided
into two parts: one that depends on the azimuthal angle L0(α,φ) and one that does not L0(α, θ). The φ-independent
part contributes a factor that depends on the boundary L(α), which is consistent with the variation of the spin
splitting magnitude with the direction of the momentum [48]. For spin splitting with higher orbital quantum number
(l = 4, 6), there will be more locations where the splitting is equal to zero, thus contributing more corner states. As
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shown in Figs. S6(d)-(e), we plot the density map of the Dirac mass L(α, π/2, φ) with respect to the boundary L(α)
and the Néel vector azimuthal angle φ. The red dashed line represents where the Dirac mass is equal to zero. Given an
azimuthal angle φ0, if the solutions to L0(α,φ0) = 0 and L0(α, θ = π/2) = 0 coincide at a specific value of α (denoted
by α0 here), then the Dirac masses on both sides of the boundary at α0 will have the same sign. Consequently, no
domain wall will form at this point, as illustrated by the blue dashed line in Fig. S6(d). As the azimuth deviates
from the special value φ0, a new pair of domain walls will be created at α0, i.e. the number of corner states will
increase. Consequently, as the azimuthal angle φ varies, domain walls will undergo continuous creation, movement,
and annihilation. This dynamic behavior is mirrored by the corner states.

The band splitting produced by the Zeeman field can be regarded as an isotropic s-wave with orbital quantum
number (l = 0), where the boundary Hamiltonian has the same form as that of the above altermagnets with the Dirac
mass as follows

L(α, θ, φ) ∼ sin(θ) cos (φ− α) s− wave. (S-23)

According to Eq. (S-23), the only corner states occur when the boundary L(α) is perpendicular to the Néel vector.
As the Néel vector orientation changes, the corner states will correspondingly move along the boundary. Hence, our
study encompasses the scenario where the Zeeman field-induced spin splitting is treated as an s-wave with orbital
quantum number l = 0. This specific case falls within the broader framework of our investigation.

IV. FIRST-PRINCIPLE CALCULATIONS METHODS

FIG. S7. (a) Side view and (b) top view of the structure of Bi/MnF2. (c) Band strucure of the Bi/MnF2 heterstructure. (d)
Side view and (e) top view of the structure of MnF2/Bi/MnF2. (f) Band strucure of the MnF2/Bi/MnF2 sandwich structure.
The insert shows the 2D Brillouin zone with high-symmetric points and lines.

We perform first-principle calculations using the projector augmented wave method [90] implemented in the Vienna
ab initio simulation package (VASP) [91, 92]. Generalized gradient approximation (GGA) of the Perdew-Burke-
Ernzerhof (PBE) functional [93] is selected as the exchange-correlation potential. The plane-wave cutoff energy is set
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to 550 eV, and the Monkhorst-Pack k-point mesh [94] of size 9 × 9 × 1 is used in Brillouin zone for self-consistents.
The optimized lattice constant of MnF2/Bi/MnF2 is 4.95 Å, and the buckled of the Bi layer is 0.2 Å. Considering
the correlation effect of d electrons, we use the DFT+U method [95, 96] in the calculation and choose U = 2 eV for
Mn-3d orbitals.

V. A SANDWICH STRUCTURE OF A 2D TI AND ALTERMAGNETS

Initially, a heterostructure was employed by placing bismuthene on the surface of an altermagnet MnF2, as shown
in Figs. S7(a) and (b). It can be seen that only these Bi atoms directly bonded to Mn through O atoms exhibit
magnetization, leading to a nonzero magnetization and a ferromagnetic band structure, as shown in Fig. S7(c). To
induce altermagnetism, a sandwich structure with S4 symmetry was adopted, with Mn atoms flanking the Bi layer
exhibiting antiparallel spins, ensuring the zero net magnetization, as depicted in Figs. S7(d) and (e). In this structure,
Mn atoms induced opposite magnetic orders on the two Bi atoms within a unit cell, which were connected via [C2][S4]
symmetry, giving rise to a d-wave altermagnetism. Here C2 denotes the 180◦ rotation of spin directions in spin space
and S4 connects the sublattices with opposite spins in real space. The altermagnetic band structure is shown in
Fig. S7(f).

VI. AB INITIO TIGHT-BINDING MODEL FOR THE SANDWICH STRUCTURE

FIG. S8. The first row shows the case with the Néel vector along the diagonal direction. (a) The band structures were calculated
by DFT (black solid line) and WANNIER90 (red dashed line). The insert shows the 2D Brillouin zone with high-symmetric
points and lines. (b) The edge spectrum of MnF2/Bi/MnF2 sandwich structure. Inset: The small arrows depict the direction
of the Néel vector. (c) Spectrum for a finite-size square sample. Inset: Two in-gap topological corner states emerge. The real
spatial distribution of their wave function is plotted. (d) The spectrum of a finite-size square sample that exposes different
atoms compared to (c). (e)-(h) Same as (a)-(d) except the Néel vector along the off-diagonal direction.

Based on the DFT calculation of MnF2/Bi/MnF2 sandwich structure, an ab initio tight-binding (TB) model of
the Bi-6px and Bi-6py orbitals was constructed here using the WANNIER90 program [80, 81]. Using this TB model,
the band structures, edge states, and the real space spectrums with different orientations of the Néel vector were
calculated. Figures. S8(a), (b), (c) and (d) present the results for the Néel vector along the diagonal direction, while
Figs. S8 (e), (f), (g), and (h) for the off-diagonal direction. It can be observed that the altermagnetism in the Bi layer
resulted in a 30 meV energy gap in the edge states [see Fig. S8(b) and (e)]. We calculated the energy spectrum of the
finite size structure, and the wavefunction of in-gap states mainly distributed at corners as shown in Fig. S8(c). Given
that there are multiple atoms in a unit cell when different atoms are exposed at the boundary, the wave function
distribution of in-gap states will change, as shown in Fig. S8(d). Furthermore, when altering the direction of the Néel
vector into the off-diagonal direction, the gapped edge states remained[see Fig. S8(f)], and the spatial distribution of
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the corner states was regulated as shown in Figs. S8(g) and (h). In conclusion, manipulating the direction of the Néel
vectors can serve as an efficient means to regulate the behavior of the corner states.

VII. A MINIMAL TIGHT-BINDING MODEL FOR THE SANDWICH STRUCTURE

FIG. S9. (a)-(c) show the results of tight-binding model under the parameters λSOC = t = 1 eV, and r1 = r2 = 0.3 eV. (a)
The band structure was calculated. (b) The edge spectrum of the model with gapless edge state. (c) The Wilson loop of the
TI state is calculated by the model. (d)-(f) and (g)-(i) respectively show the results of the Néel vector along the diagonal and
off-diagonal lines under m = −J0 = 0.05 eV after adding the altermagnetism term. (d) The gapped edge spectrum of the
model with the diagonal Néel vector. (e) Spectrum for a finite-size square sample and Inset: Two in-gap topological corner
states emerge. The real spatial distribution of their wave function is plotted. (f) Same as (e) except changed the boundary
atoms. (g)-(i) The results same as (d)-(f) except the Néel vector is along off-diagonal direction.

In this section, a minimal tight-binding model is constructed to study the relationship between the Néel vector and
the corner state. In the basis of 1√

2
{|pAx ↑⟩ + |pAy ↑⟩, |pAx ↑⟩ − |pAy ↑⟩, |pBx ↑⟩ + |pBy ↑⟩, |pBx ↑⟩ − |pBy ↑⟩, |pAx ↓⟩ + |pAy ↓

⟩, |pAx ↓⟩− |pAy ↓⟩, |pBx ↓⟩+ |pBy ↓⟩, |pBx ↓⟩− |pBy ↓⟩}(A and B label the two atoms in the unit cell, and ↑, ↓ labels spin-up
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FIG. S10. Wilson loop calculations for higher-order topology. (a) Higher-order topological insulator phase: The Wilson loop
calculated using our model intersects the θ = π an odd number of times. (b) Trivial phase: The Wilson loop in the trivial
phase intersects the θ = π line an even number of times. (c) Wilson loop calculations for MnF2/Bi/MnF2 sandwich structure,
and intersects the θ = π an odd number of times.

and spin-down), the Hamiltonian has the following form

H(k) = −λSOCσysz + 4tτx

(
cos

kx
2

cos
ky
2

− σz sin
kx
2

sin
ky
2

)
+HRashba(k),

HRashba(k) = r1τzσz (sx sin kx − sy sin ky) + r2τz (sy sin kx − sx sin ky) ,

(S-24)

where τ , σ, and s label sublattices, orbital and spin degrees of freedom, respectively. The energy band along the high
symmetry path is shown in Fig. S9(a), which is consistent with the DFT result near the Fermi surface. In Figs. S9(b)
and (c), the edge states of the semi-infinite system and the Wilson loop of bulk are calculated, confirming that the
system is a non-trivial topological insulator.

To simulate altermagnetism in the MnF2/Bi/MnF2 sandwich structure, the following form is considered

HAM = mτzσz + J0τzs · n̂, (S-25)

where the first term breaks inversion symmetry while preserving S4 symmetry that couples the two sublattices, in
contrast, the last term represents the opposing spin between the two sublattices. The energy spectrum of the semi-
infinite system when the Néel vector is along the [11] and [11̄] directions are shown in Figs. S9(d) and (g), respectively.
The introduction of altermagnets breaks the time-reversal symmetry and leads to a gap of around 30 meV. To study
corner states, structures of finite size are considered and their energy spectrum is calculated as shown in Figs. S9(e,f)
and Figs. S9(h,i). It can be seen that there are two in-gap states in the energy spectrum and their wave functions are
located at the corners of the system. Similar to the DFT calculation, we also analyze the boundaries in Figs. S9(f)
and (i) to account for the presence of different atoms. This analysis reveals that, for a fixed Néel vector, the boundary
conditions affect the wave function distribution of the in-gap states. This finding is consistent with the results obtained
from the DFT calculations.

VIII. SYMMETRY AND TOPOLOGICAL CLASSIFICATION

In this section, we investigate the topological classification of the system and compute the topological invariant using
the Wilson loop method. When the Néel vector is confined to the x−y plane, the Hamiltonian (S-18) exhibits C2zT =
sxK symmetry with K representing complex conjugate and belongs to the Stiefel-Whitney (SW) classification [71, 72].
The topology can be characterized by the second SW invariant w2. To demonstrate this more clearly, we perform a
unitary transformation on H(k) using the operator U = exp(iπ/4sx), and obtain its real form H ′(k) = UH(k)U†

read as

H ′(k) = (m0 − 2tx cos kx − 2ty cos ky)σz +Ax sin kxszσx −Ay sin kysxσx

+ 2J0(cos kx − cos ky)sx + 2J0(cos kx − cos ky)sz.
(S-26)

The transformed Hamiltonian H ′(k) preserves C2zT = K symmetry, and its components are all real numbers. The
Wilson loop can serve as a diagnostic tool for calculating the second SW number w2. The number of times the Wilson
loop intersects with θ = π dictates the value of w2: an odd number of intersects signifies w2 = 1, while an even
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number signifies w2 = 0. A non-zero w2(w2 = 1) signifies a non-trivial SW insulator, characterized by the presence of
corner states.

For the Hamiltonian given by Eq. (S-26), the Wilson loop along the kx direction was calculated for both the
higher-order topological phase and the trivial phase, as shown in Figs. S10(a) and (b). It can be observed that in the
higher-order topological phase, the Wilson loop intersects θ = π an odd number of times, corresponding to w2 = 1,
while in the trivial phase w2 = 0. The Wilson loop for our devised MnF2/Bi/MnF2 sandwich structure was also
calculated, confirming w2 = 1, as shown in Fig. S10(c).
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