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Transonic shocks for steady Euler flows with an external force

in an axisymmetric perturbed cylinder

Zihao Zhang*

Abstract

We concern the structural stability of transonic shocks for the steady Euler system with an

external force in an axisymmetric perturbed cylinder. For a class of external forces, we first prove

the existence and uniqueness of the transonic shock solution to the one-dimensional steady Euler

system with an external force, which shows that the external force has a stabilization effect on

the transonic shock in the flat cylinder and the shock position is uniquely determined. We then

establish the existence and stability of the transonic shock solution under axisymmetric pertur-

bations of the incoming supersonic flow, the nozzle boundary, the exit pressure and the external

force. Different from the transonic shock problem in two-dimensional nozzles, there exists a sin-

gularity along the symmetric axis for axisymmetric flows. We introduce an invertible modified

Lagrangian transformation to overcome this difficulty and straighten the streamline. One of the

key elements in the analysis is to utilize the deformation-curl decomposition to effectively decou-

ple the hyperbolic and elliptic modes in the steady axisymmetric Euler system with an external

force. Another one is an equivalent reformulation of the Rankine-Hugoniot conditions so that the

shock front is uniquely determined by an algebraic equation.

Mathematics Subject Classifications 2020: 35L65, 35L67, 76H05, 76N15.

Key words: transonic shocks, stabilization effect on the external force, the modified La-

grangian transformation, the deformation-curl decomposition, Rankine-Hugoniot condi-

tions.

1 Introduction and the main result

In this paper, we study the transonic shock problem for steady Euler flows of isentropic polytropic

gases in an axisymmetric perturbed cylinder under the external force. Assume the flow enters the

nozzle with a supersonic state and leaves it with a relatively high pressure, then it is expected that a

shock front occurs in the nozzle such that the flow pressure rises to coincide with the pressure at the

exit. Then catching the position of the shock front is one of the important ingredients in determining

the flow field in the nozzle. This paper shows that the external force has a stabilization effect on the

transonic shocks in the flat cylinder and the shock position is uniquely determined. Then we further

investigate the structural stability of the transonic shock solution under axisymmetric perturbations of

the incoming supersonic flow, the nozzle boundary, the exit pressure and the external force.
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The steady flow of inviscid compressible gas with an external force in R3 is governed by the

following system:






































∂x1
(ρu1) + ∂x2

(ρu2) + ∂x3
(ρu3) = 0,

∂x1
(ρu2

1
+ P) + ∂x2

(ρu1u2) + ∂x3
(ρu1u3) = ρ∂x1

Φ,

∂x1
(ρu1u2) + ∂x2

(ρu2
2
+ P) + ∂x3

(ρu2u3) = ρ∂x2
Φ,

∂x1
(ρu1u3) + ∂x2

(ρu2u3) + ∂x3
(ρu2

3
+ P) = ρ∂x3

Φ.

(1.1)

Here u = (u1, u2, u3) is the velocity field, ρ is the density, P is the pressure and Φ is the potential force,

respectively. We consider the isentropic polytropic gases, therefore the equation of state is given by

P = Aργ, where A is a positive constant and γ is the adiabatic constant with γ > 1. For convenience,

we take A = 1 in this paper. Denote the sound speed by c(ρ) =
√

P′(ρ). It is well-known that system

(1.1) is hyperbolic for supersonic flows (i.e. |u| > c(ρ)) and hyperbolic-elliptic mixed for subsonic

flows (i.e. |u| < c(ρ)).

The stability analysis of transonic shock solutions in a flat nozzle have been studied extensively.

For steady flows with shocks in finitely and infinitely long flat nozzles, there exists a class of transonic

shock solutions with both upstream supersonic state and downstream subsonic state being constant

and its shock position being arbitrary. The structural stability of these transonic shocks for steady

potential flows in nozzles was studied in [2, 3, 4, 26, 27]. The authors in [5, 6] established the

existence of transonic shocks to steady Euler flows in 2-D nozzles with slowly varying cross-sections.

The existence and stability of the transonic shock for 2-D and 3-D steady Euler flows in flat or almost

flat nozzles with the prescribed pressure at the exit up to a constant were studied in [7, 28] and [8, 9].

Both existence results are established under the assumption that the shock front passes through a given

point. Recently, without such an artificial assumption, the authors in [10] established the stability and

existence of transonic shock solutions to the two dimensional steady compressible Euler system in

an almost flat finite nozzle with the exit pressure, where the shock position was uniquely determined.

This was generalized to three dimensional axisymmetric case in [11].

On the other hand, there were many studies on the stability of the radially symmetric transonic

shock in a divergent nozzle. The authors in [1] studied the stability of transonic shocks for multi-

dimensional steady potential flows in divergent nozzles. The well-posedness of the transonic shock

problem in two dimensional divergent nozzles under the perturbations of the exit pressure was first

established in [17] when the opening angle of the nozzle is suitably small. This restriction was re-

moved in [16] and the transonic shock in a 2-D straight divergent nozzle is shown in [19] to be

structurally stable under the perturbations of the nozzle walls and the exit pressure. The existence and

stability of three-dimensional axisymmetric transonic shock flows in a conic nozzle were studied in

[15, 18, 21, 29]. In [21], the authors introduced a modified Lagrangian transformation to deal with

the corner singularities near the intersection points of the shock surface and nozzle boundary and the

artificial singularity near the axis simultaneously. The stability of spherically symmetric transonic

shocks in a spherical shell was studied in [20] by requiring that the background transonic shock so-

lutions satisfy some “Structure Conditions”. Recently, the authors in [24] had made a substantial

progress and established the existence and stability of cylindrical transonic shock solutions under

three dimensional perturbations of the incoming flows and the exit pressure without any restriction

on the background transonic shock solutions.

Let L1, L2(> L1) be fixed positive constants. The axisymmetric cylinder is described as

Nb := {(x1, x2, x3) ∈ R3 : L1 < x1 < L2, 0 ≤ x2
2 + x2

3 < 1}.

We first consider the one-dimensional steady Euler system with an external force in Nb, which is
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governed by






































(ρbub)′(x1) = 0,

(ρbubu′
b
)(x1) + P′

b
(x1) = (ρbg)(x1),

ρb(L1) = ρ̄ > 0, ub(L1) = ū > 0,

Pb(L2) = Pe,

(1.2)

where the flow state at the entrance x1 = L1 is supersonic, i.e., ū2 > c2(ρ̄) = γρ̄γ−1. By employing

the monotonicity relation between the shock position and the end pressure, the following Lemma

was established in [25] shows that there is a unique transonic shock solution to (1.2) when the end

pressure is a suitably prescribed constant Pe and g(x1) > 0 for any x1 ∈ [L1, L2]. Meanwhile, it is

shown that the external force has a stabilization effect on the transonic shock in the cylinder and the

shock position is uniquely determined.

Lemma 1.1. Suppose that the initial state (ρ̄, ū) at x1 = L1 is supersonic and the external force g

satisfying g(x1) > 0 for any x1 ∈ [L1, L2], there exist two positive constants P1, P2 such that if the end

pressure Pe ∈ (P1, P2), there exists a unique piecewise transonic shock solution

Ψb(x) = (ub, Pb)(x) =















Ψ
−
b

(x) := (u−
b

(x1), 0, 0, P−
b

(x1)), if L1 < x1 < Lb,

Ψ
+
b

(x) := (u+
b

(x1), 0, 0, P+
b

(x1)), if Lb < x1 < L2,
(1.3)

with a shock front located at x1 = Lb ∈ (L1, L2). Across the shock, the following Rankine-Hugoniot

conditions and entropy condition are satisfied:



























[ρbub](Lb) = 0,

[ρbu2
b
+ Pb](Lb) = 0,

[Pb](Lb) > 0.

Moreover, the shock position x1 = Lb increases as the exit pressure Pe decreases. In addition, the

shock position x1 = Lb approaches to L1 if Pe goes to P2 and x1 = Lb approaches to L2 if Pe goes to

P1.

The 1-D transonic shock solution Ψb with a shock occurring at x1 = Lb will be called the back-

ground solution in this paper. Clearly, one can extend the supersonic and subsonic parts of Ψb in a

natural way, respectively. For convenience, we still call the extended subsonic and supersonic so-

lutions Ψ+
b

and Ψ−
b

. This paper is going to establish the structural stability of this transonic shock

solution under axisymmetric perturbations of the incoming supersonic flows, the nozzle walls, the

exit pressure and the external force.

Let (x, r, θ) be the cylindrical coordinates of (x1, x2, x3) ∈ R3, that is

x = x1, r =

√

x2
2
+ x2

3
, θ = arctan

x3

x2

.

Any function v(x) can be represented as v(x) = v(x, r, θ), and a vector-valued function h(x) can be

represented as h(x) = hx(x, r, θ)ex + hr(x, r, θ)er + hθ(x, r, θ)eθ , where

ex = (1, 0, 0), er = (0, cos θ, sin θ), eθ = (0,− sin θ, cos θ).

We say that a function v(x) is axisymmetric if its value is independent of θ and that a vector-valued

function h = (hx, hr, hθ) is axisymmetric if each of functions hx(x), hr(x) and hθ(x) is axisymmetric.
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Assume that

ρ(x) = ρ(x, r), P(x) = P(x, r), u(x) = ux(x, r)ex + ur(x, r)er + uθ(x, r)eθ.

Then (1.1) can be simplified as















































∂x(rρux) + ∂r(rρur) = 0,

ρ(ux∂x + ur∂r)ux + ∂xP = ρ∂xΦ,

ρ(ux∂x + ur∂r)ur −
ρu2

θ

r
+ ∂rP = ρ∂rΦ,

ρ(ux∂x + ur∂r)(ruθ) = 0.

(1.4)

The axisymmetric perturbed cylinder is given by

N := {(x, r) ∈ R2 : L1 < x < L2, 0 ≤ r < 1 + σ f (x)},

where σ is sufficiently small and f ∈ C2,α([L1, L2]) satisfies

f (L1) = f ′(L1) = 0. (1.5)

Let the potential force Φ and the supersonic incoming flow at the inlet x = L1 be prescribed as














Φ(x, r) = Φb(x) + σΦe(x, r),

Ψ
−(L1, r) = Ψ−

b
(L1) + σ(u−en, v

−
en,w

−
en, P

−
en)(r).

(1.6)

Here Φ′
b
= g and Φe(x, r) ∈ C2,α(N) and (u−en, v

−
en,w

−
en, P

−
en)(r) ∈ (C2,α[0, 1])4. On the nozzle wall,

the flow satisfies the slip condition u · n = 0, where n is the outer normal of the nozzle wall. Using

cylindrical coordinates, the slip boundary condition can be rewritten as

ur = σ f ′(x)ux, on Γ = {(x, r) : r = 1 + σ f (x), L1 ≤ x ≤ L2}. (1.7)

On the exit of the nozzle, the end pressure is prescribed by

P(L2, r) = Pe + σPex(r), (1.8)

where Pex(r) ∈ C1,α(R̄+).

In this paper, we want to look for a piecewise smooth solution Ψ, which jumps only at a shock

front S = {(x, r) : x = ξ(r), r ∈ [0, r∗]}. Here (ξ(r∗), r∗) stand for the shock front and the intersection

circle of the shock surface with the nozzle wall. More precisely, Ψ has the following form

Ψ =















Ψ
− := (u−x , u

−
r , u
−
θ , P

−)(x, r), in N− = {L1 < x < ξ(r), 0 ≤ r < 1 + σ f (x)},
Ψ
+ := (u+x , u

+
r , u
+
θ , P

+)(x, r), in N+ = {ξ(r) < x < L2, 0 ≤ r < 1 + σ f (x)},
(1.9)

and satisfies the following Rankine-Hugoniot conditions on the shock surface S:







































[ρux] − ξ′(r)[ρur] = 0,

[ρu2
x + P] − ξ′(r)[ρuxur] = 0,

[ρuxur] − ξ′(r)[ρu2
r + P] = 0,

[ρuxuθ] − ξ′(r)[ρuruθ] = 0.

(1.10)

The existence and uniqueness of the supersonic flow to (1.4) follows from the the classical theory

to the boundary value problem for quasi-linear hyperbolic systems (See [13]).

4



Lemma 1.2. Assume that the potential force and the supersonic incoming data given in (1.6) satisfy-

ing the following compatibility conditions



























∂rΦe(x, 0) = 0,

v−en(0) = w−en(0) = (v−en)′′(0) = (w−en)′(0) = (P−en)′(0) = 0,

v−en(1) = 0, (P−en)′(1) = ρ−en(1)((w−en)2(1) + σ∂rΦe(L1, 1)).

(1.11)

Then there exists a constant σ0 > 0 depending only on the background solution and the boundary

data, such that for any 0 < σ < σ0, there exists a unique axisymmetric solutionΨ− = (u−x , u
−
r , u
−
θ , P

−)(x, r)

∈ C2,α(N) to (1.4) with (1.6) and (1.7), which satisfies

‖(u−x , u−r , u−θ , P−) − (u−b , 0, 0, P
−
b )‖

C2,α(N)
≤ C0σ (1.12)

and

(u−r , ∂
2
r u−r )(x, 0) = (u−θ , ∂ru

−
θ )(x, 0) = ∂r(u

−
x , P

−)(x, 0) = 0, ∀x ∈ [L1, L2]. (1.13)

Therefore, the problem is reduced to solve a free boundary value problem for the steady axisym-

metric Euler system with an external force in which the shock front and the downstream subsonic

flows are unknown. Then to state the main result, we first introduce some weighted Hölder spaces

and their norms. For any bounded domain P, letH be a closed portion of P. For x, x̃ ∈ P, define

δx := dist(x,H) and δx,x̃ := min(δx, δx̃).

For any positive integer m, α ∈ (0, 1) and κ ∈ R, we define

[u]
(κ;H)

k,0;P :=
∑

|β|=k

sup
x∈P

δ
max(|β|+κ,0)
x |Dβu(x)|, k = 0, 1, · · · ,m;

[u]
(κ;H)

m,α;P :=
∑

|β|=k

sup
x,x̃∈P,x,x̃

δmax(m+α+κ,0)
x,x̃

|Dβu(x) − Dβu(x̃)|
|x − x̃|α ;

‖u‖(κ;H)

m,α;P :=

m
∑

k=0

[u]
κ,H
k,0;P + [u]

κ;H
m,α;P

with the corresponding function space defined as

C
(κ;H)
m,α (P) = {u : ‖u‖(κ,H)

m,α;P < ∞}.

The main result in this paper is stated as follows.

Theorem 1.3. Assume that the compatibility conditions (1.5) and (1.11) hold. There exist suitable

positive constants σ0 and C∗ depending only on the background solution Ψb defined in (1.3) and the

boundary data Ψ−(L1, ·), f , Pex ,Φe such that if 0 < σ ≤ σ0, the problem (1.4) with (1.6), (1.7),

(1.8) and (1.10) has a unique axisymmetric solution Ψ+ = (u+x , u
+
r , u
+
θ , P

+)(x, r) with the shock front

S satisfying the following properties.

(1) The function ξ(r) ∈ C
(−1−α;{r∗})
3,α

([0, r∗)) satisfies

‖ξ(r) − Lb‖(−1−α;{r∗})
3,α;[0,r∗)

≤ C∗σ (1.14)

and

ξ′(0) = ξ(3)(0) = 0. (1.15)
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(2) The solution Ψ+ = (u+x , u
+
r , u
+
θ , P

+)(x, r) ∈ C
(−α;Γp,s)

2,α (N+) satisfies the entropy condition

P+(ξ(r), r) > P−(ξ(r), r), ∀r ∈ [0, r∗] (1.16)

and the estimate

‖Ψ+ −Ψ+b ‖
(−α;Γp,s)

2,α;N+ ≤ C∗σ (1.17)

with the compatibility conditions

(u+r , ∂
2
r u+r )(x, 0) = (u+θ , ∂ru

+
θ )(x, 0) = ∂r(u

+
x , P

+)(x, 0) = 0, ∀x ∈ [ξ(r), L2], (1.18)

where

Γp,s = {(x, r) : ξ(r) ≤ x ≤ L2, r = 1 + σ f (x)}.

Remark 1.4. Compared with the two-dimensional case in [25], one of the major difficulties for ax-

isymmetric flows is the possible singularity near the symmetric axis. Inspired by [21], the singular

term r in the density equation is of order O(r) near the axis r = 0, hence we can find a simple modified

Lagrangian transformation such that it is invertible near the axis and also straightens the streamline.

Remark 1.5. The previous work [11, 15, 21] reduced the steady axisymmetric Euler system in the

subsonic region into a elliptic system of the flow angle and pressure. One of main ingredients of our

analysis here is quite different from those in [11, 15, 21], we utilize the deformation-curl decompo-

sition introduced in [22, 23] to effectively decouple the hyperbolic and elliptic modes in the steady

axisymmetric Euler system with an external force. This decomposition is based on a simple observa-

tion that one can rewrite the density equation as a Frobenius inner product of a symmetric matrix and

the deformation matrix by using the Bernoulli’s law and representing the density as functions of the

Bernoulli’s quantity and the velocity field. The vorticity is resolved by an algebraic equation of the

Bernoulli’s quantity.

The rest of this article is organized as follows. In Section 2, we introduce the modified Lagrangian

transformation and decompose the hyperbolic and elliptic modes for the steady axisymmetric Euler

system with an external force in the subsonic region in terms of the deformation and curl, and the

corresponding reformulation of the Rankine-Hugoniot conditions. We also introduce a coordinate

transformation such that the free boundary becomes fixed. In Section 3, we design an iteration scheme

to prove Theorem 1.3.

2 The reformulation of the transonic shock problem

In this section, we first introduce the modified Lagrangian transformation, then the deformation-

curl reformulation developed in [22, 23] is employed to rewrite the steady axisymmetric Euler system

with an external force. Finally, we reformulate the Rankine-Hugoniot conditions and boundary con-

ditions and introduce another coordinates transformation to reduce the transonic shock problem into

a fixed boundary value problem.

2.1 The modified Lagrangian transformation

For generic perturbations of the cylinder wall, one can only expect the Cα boundary regularity for

the solution in the subsonic region (see [28, Remark 3.2]). In order to avoid the difficulty in uniquely

determining the trajectory, we introduce a Lagrangian transformation to straighten the streamline.
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However, in the three-dimensional axisymmetric setting, there is a singular term r in the density

equation. Inspired by [21], we can find a simple modified Lagrangian transformation to overcome

this difficulty and apply this modified Lagrangian transformation to rewrite (1.4) and (1.10).

Define (ỹ1, ỹ2) = (x, ỹ2(x, r)) such that



























∂ỹ2

∂x
= −rρ−u−r ,

∂ỹ2

∂r
= rρ−u−x , if (x, r) ∈ N−,

∂ỹ2

∂x
= −rρ+u+r ,

∂ỹ2

∂r
= rρ+u+x , if (x, r) ∈ N+,

ỹ2(L1, 0) = 0, ỹ2(L2, 0) = 0.

(2.1)

On the axis r = 0 and the nozzle wall Γ, one derives that

d

dx
ỹ2(x, 0) = 0 and

d

dx
ỹ2(x, 1 + σ f (x)) = 0.

Thus for any x ∈ [L1, L2], we can assume ỹ2(x, 0) = 0. Then one has















ỹ2(x, 1 + σ f (x)) =M2, ∀x ∈ [L1, L∗],

ỹ2(x, 1 + σ f (x)) =M2
1
, ∀x ∈ [L∗, L2],

whereM andM1 are two constants to be determined, and (L∗, 1 + σ f (L∗)) is the intersecting point

of the shock front S with the nozzle wall Γ. Next, we need to verify that ỹ2(x, r) is well-defined and

belongs to Lip(N). Indeed, by using the first equation in (1.4), one obtains

dỹ2

dr
(ξ(r) + 0, r) =

dỹ2

dr
(ξ(r) − 0, r).

This yieldsM1 =M, which can be computed as follows

M2 =

∫ 1

0

sρ−u−x (L1, s)ds > 0.

Define the modified Lagrangian transformation as















y1 = x,

y2 = ỹ
1
2

2
(x, r).

(2.2)

If (ρ±, u±x , u
±
r , u
±
θ ) are close to the background solution (ρ±

b
, u±

b
, 0, 0), there exist two positive constants

C1 and C2, depending on the background solution, such that

C1r2 ≤ ỹ2(x, r) =

∫ r

0

sρ−u−x (L1, s)ds ≤ C2r2.

Then one gets
√

C1r ≤ y2(x, r) ≤
√

C2r. Therefore, the Jacobian of the modified Lagrangian trans-

formation satisfies
∂(y1, y2)

∂(x, r)
=

∣

∣

∣

∣

∣

∣

1 0

− rρur

2y2

rρux

2y2

∣

∣

∣

∣

∣

∣

=
rρux

2y2

≥ C3 > 0. (2.3)

Hence the modified Lagrangian transformation is invertible.
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Under the modified Lagrangian transformation, the shock front S and the flows before and behind

S are denoted by y1 = ψ(y2) and (u±x , u
±
r , u
±
θ , P

±)(y1, y2) respectively. Then the domains N− and N+
are changed into















D− = {(y1, y2) : L1 < y1 < ψ(y2), y2 ∈ [0,M)},
D+ = {(y1, y2) : ψ(y2) < y1 < L2, y2 ∈ [0,M)}.

The nozzle wall Γp,s is straightened to be

Γp,y = {(y1, y2) : ψ(M) ≤ y1 ≤ L2, y2 =M}. (2.4)

On the other hand, under this transformation, r as a function of (y1, y2) becomes nonlinear and

nonlocal. In fact, it follows from the inverse transformation that

∂r

∂y1

=
ur

ux

,
∂r

∂y2

=
2y2

rρux

, r(y1, 0) = 0.

Thus one obtains

r(y1, y2) = 2

(∫ y2

0

s

ρux(y1, s)
ds

)
1
2

. (2.5)

In particular, for the background solution (ρ+
b
, u+

b
, 0, 0), one has

rb(y2) = κby2, (2.6)

where κb =

(

2
(ρ+

b
u+

b
)(y1)

) 1
2

is a positive constant for any y1 ∈ [Lb, L2].

For simplicity of the notations, we neglect the superscript”+”for the solution in the subsonic

region. Then under the transformation (2.2), the system (1.4) becomes







































































∂y1

(

2y2

rρux

)

− ∂y2

(

ur

ux

)

= 0,

∂y1

(

ux +
P

ρux

)

− r

2y2

∂y2

(

Pur

ux

)

− Pur

rρu2
x

= ∂y1
Φ − rρur

2y2ux

∂y2
Φ,

∂y1
ur +

r

2y2

∂y2
P −

u2
θ

rux

=
rρ

2y2

∂y2
Φ,

∂y1
(ruθ) = 0.

(2.7)

The Rankine-Hugoniot conditions (1.13) across the shock front S become



































































2y2

r

[

1

ρux

]

+ ψ′(y2)

[

ur

ux

]

= 0,

[

ux +
P

ρux

]

+ ψ′(y2)
r

2y2

[

Pur

ux

]

= 0,

[ur] − ψ′(y2)
r

2y2

[P] = 0,

[uθ] = 0.

(2.8)
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2.2 The deformation-curl decomposition for the steady axisymmetric Euler system

with an external force

The steady axisymmetric Euler system with an external force is hyperbolic-elliptic coupled in the

subsonic region. An effective decomposition of the elliptic and hyperbolic modes is crucial for the

solvability of the nonlinear free boundary problem. Here we will use the deformation-curl decom-

position introduced in [22, 23] to derive an equivalent system (2.13), where the hyperbolic quantities

and elliptic quantities are effectively decoupled.

Define the Bernoulli’s function B by

B =
1

2
|u|2 + γP

(γ − 1)ρ
− Φ. (2.9)

Then one has

ρu · B = 0. (2.10)

By using the Bernoulli’s quantity, the density ρ can be represented as

ρ = H(B,Φ, |u|2) =

(

γ − 1

γ
(B + Φ − 1

2
|u|2)

) 1
γ−1

. (2.11)

Define the vorticity ω = curl u = ωxex + ωrer + ωθeθ, where

ωx =
1

r
∂r(ruθ), ωr = −∂xuθ, ωθ = ∂xur − ∂rux.

From the third equation in (1.4) and the Bernoulli’s law, one derives that

ωθ =
uθωx

ux

− ∂rB

ux

. (2.12)

Substituting (2.11) into the density equation and combining (2.10) and (2.12), the system (1.4) is

equivalent to the following system






































































(c2(ρ) − u2
x)∂xux + (c2(ρ) − u2

r )∂rur − uxur(∂xur + ∂rux) + ur

c2(ρ) + u2
θ

r

+ (ux∂xΦ + ur∂rΦ) = 0,

ux(∂xur − ∂rux) = uθ∂ruθ +
u2
θ

r
− ∂rB,

(ux∂x + ur∂r)(ruθ) = 0,

(ux∂x + ur∂r)B = 0.

(2.13)

Under the modified Lagrangian transformation, the system (2.13) can be rewritten as






















































































(c2(ρ) − u2
x)

(

∂y1
ux −

rρur

2y2

∂y2
ux

)

+ (c2(ρ) − u2
r )

(

rρux

2y2

∂y2
ur

)

+
c2(ρ) + u2

θ

r
ur

= −ux∂y1
Φ + uxur

(

∂y1
ur −

rρur

2y2

∂y2
ur +

rρux

2y2

∂y2
ux

)

,

ux

(

∂y1
ur −

rρur

2y2

∂y2
ur −

rρux

2y2

∂y2
ux

)

=
rρux

2y2

uθ∂y2
uθ +

u2
θ

r
− rρux

2y2

∂y2
B,

∂y1
(ruθ) = 0,

∂y1
B = 0.

(2.14)
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2.3 The reformulation of the Rankine-Hugoniot conditions and boundary conditions

Due to the mixed elliptic-hyperbolic structure of the steady axisymmetric Euler system with an

external force in the subsonic region, it is important to formulate proper boundary conditions and

their compatibility.

Define

v1(y1, y2) = ux(y1, y2) − u+b (y1, y2), v2(y1, y2) = ur(y1, y2), v3(y1, y2) = uθ(y1, y2),

v4(y1, y2) = B(y1, y2) − B+b (y1, y2), v = (v1, v2, v3, v4), v5(y2) = ψ(y2) − Lb.

Then the density and the pressure can be expressed as

ρ(y1, y2) = ρ(v) =

(

γ − 1

γ

)
1
γ−1

(

B+b + v4 + Φb + σΦe −
1

2
(u+b + v1)2 −

3
∑

j=2

|v j|2
)

1
γ−1

,

P(y1, y2) = P(v) =

(

γ − 1

γ

)

γ
γ−1

(

B+b + v4 + Φb + σΦe −
1

2
(u+b + v1)2 −

3
∑

j=2

|v j|2
)

γ
γ−1

.

(2.15)

By the third equation in (2.8), one derives

ψ′(y2) =
2y2[ur]

r[P]
= a1v2(ψ(y2), y2) + h1(Ψ−(Lb + v5, y2) −Ψ−b (Lb + v5), v(ψ, y2), v5). (2.16)

where a1 =
1

κb[Pb(Lb)]
> 0 and

h1(Ψ−(Lb + h5, y2) −Ψ−b (Lb + h5), v(ψ, y2), h5)

=
2y2[ur]

r[P]
− a1v2(ψ(y2), y2) = v2

(

2y2

r[P]
− a1

)

− 2y2u−r (ψ(y2), y2)

r[P]
.

The functions h1 is regarded as the error term which can be bounded by

|h1| ≤ C
(

|Ψ−(rb + v5, y2) −Ψ−b (rb + v5)| + |v(ψ, y2)|2 + |v5|2
)

. (2.17)

Using the equation (2.16), we can eliminate the quantity ψ′ in the first two equations of (2.8) to obtain































[
1

ρux

] +
[ur]

[P]

[

ur

ux

]

= 0,

[ux +
P

ρux

] +
[ur]

[P]

[

Pur

ux

]

= 0.

(2.18)

Next, a simple calculation gives



























[ρux] = ρuxρ
−u−x

[ur]

[P]

[ur]

[ux]
,

[ρu2
x + P] = −ρ−u−x

[ur]

[P]

[Pur]

[ux]
+ (ρu2

x + P)ρ−u−x
[ur]

[P]

[ur]

[ux]
.

(2.19)

Denote ρ̇(y1, y2) = ρ(y1, y2) − ρ+
b

(y1). Then the first equation in (2.19) implies that

ρ+b (Lb)v1(ψ, y2) + u+b (Lb)ρ̇(ψ, y2)

= −[ρbub](ψ) + ρuxρ
−u−x

[ur]

[P]

[ur]

[ux]
+ (ρ−u−x )(ψ, y2) − (ρ−b u−b )(ψ)

− (ux + u+b (Lb + v5) − u+b (Lb))ρ̇(ψ, y2) − (ρ+b (Lb + v5) − ρ+b (Lb))v1(ψ, y2)

:= R11(Ψ−(Lb + v5, y2) −Ψ−b (Lb + v5), v(ψ, y2), v5).
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Similarly, one can follow from the second equation in (2.19) that at (ψ(y2), y2), there holds



























ρ+b (Lb)v1(ψ, y2) + u+b (Lb)ρ̇(ψ, y2) = R11(Ψ−(Lb + v5, y2) −Ψ−b (Lb + v5), v(ψ, y2), v5),

2(ρ+b u+b )(Lb)v1(ψ, y2) +
(

(u+b (Lb))2 + c2(ρ+b (Lb))
)

ρ̇(ψ, y2)

= −((ρ+b − ρ
−
b )g)(Lb)v5 + R12(Ψ−(Lb + v5, y2) −Ψ−b (Lb + v5), v(ψ, y2), v5),

(2.20)

where

R12 = −
{

[ρbu2
b + Pb](Lb + v5) − ((ρ+b − ρ−b )g)(Lb)v5

}

+ (ρ−(u−x )2 + P−)(ψ, y2) − (ρ−b (u−b )2 + P−b )(ψ)

−
{

(ρu2
x + P)(ψ, y2) − (ρ+b (u+b )2 + P+b )(ψ) − 2(ρ+b u+b )(Lb)v1

− {(u+b (Lb))2 + c2(ρ+b (Lb))}ρ̇
}

− ρ−u−x
[ur]

[P]

[Pur]

[ux]
+ (ρu2

x + P)ρ−u−x
[ur]

[P]

[ur]

[ux]
.

Note that
d

dx
(ρbub)(x) = 0,

d

dx
(ρbu2

b + Pb)(x) = (ρbg)(x).

Then

[ρbub](Lb + v5) = O(v2
5), [ρbu2

b + Pb](Lb + v5) − ((ρ+b − ρ−b )g)(Lb)v5 = O(v2
5).

Therefore, there exists a constant C > 0 depending only on the background solution such that

|R1i| ≤ C
(

|Ψ−(Lb + v5, y2) −Ψ−b (Lb + v5)| + |v(ψ, y2)|2 + |v5|2
)

. (2.21)

By solving the algebraic equations (2.20), one derives














ρ̇(ψ, y2) = b1v5(y2) + R1(Ψ−(Lb + v5, y2) −Ψ−
b

(Lb + v5), v(ψ, y2), v5),

v1(ψ, y2) = b2v5(y2) + R2(Ψ−(Lb + v5, y2) −Ψ−
b

(Lb + v5), v(ψ, y2), v5),
(2.22)

where

b1 = −
(ρ+

b
(Lb) − ρ−

b
(Lb))g(Lb)

c2(ρ+
b

(Lb)) − (u+
b

(Lb))2
< 0, b2 =

u+
b

(Lb)(ρ+
b

(Lb) − ρ−
b

(Lb))gb(Lb)

ρ+
b

(Lb)(c2(ρ+
b

(Lb)) − (u+
b

(Lb))2)
> 0,

and

R1 =
−2u+

b
(Lb)R11 + R12

(c2(ρ+
b

(Lb)) − (u+
b

(Lb))2)
,

R2 =

(

(u+
b

(Lb))2 + c2(ρ+
b

(Lb))
)

R11 − u+
b

(Lb)R12

ρ+
b

(Lb)(c2(ρ+
b

(Lb)) − (u+
b

(Lb))2)
.

In the following, it follow from the Bernoulli’s quantity and (2.22) that

v4(ψ, y2) = b3v5(y2) + R3(Ψ−(Lb + v5, y2) −Ψ−b (Lb + v5), v(ψ, y2), v5), (2.23)

where

b3 =
(ρ−

b
(Lb) − ρ+

b
(Lb))g(Lb)

ρ+
b

(Lb)
< 0, R3 =

−u+
b

(Lb)R11 + R12

ρ+
b

(Lb)
+ R13,

R13 = (u+b (Lb + v5) − u+b (Lb))v1(ψ, y2) −
c2(ρ+

b
(Lb))

ρ+
b

(Lb)
ρ̇(ψ, y2)

+
1

2

3
∑

i=1

v2
j (ψ, y2) +

γ

γ − 1
(ρ+(ψ, y2)γ−1 − (ρ+b (ψ))γ−1) − σΦe(ψ, y2).
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Next, the superscript “+” in ρ+
b
, u+

b
, P+

b
, B+

b
will be ignored to simplify the notations. To derive the

boundary condition at the exit, it follows from the definition of the Bernoulli’s quantity and (1.8) that

v1(L2, y2) =
v4(L2, y2)

ub(L2)
− σPex(r(L2, y2))

(ρbub)(L2)
− 1

2ub(L2)

3
∑

j=1

v2
j(L2, y2) − E(v(L2, y2))

ub(L2)
, (2.24)

where

E(v(y1, y2)) =
γ

γ − 1
(P(v))

γ−1
γ − γ

γ − 1
P

γ−1
γ

b
− 1

ρb(y1)
(P(v) − Pb) − σΦe.

The boundary condition on the nozzle wall is

v2(y1,M) = σ f ′(y1)(ub(y1) + v1(y1,M)), on Γp,y. (2.25)

Finally, we derive the equations for v j ( j = 1, · · · , 4). Note that














(c2(Bb, ub,Φb) − u2
b
)u′

b
= −ubg,

c2(B, |u|,Φ) − u2 − c2(Bb, ub,Φb) + u2
b
= (γ − 1)(v4 + σΦe) − γ+1

2
v2

1
− (γ + 1)ubv1 − γ−1

2

∑3
j=2 v2

j
.

Then it follows from (2.14) that














































d1(y1)∂y1
v1 + d2(y1)

(

∂y2
v2 +

v2

y2

)

+ d3(y1)v1 + d4(y1)v4 = F1(v),

∂y1
v2 − d2(y1)∂y2

v1 + d5(y1)∂y2
v4 = F2(v),

∂y1
(rv3) = 0,

∂y1
v4 = 0,

(2.26)

where

d1(y1) = 1 − M2
b(y1) > 0, M2

b(y1) =
u2

b
(y1)

c2(ρb(y1))
, d2(y1) =

1

κb(y1)
> 0, d4(y1) =

(γ − 1)u′
b
(y1)

c2(ρb(y1))
,

d3(y1) =
g(y1) − (γ + 1)(ubu′

b
)(y1)

c2(ρb(y1))
=

(1 + γM2
b
)g(y1)

c2(ρb(y1)) − u2
b
(y1)

> 0, d5(y1) =
1

(κbub)(y1)
> 0,

F1(v) =
1

c2(ρb(z1))

(

− (c2(ρ) − (ub + v1)2 − c2(ρb) + u2
b)∂y1

v1 +

(

γ + 1

2
v2

1 +
γ − 1

2
(v2

2 + v2
3)

)

u′b

+ (c2(ρ) − (ub + v1)2)
rρv2

2y2

∂y2
v1 − c2(ρ)

rρ(ub + v1)

2y2

∂y2
v2 + c2(ρb)

rbρbub

2y2

∂y2
v2

+ c2(ρ)v2
2

rρ(ub + v1)

2y2

∂y2
v2 −

c2(ρ)

r
v2 +

c2(ρb)

rb

v2 −
c2(ρ)v2

3

r
v2 − σ(ub + v1)∂y1

Φe

+ (ub + v1)v2

(

∂y1
v2 −

rρv2

2y2

∂y2
v2 +

rρ(ub + v1)

2y2

∂y2
v1

))

,

F2(v) =
rρv2

2y2

∂y2
v2 +

rρ(ub + v1)

2y2

∂y2
v1 −

rbρbub

2y2

∂y2
v1 +

1

ub + v1

(

rρ(ub + v1)

2y2

v3∂y2
v3 +

v2
3

r

− rρ(ub + v1)

2y2

∂y2
v4 +

rbρbub

2y2

∂y2
v4

)

.

Here F1(v) and F2(v) are quadratic and high order terms.

Then to solve the problem (1.4) with (1.6), (1.7), (1.8) and (1.10) is equivalent to find a function

v5 defined on [0,M) and vector functions (v1, · · · , v4) defined on the D+ := {(y1, y2) : Lb + v5(y2) <

y1 < L2, 0 ≤ y2 <M}, which solves the system (2.26) with boundary conditions (2.16), (2.22)-(2.25).
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2.4 The coordinates transformation

In order to deal with the free boundary value problem, it is convenient to reduce it into a fixed

boundary value problem by setting

z1 =
y1 − ψ(y2)

L2 − ψ(y2)
(L2 − Lb) + Lb =

y1 − Lb − w5

L2 − Lb − w5

(L2 − Lb) + Lb, z2 = y2, (2.27)

where

w5(y2) = ψ(y2) − Lb.

Then


















































y1 = z1 +
L2 − z1

L2 − Lb

w5 =: D
w5

0
,

∂y1
=

L2 − Lb

L2 − Lb − w5(z2)
∂z1
=: D

w5

1
,

∂y2
= ∂z2

+
(y1 − L2)∂z2

w5

L2 − Lb − w5

∂z1
=: D

w5

2
,

and the domain D+ becomes

Ω = {(z1, z2) : Lb < z1 < L2, 0 ≤ z2 <M}.

Set

w j(z1, z2) = v j

(

z1 +
L2 − z1

L2 − Lb

w5, z2

)

, j = 1, · · · , 4, w = (w1, · · · ,w4).

Then the functions ρ(y1, y2) and P(y1, y2) in (2.15) can be rewritten as

ρ̃(z1, z2) =

(γ − 1

γ

)
1
γ−1

(

Bb(D
w5

0
) + w4 + Φb(D

w5

0
) + σΦe −

1

2
(ub(D

w5

0
) + w1)2 −

3
∑

j=2

|w j|2
)

1
γ−1

,

P̃(z1, z2) =

(

γ − 1

γ

)

γ
γ−1

(

Bb(D
w5

0
) + w4 + Φb(D

w5

0
) + σΦe −

1

2
(ub(D

w5

0
) + w1)2 −

3
∑

j=2

|w j|2
)

γ
γ−1

.

(2.28)

Furthermore, after the coordinate transformation, (2.16) is changed to be

w′5(z2) = a1w2(Lb, z2) + h1(Ψ−(Lb + w5, z2) −Ψ−b (Lb + w5),w(Lb, z2),w5). (2.29)

In the z-coordinates, the transonic shock problem can be reformulated as follows. By the second

equation in (2.22), the shock front will be determined as follows

w5(z2) =
1

b2

w1(Lb, z2) − 1

b2

R1(Ψ−(Lb + w5, z2) −Ψ−b (Lb + w5),w(Lb, z2),w5). (2.30)

The function w3 will be determined by the following equation















∂z1
(r̃w3) = 0,

w3(Lb, z2) = u−θ (Lb + w5(z2), z2),
(2.31)

where

r̃(z1, z2) = 2













∫ z2

0

s

ub(D
w5

0
)ρ̃(z1, s) + (ρ̃w1)(z1, s)

ds













1
2

.
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The Bernoulli’s quantity w4 will be determined by (2.23). That is















∂z1
w4 = 0,

w4(Lb, z2) = b3w5(z2) + R3(Ψ−(Lb + w5, z2) −Ψ−
b

(Lb + w5),w(Lb, z2),w5).
(2.32)

Next, the first and second equations in (2.26) can be rewritten as



















d1(z1)∂z1
w1 + d2(z1)

(

∂z2
w2 +

w2

z2

)

+ d3(z1)w1 + d4(z1)w4 = F3(w,w5),

∂z1
w2 − d2(z1)∂z2

w1 + d5(z1)∂z2
w4 = F4(w,w5),

(2.33)

where

F3(w,w5) = F1(w,w5) − (d1(D
w5

0
)D

w5

1
w1 − d1(z1)∂z1

w1) − (d3(D
w5

0
) − d3(z1))w1 − (d4(D

w5

0
) − d4(z1))w1

−
(

d2(D
w5

0
)

(

D
w5

2
w2 +

w2

D
w5

0

)

− d2(z2)

(

∂z2
w2 +

w2

z2

))

,

F4(w,w5) = F2(w,w5) − (D
w5

1
w2 − ∂z1

w2) + (d2(D
w5

0
)D

w5

2
w2 − d2(z1)∂z2

w1)

− (d5(D
w5

0
)D

w5

2
w4 − d5(z1)∂z2

w4),

F1(w,w5) =
1

c2(ρb(D
w5

0
))

(

− (c2(ρ̃) − (ub + w1)2 − c2(ρb) + u2
b)D

w5

1
w1 +

(

γ + 1

2
w2

1 +
γ − 1

2
(w2

2 + w2
3)

)

u′b

+ (c2(ρ̃) − (ub + w1)2)
r̃ρ̃w2

2y2

D
w5

2
w1 − c2(ρ̃)

r̃ρ̃(ub + w1)

2y2

D
w5

2
w2 + c2(ρb)

rbρbub

2y2

D
w5

2
w2

+ c2(ρ̃)w2
2

r̃ρ̃(ub + w1)

2y2

D
w5

2
w2 −

c2(ρ̃)

r̃
w2 +

c2(ρb)

rb

w2 −
c2(ρ̃)w2

3

r̃
w2 − σ(ub + w1)D

w5

1
Φe

+ (ub + w1)w2

(

D
w5

1
w2 −

r̃ρ̃w2

2y2

D
w5

2
w2 +

r̃ρ̃(ub + w1)

2y2

D
w5

2
w1

))

,

F2(w,w5) =
r̃ρ̃w2

2y2

D
w5

2
w2 +

r̃ρ̃(ub + w1)

2y2

D
w5

2
w1 −

rbρbub

2y2

D
w5

2
w1 +

1

ub + w1

(

r̃ρ̃(ub + w1)

2y2

w3D
w5

2
w3 +

w2
3

r̃

− r̃ρ̃(ub + w1)

2y2

D
w5

2
w4 +

rbρbub

2y2

D
w5

2
w4

)

.

Finally, the boundary condition (2.24) at the exit becomes

w1(L2, z2) =
w4(L2, z2)

ub(L2)
− σPex(r̃(L2, z2))

(ρbub)(L2)
− 1

2ub(L2)

3
∑

j=1

w2
j(L2, z2) − E(w(L2, z2))

ub(L2)
, (2.34)

where

E(w(z1, z2)) =
γ

γ − 1
(P̃(w))

γ−1
γ − γ

γ − 1
P

γ−1
γ

b
− 1

ρb(z1)
(P̃(w) − Pb) − σΦe.

The boundary condition on the nozzle wall is

w2(z1,M) = σ f ′(Dw5

0
)(ub(D

w5

0
) + w1(z1,M)), on Γp,z = {(z1, z2) : Lb ≤ z1 ≤ L2, z2 =M}. (2.35)

Therefore, after the coordinates transformation (2.27), the problem (2.26) with boundary condi-

tions (2.16), (2.22)-(2.25) is equivalent to solve the following problem.
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Problem 2.1. Find a function w5 defined on [0,M) and vector functions (w1, · · · ,w4) defined on

the Ω, which solve the transport equations (2.31)-(2.32) and (2.33) with boundary conditions (2.29),

(2.30), (2.34) and (2.35).

Theorem 1.3 then follows directly from the following result.

Theorem 2.2. Assume that the compatibility conditions (1.5) and (1.11) hold. There exist suitable

positive constants σ0 and C∗ depending only on the background solution Ψb defined in (1.3) and

the boundary data Ψ−(L1, ·), f , Pex ,Φe such that if 0 < σ ≤ σ0, the problem (2.31)-(2.33) with

boundary conditions (2.29), (2.30), (2.34) and (2.35) has a unique solution (w1,w2,w3,w4)(z1, z2)

with the shock front S : z1 = w5(z2) satisfying the following properties.

(1) The function w5(z2) ∈ C
(−1−α;{M})
3,α

([0,M)) satisfies

‖w5‖(−1−α;{M})
3,α;[0,M)

≤ C∗σ (2.36)

and

w′5(0) = w
(3)

5
(0) = 0. (2.37)

(2) The solution (w1,w2,w3,w4)(z1, z2) ∈ C
(−α;Γp,z)

2,α
(Ω) satisfies the estimate

4
∑

i=1

‖wi‖
(−α;Γp,z)

2,α;Ω
≤ C∗σ (2.38)

with the compatibility conditions

(w2, ∂
2
z2

w2)(z1, 0) = (w3, ∂z2
w3)(z1, 0) = ∂z2

(w1,w4)(z1, 0) = 0, ∀z1 ∈ [Lb, L2]. (2.39)

3 Proof of Theorem 2.2

In this section, we first construct a suitable iteration scheme to linearize the problem (2.31)-(2.33)

with boundary conditions (2.29), (2.30), (2.34) and (2.35) . Especially, a linear first order elliptic

system with a nonlocal term can be derived. Then one can introduce a potential function to reduce

the first order elliptic system into a second order elliptic equation with a nonlocal term involving only

the trace of the potential function on the shock front and a free parameter. We solve this second order

nonlocal elliptic equation with a free parameter and establish some prior estimates and then complete

the proof of Theorem 2.2.

3.1 An iteration scheme

In this subsection, we develop an iteration scheme to linearize the problem (2.31)-(2.33) with

boundary conditions (2.29), (2.30), (2.34) and (2.35). The solution class J consists of the vector

functions (w1, · · · ,w4,w5) ∈
(

C
(−α;Γp,z)

2,α (Ω))4 ×C
(−1−α;{M})
3,α ([0,M))

)

satisfying the estimate

‖(w,w5)‖J =
4

∑

j=1

‖w j‖
(−α;Γp,z)

2,α;Ω
+ ‖w5‖(−1−α;{M})

3,α;[0,M)
≤ δ (3.1)
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and the following compatibility conditions

w′5(0) = w
(3)

5
(0) = (w2, ∂

2
z2

w2)(z1, 0) = (w3, ∂z2
w3)(z1, 0) = ∂z2

(w1,w4)(z1, 0) = 0, (3.2)

where δ > 0 to be determined later. Given (ŵ, ŵ5) ∈ J , we will construct an iterative procedure

that generates a new (w,w5) ∈ J , and thus one can define a mapping from J to itself by choosing a

suitably small positive constant δ.

Step 1. The iteration scheme for w5.

The shock front w5 is uniquely determined by

w5(z2) =
1

b2

w1(Lb, z2) − 1

b2

R1(Ψ−(Lb + ŵ5, z2) −Ψ−b (Lb + ŵ5), ŵ(Lb, z2), ŵ5), (3.3)

provided that w1(Lb, z2) is obtained.

Step 2. The iteration scheme for w3 and w4.

We solve the transport equations for the swirl velocity and the Bernoulli’s quantity . The swirl

velocity w3 will be determined by















∂z1
(r̂w3) = 0,

w3(Lb, z2) = u−θ (Lb + ŵ5(z2), z2),
(3.4)

where

r̂(z1, z2) = 2

















∫ z2

0

s

ub(D
ŵ5

0
)ρ̂(z1, s) + (ρ̂ŵ1)(z1, s)

ds

















1
2

.

Then w3 can be solved as follows

w3(z1, z2) =
r̂(Lb, z2)u−θ (Lb + ŵ5(z2), z2)

r̂(z1, z2)
. (3.5)

The Bernoulli’s quantity w4 satisfies















∂z1
w4 = 0,

w4(Lb, z2) = b3w5(z2) + R3(Ψ−(Lb + ŵ5, z2) −Ψ−
b

(Lb + ŵ5), ŵ(Lb, z2), ŵ5).
(3.6)

This, together with (3.3), yields that

w4(z1, z2) = b3w5(z2) + R3(Ψ−(Lb + ŵ5, z2) −Ψ−b (Lb + ŵ5), ŵ(Lb, z2), ŵ5)

=
b3

b2

w1(Lb, y2) + R4(Ψ−(Lb + ŵ5, z2) −Ψ−b (Lb + ŵ5), ŵ(Lb, z2), ŵ5),
(3.7)

where
R4(Ψ−(Lb + ŵ5, z2) −Ψ−b (Lb + ŵ5), ŵ(Lb, z2), ŵ5)

= R3(Ψ−(Lb + ŵ5, z2) −Ψ−b (Lb + ŵ5), ŵ(Lb, z2), ŵ5)

− b3

b2

R1(Ψ−(Lb + ŵ5, z2) −Ψ−b (Lb + ŵ5), ŵ(Lb, z2), ŵ5).

Step 3. The iteration scheme for w1 and w2.

We derive the equations for w1 and w2. Firstly, it follows from (2.29) that

w′5(z2) = a1w2(Lb, z2) + h1(Ψ−(Lb + ŵ5, z2) −Ψ−b (Lb + ŵ5), ŵ(Lb, z2), ŵ5). (3.8)
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Substituting (3.7) into (2.33) and combining (3.3), (3.8), (2.34) and (2.35), one gets



























































































d1(z1)∂z1
w1 + d2(z1)

(

∂z2
w2 +

w2

z2

)

+ d3(z1)w1 + d4(z1)
b3

b2

w1(Lb, z2) = G1(ŵ, ŵ5),

∂z1
w2 − d2(z1)∂z2

w1 + d5(z1)
b3

b2

∂z2
w1(Lb, z2) = G2(ŵ, ŵ5),

∂z2
w1(Lb, z2) = a1b2w2(Lb, z2) + h2(z2),

w1(L2, z2) =
b3

b2ub(L2)
w1(Lb, z2) + h3(z2),

w2(z1, 0) = 0,

w2(z1,M) = h4(z1),

(3.9)

where

G1(ŵ, ŵ5) = F3(ŵ, ŵ5) − d4(z1)R4(Ψ−(Lb + ŵ5, z2) −Ψ−b (Lb + ŵ5), ŵ(Lb, z2), ŵ5),

G2(ŵ, ŵ5) = F4(ŵ, ŵ5) − d5(z1)∂z2
R4(Ψ−(Lb + ŵ5, z2) −Ψ−b (Lb + ŵ5), ŵ(Lb, z2), ŵ5),

h2(z2) = h1(Ψ−(Lb + ŵ5, z2) −Ψ−b (Lb + ŵ5), ŵ(Lb, z2), ŵ5)

+ ∂z2
R1(Ψ−(Lb + ŵ5, z2) −Ψ−b (Lb + ŵ5), ŵ(Lb, z2), ŵ5),

h3(z2) =
R4(Ψ−(Lb + ŵ5, z2) −Ψ−

b
(Lb + ŵ5), ŵ(Lb, z2), ŵ5)

ub(L2)
− σPex(r̂(L2, z2))

(ρbub)(L2)

− 1

2ub(L2)

3
∑

j=1

ŵ2
j(L2, z2) − E(ŵ(L2, z2))

ub(L2)
,

h4(z1) = σ f ′(Dŵ5

0
)(ub(D

ŵ5

0
) + ŵ1(z1,M)).

Then it follows from the expressions of Fi and Ri together with direct computations that

2
∑

j=1

‖Gi(ŵ, ŵ5)‖(1−α;Γp,z)

1,α;Ω
+ ‖h2‖(1−α;{M})

1,α;[0,M)
+ ‖h3‖(−α;{M})

1,α;[0,M)
+ ‖h4‖0,α;[Lb ,L2] ≤ C

(

σ + ‖(ŵ, ŵ5)‖2J
)

. (3.10)

Next, the second eqaution in (3.9) can be rewritten as

∂z1
w2 − ∂z2

(

d2(z1)w1 − d5(z1)
b3

b2

w1(Lb, z2) −
∫ M

z2

G2(ŵ, ŵ5)(z1, s)ds

)

= 0,

which implies that there exists a potential function φ such that

∂z2
φ = w2, ∂z1

φ = d2(z1)w1 − d5(z1)
b3

b2

w1(Lb, z2) −
∫ M

z2

G2(ŵ, ŵ5)(z1, s)ds, φ(Lb,M) = 0. (3.11)

Therefore, one obtians

w1(Lb, z2) = b4

(

∂z1
φ(Lb, z2) +

∫ M

z2

G2(ŵ, ŵ5)(Lb, s)ds

)

, b4 = d2(Lb) − d5(Lb)
b3

b2

=
c2(ρb(Lb))

κb(Lb)
> 0,

w1(z1, z2) =
1

d2(z1)

(

∂z1
φ + d5(z1)

b3b4

b2

∂z1
φ(Lb, z2) +

∫ M

z2

(G2(ŵ, ŵ5)(z1, s) + b4d5(z1)G2(ŵ, ŵ5)(Lb, s))ds

)
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Then the problem (3.9) is reduced to


























































∂z1
(λ1(z1)∂z1

φ) + λ2(z1)

(

∂2
z2
φ +

∂z2
φ

z2

)

− λ3(z1)∂z1
φ(Lb, z2) = ∂z1

G1 + ∂z2
G2,

∂z2
(∂z1

φ(Lb, z2) − b5φ(Lb, z2)) = q2(z2),

∂z1
φ(L2, z2) = q3(z2),

∂z2
φ(z1, 0) = 0,

∂z2
φ(z1,M) = h4(z1),

(3.12)

where

λ1(z1) =
λ0(z1)

d2(z1)
> 0, λ2(z1) = λ0(z1)

d2

d1

(z1) > 0, λ0(z1) = exp

(

∫ z1

Lb

d3

d1

(s)ds

)

,

λ3(z1) = −b3b4

b2

λ0(z1)

(

d2d3

d1d5

(z1) +

(

d5

d2

)′
(z1) +

d4

d1

(z1)

)

= −b3b4

b2

λ0(z1)
(ubg)(z1)

c2(ρb(z1)) − u2
b
(z1)

2 + (γ − 1)M4
b
(z1)

1 − M2
b
(z1)

> 0,

G1(z1, z2) = −λ1(z1)

∫ M

z2

(G2(ŵ, ŵ5)(z1, s) + b4d5(z1)G2(ŵ, ŵ5)(Lb, s))ds,

G2(z1, z2) =
λ0(z1)

d1(z1)

∫ z2

0

G1(ŵ, ŵ5)(z1, s)ds, b5 =
a1b2

b4

> 0,

q2(z2) = G2(ŵ, ŵ5)(Lb, z2) +
h2(z2)

b4

,

q3(z2) = −
∫ M

z2

G2(ŵ, ŵ5)(L2, s)ds + h3(z2).

The second equation in (3.12) implies that

∂z1
φ(Lb, z2) − b5(φ(Lb, z2) + Λ) = q̃2(z2), (3.13)

where

Λ = −w5(M)

a1

, q̃2(z2) = −
∫ M

z2

q2(s)ds +
1

b4

R1(Ψ−(Lb + ŵ5(M),M) −Ψ−b (Lb + ŵ5(M)), ŵ(Lb,M), ŵ5(M)).

Substituting (3.13) into the first equation in (3.12) yields


























































∂z1
(λ1(z1)∂z1

φ) + λ2(z1)

(

∂2
z2
φ +

∂z2
φ

z2

)

− λ3(z1)b5(φ(Lb, z2) + Λ) = ∂z1
G1 + ∂z2

G2 + G3,

∂z1
φ(Lb, z2) − b5(φ(Lb, z2) + Λ) = q̃2(z2),

∂z1
φ(L2, z2) = q̃3(z2),

∂z2
φ(z1, 0) = 0,

∂z2
φ(z1,M) = h4(z1),

(3.14)

where

G3(z1, z2) = λ3(z1)q̃2(z2), q̃3(z2) = q3(z2).

Furthermore, it follows from (3.10) that the following estimate holds:

3
∑

j=1

‖G j‖
(−α;Γp,z)

1,α;Ω
+

3
∑

j=2

‖q̃ j‖(−α;{M})
1,α;[0,M)

+ ‖h4‖0,α;[Lb ,L2] ≤ C
(

σ + ‖(ŵ, ŵ5)‖2J
)

. (3.15)
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3.2 Solving a second order elliptic equation with a nonlocal term

Let φ∗(z1, z2) = φ(z1, z2) + Λ. Then (3.14) is equivalent to the following problem


























































∂z1
(λ1(z1)∂z1

φ∗) + λ2(z1)

(

∂2
z2
φ∗ +

∂z2
φ∗

z2

)

− λ3(z1)b5φ∗(Lb, z2) = ∂z1
G1 + ∂z2

G2 + G3,

∂z1
φ∗(Lb, z2) − b5φ∗(Lb, z2) = q̃2(z2),

∂z1
φ∗(L2, z2) = q̃3(z2),

∂z2
φ∗(z1, 0) = 0,

∂z2
φ∗(z1,M) = h4(z1).

(3.16)

In order to deal with the singularity near z2 = 0, we rewrite the problem (3.16) by using the cylindrical

coordinates transformation again. Define

η1 = z1, η2 = z2 cos τ, η3 = z2 sin τ, τ ∈ [0, 2π],

and
Ω1 = {(η1, η2, η3) : Lb < η1 < L2, η

2
2 + η

2
3 ≤ M2}, Ω2 = {(η2, η3) : η2

2 + η
2
3 ≤ M2},

Γ′η = {η′ = (η2, η3) : η2
2 + η

2
3 =M2}, Γp,η = [Lb, L2] × Γ′η,

Ψ(η) = φ∗(η1,
√

η2
2
+ η2

3
) = φ∗(η1, |η′|).

Then Ψ(η) satisfies






















































































∂η1
(λ1(η1)∂η1

Ψ) + λ2(η1)

3
∑

j=2

∂2
η j
Ψ − λ3(η1)b5Ψ(Lb, η

′)

= ∂η1
G1(η1, |η′|) +

3
∑

j=2

∂η j

(

η jG2(η1, |η′|)
|η′|

)

− G2(η1, |η′|)
|η′| + G3(η1, |η′|),

∂η1
Ψ(Lb, η

′) − b5Ψ(Lb, η
′) = q̃2(|η′|),

∂η1
Ψ(L2, η

′) = q̃3(|η′|),
(η2∂η2

+ η3∂η3
)Ψ(η1, η

′) =Mh4(η1).

(3.17)

Firstly, the weak solution to (3.17) can be obtained as follows. Ψ ∈ H1(Ω1) is said to be a weak

solution to (3.17), if for any ϕ ∈ H1(Ω1), the following equality holds:

L(Ψ, ϕ) = F (ϕ), ∀ϕ ∈ H1(Ω1), (3.18)

where

L(Ψ, ϕ) =

$
Ω1

λ1(η1)∂ηΨ∂η1
ϕ + λ2(η1)(∂η2

Ψ∂η2
ϕ + ∂η3

Ψ∂η3
ϕ) + λ3(η1)b5Ψ(Lb, η

′)ϕ(η1, η
′)dη1dη2dη3

+

"
Ω2

λ1(Lb)b5Ψ(Lb, η
′)ϕ(Lb, η

′)dη2dη3,

F (ϕ) =

$
Ω

G1∂η1
ϕ +

3
∑

j=2

η jG2

|η′| ∂ηi
ϕ −

(

G3 −
G2

|η′|

)

ϕdη1dη2dη3 −
∫ L2

Lb

G2(η1,M)ϕ(η1,M)dη1

−
"
Ω2

G1(L2, |η′|))ϕ(L2, η
′) − G1(Lb, |η′|))ϕ(Lb, η

′)dη2dη3 +

∫ L2

Lb

Mh4(η1)ϕ(η1,M)dη1

+

"
Ω2

λ1(L2)q̃3(|η′|))ϕ(L2, η
′) − λ1(Lb)q̃2(|η′|))ϕ(Lb, η

′)dη2dη3.
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Lemma 3.1. There exists a positive constant K depending only on the background solution such that

the following problem has a unique weak solution in H1(Ω1)























































































∂η1
(λ1(η1)∂η1

Ψ) + λ2(η1)

3
∑

j=2

∂2
η j
Ψ − λ3(η1)b5Ψ(Lb, η

′) + KΨ

= ∂η1
G1(η1, |η′|) +

3
∑

j=2

∂η j

(

η jG2(η1, |η′|)
|η′|

)

− G2(η1, |η′|)
|η′| + G3(η1, |η′|),

∂η1
Ψ(Lb, η

′) − b5Ψ(Lb, η
′) = q̃2(|η′|),

∂η1
Ψ(L2, η

′) = q̃3(|η′|),
(η2∂η2

+ η3∂η3
)Ψ(η1, |η′|) =Mh4(η1).

(3.19)

Proof. The system (3.19) has the following bilinear form on H1(Ω1) × H1(Ω1):

LK(Ψ, ϕ) = L(Ψ, ϕ) +

$
Ω1

Ψϕdη1dη2dη3 = F (ϕ), ∀ϕ ∈ H1(Ω1). (3.20)

For any ǫ > 0, one can use Cauchy’s inequality to get

$
Ω1

Ψ(Lb, η
′)Ψ(η1, η

′)dη1dη2dη3

≤ C1

ǫ

$
Ω1

Ψ2(η1, η
′))dη1dη2dη3 + ǫ

$
Ω1

(∂η1
Ψ)2(η1, η

′))dη1dη2dη3.

Note that G2(η1, 0) = 0. Thus the boundedness and coercivity of LK can be verified as follows

|LK(Ψ, ϕ)| ≤ C‖Ψ‖H1(Ω1)‖ϕ‖H1(Ω),

|F (ϕ)| ≤ C



















3
∑

j=1

‖G j‖C0,α(Ω1)
+

3
∑

j=2

‖q̃ j‖C0,α(Ω2)
+ ‖h4‖C0,α[Lb,L2]



















‖ϕ‖H1(Ω1),

and

LK(Ψ,Ψ) =

$
Ω1

λ1(η1)(∂η1
Ψ)2 + λ2(η1)

3
∑

i=2

(∂ηi
Ψ)2 + λ3(η1)b5Ψ(Lb, η

′)Ψ(η, η′) + KΨ2dη1dη2dη3

+

"
Ω2

λ1(Lb)b5(Ψ(Lb, η
′))2dη2dη3,

≥ C∗

(

‖∇Ψ‖2
L2(Ω1)

+ ‖Ψ(Lb, ·)‖2L2(Ω2)

)

+ K‖Ψ‖2
L2(Ω1)

− C∗
4
‖∂η1
Ψ‖2

L2(Ω1)

− C∗
4
‖Ψ(Lb, ·)‖2L2(Ω2)

− C̃∗‖Ψ‖2L2(Ω1)

≥ C∗
2

(

‖∇Ψ‖2
L2(Ω1)

+ ‖Ψ(Lb, ·)‖2L2(Ω2)

)

+
K

2
‖Ψ‖2

L2(Ω1)

provided that K is sufficiently large. Then the existence and uniqueness of H1(Ω1) solution Ψ to

(3.17) can be obtained by using the Lax-Milgram theorem, which completes the proof of Lemma

3.1. �
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Now we are going to solve the problem (3.17).

Proposition 3.2. Suppose that (G1,G2, ,G3) ∈ (C
(−α;Γp,η)

1,α
(Ω1))3,G2(η1, 0) = 0, (q̃2, q̃3) ∈ (C

(−α;Γ′η)

1,α
(Ω2))2

and h4 ∈ (C0,α([Lb, L2]). Then the problem (3.17) has a unique solution Ψ ∈ C
(−1−α;Γp,η)

2,α
(Ω1) satisfy-

ing the estimate

‖Ψ‖(−1−α;Γp,η )

2,α;Ω1
≤ C♯



















3
∑

j=1

‖G j‖
(−α;Γp,η)

1,α;Ω1
+

3
∑

j=2

‖q̃ j‖
(−α;Γ′η)

1,α;Ω2
+ ‖h4‖0,α;[Lb ,L2]



















, (3.21)

where the constant C♯ depends only on the coefficients λi, i = 1, 2, 3, b5 and thus depends only on the

background solution.

Proof. Firstly, we show that any H1(Ω1) weak solution to (3.17) has a higher regularity C
(−1−α;Γp,η)

2,α (Ω1).

To this end, the first equation in (3.17) can be rewritten as a standard second order elliptic equation

for Ψ:

∂η1
(λ1(η1)∂η1

Ψ) + λ2(η1)

3
∑

j=2

∂2
η j
Ψ

= λ3(η1)b5Ψ(Lb, η
′) + ∂η1

G1(η1, |η′|) +
3

∑

j=2

∂η j

(

η jG2(η1, |η′|)
|η′|

)

− G2(η1, |η′|)
|η′| + G3(η1, |η′|).

Since Ψ ∈ H1(Ω1), thus the trace theorem implies that Ψ(Lb, η
′) ∈ L2(Ω2). Then one can apply [14,

Theorems 5.36 and 5.45] to get

‖Ψ‖
C0,α(Ω1)

≤ C♯

(

‖b5λ3(z1)Ψ(Lb, η
′)‖L2(Ω2) + ‖G1‖L4(Ω1) +

3
∑

j=2

∥

∥

∥

∥

∥

η jG2(η1, |η′|)
|η′|

∥

∥

∥

∥

∥

L4(Ω1)

+

∥

∥

∥

∥

∥

G2(η1, |η′|)
|η′|

∥

∥

∥

∥

∥

L2(Ω1)
+ ‖G3‖L2(Ω1) +

3
∑

j=2

‖q̃ j‖L3(Ω2) + ‖h4‖L3(Lb,L2)

)

≤ C♯



















‖Ψ‖H1(Ω1) +

3
∑

i=1

‖Gi‖
(−α;Γp,η)

1,α;Ω1
+

3
∑

j=2

‖q̃ j‖
(−α;Γ′η)

1,α;Ω2
+ ‖h4‖0,α;[Lb ,L2]



















.

(3.22)

Hence b5λ3(z1)Ψ(Lb, η
′) ∈ Cα(Ω1) and the Schauder estimate in [14, Theorem 4.6] would imply that

‖Ψ‖(−1−α;Γp,η )

2,α;Ω1
≤ C♯



















‖Ψ‖H1(Ω1) +

3
∑

i=1

‖Gi‖
(−α;Γp,η)

1,α;Ω1
+

3
∑

j=2

‖q̃ j‖
(−α;Γ′η)

1,α;Ω2
+ ‖h4‖0,α;[Lb ,L2]



















. (3.23)

Next, to show the uniqueness of the H1(Ω1) weak solution to (3.17), we first investigate the

following eigenvalue problem















∂2
η2
β + ∂2

η3
β + µβ = 0, in Ω2,

(η2∂η2
+ η3∂η3

)β = 0, on ∂Ω2.
(3.24)

By the standard elliptic theroy in [12], for µ < 0, the problem (3.24) is uniquely solvable. Note that

µ‖β‖2
L2(Ω2)

=

"
Ω2

(∂η2
β)2 + (∂η3

β)2dη2dη3.
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Then there exists a sequence of eigenvalues 0 = µ1 < µ2 ≤ µ3 ≤ · · · ≤ µi → ∞ and the corresponding

eigenfunctions {βi(η2, η3)}∞
i=1
∈ C∞(Ω2) associated with µi. The functions {βi(η2, η3)}∞

i=1
constitute a

complete orthonormal basis of L2(Ω2) and are also orthogonal in H1(Ω2).

Since Ψ ∈ C1,α(Ω1) ∩C2,α(Ω1), then Ψ can be represented as

Ψ(η) =

∞
∑

i=0

Xi(η1)βi(η2, η3),

where Xi(z1) =
∫ L2

Lb
Ψ(η)βi(η2, η3)dη2dη3 ∈ C1,α([Lb, L2]) ∩C2,α((Lb, L2)) solves the problem



























λ1(η1)X
′′
i (η1) + λ

′
1(η1)X

′
i (η1) − λ2(z1)µiXi(η1) − b5λ3(η1)Xi(Lb) = 0,

X
′
i (Lb) − b5Xi(Lb) = 0,

X
′
i (L2) = 0.

(3.25)

Suppose that Xi(Lb) = 0, then the maximum principle and Hopf’s lemma show that Xi(η1) ≡ 0 for

any η1 ∈ [Lb, L2]. Suppose that Xi(Lb) > 0, then



























λ1(η1)X
′′
i (η1) + λ

′
1(η1)X

′
i (η1) − λ2(η1)µiXi(η1) = b5λ3(η1)Xi(Lb) > 0,

X
′
i (Lb) = b5Xi(Lb) > 0,

X
′
i (L2) = 0.

(3.26)

Assume that there exists η̃1 ∈ [Lb, L2], such that Xi(η̃1) = maxη1∈[Lb,L2] Xi(η1) > 0. Then the second

and the third equations in (3.26) imply that η̃1 ∈ (Lb, L2]. If η̃1 ∈ (Lb, L2), then X
′
i
(η̃1) = 0, X

′′
i

(η̃1) ≤ 0,

which contradicts to the first equation in (3.26). If η̃1 = L2, then Hopf’s lemma yields that X′
i
(η2) > 0,

which also contradicts. Similarly, Xi(Lb) < 0 will induce a contradiction. Hence, Xi(η1) ≡ 0 for all

η1 ∈ [Lb, L2]. Therefore we get Ψ ≡ 0 in Ω1. Then we complete the proof of the uniqueness of the

H1(Ω1) weak solution to (3.17).

Next, we can use Lemma 3.1 and the Fredholm alternatives for elliptic equations and the argu-

ments in [12, Theorem 8.6] to deduce that there exists a unique H1(Ω1) weak solution to (3.17).

Furthermore, the uniqueness helps us to derive the estimate (3.21) from (3.23). The invariance of the

equation and the boundary datum in (3.17) under the rotation transform in (η2, η3) plane shows that

Ψ is axisymmetric. This completes the proof of the proposition. �

Proposition 3.2 shows that φ∗(z1, z2) is uniquely determined, then Λ = φ∗(Lb,M). Hence this

proposition actually implies that the following estimate for w1 and w2.

Proposition 3.3. The problem (3.9) has a unique solution (w1,w2) ∈ (C
(−α;Γp,z)

2,α
(Ω))2 satisfying the

estimate

‖w1‖
(−α;Γp,z)

2,α;Ω
+ ‖w2‖

(−α;Γp,z)

2,α;Ω
≤ C(δ2 + σ) (3.27)

and the compatibility conditions

∂z2
w1(z1, 0) = (w2, ∂

2
z2

w2)(z1, 0) = 0. (3.28)
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Proof. It follows from Proposition 3.2 and the equivalence between ‖ · ‖(−α;Γp,z)

1,α;Ω
and ‖ · ‖(−α;Γp,η)

1,α;Ω1
that

the problem (3.9) has a unique solution (w1,w2) ∈ (C
(−α;Γp,z)

1,α
(Ω))2 satisfying

‖w1‖
(−α;Γp,z)

1,α,Ω
+ ‖w2‖

(−α;Γp,z)

1,α,Ω

≤ C

( 2
∑

j=1

‖Gi(ŵ, ŵ5)‖(1−α;Γp,z)

1,α;Ω
+ ‖h2‖(1−α;{M})

1,α;[0,M)
+ ‖h3‖(−α;{M})

1,α;[0,M)
+ ‖h4‖0,α;[Lb ,L2]

)

≤ C
(

σ + ‖(ŵ, ŵ5)‖2J
)

.

(3.29)

Furthermore, one can further verify that

w2(z1, 0) = ∂z2
w1(z1, 0) = 0.

Next, we estimate ‖(w1,w2)‖(−α;Γp,z)

2,α,Ω
. To this end, we rewrite (3.9) as







































































∂z1
(λ1(z1)w1) + λ2(z1)

(

∂z2
w2 +

w2

z2

)

= G3(ŵ, ŵ5),

∂z1
w2 − d2(z1)∂z2

w1 = G4(ŵ, ŵ5),

w1(Lb, z2) = G5(z2),

w1(L2, z2) = G6(z2),

w2(z1, 0) = 0,

w2(z1,M) = h4(z1),

(3.30)

where

G3(ŵ, ŵ5) =
λ0(z1)

d1(z1)

(

G1(ŵ, ŵ5) − d4(z1)
b3

b2

w1(Lb, z2)

)

,

G4(ŵ, ŵ5) = G2(ŵ, ŵ5) − d5(z1)
b3

b2

(a1b2w2(Lb, z2) + h2(z2)),

G5(z2) = a1b2Λ + b2R1(Lb,M) −
∫ M

z2

(a1b2w2(Lb, s) + h2(s))ds,

G6(z2) =
b3

b2ub(L2)
w1(Lb, z2) + h3(z2).

Then w1 satisfies


























































∂z1

(

1

λ2(z1)
∂z1

(λ1(z1)w1)

)

+ d2(z1)

(

∂2
z2

w1 +
1

z2

∂z2
w1

)

= ∂z1

(

G3(ŵ, ŵ5)

λ2(z1)

)

+ ∂z2
G4(ŵ, ŵ5) +

G4(ŵ, ŵ5)

z2

,

w1(Lb, z2) = G5(z2), w1(L2, z2) = G6(z2),

∂z2
w1(z1, 0) = 0, w1(z1,M) = w1(z1,M).

(3.31)

Note that G4(z1, 0) = 0. Similar to the proof of Proposition 3.2, one has

‖w1‖
(−α;Γp,z)

2,α;Ω
≤ C

















4
∑

i=3

‖Gi‖
(1−α;Γp,z)

1,α;Ω
+

6
∑

i=5

‖Gi‖(−α;{M})
1,α;[0,M)

+ ‖w1‖
(−α;Γp,z)

1,α,Ω

















≤ C(σ + δ2). (3.32)
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This, together with the second equation in (3.30), gives

‖∂2
z1

w2‖
(2−α;Γp,z)

0,α;Ω
+ ‖∂2

z1z2
w2‖

(2−α;Γp,z)

0,α;Ω
≤ C(‖w1‖

(−α;Γp,z)

2,α;Ω
+ ‖w2‖

(−α;Γp,z)

1,α;Ω+
+ ‖G4‖

(1−α;Γp,z)

1,α;Ω
)

≤ C(σ + δ2).
(3.33)

Next, we derive that ∂2
z2

w2(z1, 0) = 0. It follows from the first equation in (3.30) and w2(z1, 0) = 0

that

w2(z1, z2) =
1

λ2(z1)z2

∫ z2

0

s(∂z1
(λ1(z1)w1(z1, s) −G3(z1, s))ds. (3.34)

Then w2(z1, z2) can be rewritten as

w2(z1, z2) =
1

z2

∫ z2

0

s(R(z1, s) − R(z1, 0))ds +
z2

2
R(z1, 0), (3.35)

where

R(z1, z2) =
1

λ2(z1)
∂z1

(λ1(z1)w1(z1, z2)) −G3(z1, z2).

Thus one gets ∂z2
R(z1, 0) = 0. Furthermore, it follows from (3.35) that

∂2
z2

w2 = I1 + I2 + I3,

where

I1 =
2

z3
2

∫ z2

0

s(R(z1, s) − R(z1, 0))ds,

I2 = −
1

z2

(R(z1, z2) − R(z1, 0)),

I3 = ∂z2
R(z1, z2).

Obviously, I3(z1, 0) = 0. In addition,

I2 = −
1

z2

(R(z1, z2) − R(z1, 0)) = −
∫ 1

0

∂z2
R(z1, sz2)ds,

I1 =
2

z3
2

∫ z2

0

s(R(z1, s) − R(z1, 0))ds =
2

z3
2

∫ z2

0

(∫ 1

0

∂z2
R(z1, ts)dt

)

s2ds.

Hence I1(z1, 0) = I2(z1, 0) = 0. That is ∂2
z2

w2(z1, 0) = 0. The proof of Proposition 3.3 is completed.

�

In the following, we are ready to estimate w3, w4, and w5.

Proposition 3.4. w5, w3, and w4 are uniquely determined by (3.3), (3.5) and (3.7), which satisfy the

following estimate

‖w5‖(−1−α;{M})
3,α;[0,M)

+ ‖w3‖
(−α;Γp,z)

2,α;Ω
+ ‖w4‖

(−α;Γp,z)

2,α;Ω
≤ C(δ2 + σ) (3.36)

and the compatibility conditions

w′5(0) = w
(3)

5
(0) = (w3, ∂z2

w3)(z1, 0) = ∂z2
w4(z1, 0) = 0. (3.37)
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Proof. It follows from (3.3) that

‖w5‖(−α;{M})
2,α;[0,M)

≤ C
(

‖w1‖
(−α;Γp,z)

2,α;Ω
+ ‖R1(Ψ−(Lb + ŵ5, z2) −Ψ−b (Lb + ŵ5), ŵ(Lb, z2), ŵ5)‖(−α;Γp,z)

2,α;Ω

)

≤ C
(

‖w1‖
(−α;Γp,z)

2,α;Ω
+ σ + ‖(ŵ, ŵ5)‖2J

)

.

(3.38)

Meanwhile, (3.8) shows that

‖w′5‖
(−α;{M})
2,α;[0,M)

≤ C
(

‖w2‖
(−α;Γp,z)

2,α;Ω
+ ‖h1(Ψ−(Lb + ŵ5, z2) −Ψ−b (Lb + ŵ5), ŵ(Lb, z2), ŵ5)‖(−α;Γp,z)

2,α;Ω

)

≤ C
(

‖w2‖
(−α;Γp,z)

2,α;Ω
+ σ + ‖(ŵ, ŵ5)‖2J

)

.
(3.39)

Furthermore, using (1.11), (3.28) and the explicit expression of h1, one can verify that

w′5(0) = w
(3)

5
(0) = 0.

Next, (3.5) gives that

(w3, ∂z2
w3)(z1, 0) = 0 and ‖w3‖

(−α;Γp,z)

2,α;Ω
≤ Cδσ. (3.40)

Fianlly, it follows from (3.7) that the following estimate and compatibility condition hold:

‖w4‖
(−α;Γp,z)

2,α;Ω
≤ C

(

‖w1‖
(−α;Γp,z)

2,α;Ω
+ ‖R4(Ψ−(Lb + ŵ5, z2) −Ψ−b (Lb + ŵ5), ŵ(Lb, z2), ŵ5)‖(−α;Γp,z)

2,α;Ω

)

≤ C
(

‖w1‖
(−α;Γp,z)

2,α;Ω
+ σ + ‖(ŵ, ŵ5)‖2J

)
(3.41)

and

∂z2
w4(z1, 0) = 0.

Combining (3.39)-(3.41) together finishes the proof of the proposition. �

3.3 Proof of Theorem 2.2

Now, we start to prove Theorem 2.2. The proof is divided into two steps.

Step 1. The boundedness of the operator T .

Given any (ŵ, ŵ5) ∈ J , we define a mapping T as follows

T (ŵ, ŵ5) = (w,w5), (3.42)

where (w,w5) is the solution obtained in Proposition 3.3 and 3.4. Combining (3.27) and (3.36), one

derives that

‖(w,w5)‖J ≤ C∗(σ + δ
2). (3.43)

Setting δ = 2C∗σ and choosing σ0 small enough such that 2C2
∗σ0 ≤ 1

2
. Then for any 0 < σ < σ0,

C∗(σ + δ2) = δ
2
+ 2C2

∗σδ < δ, hence T maps J into itself.

Step 2. The contraction of the operator T .

For any two elements (ŵi, ŵi
5
), i = 1, 2, define (wi,wi

5
) = T (ŵi, ŵi

5
) for i = 1, 2. Denote

(k̂, k̂5) = (ŵ(1), ŵ(1)

5
) − (ŵ(2), ŵ(2)

5
) and (k, k5) = (w(1),w(1)

5
) − (w(2),w(2)

5
).
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It follows from (3.9) that k1 and k2 satisfy


























































































d1(z1)∂z1
k1 + d2(z1)

(

∂z2
k2 +

k2

z2

)

+ d3(z1)k1 + d4(z1)
b3

b2

k1(Lb, z2) = G1(w(1),w(1)

5
) −G1(w(2),w(2)

5
),

∂z1
k2 − d2(z1)∂z2

k1 + d5(z1)
b3

b2

∂z2
k1(Lb, z2) = G2(w(1),w(1)

5
) −G2(w(2),w(2)

5
),

∂z2
k1(Lb, z2) = a1b2k2(Lb, z2) + h

(1)

2
(z2) − h

(2)

2
(z2),

k1(L2, z2) =
b3

b2ub(L2)
k1(Lb, z2) + h

(1)

3
(z2) − h

(2)

3
(z2),

k2(z1, 0) = 0,

k2(z1,M) = h
(1)

4
(z1) − h

(2)

4
(z1),

(3.44)

Then Proposition 3.3 gives that

2
∑

j=1

‖k j‖
(−α;Γp,z)

2,α;Ω
≤ C

( 2
∑

j=1

‖G j(ŵ
(1), ŵ(1)

5
) −Gi(ŵ

(2), ŵ(2)

5
)‖(1−α;Γp,z)

1,α;Ω
+ ‖h(1)

2
− h

(2)

2
‖(1−α;{M})

1,α;[0,M)

+ ‖h(1)

3
− h

(2)

3
‖(−α;{M})

1,α;[0,M)
+ ‖h(1)

4
− h

(2)

4
‖0,α;[Lb ,L2]

)

≤ Cσ‖(k̂, k̂5)‖J .

(3.45)

Next, it follows (3.3) and (3.8) that






















k5(z2) =
1

b2

k1(Lb, z2) − 1

b2

(R
(1)

1
− R

(2)

1
),

k′5(z2) = a1k2(Lb, y2) + h
(1)

1
− h

(2)

1
.

(3.46)

Thus one gets

‖k5‖(−1−α;{M})
3,α;[0,M)

≤ C
(

‖k1‖
(−α;Γp,z)

2,α;Ω
+ ‖k2‖

(−α;Γp,z)

2,α;Ω
+ ‖R(1)

1
− R

(2)

1
‖(−α;Γp,z)

2,α;Ω
+ ‖h(1)

1
− h

(2)

1
‖(−α;Γp,z)

2,α;Ω

)

≤ Cσ‖(k̂, k̂5)‖J .
(3.47)

Finally, (3.5)and (3.7) yield that






























k3(z1, z2) =
r̂(1)(Lb, z2)u−θ (Lb + ŵ

(1)

5
(z2), z2)

r̂(1)(z1, z2)
−

r̂(2)(Lb, z2)u−θ (Lb + ŵ
(2)

5
(z2), z2)

r̂(2)(z1, z2)

k4(z1, z2) =
b3

b2

k1(Lb, z2) + R
(1)

4
− R

(2)

4
.

(3.48)

Hence it holds that

‖k3‖
(−α;Γp,z)

2,α;Ω
+ ‖k4‖

(−α;Γp,z)

2,α;Ω
≤ Cσ‖(k̂, k̂5)‖J . (3.49)

Combining all the above estimates, one can conclude that

‖(k, k5)‖J ≤ C♯σ‖(k̂, k̂5)‖J . (3.50)

Choosing σ0 ≤ min{ 1

4C2
∗
, 1

2C♯
}, then if 0 < σ < σ0, ‖(k, k5)‖J ≤ 1

2
‖(k̂, k̂5)‖J so that the mapping T is

a contraction operator in the norm ‖ · ‖J . Thus there exists a unique fixed point (w,w5) ∈ J such that

T (w,w5) = (w,w5). It is easy to see that this fixed point is the solution for the problem (2.31)-(2.32)

and (2.33) with boundary conditions (2.29), (2.30), (2.34) and (2.35).

Since the modified Lagrangian transformation is invertible, thus the soultion transformed back in

(x, r)-coordinates satisfies the properties (1.14)-(1.18) in Theorem 1.3. The proof of Theorem 1.3 is

completed.
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