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Human Behavior Modeling via Identification of
Task Objective and Variability

Sooyung Byeon, Dawei Sun, and Inseok Hwang,

Abstract—Human behavior modeling is important for the
design and implementation of human-automation interactive
control systems. In this context, human behavior refers to a
human’s control input to systems. We propose a novel method
for human behavior modeling that uses human demonstrations
for a given task to infer the unknown task objective and the
variability. The task objective represents the human’s intent or
desire. It can be inferred by the inverse optimal control and
improve the understanding of human behavior by providing an
explainable objective function behind the given human behavior.
Meanwhile, the variability denotes the intrinsic uncertainty in
human behavior. It can be described by a Gaussian mixture
model and capture the uncertainty in human behavior which
cannot be encoded by the task objective. The proposed method
can improve the prediction accuracy of human behavior by
leveraging both task objective and variability. The proposed
method is demonstrated through human-subject experiments
using an illustrative quadrotor remote control example.

Index Terms—Data-driven modeling, Human-automation in-
teraction, Human behavior modeling, Human in the loop,
Human-vehicle systems.

I. INTRODUCTION

HUMAN behavior modeling has been widely investigated
in many applications such as driver assistance systems

[1]–[3], human-robot collaborated tasks [4]–[6], remotely pi-
loted systems [7], [8], and unmanned aircraft systems [9].
In these applications, human behavior means a human’s con-
trol input to systems. The systems refer to target platforms
operated by human operators such as automobiles, robots,
and quadrotors. Human behavior needs to be modeled and
predicted to enable automation to assist a human without
conflicting with the human’s intent [10]–[12]. An effective
human behavior model can provide high-quality information to
automation by observing and analyzing demonstrated human
behaviors [6]. Thus, human behavior models are crucial for
effective human-automation interaction.

Various human behavior modeling techniques have been
proposed for human-automation interactive control systems.
Some techniques are applied to parameterize the human
behavior model according to the given systems and envi-
ronment, using basis functions [13], [14]. In the field of
driving assistance, the human-in-the-loop steering dynamics
has been commonly constructed using model-based parameter
identification approaches [1], [15], [16]. The steering torque
of the human is modeled as a feedback and feedforward con-
troller of lateral position and look-ahead point with unknown
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modeling parameters. Parameters are determined by human-
subject experiments. However, these models heavily rely on a
pre-defined structure, which may not be available for a generic
human behavior model.

In the field of robotics, the learn-from-demonstrations (LfD)
or imitation learning methods have been widely considered
to train a behavior model from the human demonstrations
[17]. Probabilistic imitation learning approaches can account
for the stochastic properties and uncertainties of the human
behaviors [18], [19]. These methods take multiple human
demonstrations as the training data to learn high-dimensional
movements which are combined to model complicated behav-
iors. Probabilistic modeling techniques provide a trajectory-
level abstraction or an action-state-level abstraction of human
behavior [17]. However, these two abstractions only reproduce
a resultant trajectory or human behaviors without any explicit
reasoning underneath the observed human behaviors.

A task-objective-level abstraction can interpret the demon-
strated human behavior and it provides a higher-level under-
standing of human behavior modeling. The task-objective-level
abstraction can be learned by the inverse optimal control (IOC)
or the inverse reinforcement learning (IRL) approaches [20]–
[23]. The IOC has been applied to human motion characteriza-
tion in neuroscience and biomechanics fields, and its efficacy
has been validated by human-subject experiments [24]–[28].
However, these IOC methods cannot identify the parameters
related to stochastic behaviors. The maximum entropy IRL
has been proposed to address the stochastic or near-optimal
properties of the given human demonstrations, but it only
parameterizes the task-objective-level abstraction [29].

The existing modeling approaches are well-posed to infer
certain characteristics of human behaviors. Nevertheless, none
of them have addressed the aspect of human nature that
both human’s task objective [20], [30] and variability [31]
determine the observed behavior. The task objective reflects
the intent or desire of the human and it dominates the human’s
behavior for the given task. The task objective is consistent
over multiple demonstrations for the given task and it provides
the interpretations of the human demonstrations. Meanwhile,
the variability, defined as the uncertainty of human behavior,
introduces stochasticity in the observed demonstrations. The
variability would be inconsistent even for the same task, but
its pattern can be learned from multiple demonstrations. The
learned variability can be facilitated to improve the human
behavior model.

In this paper, we propose a novel human behavior modeling
method to address task objective and variability simultane-
ously. We provide an illustrative quadrotor remote control
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Fig. 1. The variability in a quadrotor landing scenario; a human operator
demonstrated the landing scenario for 30 times (M = 30) with the same
initial condition, but the demonstrated trajectories are varying for each trial
due to the variability.

example. In this example, the task is to land a quadrotor
safely on the designated landing pad with an appropriate final
position, velocity, and attitude. In Fig. 1, exemplar human
demonstrations are shown to clarify the motivation; the task
objective can be inferred from the mean human behavior.
The trajectory distribution is affected by the variability which
typically makes differences from the mean human behavior
for every trial, even for the same task. This is not due to an
external disturbance, but is an inherent characteristic of human
motor motion, which has been observed in many applications
[12], human factor [31], psychology [32], and ergonomics
[33]. It is known that variability in human performance may
include complex behaviors that cannot be modeled as a simple
white noise [34].

The proposed method aims to provide a key prerequisite
condition (i.e., precise human behavior prediction) for an
effective human-automation interactive control such as physi-
cal human-robot collaboration (pHRC) and shared control. In
industrial pHRC, predicting a human worker’s trajectory is
critical to prevent collision between the human and robots.
Robots can utilize the modeled human behavior for their
trajectory planning and task scheduling [35], [36]. In shared
control, automation can alleviate human workload and improve
system performance by arbitrating human input and automa-
tion input. However, if a human behavior model is not precise,
shared control schemes could conflict with the human’s intent
or desire (e.g., landing a quadrotor using different control
strategies) [4], [8], [16]. Thus, human behavior modeling is
also essential for shared control schemes.

Our contributions are given as follows. We experimentally
demonstrated that the proposed method has three noticeable
advantages over the existing methods. First, the proposed
method can provide interpretable information about the given
human demonstrations by inferring the task objective. Second,
the proposed method can also improve the prediction accuracy
of human behaviors for a future time-horizon and provide
a confidence level of that prediction. Lastly, the proposed
method is data-efficient, thus it can accurately predict future
human behaviors even with a small number of human demon-

strations or training data.
The rest of the paper is organized as follows. In Section II,

we formulate the problem and propose a human behavior mod-
eling method. Detailed parameter identification methods are
presented in Section III. Illustrative human-subject experiment
results are presented in Section IV. In Section V, conclusions
are drawn.

II. PROBLEM FORMULATION

We model human behaviors as a combination of the task
objective and the variability so that human behaviors in a new,
unseen situation can be accurately predicted. Mean behavior
over multiple human demonstrations can be represented as
the task objective which denotes the intent of a human for
a given task. Variation of human behaviors, which is caused
by an inherent uncertainty of the human motor motion, can be
modeled as the variability.

In the rest of this paper, the discrete-time linear time-
invariant (LTI) model is used to represent a system operated
by a human, similar to the other practical systems modeled as
the LTI plant [24], [37].

xk+1 = Axk +Buk, x0 is given (1)

where xk ∈ Rn, uk ∈ U ⊆ Rm, and x0 ∈ Rn denote the
state of the system, control input from a human, and initial
state, respectively. Note that the control input is equivalent to
the human behavior in this paper. k denotes the time index
and A ∈ Rn×n and B ∈ Rn×m are the system matrices. We
make the following assumptions on the system dynamics so
that the problem is well-posed. Note that these assumptions
are common in the related literature [24], [38].

Assumption 1. (A,B) is known and stabilizable.

Assumption 2. Rank(B) = m < n.

A. Human Behavior Model

The human behavior can be modeled as:

uk = ūk +wk (2)

where ūk ∈ Rm denotes the task-objective-based behavior
and wk ∈ Rm denotes the variability, respectively. Note
that ūk is the deterministic variable and wk is the stochastic
variable. In the proposed method, an unknown task objective
function which governs the task-objective-based behavior and
a set of parameters which represents the variability are iden-
tified.

1) Task Objective Model: The task-objective-based behav-
ior is assumed to minimize an unknown quadratic objective
function [8], [24] over an infinite-horizon with a constant
control gain K:

ūk = Kxk (3)

which is a linear-quadratic regulator (LQR) gain with cost
matrices {Q,R,S}. The task objective function of the infinite-
horizon LQR is given as:

J =

∞∑
k=0

(
xT
kQxk + uT

kRuk + 2xT
k Suk

)
. (4)
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Then, the control gain K is constrained by the followings:

K = −(R+BTPB)−1(BTPA+ ST ) (5)

P = ATPA− (ATPB+ S)(R+BTPB)−1

×(BTPA+ ST ) +Q
(6)

subject to
[
Q S
ST R

]
⪰ 0, R ≻ 0 (7)

where K ∈ Rm×n denotes the unknown task-objective-based
control gain; and Q ∈ Rn×n, S ∈ Rn×m, and R ∈ Rm×m are
unknown task objective matrices, respectively. R ≻ 0 denotes
the positive definite matrix R. P is the unique semi-positive
definite solution to the discrete-time algebraic Riccati equation
(DARE) in (6).

2) Variability Model: The variability which denotes un-
certainty of the human behavior could be a non-Gaussian
distribution and state-dependent as shown in Fig. 1. Thus, a
mixture of normal distributions with state-dependent mean and
covariance is used to model the variability. That mixture can be
merged into a single state-dependent normal distribution with
merged mean and covariance, by a product of the mixtures.
Then, the variability can be represented by

p(wk|xk) ∼ N (µk(xk),Σk(xk)) (8)

where µk(·) and Σk(·) are the unknown mean and covariance,
respectively. Since {µk(·),Σk(·)} depends on the state and
time index k, it can deal with time-varying and state-dependent
variability. The covariance provides a confidence level of of
the inferred variability.

B. Problem Statement

We propose a human behavior modeling method to predict
the future behavior accurately. The proposed method also
provides a confidence level of that prediction; e.g., predicting
uk+1 and its covariance at time step k in a new situation, by
exploiting the given human’s multiple demonstrations in vari-
ous situations {xj

k,u
j
k}

Nj ,M
k=1,j=1 where M denotes the number

of human demonstrations and Nj denotes the length of each
demonstration, respectively. For each demonstration, the initial
state xj

0 may be different. The proposed approach identifies
the unknown parameters {Q,R,S} and {µk(·),Σk(·)} sepa-
rately; an identified set of matrices {Q,R,S} denotes the task
objective of the human and an estimated set of state-dependent
mean and covariance {µk(·),Σk(·)} represents the variability.

III. PARAMETER IDENTIFICATION METHODS

In this section, methods are presented in details to identify
the parameters for the proposed human behavior model. Fig.
2 presents a block scheme of the proposed method.

A. Inverse Optimal Control

In many human-automation interactive frameworks, the IOC
has been widely used to model the human behavior [8], [21]–
[26], [30]. The IOC assumes that a human behaves based on
their task objective, which represents a performance measure
to be minimized by the human. The task objective is usually

unknown. Accordingly, the IOC is employed to identify the
implicit task objective as a form of an objective function,
from the human behaviors interacting with the known system
dynamics model. The problem to be addressed by the IOC
approach for modeling human behavior is given as follows.

Problem 1. From the given state of human demonstrations
{xj

k}
Nj ,M
k=1,j=1, identify a set of estimates K̂ and {Q̂, R̂, Ŝ}

where K̂ denotes the estimate of the task-objective-based
control gain in (3), which is constrained by the followings:

K̂ = −(R̂+BT P̂B)−1(BT P̂A+ ŜT ) (9)

P̂ = AT P̂A− (AT P̂B+ Ŝ)(R̂+BT P̂B)−1

×(BT P̂A+ ŜT ) + Q̂
(10)

[
Q̂ Ŝ

ŜT R̂

]
⪰ 0, R̂ ≻ 0, P̂ ⪰ 0 (11)

where {Q̂, R̂, Ŝ} denotes the estimate of the unknown task
objective in (5)-(7). The set of estimates {K̂, Q̂, R̂, Ŝ} rep-
resents the task objective model of the demonstrated human
behavior. P̂ denotes the solution of the DARE.

To guarantee the feasibility of Problem 1, an assumption
is given as follows. Note that Assumption 3 is automatically
satisfied if the human is capable of controlling the system
properly [8].

Assumption 3. K̂ is a stabilizing control gain. Equivalently,
|ρ(A+BK̂)| < 1 where ρ(·) denotes the spectral radius.

To obtain K̂ from the given human demonstrations, we
employ the least-square method [39]:

Ã = X′X† = argmin
Ã

∥X′ − ÃX∥2 (12)

where

X ≜ [x1
1, · · · ,x1

N1−1,x
2
1, · · · ,x2

N2−1, · · · ,xM
NM−1]

X′ ≜ [x1
2, · · · ,x1

N1
,x2

2, · · · ,x2
N2

, · · · ,xM
NM

]
(13)

and † denotes the pseudo-inverse. From Assumption 2, B†B =
Im where Im denotes the m × m identity matrix. Thus, the
estimate K̂ is determined by

K̂ = B†(Ã−A) (14)

Fig. 2. A block scheme of the proposed method.
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which represents the task-objective-based behavior in the
action-state-level abstraction. In the next step, {Q̂, R̂, Ŝ} is
determined to represent the task-objective-based behavior in
the task-objective-level abstraction. A convex optimization
problem with linear matrix inequality (LMI) constraints is
defined as follows to compute {Q̂, R̂, Ŝ} [24].

{Q̂, R̂, Ŝ, P̂} = arg min
Q,R,S,P

α2 such that (15)

P ⪰ 0 (16)

(R+BTPB)K̂+BTPA+ ST = 0 (17)

ATPA−P+ (ATPB+ S)K̂+Q = 0 (18)

In+m ⪯
[
Q S
ST R

]
⪯ αIn+m (19)

where α2 is minimized such that a scalar ambiguity is resolved
and a unique solution is found [38]. Since the feasibility of
(15) with constraints in (16)-(19) under Assumption 3 was
shown in [40], the solution of (15) always exists and is unique.

Remark 1. An estimate K̂ is not necessarily the same as K.
For instance, if wk is a linear function of xk, wk = Lxk+vk,
where L ∈ Rm×n, vk ∈ Rm, and vk ∼ N (0,Σv), then
K̂ = K+L. However, the identified K̂ represents a dominant
behavior of the demonstrated human behaviors, by solving a
least-square problem in (12), with any forms of the variability.
Thus, K̂ can be considered as a feasible estimate for the task-
objective-based behavior control gain.

Remark 2. In some practical applications, S = 0 is assumed
or preferred [24], [38]. However, if this is assumed, then
Problem 1 may not be feasible with an arbitrary stabilizing K
[40]. The inequality in (19) is more conservative than (7), but
it provides additional accuracy in computation by preventing
the solution of α from becoming too small.

B. Variability Parameter Identification

The variability is defined as an uncertainty in human be-
havior which appears in their multiple demonstrations [31].
It is intrinsically objective-less and stochastic, so the IOC is
insufficient for identifying the variability. In other applications,
it has been shown that stochasticity depends on the context,
such as the system states, environment, and mission objectives
[18], [19], [41]. In Fig. 1, for instance, in the quadrotor
landing mission, a human tends to be more consistent when
the vehicle is close to the landing pad. We propose a method
for learning variability from human’s multiple demonstrations.
The proposed scheme employs the Gaussian mixture model
(GMM) to model the variability whose stochastic properties
are possibly non-Gaussian and/or multi-modal, since the GMM
can represent a multi-modal and non-Gaussian distribution
as a mixture of multiple Gaussian distributions. Thus, the
accuracy of the modeling is improved compared with a single
zero-mean Gaussian approximation [18]. To train the GMM,
we use the expectation-maximization (EM) algorithm to find
parameters which maximize the log-likelihood [42], [43]. The
trained variability can be exploited in a new environment to
reproduce the variability, so that the accuracy of predicting the

human behavior can be improved. The following problem will
be addressed to identify the variability.

Problem 2. From the given human demonstrations
{xj

k,u
j
k}

Nj ,M
k=1,j=1 and an estimate K̂ from (14), identify

a set of parameters such that an estimate of the variability
can be modeled by those parameters.

ŵj
k ≜ uj

k − K̂xj
k (20)

p(ŵj
k|x

j
k) ∼ N

(
µ̂k(x

j
k), Σ̂k(x

j
k)
)

(21)

where {µ̂k(·), Σ̂k(·)} denotes the estimate of mean and co-
variance of the variability and the solution of Problem 2.

1) Encoding Variability: Probabilistic encoding methods
for the continuous movements have been widely applied to
robotics, imitation learning, and human motor skill modeling
[17], [18], [41]. The existing probabilistic approaches aim to
reproduce the learned movements in a new situation. We em-
ploy probabilistic movement encoding techniques in a different
context to model the variability of the human behavior [41].

The probabilistic encoding technique can model the condi-
tional probability p(ŵj

k|x
j
k) as a function of input and output.

This function is approximated as a GMM with unknown
parameters. In this formulation, the input is the state xj

k and
the output is the variability ŵj

k. The superscript j will be
omitted in the following discussion for simplicity. Let I and
O be representing the input ξIk and output ξOk , respectively.
At each time step k, the data point ξk is divided into the
input and output. The GMM encodes this data point with a
set of parameters {h̄i, µ̄i, Σ̄

i}Gi=1 where i ∈ {1, · · · , G} and
G denotes the number of Gaussian components.

ξk ≜

[
ξIk
ξOk

]
=

[
xk

ŵk

]
, µ̄i =

[
µ̄i,I

µ̄i,O

]
(22)

Σ̄
i
=

[
Σ̄

i,I
Σ̄

i,IO

Σ̄
i,OI

Σ̄
i,O

]
(23)

where h̄i ∈ [0, 1] denotes the priors (the probability that a data
point belongs to the i-th Gaussian component) and

∑G
i=1 h̄

i =

1. {µ̄i, Σ̄
i}Gi=1 denotes the mean and covariance of the i-th

Gaussian component. A set of parameters {h̄i, µ̄i, Σ̄
i}Gi=1 is

trained using the standard EM algorithm [41]–[43] from the
given human demonstrations. We employ the k-means algo-
rithm [44] to provide a good initial guess to the EM algorithm,
since the initial guess has an impact on the performance
and accuracy of the EM algorithm. The Gaussian mixture
regression (GMR) relies on the estimated GMM parameters
to compute the conditional probability p(ξOk |ξ

I
k ) = p(ŵk|xk),

with the current state xk = ξIk . At each time step k, the
conditional probability is estimated as a linear combination of
Gaussian distributions.

p(ŵk|xk) ∼
G∑
i=1

hi(xk)N (µ̂i
k(xk), Σ̂

i
) (24)
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where

µ̂i
k(xk) = µ̄i,O + Σ̄

i,OI
(Σ̄

i,I
)−1

(
xk − µ̄i,I)

Σ̂
i
= Σ̄

i,O − Σ̄
i,OI

(Σ̄
i,I

)−1Σ̄
i,IO

hi(xk) =
h̄iN

(
xk|µ̄i,I , Σ̄

i,I
)

∑G
g=1 h̄

gN
(
xk|µ̄g,I , Σ̄

g,I
) (25)

and N (x|µ,Σ) denotes a value of the Gaussian function with
input x, mean µ, and covariance Σ. hi(·) denotes the activa-
tion weight of each Gaussian component and ΣG

i=1h
i(xk) = 1.

The above multi-modal distribution can be approximated as a
single distribution [41].

p(ŵk|xk) ∼ N
(
µ̂k(xk), Σ̂k(xk)

)
(26)

where

µ̂k(xk) =

G∑
i=1

hi(xk)µ̂
i
k(xk)

Σ̂k(xk) =

G∑
i=1

hi(xk)
(
Σ̂

i
+ µ̂i

k(xk)µ̂
i
k(xk)

T
)

−µ̂k(xk)µ̂k(xk)
T .

(27)

Remark 3. The GMM parameter estimation requires a rela-
tively large amount of computation because the EM algorithm
requires iterative computation. However, the GMR with a
newly observed data point xk+1 at time step k+1 only requires
simple computation to obtain {µ̂k+1(xk+1), Σ̂k+1(xk+1)},
once the GMM parameter is stored in memory. Σ̂

i
and

Σ̄
i,OI

(Σ̄
i,I

)−1 can be computed offline to reduce the com-
putational load when µ̂i

k(xk) and hi(xk) are being updated.
In this regard, the proposed method can update the variability
online [41]. The merged distribution in (26) is preferred to
represent the distribution in a simpler form. Note that the
multi-modal distribution in (24) can be used when that mode
information is necessary.

2) Task-Parameterized Variability: A task parameter refers
to the variable which encodes environment, context, or situ-
ation of each demonstration, such as the initial position and
target position [41], [45], [46]. The learned GMM model can
be employed in different situations by simply changing the
task parameter. Thus, the task parameter has an important role
when the proposed human behavior modeling reproduces the
trained variability in a new situation.

In the proposed modeling scheme, a set of task parameters
represents the coordinate system which is used to observe
the human demonstrations. Each coordinate system is defined
as a set of linear transformation matrices Tp and bias (or
origin) bp of the observer with p ∈ {1, · · · , P} different
coordinate systems. Zp

k ∈ Rn+m denotes the demonstrated
human behavior at time step k, which is observed in the p-th
coordinate perspective, and it is represented as:

Zp
k = (Tp)−1(ξk − bp) (28)

where

Tp ≜

[
Tp,I 0
0 Tp,O

]
∈ R(n+m)×(n+m)

bp ≜

[
bp,I

bp,O

]
∈ Rn+m

(29)

and the GMM is trained in P different perspectives. The
GMM parameter is a set of {h̄i, {µ̄i,p, Σ̄

i,p}Pp=1}Gi=1, which
is learned using the EM algorithm. The learned task-
parameterized GMM model is merged into a single Gaussian
distribution to be used for reproducing the variability with a
new task parameter.

Σ̄
i
=

(
P∑

p=1

(
TpΣ̄

i,p
(Tp)T

)−1
)−1

µ̄i = Σ̄
i

P∑
p=1

(
TpΣ̄

i,p
(Tp)T

)−1 (
Tpµ̄i,p + bp

) (30)

and the merged Gaussian model with {h̄i, µ̄i, Σ̄
i}Gi=1, which

encodes all information in P different perspectives, is used
for the GMR to provide more generality for a new situation.
Comprehensive details, including inferring the task objective
and identifying the variability, are given in Algorithm 1.

Algorithm 1 The proposed human behavior modeling.
Input: System matrices (A,B) and human demonstrations

(training data) {xj
k,u

j
k}

Nj ,M
k=1,j=1.

Output: Inferred task objective {Q̂, R̂, Ŝ} and identified vari-
ability parameter {µ̂k(·), Σ̂k(·)}.

1: Solve the least-square problem in (12)-(14) to obtain K̂
from the given human demonstrations {xj

k,u
j
k}

Nj ,M
k=1,j=1.

2: Solve the convex optimization problem in (15)-(19) for
inferring the task objective {Q̂, R̂, Ŝ}.

3: for j ∈ {1, · · · ,M} do
4: for k ∈ {1, · · · , Nj} do
5: Generate ŵj

k = uj
k − K̂xj

k in (20).
6: end for
7: end for
8: Generate ξjk = [(xj

k)
T (ŵj

k)
T ]T .

9: for p ∈ {1, · · · , P} do
10: Generate the task-parameterized trajectory Zj,p

k =
(Tp)−1(ξjk − bp) as (28).

11: Zp = [Z1,p
1 , · · · ,Z1,p

N1
,Z2,p

1 , · · · ,Z2,p
N2

, · · · ,ZM,p
NM

]

12: Obtain {h̄i, µ̄i,p, Σ̄
i,p}Gi=1 by training the GMM with

the EM algorithm and G Gaussian components.
13: end for
14: Merge P different Gaussian components into a single

distribution {h̄i, µ̄i, Σ̄
i}Gi=1 with i = {1, · · · , G} as (30).

15: for i ∈ {1, · · · , G} do
16: Compute {µ̂i

k(·), Σ̂
i
} and hi(·) using (27).

17: end for
18: Merge G different Gaussian components into a single

distribution {µ̂k(·), Σ̂k(·)} as (27).
19: return {Q̂, R̂, Ŝ} and {µ̂k(·), Σ̂k(·)}.
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IV. HUMAN-SUBJECT EXPERIMENT

We demonstrate the proposed human behavior modeling
scheme using an illustrative quadrotor landing example. This
human-subject experimental study is approved by the Institu-
tional Review Board at Purdue University (protocol number:
IRB-2020-755). A single-subject case study and a multiple-
subject case study were conducted.

A. Testbed

A 3-DOF quadrotor landing simulator has been developed
as a testbed [8], [30] to conduct simulations and human-subject
experiments (Fig. 3). A human operator is requested to land a
quadrotor on the landing pad using a joystick by controlling
the quadrotor’s angular acceleration and thrust. Visual feed-
backs are given to the human operator via a monitor. The
discrete-time linearized quadrotor dynamics is adopted with
the state vector xk = [xk, yk, ϕk, ẋk, ẏk, ϕ̇k]

T , which consists
of the position (x, y), attitude (ϕ), velocity (ẋ, ẏ), and angular
velocity (ϕ̇) of the quadrotor. The linearized system dynamics
with respect to an equilibrium point [8], [47] is given by

A = I6 +∆t


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 g 0 0 0
0 0 0 0 k1 0
0 0 k2 0 0 k3

 (31)

B = ∆t


0 0
0 0
0 0
0 0
0 1/m

1/Ix 0

 (32)

where ∆t = 0.05 seconds denotes the time interval for
discretization, g = 9.8 m/s2 denotes the gravitational accel-
eration, {k1, k2, k3} = {−0.1,−1,−30} is a set of controller
parameters to stabilize the quadrotor, m = 0.25 kg is the mass
of the quadrotor, and Ix = 0.01 kg ·m2 denotes the moment
of inertia with respect to the rotational axis, respectively. The
control input is uk = [u1,k, u2,k]

T ∈ [−1, 1]2 where u1,k and
u2,k denote the angular acceleration and thrust, respectively.
The position domain X = [−3, 3]× [0, 3.5] in meter is fixed,
and the initial position of the quadrotor is randomly generated
and uniformly distributed in x0 ∈ [−2, 2] and y0 ∈ [2.5, 3],
respectively. All other initial states are set to zero. The mission
objective is to land the quadrotor with an appropriate final
speed (< 0.1 m/s) and final attitude (< 5◦) on the landing
pad.

B. Single-Subject Case Study

A single-subject case study was conducted to demonstrate
the proposed human behavior modeling approach. A human-
subject, who successfully landed the quadrotor more than
200 times in our pilot study, participated in the experiment.
The goal of this case study is to present detailed results
of the proposed method. We will show how the proposed

Fig. 3. (Left) Schematic diagram of the quadrotor landing simulator. (Right)
Physical configuration of the testbed with a human operator.

method provides explanatory factors for human behavior and
can accurately predict human behavior through variability
identification.

1) Procedure: Two different strategy-level objectives are
given to the human operator to test that the proposed modeling
approach can reveal and explain the difference between them.

• Control Strategy 1 (CS1): reduce the horizontal distance
from the origin first, and then go down to the landing
pad.

• Control Strategy 2 (CS2): move in a straight line to the
landing pad, while minimizing the attitude control.

Two types of data sets were obtained. First, the human-
subject conducted 30 trials for CS1, and then 30 trials for
CS2, as shown in Fig. 4 (total of 60 trials). One-minute break
was given between recording CS1 and CS2. This data set is
used as training data for the human model using the three
modeling methods (Algorithm 1, IOC-only, and GMR-only).
Second, after another one-minute break, the human-subject
conducted 3 trials for CS1, and then 3 trials for CS2 (total
6 additional trials). One minute break was given between CS1
and CS2. The second data set is used as testing data, i.e., the
modeling methods are employed to predict the future trajectory
of the second data set. Only the initial condition of the testing
data is provided to the modeling methods. Then, the modeling
methods can predict the future trajectory using the trained
human model. The testing data is regarded as the ground truth
to validate that the predicted trajectory is accurate.

The number of Gaussian components is set to G = 5 and
the task parameters

b1 =
[
xT
0 0 0

]T
, b2 =

[
xT
N 0 0

]T
(33)

T1 = I2, T2 =

[
cos(ϕN ) − sin(ϕN )
sin(ϕN ) cos(ϕN )

]
(34)

are used to train the proposed human model.
2) Task Objective Inference: For each control strategy, an

estimate K̂s and a corresponding task objective {Q̂, R̂, Ŝ}s
were obtained using the IOC technique in (15)-(19) where
s = {1, 2} denotes the index of each control strategy. K̂1 and
K̂2 are obviously different due to the discrepancy between
the two control strategies (∥K̂1 − K̂2∥F = 0.1254), but
this is not interpretable by itself. On the other hand, the
inferred task objective provides more information. In Fig.
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Fig. 4. Collected trajectories under (Left) CS1 and (Right) CS2.

Fig. 5. An inferred task objective {Q̂, R̂}s, s ∈ {1, 2} with normalization.
The red-box represents the third diagonal element of Q̂s (a quadratic cost
element on the attitude ϕ).

5, two inferred task objective sets, {Q̂, R̂}1 and {Q̂, R̂}2,
are visualized. Note that these task objective matrices are
normalized by dividing them with the maximum eigenvalues
of each augmented square matrix (in the form of (11)).
One noticeable point is that the difference between the third
diagonal element of Q̂1 and Q̂2 is much larger than that
between the other diagonal elements (e.g., Q̂2(3, 3) is about 46
times larger than Q̂1(3, 3)). It means CS2 is much conservative
in the attitude maneuver, compared with CS1, since these
elements represent the quadratic cost on the attitude. Thus,
the inferred task objective matrices can provide explainable
properties of human behavior, which may not be available
when only control strategies are compared. The inferred task
objective matrices can also be used as a performance measure
in human-automation interactive control schemes [8].

3) Variability Identification: The estimates of the variability
in (20) for the human demonstrations are shown in Fig. 6. The
corresponding mean and covariance from the GMR in (27)
are shown. Note that the mean and covariance of the GMR
{µ̂k(xk), Σ̂k(xk)} were computed using the system dynamics
(1), the testing data at time index k− 1, and the training data.
Thus, the GMR mean and covariance are used to predict the
variability a single step ahead. For each testing data set, the
variability is properly bounded by the GMR 3−σ error bound.
The proposed modeling approach can successfully identify
the variability. For all testing data, 97.8% and 95.2% of the

Fig. 6. The variability from a testing data set (blue solid-line). The inferred
variability mean (red dotted-line) and covariance (red area) from the training
data set and current state. The testing data and training data from CS1 are
used.

variability ŵk are within the 3 − σ error bound in average,
for each axis (w1 and w2). In Fig. 6, the GMR error bound
of w1 was adjusted in response to the sudden changes in the
variability at times around 2.5− 5.0 sec.

4) Trajectory Prediction: A comparison study was con-
ducted to compare the trajectory prediction accuracy of
three methods: the proposed modeling method, the IOC-only
method, and the GMR-only method. The trajectory prediction
is widely used to design human-automation interactive control
schemes such as shared control [8], [10], [16]. Thus, the
trajectory prediction for a finite time-horizon was examined.

In this comparison study, the quadrotor trajectories in three
seconds future time-horizon for the current states are predicted
by each method. The three-second horizon (or 60 steps in the
discretize-time system since ∆t = 0.05 seconds) is about 25%
portion of each entire trial since the average landing time was
about 12 seconds. For each modeling method, the predicted
human control input ûk for k ∈ [0, 59] is computed for a
given initial state x0 = x̂0. Since the system dynamics is
given in (1), we can propagate the predicted trajectories x̂k =
Ax̂k−1 + Bûk−1 for k ∈ [1, 60] using the predicted human
control input. In the proposed method, the control input is
predicted as ûk = K̂x̂k + µ̂k(x̂k). In the IOC-only method,
the predicted human input is given by a feedback control form
ûk = ūk = K̂x̂k. The GMR-only method identifies the mean
and covariance of p(ûk|x̂k) directly from the given human
demonstrations. The methodology applied here is the same as
(22)-(30), except that ŵk is replaced by ûk. See Appendix for
the details.

To investigate the prediction accuracy, we employed the
testing data. Let x̃k for k ∈ [0, 60] be the recorded quadrotor
trajectory in the testing data. Only the initial state x̃0 is
provided to each modeling method, i.e., x̂0 = x̃0 to predict
the future trajectory. Then, we use the quadrotor trajectory in
the testing data as the ground truth to compute the root mean
square error (RMSE).

RMSE =

√∑Nh

k=1∥x̂k − x̃k∥2
Nh

(35)
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Fig. 7. Comparison of the trajectory prediction errors for a finite time-horizon.
This is an illustrative result from a single testing data set in CS1.

where Nh denotes the length of the prediction horizon, i.e.,
Nh = 60 in this case.

In Fig. 7, the trajectory prediction errors using the three
different methods are presented in a single testing data set
from CS1. Figure 8 demonstrates the trajectory prediction
accuracy of all testing data sets (three testing data sets from
CS1 and three testing data sets from CS2). The RMSE of
the predicted position vector [xk yk]

T and that of the velocity
vector [ẋk ẏk]

T are presented separately. The proposed method
provides the most accurate results compared with the other
two methods in terms of the RMSE. For the position error,
the proposed method has 19.1% and 40.8% lower errors on
average than the IOC-only and GMR-only, respectively. For
the velocity error, the proposed method has 15.6% and 42.5%
lower errors on average than the IOC-only and GMR-only,
respectively. The identified variability further improves the
trajectory prediction accuracy over the IOC-only method. It
is shown that the GMR-only method is data-inefficient; a
possible explanation is that the GMR-only method cannot
account for the structured task-objective-based behavior ex-
plicitly, which reduces the model accuracy when the amount
of the training data is limited. On the other hand, the proposed
method can predict human behavior more accurately, even
with a small amount of data, by encoding the variability. The
proposed method utilizes the IOC method to identify the task-
objective-based behavior which dominates the modeled human
behavior.

C. Multiple-Subject Case Study

We recruited 10 additional human-subjects to conduct a
multiple-subject case study. All human-subjects were not
exposed to the quadrotor simulation environment before the
experiment. The main purpose is to show that the proposed
method can account for different personal characteristics by
providing customized models for each human-subject. Note
that the only requirement for the human-subjects was to land
the quadrotor consistently and safely without crashing. The
consistency was requested to identify their personal behavioral
patterns. The safety was required to meet Assumption 3. No
specific control strategy was demanded.

Fig. 8. (Top) The RMSE of the predicted position vector [xk yk]
T and

(Bottom) that of the predicted velocity vector [ẋk ẏk]
T for 60 time steps

between each method and the testing data.

1) Hypothesis and Procedure: A hypothesis to be tested is
given as follows.

• Hypothesis: The proposed method can predict future
human behavior in the quadrotor landing scenario with
higher accuracy compared to two baseline methods, the
IOC-only and the GMR-only.

We provided basic information to all subjects regarding the
experiment using the same material for about five minutes. The
experiment procedure is composed of two phases: first, each
subject is allowed to practice the quadrotor landing scenario
with 10 minutes time limit. Their data is not recorded in
this phase. A five-minute break follows. Second, each subject
performs the landing mission 11 times. Their data is recorded
in this phase. Among the recorded data, one trajectory is
randomly chosen as testing data. The remaining 10 trajectories
are used as training data. A prediction time-horizon is set to
five seconds for the multiple-subject case study because the
average time to land (about 15 seconds) is slightly larger than
the single-subject case study (about 12 seconds).

Figure 9 shows 10 testing data (actual quadrotor trajectories
in testing data of each human-subject) and the predicted
quadrotor trajectories using the three modeling methods. Note
that the quadrotor trajectories are predicted using 10 different
human models (one model for each human-subject). In Fig. 10,
the trajectory position prediction accuracy for each modeling
method is presented as a box plot. We use the analysis of
variance (ANOVA) for statistical testing [48]. The ANOVA
test reveals that there are significant differences between
groups (modeling methods) in the position prediction accuracy
(F (2, 27) = 4.55, p = 0.02, η2 = 0.25). We also used the
pairwise T-tests for multiple groups. A conventional symbol
(∗) is used in Fig. 10 to represent a significant p-value:
∗p < 0.05. The result shows that the proposed method is
significantly more accurate in position prediction compared to
the IOC-only and the GMR-only.

In Fig. 11, the RMSE of the predicted velocity is presented.
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Fig. 9. The testing data in the multiple-subject case study and the predicted
trajectories for 5 seconds from the initial conditions using each modeling
method.

Fig. 10. The RMSE of position for 5 seconds between the predicted trajectory
using each method and the testing data.

The statistical testing results reveal that there are no significant
differences between groups in the velocity prediction accuracy
(F (2, 27) = 3.32, p = 0.052, η2 = 0.20). Nevertheless,
the velocity prediction accuracy of the proposed method is
improved by 26.3% and 27.5% compared to the IOC-only and
GMR-only, respectively. We can explain this result: since the
trained human behavior model utilized the system dynamics
(1), position, and velocity information, the prediction for the
position is relatively accurate due to the imposed dynamic
constraint. If one wants to predict velocity with higher accu-
racy, acceleration information can be measured and used. The
system dynamics model needs to be extended accordingly.
Then, the input to the GMM can incorporate acceleration
information so that the velocity prediction accuracy can be
enhanced.

V. CONCLUSION

A human behavior modeling method that can account
for not only the task objective but also the variability was
proposed to describe and predict human behaviors. The pro-
posed modeling method employed the inverse optimal control
(IOC) approach to identify the task objective from the given
human demonstrations. Then, the Gaussian mixture model
(GMM) and Gaussian mixture regression (GMR) methods

Fig. 11. The RMSE of velocity for 5 seconds between the predicted trajectory
using each method and the testing data.

were used to estimate and parameterize the variability which
is the uncertainty in human behavior and cannot be captured
by the task objective. We demonstrated the efficacy of the
proposed modeling method via human-subject experiments
using a quadrotor landing scenario. The results showed that
the proposed method can provide an explainable task objective
function for the given human demonstrations and also infer
the probabilistic distribution of the variability. The prediction
accuracy for human behavior was improved compared to the
IOC-only method and the GMR-only method. The identified
variability parameter can also provide a confidence level of
the variability in terms of the covariance.

APPENDIX

The GMR-only method is used for the comparison study
in Section IV. This method encodes the human behavior
uk directly, instead of extracting the variability. Similar to
(22)-(23), the input and output of the conditional probability
p(uk|xk) are modeled as:

ξ′k ≜

[
ξ

′I
k

ξ
′O
k

]
=

[
xk

uk

]
, µ̄

′i =

[
µ̄

′i,I

µ̄
′i,O

]
(36)

Σ̄
′i
=

[
Σ̄

′i,I
Σ̄

′i,IO

Σ̄
′i,OI

Σ̄
′i,O

]
(37)

Then, a set of GMM parameters {h̄′i, µ̄
′i, Σ̄

′i}Gi=1 can be
estimated using the EM algorithm. The estimated GMM
parameters are exploited by the GMR method to compute the
conditional probability p(uk|xk) using (24)-(27), by replacing
{h̄i, µ̄i, Σ̄

i}Gi=1 to {h̄′i, µ̄
′i, Σ̄

′i}Gi=1. The task-parameterized
GMM is learned as well, using (28)-(30).
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