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A reservoir computer (RC) is a recurrent neural network (RNN) framework that achieves computational effi-
ciency where only readout layer training is required. Additionally, it effectively predicts nonlinear dynamical
system tasks and has various applications. RC is effective for forecasting nonautonomous dynamical systems
with gradual changes to the external drive amplitude. This study investigates the predictability of nonau-
tonomous dynamical systems with rapid changes to the phase of the external drive. The forced Van der Pol
equation was employed for the base model, implementing forecasting tasks with the RC. The study findings
suggest that, despite hidden variables, a nonautonomous dynamical system with rapid changes to the phase
of the external drive is predictable. Therefore, RC can offer better schedules for individual shift workers.

I. INTRODUCTION

Nonautonomous dynamical systems are dynamical sys-
tems whose evolution is determined by time-variant ex-
ternal drives and parameter effects. These systems are re-
sponsive to external effects and time-varying conditions.
Thus, they are utilized in various fields, such as physics,
biomedical science, ecology, climate, and neuroscience,
for modeling phenomena1,2.
The study of the circadian rhythm is a crucial appli-

cation in the field of biomedical science. The endoge-
nous circadian clock has an oscillation almost synchro-
nized with the light-dark cycle (LD cycle) of the environ-
mental day-night rhythms, with a period of 24 h. The
effect of jet lag and constant shift work is inspected by
mocking the transition in biological values by a nonau-
tonomous dynamical system with a periodic function as
its external drive3,4. However, this classical approach is
challenging because building a numerical model that ac-
curately reflects the behavior of the original system is
challenging.

Recent trends in the field of machine learning may of-
fer alternative approaches to address the aforementioned
issue. The Recurrent neural networks (RNN), a frame-
work of artificial neural networks (ANN), handles the
past information and the present input to update its
hidden state, enabling it to capture the temporal depen-
dency of the sequential data. For this feature, models
of RNN concepts have been effectively utilized in vari-
ous applications to address problems related to dynamic
systems. Long short-term memory (LSTM) addresses
the long-term dependency problem and achieves better
precision5–9. However, these schemes are inefficient be-
cause their training algorithms are time-consuming.
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Reservoir Computing (RC), or Echo State Network
(ESN), is an innovative framework for RNNs that com-
bines high fidelity in replicating dynamics and efficiency
in computation. Owing to its simplified structure, the
input, and hidden layers are initialized with a randomly
selected matrix, and only the readout layer requires
training10. Further, only a linear regression for the fitting
of RC is required, without requiring back-propagation
that involves nonlinear computation. This distinguishes
RC from the predecessor RNN frameworks. Despite this
significant streamlined structure, RC is effective for dy-
namical systems learning tasks11–14. Furthermore, RC
is effective in learning and predicting tasks in nonlin-
ear dynamical systems, which includes results involving
nonautonomous dynamical systems. RC can be employed
even in chaotic, nonautonomous dynamical systems with
a growing amplitude of the external drive15.

This study aimed to examine the impact of sudden
and significant phase shifts on the external drive of the
circadian rhythm. We employed a simple oscillator model
with a limit cycle to verify the effectiveness of RC in the
prediction tasks in the presence of phase shifts. The Van
der Pol equation model with a sinusoidal function as the
external force was adopted to examine the performance
of RC on the forecasting task.

This study is organized as follows: Sec. II describes
the formulation of the forced Van der Pol model with
the phase shift function. Next, a summary of the RC
concept is described. Sec. III compares the results of
the forecasts by RC for the number of variables and the
training length. Sec. IV discusses the results and the
possible application, focusing on the circadian rhythm.
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Time Evolution of the VDP System with Phase shift: -7 hours every 4 days(a)
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Time Evolution of the VDP System with Phase shift: 0 hours every 4 days(b)
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Time Evolution of the VDP System with Phase shift: 7 hours every 4 days(c)

FIG. 1: The variable x and Pn(t) of the time series of the forced Van der Pol equation obtained by a numerical
simulation. The phase shift of n hours is injected into the external drive at every 4 d, where (a). n = −7. (b).

n = 0. (c). n = 7.

II. METHOD

A. Model

We used the forced Van der Pol model with an external
drive Pn(t), expressed as follows:

dx

dt
= y, (1a)

dy

dt
= µ(1− x2)y − x+ Pn(t). (1b)

For Pn(t), we chose the following sinusoidal function with
a phase shift function θn(t):

Pn(t) := A sin(Ωt+ θn(t)), (2a)

θn(t) :=
n

24

⌊
t

4Te

⌋
2π. (2b)
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here, A = 0.5 is the amplitude and Ω = 1.05 is the coef-
ficient that scales the period of Pn(t), given by Te :=

2π
Ω .

θn(t) forwards(backwards) the phase of Pn(t) by n hours
every 4 d, with n ∈ Z,−12 ≤ n ≤ 12.
The step size of numerical integration is h := Te

M ,
where M = 100 is the number of divisions. To avoid
inconveniences caused by the discontinuity of Pn(t) dur-
ing the simulation, the data are generated by repeating
numerical integrations over the individual intervals be-
tween each phase shift and concatenating the obtained
time series. Because the Pn(t) phase shift is injected ev-
ery 4 d, each time series segment has 4M time steps,
ensuring that the entire time series length is a multiple
of this duration. We denote the datasets obtained by
simulation as xn, where n is the hour of the phase shift
to Pn(t). x

n consists of the value of x, y, andPn(t) of the
forced Van der Pol equation (1). Fig.?? shows the first
50 d of the datasets (only for the variables x and Pn(t))
obtained by a simulation for each n ∈ {−7, 0, 7}. x0 is
the forced Van der Pol model without any phase shift to
the external drive, whereby the obtained time series is
genuinely periodic. When comparing the amplitude of
x, the forced Van der Pol equation shows more weakness
in the forward shifts than the backward ones. For data
simulation, various libraries and modules are available
in Python. Thus, we used scipy.integrate.solve ivp.
Other options are available in other languages, including
ode45 and ode15s in MATLAB.

B. Reservoir Computer

We adopted the basic structure of RC described in 10.
The standard model of RC consists of three layers: the
input, hidden (reservoir), and readout layers. Let t be
the variable for time and denote the data used as the
input for updating the reservoir dynamics by zt. Define
dz ∈ N as the dimension of zt. In the input layer, zt is
mapped to a hidden variable rt ∈ Rdr of a much higher
dimension dr > dz inside the hidden layer by a linear
transformation Win of size dr × dz,

ut = Win · zt. (3)

In the hidden layer, rt is updated by a dr × dr linear
transformation Wr using an activation function tanh(·).
The updating equation of the reservoir state is defined
using a variable α of the leaking rate:

rt+h = (1− α)rt + α tanh(ut+h +Wr · rt), (4)

The leaking rate α is a parameter that controls the ef-
fectiveness of the past information on reservoir dynamics,
which enables it to regulate the length of the memory RC
can store inside. The readout is obtained with another
linear transformation Wout of size dz × dr,

yt = Wout · rt. (5)

As a main feature of RC, the matrices Win and Wr

are both randomly selected matrices of weights before

the training. Wout is the only part trained to fit the
prediction yt to zt. Wout is obtained by solving a least
squares problem of the following form:

Wout := argmin
V ∈Rdz×dr

∥Z− VR∥F . (6)

To solve this problem, we employ Tikhonov regulariza-
tion with a regularity parameter λ ≥ 0, which yields a
formal solution of the form,

Wout := ZR⊤ (
RR⊤ + λI

)−1
. (7)

C. Procedure

Before the experiment, the datasets xn were divided
into three consecutive parts: the training, testing, and
forecasting periods. The training and testing periods are
accessible past information used for training the RC and
tuning the hyperparameters. The forecasting period ver-
ifies the unknown information about the dynamical sys-
tem in the future.
The experiment was conducted using the following pro-

cedure: First, we optimized the hyperparameters to ini-
tialize and train the RC. During this section, we only use
the past information without requiring access to the fu-
ture value of xn. During the training and tuning of the
hyperparameters, zt := xn

t , representing the value of xn

at the corresponding time.
m ∈ {n ∈ Z | −12 ≤ n ≤ 12} were employed to train

the RC with xm
t , and the hyperparameters for each m

were optimized. We conducted the optimization process
by searching for the parameters that achieved the best
value for the prediction error during the testing period.
We selected the hyperparameters for the fixed m. How-
ever, only the training and testing period of the corre-
sponding data xm

t was used for the optimization process.
Moreover, no future information on the data was accessed
during the optimization and training phases.
The forecasting task was conducted with the RC that

was initialized using the optimized hyperparameters for
m and trained with xm

t over the training period. The task
forecasts the values of xn

t throughout the forecast period,
with n being all cases of −12 ≤ n ≤ 12 (n ̸= m implies
that RC forecasts the state of a dynamical system that it
has never experienced). Before forecasting, we warmed
up the RC with a last insignificant segment in the testing
period of xn, contained in the accessible part of the data.
Next, in the forecasting phase, RC used its output as
the input for the forecast of the next generation, making
a loop of input-output. Additionally, we replaced only
the input of Pn(t) by the true value, the external drive
at that time (see 15 for further discussions). Thus, the
input within the forecasting phase could be defined by

ut := Win · y′
t, (8)
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FIG. 2: The basic structure of RC. The input zt is mapped onto ut in the hidden layer via the matrix Win. (blue
line) During the training and testing period within the optimization of hyperparameters, RC is fed with the true
data xt of the dynamical system at every step. (orange dashed line) During the forecasting phase, RC updates
autonomously using its output as the input for the new step. Here, we inject the true value of the external drive

Pn(t) into the input, assuming that Pn(t) is accessible at any time, including the future.

where y′
t is the vector obtained by substituting the third

row of yt by the true value of Pn(t). See Fig.2 for the
input-output relationship during the forecasting phase.

For the input zt, we used array-shaped data with either
the values of x, y, Pn(t) or the values of x, Pn(t), assum-
ing that one variable was unobserved. For m, we used
{−7, 0, 7}. The training, testing, and forecast lengths
were fixed to 8000, 4000, and 3000 timesteps, respec-
tively. The total datasets were obtained by concatenat-
ing these periods. The warmup period was set as the last
10000 timesteps of the testing period.

For the implementation of RC, we used reservoirpy
in Python16, with another option available in Python li-
braries being PyRCN17.

D. Tuning the Hyperparamters

For the training data, we implemented m ∈ {−7, 0, 7}.
During the optimization process, RC was trained with
xm over the training period, predicting the state of the
dynamical system by one step in the testing period. Dur-
ing the testing period, the estimation error was measured
with NRMSE:

NRMSE(z,y, N) =

√∑N−1
i=0 (zi − yi)

2

N
. (9)

Here, N is the length of the testing period, z is the input,
and y is the prediction by RC during the testing period.

The hyperparameters were tuned throughout the op-
timization process to minimize the objective function
(9). The set of hyperparameters was sr - the spec-
tral radius of the Reservoir layer, iss - the input scal-
ing of Win, ridge - the ridge value λ of ridge regres-
sion. The search spaces of the hyperparameters were

[
10−2, 10

]
, [0, 1] ,

[
10−9, 10−2

]
, respectively. Two other

major candidates for optimization were the cell number
and the leaking rate. However, the cell number was fixed
to 500 and the leaking rate to 0.01 for time efficiency
during the optimization process.
For the optimization process, we used Optuna18,

one of the standard libraries for parameters tun-
ing. Several algorithms for the optimization and
pruning processes are provided in the Optuna. We
used the optuna.samplers.CmaEsSampler and op-
tuna.pruners.SuccessiveHalvingPruner. Despite
the functions varying from Optuna, reservoirpy is
built to be compatible with hyperopt19.

III. RESULTS

A. Hyperparameters

The hyperparameter sets for each case of m are listed
in the Appendix. Prediction during the testing period
for the case n = 7 is shown in Fig. 3.

B. Forecasting

For the dataset, we prepared two types: xn and x̂n.
The subarray comprised x, Pn(t) of x

n. For the first type,
the RC was fed with x, y, Pn(t) during the training and
testing phases. However, for the second, only x, Pn(t)
were available during the same phase. We show the sta-
tistical value of the result and calculate the standard de-
viation of the amplitude of the generated and true data
for each n. We plotted the result for each training data
in Fig.4 for the results.
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FIG. 3: Prediction by RC of the data x7 during the
testing period. Only the variable x and the external

drive Pn(t) are shown.

IV. CONCLUSION AND DISCUSSION

This study demonstrated a forecasting task by RC on
the time series of the forced Van der Pol equation with
a frequent phase shift to its external drive. To initialize
the RC, we chose several shift hours and used the cor-
responding data to tune the RC hyperparameters. This
process requires training the RC with the selected data
and minimizing the prediction error during the testing
period. The training and testing periods, which include
the warm-up period of the time series, provide known in-
formation about the dynamics. However, the RC has no
access to the data beyond these periods.

The result in Fig.4 demonstrates the capability of RC
to forecast the future state of the forced Van der Pol equa-
tion with various phase shifts. Moreover, when RC was
fed during the training with the data x7, it exhibited a
richer pattern, achieving an accurate forecast. When RC
used x0 or x−7, which lacks pattern richness, it yielded
reduced fidelity in its forecast. Despite the limited num-
ber of observed variables, RC could forecast the future.
15 confirmed chaotic dynamic systems with an external
drive whose amplitude increases. Similar results were ob-
tained for a nonautonomous system with a phase shift to
its external drive, indicating its applicability to the study
of the circadian rhythm.

The variables of the forced Van der Pol equation can
be interpreted as the change in the internal state of an or-
ganism following the circadian rhythm by regarding the
external drive as the LD cycle. Phase shifts in the ex-
ternal drive correspond to the hour of shift work experi-
enced by a shift worker or jetlag. The forecasting perfor-
mance of RC suggests that the impact of shift work on
shiftworker’s health can be forecasted with fewer short
biological datasets.

Further studies can be designed based on these find-

ings. The circadian rhythm provides the predictabil-
ity of RC based on real laboratory data. Despite
demonstrating the performance of RC with the most ba-
sic structure, various advanced versions and RC algo-
rithms exist, such as online learning and the ensemble
method20,21. The next-generation reservoir computer is
another scheme of RC that achieves enhanced computa-
tional efficiency under certain conditions22. Therefore,
forecasting tasks via these newer schemes of RC pro-
vides future research directions. Theoretical aspects of
RC are widely studied13,23–26. Thus, further analysis of
the prediction of nonautonomous dynamical systems via
RC complements our experimental results. Research on
the roles of hyperparameters is of interest, potentially
guiding the selection of hyperparameters in various set-
tings, including ours.

1S. Strogatz, Nonlinear Dynamics and Chaos: With Applications
to Physics, Biology, Chemistry, and Engineering (CRC Press,
2018).

2J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynam-
ical Systems, and Bifurcations of Vector Fields, Applied Mathe-
matical Sciences (Springer New York, 2013).

3H. Kori, Y. Yamaguchi, and H. Okamura, “Accelerating recovery
from jet lag: Prediction from a multi-oscillator model and its
experimental confirmation in model animals,” Sci Rep 7, 46702
(2017).

4Y. Yamaguchi, T. Suzuki, Y. Mizoro, H. Kori, K. Okada,
Y. Chen, J.-M. Fustin, F. Yamazaki, N. Mizuguchi, J. Zhang,
X. Dong, G. Tsujimoto, Y. Okuno, M. Doi, and H. Okamura,
“Mice genetically deficient in vasopressin V1a and V1b receptors
are resistant to jet lag,” Science 342, 85–90 (2013).

5N. Mohajerin and S. L. Waslander, “Multistep Prediction of Dy-
namic Systems With Recurrent Neural Networks,” IEEE Trans-
actions on Neural Networks and Learning Systems 30, 3370–3383
(2019).

6S. Siami-Namini, N. Tavakoli, and A. S. Namin, “The Perfor-
mance of LSTM and BiLSTM in Forecasting Time Series,” in
2019 IEEE International Conference on Big Data (Big Data)
(2019) pp. 3285–3292.

7Y. Tan, C. Hu, K. Zhang, K. Zheng, E. A. Davis, and J. S.
Park, “LSTM-Based Anomaly Detection for Non-Linear Dynam-
ical System,” IEEE Access 8, 103301–103308 (2020).

8Y. Wang, “A new concept using LSTM Neural Networks for dy-
namic system identification,” in 2017 American Control Confer-
ence (ACC) (2017) pp. 5324–5329.

9Y. Huang, L. Yang, and Z. Fu, “Reconstructing coupled time
series in climate systems using three kinds of machine-learning
methods,” Earth System Dynamics 11, 835–853 (2020).

10E. Bollt, “On explaining the surprising success of reservoir com-
puting forecaster of chaos? The universal machine learning dy-
namical system with contrast to VAR and DMD,” Chaos: An
Interdisciplinary Journal of Nonlinear Science 31, 013108 (2021).

11Z. Lu, B. R. Hunt, and E. Ott, “Attractor reconstruction by
machine learning,” Chaos: An Interdisciplinary Journal of Non-
linear Science 28, 061104 (2018).

12J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott, “Model-
Free Prediction of Large Spatiotemporally Chaotic Systems from
Data: A Reservoir Computing Approach,” Phys. Rev. Lett. 120,
024102 (2018).

13J. Pathak, Z. Lu, B. R. Hunt, M. Girvan, and E. Ott, “Using
machine learning to replicate chaotic attractors and calculate
Lyapunov exponents from data,” Chaos: An Interdisciplinary
Journal of Nonlinear Science 27, 121102 (2017).

14P. R. Vlachas, J. Pathak, B. R. Hunt, T. P. Sapsis, M. Girvan,
E. Ott, and P. Koumoutsakos, “Backpropagation algorithms and
Reservoir Computing in Recurrent Neural Networks for the fore-

http://dx.doi.org/10.1038/srep46702
http://dx.doi.org/10.1038/srep46702
http://dx.doi.org/ 10.1126/science.1238599
http://dx.doi.org/10.1109/TNNLS.2019.2891257
http://dx.doi.org/10.1109/TNNLS.2019.2891257
http://dx.doi.org/10.1109/TNNLS.2019.2891257
http://dx.doi.org/10.1109/BigData47090.2019.9005997
http://dx.doi.org/10.1109/ACCESS.2020.2999065
http://dx.doi.org/10.23919/ACC.2017.7963782
http://dx.doi.org/10.23919/ACC.2017.7963782
http://dx.doi.org/10.5194/esd-11-835-2020
http://dx.doi.org/10.1063/5.0024890
http://dx.doi.org/10.1063/5.0024890
http://dx.doi.org/10.1063/1.5039508
http://dx.doi.org/10.1063/1.5039508
http://dx.doi.org/10.1103/PhysRevLett.120.024102
http://dx.doi.org/10.1103/PhysRevLett.120.024102
http://dx.doi.org/ 10.1063/1.5010300
http://dx.doi.org/ 10.1063/1.5010300


6

10 5 0 5 10
Shift Hour

0

1

2

3

4

5

Th
e 

St
an

da
rd

 D
ev

ia
tio

n 
of

 x
opt_shift_hour = -7

10 5 0 5 10
Shift Hour

0

1

2

3

4

5
opt_shift_hour = 0

10 5 0 5 10
Shift Hour

0

1

2

3

4

5
opt_shift_hour = 7

Standard Deviation Comparison between Generated and Real Timeseries

Generated timeseries
True timeseries

(a)

10 5 0 5 10
Shift Hour

0

1

2

3

4

5

Th
e 

St
an

da
rd

 D
ev

ia
tio

n 
of

 x

opt_shift_hour = -7

10 5 0 5 10
Shift Hour

0

1

2

3

4

5
opt_shift_hour = 0

10 5 0 5 10
Shift Hour

0

1

2

3

4

5
opt_shift_hour = 7

Standard Deviation Comparison between Generated and Real Timeseries

Generated timeseries
True timeseries

(b)

FIG. 4: Standard deviation of the amplitude of the true data and the generated time series, for each of the shift
hours added to the phase of the external drive. RC is trained with shift hours m ∈ {−7, 0, 7} to generate time series
for dynamics with n hours of phase shift, which is the opt shift hour in the graph. Both x, y and Pn(t) are used for

the input of RC in (a), while in (b), only x and Pn(t) are used.

casting of complex spatiotemporal dynamics,” Neural Networks
126, 191–217 (2020).

15L.-W. Kong, Y. Weng, B. Glaz, M. Haile, and Y.-C. Lai, “Digital
twins of nonlinear dynamical systems,” (2022), arxiv:2210.06144
[nlin].

16N. Trouvain, L. Pedrelli, T. T. Dinh, and X. Hinaut, “Reser-
voirPy: An Efficient and User-Friendly Library to Design Echo
State Networks,” in Artificial Neural Networks and Machine
Learning – ICANN 2020 , Vol. 12397, edited by I. Farkaš, P. Ma-
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