
Bi-CL: A Reinforcement Learning Framework for Robots Coordination
Through Bi-level Optimization

Zechen Hu, Daigo Shishika, Xuesu Xiao, and Xuan Wang

Abstract— In multi-robot systems, achieving coordinated mis-
sions remains a significant challenge due to the coupled nature
of coordination behaviors and the lack of global information
for individual robots. To mitigate these challenges, this paper
introduces a novel approach, Bi-level Coordination Learning
(Bi-CL), that leverages a bi-level optimization structure within
a centralized training and decentralized execution paradigm.
Our bi-level reformulation decomposes the original problem
into a reinforcement learning level with reduced action space,
and an imitation learning level that gains demonstrations from
a global optimizer. Both levels contribute to improved learning
efficiency and scalability. We note that robots’ incomplete
information leads to mismatches between the two levels of
learning models. To address this, Bi-CL further integrates an
alignment penalty mechanism, aiming to minimize the discrep-
ancy between the two levels without degrading their training
efficiency. We introduce a running example to conceptualize the
problem formulation and apply Bi-CL to two variations of this
example: route-based and graph-based scenarios. Simulation
results demonstrate that Bi-CL can learn more efficiently and
achieve comparable performance with traditional multi-agent
reinforcement learning baselines for multi-robot coordination.

I. INTRODUCTION

Multi-robot systems have extensive applications in vari-
ous engineering fields, but their deployment relies on scal-
able algorithms that enable robots to make coordinated
and sequential decisions using local observation [1]. To
this end, Centralized Training with Decentralized Execution
(CTDE) [2] emerges as a promising approach, offering a
balanced framework for coordinating multiple robots through
centralized learning processes that guide decentralized oper-
ational decisions. However, the effectiveness of CTDE faces
significant challenges as the dimensionality of action spaces
expands and each robot only has local observation of the
system. These challenges complicate the training process and
potentially impedes practical deployment.

In this context, we note that multi-robot cooperative
missions often exhibit inherent hierarchical structures, al-
lowing them to be decomposed into high-level and low-
level tasks [3]. For instance, rescue missions utilize teams
of robots to search large or hazardous areas [4]–[7], where
a high-level planning task may focus on area coverage,
and a low-level task may address navigation and obstacle
avoidance. A similar scenario arises from warehouse au-
tomation [8], where high-level tasks involve managing robot
fleets for picking, packing, and sorting, and low-level tasks
ensure precise and safe navigation in densely populated
environments. Nevertheless, in most cases, the decomposed

George Mason University. {zhu3, dshishik, xiao,
xwang64}@gmu.edu.

Guard Risk

Risk

Guard

Move

Move

Fig. 1: A running example for a firefighting scenario. Robots
can simultaneously perform two actions: move (to where)
and guard (which adversary). Team reward depends on the
risk of fire, which is a coupled function of both actions.

problems are internally coupled by state dependence, which
can not be solved independently. Bi-level optimization [9]
presents a solution to this issue, with the capability of
enhancing learning efficiency and stability while maintaining
the explicit connections between the two levels of problems.
However, despite the abundance of research on addressing
such coupling in static optimization problems for both single-
agent [10] or multi-agent [11] cases, there remains a scarcity
of studies tailored for multi-agent reinforcement learning
(MARL) under CTDE with robots’ local observation. This
gap motivates our research to develop new approaches that
leverage the benefits of bi-level optimization for reinforce-
ment learning applications in multi-robot systems, thereby
enhancing their deployment efficiency across a variety of
complex and dynamic environments.
Statement of contribution: The contributions of this pa-
per include (i) the formulation of a bi-level Decentralized
Markov Decision Process (Dec-MDP) for multi-robot co-
ordination; (ii) a Bi-level Coordination Learning (Bi-CL)
framework with a novel alignment mechanism to integrate
multi-agent reinforcement learning and imitation learning
under the CTDE scheme; (iii) simulated experiments that
verify the effectiveness of the proposed Bi-CL algorithm
and a comparison with traditional MARL algorithms to solve
multi-robot coordination tasks.
Running Example: As visualized in Fig. 1, we introduce
an example throughout this paper to conceptualize and
verify the proposed bi-level approach for learning multi-robot
coordination. Consider multiple robots traversing an area
with multiple adversaries. During their traversal, each robot
suffers risk or damage from adversaries accumulated over

ar
X

iv
:2

40
4.

14
64

9v
1

 [
cs

.R
O

]
 2

3
A

pr
 2

02
4

time, if it enters their impact range. We use robots’ states
to represent their physical locations. Each robot has two
decomposable actions: the action of move and the action of
guard, which are performed simultaneously. The move action
changes the robot’s locations in the environment. In each
step, the relative positions of robots to adversaries determine
a base risk the robot accumulates. The guard is an additional
action each robot can choose to perform against an adversary,
which increases its own risk but reduces the risks that this
adversary poses to other robots. Our goal is to minimize the
accumulated risk and traveling time for all robots to arrive
at a target position, given each robot only has local (partial)
observation of the system.

Depending on the weights in performance evaluation, the
team may face trade-offs between strategies. For example,
each robot may move along the shortest path to reach the
target as soon as possible v.s. spending more time to form
guard behaviors to reduce team risk. These strategies boil
down to robots’ interdependent decision-making regarding
move (to where) and guard (which adversary) at each time
step, making the problem non-trivial. On the other hand,
as a key idea this paper highlights, the move and guard
actions of robots in this scenario exhibit a hierarchical
structure. This structure can be leveraged through a bi-level
reformulation, which simplifies the problem’s complexity
while still characterizing the interdependencies between the
robots’ two types of actions.

The same scenario discussed above applies to a handful of
applications for multi-robot coordination, such as firefight-
ing considering fire as adversaries; battlefields considering
enemy robots as adversaries; and team car racing or football
games considering non-cooperative players as adversaries.

II. LITERATURE REVIEW

A. MARL for Multi-Robot Coordination

Reinforcement Learning (RL) has gained significant popu-
larity for controlling robotic systems for complex tasks [12].
Using RL for multi-robot systems faces the challenge of
increased system dimension and the need for robots to make
decisions based on local observations. Addressing these
challenges has led to the development of the CTDE [2]
learning scheme, which enables robots to cooperatively learn
coordination strategies through centralized training, while the
learned policies are local and, thus, can be deployed for
decentralized execution. Examples include MADDPG [2],
which extends the centralized Deep Deterministic Policy
Gradient (DDPG) framework to multi-robot systems. A
similar case applies to Proximal Policy Optimization (PPO)
algorithm and its generalization MAPPO [13]. While these
approaches might be concerned with state dimensionality
during centralized training, recent advances, such as Value-
Decomposition Networks (VDN), can be leveraged to de-
compose the joint value function into individual value func-
tions for each robot [14]. Building on this, QMIX further
extends the framework, allowing for a more complex, state-
dependent mixing of individual robot’s value functions to
learn coordinated behaviors [15].

These CTDE approaches often rely on end-to-end learn-
ing, which cannot leverage the hierarchical structures of
robot actions considered in this paper. In addition, their
performance and training efficiency may significantly de-
grade [16] if each robot’s local observation covers only
parts of the state space. Such local observation leads to a
Decentralized Markov Decision Process (Dec-MDP), whose
complexity is NEXP-complete [17]. In this case, even a slight
reduction in the state/action space can have a huge impact
on the overall computational complexity.

B. Bi-level Optimization

Regarding state/action space reduction, bi-level optimiza-
tion is a hierarchical mathematical formulation where the
solution of one optimization task is restricted by the solution
set mapping of another task [9]. In recent years, this tech-
nique has been incorporated with various machine learning
methods for nested decision-making, including multi-task
meta-learning [18], neural architecture search [19], adver-
sarial learning [20], and deep reinforcement learning [21].
The applications of these bi-level learning approaches span
economics, management, optimal control, systems engineer-
ing, and resource allocation problems [22]–[25], with a
comprehensive review by Liu et al. [9]. Corresponding to the
scope of this paper, when solving multi-robot coordination
problems, bi-level decomposition has been introduced [11],
[26] for actor-critic MARL to reduce the training burden
of each level, thus improving the training efficiency and
convergence. Le et al. [27] uses latent variables to introduce
a mechanism similar to bi-level optimization that can sig-
nificantly improve the performance of multi-agent imitation
learning.

Nevertheless, a commonality among the mentioned works
is the assumption that robots (agents) can access complete
state information of the system. In cases where each robot
has only partial information, the incomplete information can
lead to a mismatch between the optimal solutions on the two
levels. This challenge has motivated our work to incorporate
an alignment penalty in order to generalize the bi-level op-
timization concept under CTDE, taking into account robots’
local observations.

III. PRELIMINARIES AND PROBLEM FORMULATION

A. Formulation of a Bi-level Optimization

A regular centralized Markov Decision Process (MDP)
can be defined by a tuple (S,A, T , γ, R), including state,
action, state transition, discount factor, and reward. The goal
is to learn a policy π : S → A to maximize the expected
cumulative reward over the task horizon T , i.e.,

max
π

E
at∼π(·|st)

[
T∑

t=0

γtRt

]
, (1)

where at ∈ A and st ∈ S are the action and state of the
system at each step.

Let’s assume the actions of the system can be decomposed
as at = {xt,yt} ∈ X ×Y , and the system’s state transition

Environment

Critic

RL policy

Optimizer (cf. equation 4b)

Fig. 2: A Centralized Bi-level Optimization for RL.

depends only on action xt such that T : S × X → S:

st+1 = T (st,xt). (2)

However, the reward function depends on both actions:

Rt = U(st,xt,yt). (3)

If the structure of problem (1) satisfies (2) and (3), it can be
formulated into a bi-level problem:

max
π̂

E
xt∼π̂(·|st)

[
T∑

t=0

γtU(st,xt,y
∗
t (st,xt))

]
, (4a)

s.t. y∗
t (st,xt) = argmax

yt

U(st,xt,yt). (4b)

In this paper, we make the following assumption:

Assumption 1. Problem (4a) is complex such that π̂ is solved
using a reinforcement learning (e.g. actor-critic method),
whereas problem (4b) can be solved explicitly and be de-
scribed as a mapping f : S × X → Y .

The assumption can be justified by the fact that (4a) is a
planning problem involving state transitions and rewards for
future T steps, while (4b) only involves a one-step reward.

Under Assumption 1, for the lower level problem (4b),
the optimal y∗

t is solvable from f : S × X → Y , based
on the current st and the choice of xt. Bringing this
solution back to the upper level (4a), we only need to solve
a reduced-dimension MDP defined by (S,X , T , γ, R), to
obtain a policy π̂ : S → X that generates action xt.
During implementation, the policy π in problem (1) can be a
composition of π = π̂ ◦ f . We learn the policy π̂ to generate
xt from st, then use f to generate yt from {st,xt}. Fig.
2 provides a visualization of this bi-level mechanism builds
on actor-critic reinforcement leaning.

B. Bi-level Formulation for Multi-robot Coordination Learn-
ing with Local Robot Observation

In this paper, we generalize the bi-level formulation into a
multi-robot system with local observation. Consider a multi-
robot system with a set of n = {1, · · · , n} robots. Suppose
the centralized actions and states in (1) are decomposed into
each robot’s state and action as st = {s1t , . . . , snt } ∈ S and
at = {a1t , . . . , ant } ∈ A. Assume each robot’s action can
be further written as ait = {xi

t, y
i
t}, where the action xi

t

determines the robot’s local state update sit+1 = T i(sit, x
i
t).

The multi-robot system shares a global reward determined by
all robots’ states, and their two actions: Rt = U(st,xt,yt).

Other Robots

Local
Observation

State
Aggregation

Local information and model for
Decentralized Execution

Global Information for
Centralized Training

Environment

Critic

Optimizer & Alignment Penalty (cf. equation 6c)

Robot 𝒊𝒊 actor
RL policy IL policy

MAIL

MARL Other Robots

Fig. 3: A Bi-level Coordination Learning (Bi-CL) Algorithm:
incorporating multi-agent reinforcement learning (MARL)
and imitation learning (MAIL), guided by a global optimizer.

For many real-world applications, the deployment of a
multi-robot system faces communication and sensing con-
straints, where each agent may only have access to the states
of its neighbors through a network, denoted by set Ni. The
neighbors’ states are a subset of the full system state, denoted
by sNi

t ⊊ st. Such local observation turns the problem into
a Dec-MDP. Under this constraint, the problem of interest
in this paper is to learn a local policy πi for each agent such
that:

max
πi

E
ai
t∼πi(·|sNi

t)

[
T∑

t=0

γtRt

]
. (5)

While solving Dec-MDP problems is known to be diffi-
cult [17], in this paper, we will generalize the idea of bi-level
optimization under the scheme of CTDE and use action space
reduction to alleviate the challenges in high-dimensional
parameter tuning for MARL. Note that such a generaliza-
tion is non-trivial and the main challenge lies in the local
observation and local decision-making of each robot using
incomplete information. As a consequence, compared with
the centralized case, the robots cannot solve an optimization
problem like (4b) to directly determine their secondary action
yit.
Running Example. We demonstrate how formulation (5)
aligns with the running example. Let state sit represent
robots’ physical locations. The move action is associated with
xi
t, which impacts the robots’ state update. The guard action

is associated with yit. The risk function (negative reward) U
in each time step depends on the robots’ current locations
sit, their move xi

t, and how robots are guarding against
adversaries, i.e., yit. Thus, the scenario satisfies (2)-(3) and
can be reformulated into a multi-robot bi-level optimization
problem. All robots only receive states from their neighbors
sNi
t ⊊ st, through an underlying network.

IV. MAIN APPROACH

As described in Sec. III-A, the centralized bi-level formu-
lation leverages the optimizer (4b) to reduce the dimensional-
ity of the action space, thereby enhancing training efficiency.
However, such optimization requires global information,

which is not accessible to robots during decentralized exe-
cution. Thus, robots cannot locally generate yit

∗. To address
this issue, in this section, we introduce a new reformulation
to generalize the concept of bi-level optimization to a CTDE
setup.

To present our approach, we reformulate (5) into the
following Bi-level Coordination Learning (Bi-CL) problem,
∀i ∈ {1, · · · , n},

max
π̂i

E
xi
t∼π̂i(·|sNi

t)

[
T∑

t=0

γtU(st,xt,y
⋆
t (st,xt))

]
, (6a)

min
ηi

E
yi
t∼ηi(·|sNi

t ,x
Ni
t)

∥yit − yit
∗
(st,xt)∥2, (6b)

s.t. y⋆
t (st,xt)=argmax

yt

U(st,xt,yt)−ck

n∑
i=1

Hi(y
i
t, η

i))︸ ︷︷ ︸
alignment penalty


(6c)

In equations (6a) and (6b), we aim to train two local policies
for each robot: one policy, π̂i : SNi → X i, generates action
xi
t; another policy, ηi : SNi × XNi → Yi, generates action

yit. Note that the two policies are coupled since their inputs
rely on the outputs of each other. If training two policies
simultaneously, such coupling can pose a stability issue and
reduce training efficiency. To address this, our idea is to
introduce a global optimizer (6c) under the CTDE scheme
to decouple and guide the training of both policies, as we
explain next and visualized in Fig. 3.
Bi-level optimization: First, we introduce optimization prob-
lem (6c) to solve y⋆

t . If temporarily ignoring the alignment
penalty term, the equations (6a) and (6c) together represent
a CTDE version of the bi-level problem (4). During the cen-
tralized training process, we can utilize global information
for all robots’ states st and actions xt to solve y⋆

t . Based
on y⋆

t (st,xt), we train the local policy π̂i in (6a) for each
agent’s xi

t using a reinforcement learning scheme. π̂i has a
reduced-dimension action space because y⋆

t is not learned.
On the other hand, while optimizer (6c) can be used in

centralized training to obtain action y⋆
t for all robots, it

cannot be used by robots during decentralized execution due
to the local observations. Thus, we introduce (6b) to train a
local policy ηi to generate agent’s yit. The policy ηi can be
trained conveniently using an imitation learning (IL) scheme
that uses optimizer (6c) as the expert demonstration. Here,
the imitation loss in (6b) measures the difference between
the policy output yit using local information and the optimal
action solved from optimizer (6c) using global information.
Alignment of the two policies: We explain the alignment
term in (6c). Based on the above explanation, the policy π̂i

is trained assuming the actions y⋆
t = {y1t

∗
, · · · , ynt ∗} are

optimal for all robots, and the policy ηi seeks to generate
such optimal actions using only local information. Clearly,
during decentralized execution, the optimality of ηi can
hardly be guaranteed, thus creating a mismatch between the
policies π̂i and ηi. To address this, we introduce an alignment

Algorithm 1: The Bi-CL Algorithm

1 Initialize local RL models π̂i(sNi |θπ̂i) and IL
models ηi(sNi , xNi |θηi) for all robots. Initialize
centralized critic Q(s,x|θQ) if needed;

2 Initialize alignment penalty co-efficient ck;
3 for k = 0 to Tk do
4 Update coefficient ck = c

1+e−β(k−h) ;
5 for t = 0 to Tt do
6 for i = 1 to n do
7 Get action: xi

t by adding random
perturbation to π̂i(sNi

t |θπ̂i);
8 Get action: ŷit = ηi(sNi

t , xi
t|θηi);

9 State update: sit+1 = T i(sit, x
i
t);

10 end
11 Solve argmaxyt

[U(st,xt,yt)− ck
∑n

i=1 Hi]
to obtain y⋆

t ;
12 Observe reward Rt = U(st,xt,y

⋆
t);

13 Record (st,xt,y
⋆
t , Rt, st+1) to a fixed size

buffer B with first-in-first-out;
14 Sample (sτ ,xτ ,y

⋆
τ , rτ , sτ+1) from B as a

random minibatch of size w;
15 Update critic network θQ using the minibatch,

if critic exist;
16 for i = 1 to n do
17 Update IL learning model θηi using the

minibatch;
18 Update RL learning model: θπ̂i using the

minibatch;
19 end
20 end
21 end

penalty term ck
∑n

i=1 Hi(y
i
t, η

i)) in (6c), where ck > 0 and

Hi = E
ŷi
t∼ηi(·|sNi

t ,x
Ni
t)

∥yit − ŷit∥2.

Here, ŷit is the output of the model ηi, then Hi evaluates
how well an action yit aligns with the policy ηi. Minimizing
this penalty helps to reduce the mismatch between the two
local policies. Mathematically, the value of Hi for each robot
equals the loss in (6b). Hence, ck is an important coefficient
and we shall remark on its choice during the training. If ck →
0, the reformulation (6) disregards the policy mismatch,
always opting for the solution that maximizes U to train π̂i.
Conversely, when ck → ∞, the penalty forces the training
of π̂i using the action chosen by ηi, making the two policies
fully coupled, and the IL (6b) no longer updates. To strike a
balance, our idea is to make sure the IL model is sufficiently
trained before the penalty is applied. For this purpose, we
define a modified logistic function:

ck =
c

1 + e−β(k−h)
with c > 0, β > 0, h > 0 (7)

where k is the training episode. We let ck start with zero
to ‘jump start’ the training of π̂i and ηi using the optimal
y⋆
t for maximizing U . Afterwards, ck is gradually increased

to a sufficiently large value c to fine-tune π̂i, taking into
account the output of ηi and ensuring alignment between
the two policies, π̂i and ηi. The described training scheme
is summarized in Algorithm 1.

Remark 1. In the presentation of Algorithm (1), we as-
sume the use of actor-critic-based methods for (6a) and
a quadratic mismatch function for the imitation loss (6b).
However, the proposed algorithm is also applicable to gen-
eral CTDE setups when using other reinforcement learning
and imitation learning methods. Furthermore, in handling
the local observations of robots, there exist more advanced
methods [28, Sec. 2.2.2] in the literature on Dec-MDPs
and POMDPs that leverage the memory (historic states) of
robots to learn more powerful policies. In this paper, we only
use simple memory-less policies, but these more advanced
methods are also compatible with Algorithm (1).

V. NUMERICAL RESULTS

In this section, we employ two variants of the running
example to verify the proposed algorithm. We use simulated
experiments to demonstrate: (i) the effectiveness of the pro-
posed bi-level learning schemes, in particular, the alignment
penalty term; (ii) the advantage of the proposed approach in
terms of training efficiency compared with alternative MARL
algorithms.

Through this section, we use the accumulated reward (5) to
evaluate the proposed Bi-CL algorithm. To avoid ambiguity,
we distinguish the following metrics:
RL-Reward: refers to the reward of the reinforcement learn-
ing policy π̂i when solving (6a) during centralized training.
T-Reward: refers to an average reward obtained by executing
both the learned reinforcement learning policy π̂i and imita-
tion learning policy ηi in the environment for thirty times.
R-Gap: refers to the subtraction between the RL-Reward and
the T-Reward.

Remark 2. Note that RL-Reward and T-Reward are different
because they use different ways to choose robots’ action yit.
RL-Reward uses an ‘optimal’ solution y⋆

t = {y1t
⋆
, · · · , ynt ⋆}

of (6c); T-Reward uses output of the learned policy ηi. Only
the T-Reward reflects the true performance of the policies
because it is achievable during decentralized execution, and
higher means better. Since R-Gap evaluates the difference,
smaller means better.

A. Coordinated Multi-robot Route Traversal

Running Example (a): We introduce a variant of the running
example, by assuming all robots travel continuously through
a route. Each robot can only observe a subset of full system
states through an underlying communication network. Fig.
4 provides a visualization of the environment. The testing
environment we use is a mathematical abstraction that may
not exactly follow its physical layout and the number of
adversaries may change.
• Each robot i has a continuous move action (velocity)
xi
t ∈ [−vmax, vmax], and a discrete guard action yit ∈ M

where M is the set of all adversaries. The robot i’s state

Fig. 4: Running Example (a): all robots travel along a route.

transition (position) follows dynamics sit+1 = sit+xi
t. These

align with definition (2).
• Suppose adversary j ∈ M has an impacted area Bj . Each

time-step, if sit ∈ Bj , robot i accumulates a cost cj(s
i
t).

Besides, for any robot k, if skt ∈ Bj , it can perform guard
against adversary j, i.e., ykt = j. The guarding effect is
characterized by a discount factor on the costs created by
adversary j:

αk,j
t (xk

t , y
k
t) =

{
1− β

(vmax−xk
t)

vmax
ykt = j,

1 otherwise.

Such a discount is more effective when the robot admits at
a lower moving velocity xi

t. The total team cost in each step
is defined as:

Rt=U(st,xt,yt)=−
n∑

i=1

m∑
j=1

[
n∏

k=1

αk,j
t (xk

t , y
k
t)c

i,j
t (sit)

]
−δ,

where δ is a constant time penalty. A one-time positive
reward is added when all robots arrive at the target. The
definition of U aligns with definition (3).
• The goal is to minimize the team accumulated cost in the

form of (5) before all robots arrive at the target position.
The alignment of the problem with (2) and (3) allows it

to be reformulated into (6) and then solved by our Bi-CL.

Effectiveness of Alignment Penalty: We first implement
the proposed Bi-CL in an environment with 4 robots and
4 adversaries (fire). In Bi-CL, the reinforcement learning of
π̂i uses an independent actor in each robot with centralized
critic [29, Sec. 2.4], following the structure of MADDPG [2]
but over reduced action space. Each robot only observes part
of the global information, i.e., its own state and the states of
a subset of other robots in the system The cost function cj
is an affine function that depends on the closeness between
the robot and the center of the adversary.

Fig. 5 illustrates the RL-Reward curves and T-Reward for
different ct by setting c = 0, c = 1, c = 5, c = 10, c = 50,
all with β = 2e − 3 and h = 3000. This, together with
(7), makes ck gradually increase in an ‘S’ shape from 0
to c. Upon examining the results, it is evident that the R-
Gap is large when c is small, and the gap diminishes as
c increases. This verifies the effectiveness of the proposed
alignment penalty term in (6c), as it motivates the policy π̂i

t

𝒄 = 𝟎

0 1 2 3 4 5 × 103
15

25

35

45

20

30

40

50

Episode

R
e
w
ar
d

𝒄 = 𝟏

0 1 2 3 4 5 × 103
15

25

35

45

20

30

40

50

Episode
R
e
w
ar
d

𝒄 = 𝟓

0 1 2 3 4 5 × 103
15

25

35

45

20

30

40

50

Episode

R
e
w
ar
d

𝒄 = 𝟏𝟎

0 1 2 3 4 5 × 103
15

25

35

45

20

30

40

50

Episode

R
ew

ar
d

𝒄 = 𝟓𝟎

0 1 2 3 4 5 × 103
15

25

35

45

20

30

40

50

Episode

R
ew

ar
d

RL-Reward

T-Reward

RL-Reward

T-Reward

RL-Reward

T-Reward

RL-Reward

T-Reward

RL-Reward

T-Reward

Fig. 5: Comparison of cumulative reward for different alignment penalties with four robots and four adversaries. The height
of red dash lines determines implementation performance.

to be tuned using a yit
⋆ that is closer to the output of ηit. It

is also important to note that although the MARL training
reward appears high when c is small, this is misleading and
unattainable in decentralized execution due to the mismatch
between π̂i

t and ηit. The attainable reward (T-Reward) is much
lower with smaller c.

Finally, we observe in the last plot of Fig. 5 that a very
large c = 50 may negatively impact the training performance.
This is due to two reasons. First, as we discussed in the
algorithm development, larger ck reduces the training effi-
ciency of the imitation learning part of the algorithm. This
is reflected by the lower values on both RL-Reward and T-
Reward. Second, since ck impacts the computation of yit

⋆

during the training process, changing it too aggressively will
lead to instability in training. This is evidenced by the middle
part of the curve, where increased osculation is observed.

The same test is performed under various environment se-
tups and the results are shown in Table I. Here, Na Mb means
the environment has a robots and b adversaries. Especially,
in N5 M4*, each robot further reduces the number of other
robots’s states it can observe. The results in the table align
with our above analysis. In all cases where ck = c = 0,
i.e., without alignment penalty, the performance is the worst.
The R-Gap generally reduces when c grows large. Since T-
Reward is the core metric for performance, the best result
mostly occurs at c = 10 with only one exception and the
difference is small. Furthermore, to read the table column-
wise, environments with the same number of adversaries, i.e.,

TABLE I: Average reward per episode of different ck values

Environments Metric ck = 0
β = 2e−3

c = 1 c = 5 c = 10 c = 50

N3 M3 T-Reward 51.83 53.01 53.44 53.17 52.13
R-Gap 1.34 0.73 0.26 -0.45 -0.23

N4 M4 T-Reward 42.10 42.03 44.05 47.38 43.56
R-Gap 3.98 1.55 -0.87 -0.39 -0.11

N5 M4 T-Reward 56.31 58.27 59.68 60.08 59.46
R-Gap 4.79 4.45 1.17 -0.04 -0.15

N5 M4* T-Reward 50.67 53.39 54.09 54.60 54.20
R-Gap 6.54 3.84 1.82 -0.59 0.27

0 2 4 6 × 1038

-15
-5
5

15
25
35
45
55

Re
w

ar
d

Episode
(4) N5_M4*

50
55
60
65
70
75

Re
w

ar
d

Episode
(3) N5_M4

-20

0

20

40

60

80

Bi-CL
MADDPG
QMIX

0 2 4 6 × 1038

20
25
30
35
40
45
50
55

Re
w

ar
d

Episode
(1) N3_M3

Bi-CL
MADDPG
QMIX

0 2 4 6 × 1038

0 2 4 6 × 1038

-20

0

20

40

Re
w

ar
d

Episode

(2) N4_M4

Bi-CL
MADDPG
QMIX

Bi-CL
MADDPG
QMIX

Fig. 6: Performance Comparisons in Different Scenarios.

M4 are comparable. From N4 M4 to N5 M4, the T-Rewards
generally increase because more coordination behaviors can
be generated. When comparing N5 M4* and N5 M4, the
T-Rewards generally decrease due to the reduced sensing
distances of the robots. This also leads to a larger R-Gap
when c = 0, necessitating the introduced alignment penalty.

Comparing Training Efficiency with Baselines: We
also compare the proposed Bi-CL algorithm with two
well-established MARL algorithms, MADDPG [2] and
QMIX [15], respectively. MADDPG and QMIX are imple-
mented in complete action space Ai = X i × Yi of each
robot. The same learning rates with Bi-CL are used. The
comparison is visualized in Fig. 6 for the four cases in the
above discussion. Here, we choose c = 10 as the R-Gaps are
small. Thus, the RL-Reward curve can represent the conver-
gence of our algorithm and can approximate the true reward
our algorithm can achieve. It can be observed that in all
cases, Bi-CL can achieve similar final rewards compared with
baselines, which justifies the effectiveness of the proposed
algorithm. The efficiency of Bi-CL is evidenced by its faster
convergence speed compared with baselines. Furthermore,

the starting reward of our algorithm is significantly better
because it uses the optimization (6c) to boost and guide
the policy training, while other methods are purely based
on exploration. For a similar reason, we observe that both
MADDPG and QMIX suffer from training stability issues
for complex scenarios, while the proposed Bi-CL does not.

B. Coordinated Multi-robot Graph Traversal

Regular edge

Hight cost edge

Guard

Fig. 7: Running Example (b): all robots travel through a
graph.

Running Example (b): In the second scenario, we assume
all robots travel through a graph environment, which high-
lights the coordination of robots from a spatial aspect. Fig. 7
provides a visualization of the environment; however, the
testing environment we use includes randomly generated
graphs that may not exactly follow the physical layout.
Each robot can only observe a subset of full system states.
The environment is characterized by a environment graph
describing robot traversability from one node to another.
It also features a coordination mechanism (green arrows)
describing some robots, when located on certain nodes, can
guard other robots’ edge traversal to reduce their cost, similar
to the work by Limbu et al. [30], [31].
• Each robot i has a discrete move action xi

t ∈ N (sit) that
moves the robot to a new node in the graph based on its
current position sit. Here, N (sit) is the set of adjacent neigh-
boring nodes of robot position sit in the environment graph.
The robot i’s state transition (position) follows sit+1 = xi

t

subject to xi
t ∈ A(sit). The robot also has a discrete guard

action yit ∈ G(xi
t), where G(xi

t) is the set of edges that
can be guarded by a robot at its new position sit+1 = xi

t

(visualized by green arrows in Fig. 7). The robots’ actions
and state transitions align with definition (2).
• When robot i travels an edge {sit, xi

t}, i.e., from sit to
sit+1 = xi

t, there is an associated edge cost c({sit, xi
t}).

Besides, based on robot coordination, if another robot k can
and chooses to guard this edge, i.e., ykt = {sit, xi

t} ∈ G(xk
t),

then this edge cost will be discounted by a factor

αi,k
t (sit, x

i
t, y

k
t) =

{
α∗ ykt = {sit, xi

t} ∈ G(xk
t),

1 otherwise.

Based on this, the total team cost in each step is defined as:

Rt=U(st,xt,yt)=−
n∑

i=1

[
n∏

k=1

αi,k
t (sit, x

i
t, y

k
t)c({sit, xi

t})

]
−δ

where δ is a constant time penalty. A one-time positive
reward is added when all robots arrive at the target. The
definition of U aligns with definition (3).
• The goal is to minimize the team accumulated cost in the

form of (5) before all robots arrive at the target position.
The alignment of the problem with (2) and (3) allows it

to be reformulated into (6) and then solved by our Bi-CL.

TABLE II: Comparison of Average Reward and Convergence
time for Running Example (b)

Graph Robots/
Nodes

T-Reward Converge (×103)

Bi-CL MAPPO QMIX Bi-CL MAPPO QMIX

Sparse

3/5 83.16 82.08 78.82 3.58 4.89 5.85
3/10 64.86 65.39 64.97 3.69 4.87 5.95
5/10 54.91 50.33 55.21 3.75 4.96 6.14
5/15 51.37 33.14 49.67 3.71 5.24 6.03

Dense

3/5 93.21 96.90 94.23 3.63 4.95 6.19
3/10 73.41 60.89 71.08 3.79 5.09 6.38
5/10 66.32 54.14 68.08 3.80 4.94 6.29
5/15 60.08 47.82 58.16 3.85 4.94 6.44

Comparing Training efficiency with Baselines: In this
scenario, we compare the proposed Bi-CL algorithm with
two MARL algorithms MAPPO [2] and QMIX [15], respec-
tively. Here, we use MAPPO instead of MADDPG because
centralized PPO’s suitability for this task has been validated
by the study in Limbu et al. [31]. In Bi-CL, the reinforcement
learning part is implemented by QMIX in action space
Xi for each robot. While the MAPPO and original QMIX
are implemented in complete action space Ai = X i × Yi

of each robot. The simulations are configured with the
following setups. We experiment with 5, 10, 15 nodes in
the environment graph with 3 or 5 robots in two types of
graph connectivity, i.e., sparse and dense, for edges and the
number of edges that can be guarded. We randomly create
15 environment graphs as our test set. For all approaches,
training is terminated when the cumulative reward no longer
changes more than 1% for 10 steps.

The comparison results are presented in Table II, which
verifies the effectiveness of the Bi-CL algorithm for learning
coordinated actions among robots within graph-based coor-
dination tasks. Despite variations in the number of robots,
graph nodes, or densities of the graph edges, the proposed Bi-
CL algorithm delivers comparable results to the baseline al-
gorithms while requiring fewer training episodes to converge.
By observing the column of MAPPO, the results tend to fall
below those of other methods under conditions of increased
environmental complexity. This suggests that policy gradient
approaches may only learn a sub-optimal policy solution in
these cases. The QMIX method is more robust in terms
of optimality, however, it generally requires more training
episodes to converge. In comparison, the proposed Bi-CL
method enjoys much more efficient convergence properties.
This improvement is mainly due to (i) the reduction of the
action space for reinforcement learning, and (ii) the use of
optimization (6c) to jump-start the training.

VI. CONCLUSION

We presented a bi-level formulation for multi-robot coordi-
nation learning with local observation, wherein robots’ state
transitions and their cooperative behaviors are abstracted
and optimized on different levels, significantly enhancing
learning efficiency. A key enabler of our Bi-CL algorithm
was an alignment penalty that enables upper-level learning
to account for potential discrepancies arising from local
observations in lower-level optimization. We validated our
algorithm through a running example, designing two distinct
environments: route-based and graph-based. Experimental
results demonstrated that our algorithm can effectively learn
in both environments, underscoring its versatility and ap-
plicability across a diverse set of coordination tasks. We
evaluated the performance enhancement of the Bi-CL using
different alignment penalty parameters. Comparative analysis
with baselines verified the efficiency of our algorithm.

For future work, we aim to explore the scalability of
our Bi-CL to accommodate larger multi-robot systems and
more complex environments, further refining the alignment
penalty mechanism to enhance its adaptability and efficiency.
Moreover, we intend to extend our way of handling robots’
information loss to effectively manage dynamic, stochastic,
and noisy scenarios, thereby enhancing its resilience and per-
formance in unpredictably evolving multi-robot coordination
environments.

REFERENCES

[1] Y. Rizk, M. Awad, and E. W. Tunstel, “Cooperative heterogeneous
multi-robot systems: A survey,” ACM Computing Surveys (CSUR),
vol. 52, no. 2, pp. 1–31, 2019.

[2] R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. Pieter Abbeel, and I. Mor-
datch, “Multi-agent actor-critic for mixed cooperative-competitive
environments,” Advances in neural information processing systems,
vol. 30, 2017.

[3] Z. Yan, N. Jouandeau, and A. A. Cherif, “A survey and analysis of
multi-robot coordination,” International Journal of Advanced Robotic
Systems, vol. 10, no. 12, p. 399, 2013.

[4] J. P. Queralta, J. Taipalmaa, B. C. Pullinen, V. K. Sarker, T. N.
Gia, H. Tenhunen, M. Gabbouj, J. Raitoharju, and T. Westerlund,
“Collaborative multi-robot search and rescue: Planning, coordination,
perception, and active vision,” Ieee Access, vol. 8, pp. 191617–191643,
2020.

[5] X. Xiao, J. Dufek, T. Woodbury, and R. Murphy, “Uav assisted usv
visual navigation for marine mass casualty incident response,” in 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 6105–6110, IEEE, 2017.

[6] X. Xiao, J. Dufek, and R. R. Murphy, “Autonomous visual assistance
for robot operations using a tethered uav,” in Field and Service
Robotics: Results of the 12th International Conference, pp. 15–29,
Springer, 2021.

[7] B. Liu, X. Xiao, and P. Stone, “Team orienteering coverage planning
with uncertain reward,” in 2021 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 9728–9733, IEEE, 2021.

[8] Y. Lian, Q. Yang, Y. Liu, and W. Xie, “A spatio-temporal constrained
hierarchical scheduling strategy for multiple warehouse mobile robots
under industrial cyber–physical system,” Advanced Engineering Infor-
matics, vol. 52, p. 101572, 2022.

[9] R. Liu, J. Gao, J. Zhang, D. Meng, and Z. Lin, “Investigating bi-
level optimization for learning and vision from a unified perspective:
A survey and beyond,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 44, no. 12, pp. 10045–10067, 2021.

[10] A. Biswas and C. Hoyle, “A literature review: solving constrained
non-linear bi-level optimization problems with classical methods,” in
International Design Engineering Technical Conferences and Com-
puters and Information in Engineering Conference, vol. 59193,
p. V02BT03A025, American Society of Mechanical Engineers, 2019.

[11] H. Zhang, W. Chen, Z. Huang, M. Li, Y. Yang, W. Zhang, and J. Wang,
“Bi-level actor-critic for multi-agent coordination,” in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 34, pp. 7325–7332,
2020.

[12] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” Journal of artificial intelligence research, vol. 4,
pp. 237–285, 1996.

[13] C. Yu, A. Velu, E. Vinitsky, J. Gao, Y. Wang, A. Bayen, and
Y. Wu, “The surprising effectiveness of ppo in cooperative multi-agent
games,” Advances in Neural Information Processing Systems, vol. 35,
pp. 24611–24624, 2022.

[14] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi,
M. Jaderberg, M. Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls, et al.,
“Value-decomposition networks for cooperative multi-agent learning,”
arXiv preprint arXiv:1706.05296, 2017.

[15] T. Rashid, M. Samvelyan, C. S. De Witt, G. Farquhar, J. Foerster,
and S. Whiteson, “Monotonic value function factorisation for deep
multi-agent reinforcement learning,” The Journal of Machine Learning
Research, vol. 21, no. 1, pp. 7234–7284, 2020.

[16] P. J. Gmytrasiewicz and P. Doshi, “A framework for sequential
planning in multi-agent settings,” Journal of Artificial Intelligence
Research, vol. 24, pp. 49–79, 2005.

[17] D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein, “The
complexity of decentralized control of markov decision processes,”
Mathematics of operations research, vol. 27, no. 4, pp. 819–840, 2002.

[18] A. Antoniou, H. Edwards, and A. Storkey, “How to train your maml,”
in International Conference on Learning Representations, 2018.

[19] H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable architecture
search,” in International Conference on Learning Representations,
2018.

[20] D. Pfau and O. Vinyals, “Connecting generative adversarial networks
and actor-critic methods,” arXiv preprint arXiv:1610.01945, 2016.

[21] M. Hong, H. Wai, Z. Wang, and Z. Yang, “A two-timescale framework
for bilevel optimization: Complexity analysis and application to actor-
critic. arxiv e-prints, art,” arXiv preprint arXiv:2007.05170, 2020.

[22] J. Fortuny-Amat and B. McCarl, “A representation and economic
interpretation of a two-level programming problem,” Journal of the
operational Research Society, vol. 32, pp. 783–792, 1981.

[23] A. Sinha, P. Malo, and K. Deb, “A review on bilevel optimization:
From classical to evolutionary approaches and applications,” IEEE
Transactions on Evolutionary Computation, vol. 22, no. 2, pp. 276–
295, 2017.

[24] Y. Mintz, J. A. Cabrera, J. R. Pedrasa, and A. Aswani, “Control
synthesis for bilevel linear model predictive control,” in 2018 Annual
American Control Conference (ACC), pp. 2338–2343, IEEE, 2018.

[25] T. Nisha, D. T. Nguyen, and V. K. Bhargava, “A bilevel programming
framework for joint edge resource management and pricing,” IEEE
Internet of Things Journal, vol. 9, no. 18, pp. 17280–17291, 2022.

[26] L. Zheng, T. Fiez, Z. Alumbaugh, B. Chasnov, and L. J. Ratliff, “Stack-
elberg actor-critic: Game-theoretic reinforcement learning algorithms,”
in Proceedings of the AAAI conference on artificial intelligence,
vol. 36, pp. 9217–9224, 2022.

[27] H. M. Le, Y. Yue, P. Carr, and P. Lucey, “Coordinated multi-agent
imitation learning,” in International Conference on Machine Learning,
pp. 1995–2003, PMLR, 2017.

[28] K. Zhang, Z. Yang, and T. Başar, “Multi-agent reinforcement learn-
ing: A selective overview of theories and algorithms,” Handbook of
reinforcement learning and control, pp. 321–384, 2021.

[29] Y. Xiao, W. Tan, and C. Amato, “Asynchronous actor-critic for
multi-agent reinforcement learning,” Advances in Neural Information
Processing Systems, vol. 35, pp. 4385–4400, 2022.

[30] M. Limbu, Z. Hu, S. Oughourli, X. Wang, X. Xiao, and D. Shishika,
“Team coordination on graphs with state-dependent edge costs,” in
2023 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 679–684, IEEE, 2023.

[31] M. Limbu, Z. Hu, X. Wang, D. Shishika, and X. Xiao, “Team
coordination on graphs with reinforcement learning,” in 2024 IEEE
International Conference on Robotics and Automation (ICRA), IEEE,
2024.

	Introduction
	Literature Review
	MARL for Multi-Robot Coordination
	Bi-level Optimization

	Preliminaries and Problem Formulation
	Formulation of a Bi-level Optimization
	Bi-level Formulation for Multi-robot Coordination Learning with Local Robot Observation

	Main Approach
	Numerical Results
	Coordinated Multi-robot Route Traversal
	Coordinated Multi-robot Graph Traversal

	Conclusion
	References

