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Transonic shocks for steady Euler flows with an external force
in an axisymmetric perturbed cylinder

Zihao Zhang*

Abstract

We concern the structural stability of transonic shocks for the steady Euler system with an
external force in an axisymmetric perturbed cylinder. For a class of external forces, we first prove
the existence and uniqueness of the transonic shock solution to the one-dimensional steady Euler
system with an external force, which shows that the external force has a stabilization effect on
the transonic shock in the flat cylinder and the shock position is uniquely determined. We then
establish the existence and stability of the transonic shock solution under axisymmetric pertur-
bations of the incoming supersonic flow, the nozzle boundary, the exit pressure and the external
force. Different from the transonic shock problem in two-dimensional nozzles, there exists a sin-
gularity along the symmetric axis for axisymmetric flows. We introduce an invertible modified
Lagrangian transformation to overcome this difficulty and straighten the streamline. One of the
key elements in the analysis is to utilize the deformation-curl decomposition to effectively decou-
ple the hyperbolic and elliptic modes in the steady axisymmetric Euler system with an external
force. Another one is an equivalent reformulation of the Rankine-Hugoniot conditions so that the
shock front is uniquely determined by an algebraic equation.

Mathematics Subject Classifications 2020: 35165, 35L.67, 76HOS, 76N15.

Key words: transonic shocks, stabilization effect on the external force, the modified La-
grangian transformation, the deformation-curl decomposition, Rankine-Hugoniot condi-
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1 Introduction and the main result

In this paper, we study the transonic shock problem for steady Euler flows of isentropic polytropic
gases in an axisymmetric perturbed cylinder under the external force. Assume the flow enters the
nozzle with a supersonic state and leaves it with a relatively high pressure, then it is expected that a
shock front occurs in the nozzle such that the flow pressure rises to coincide with the pressure at the
exit. Then catching the position of the shock front is one of the important ingredients in determining
the flow field in the nozzle. This paper shows that the external force has a stabilization effect on the
transonic shocks in the flat cylinder and the shock position is uniquely determined. Then we further
investigate the structural stability of the transonic shock solution under axisymmetric perturbations of
the incoming supersonic flow, the nozzle boundary, the exit pressure and the external force.
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The steady flow of inviscid compressible gas with an external force in R? is governed by the
following system:

0y, (puy) + 0y, (puz) + 0., (puz) = 0,

Oy, (pu? + P) + 8y, (puiu) + Oy, (puruz) = pdy, @,
Oy, (puru) + By, (pu3 + P) + Oy (puru3) = pdy, d,
Ox, (puruz) + Oy, (puru3) + Oy, (pu3 + P) = pdy, ®.

Here u = (u;, up, u3) is the velocity field, p is the density, P is the pressure and @ is the potential force,
respectively. We consider the isentropic polytropic gases, therefore the equation of state is given by
P = Ap”, where A is a positive constant and vy is the adiabatic constant with y > 1. For convenience,
we take A = 1 in this paper. Denote the sound speed by c(p) = /P’(p). It is well-known that system
(1.1) is hyperbolic for supersonic flows (i.e. [u| > c¢(p)) and hyperbolic-elliptic mixed for subsonic
flows (i.e. [u] < c(p)).

The stability analysis of transonic shock solutions in a flat nozzle have been studied extensively.
For steady flows with shocks in finitely and infinitely long flat nozzles, there exists a class of transonic
shock solutions with both upstream supersonic state and downstream subsonic state being constant
and its shock position being arbitrary. The structural stability of these transonic shocks for steady
potential flows in nozzles was studied in [2, 3, 4, 26, 27]. The authors in [5, 6] established the
existence of transonic shocks to steady Euler flows in 2-D nozzles with slowly varying cross-sections.
The existence and stability of the transonic shock for 2-D and 3-D steady Euler flows in flat or almost
flat nozzles with the prescribed pressure at the exit up to a constant were studied in [7, 28] and [8, 9].
Both existence results are established under the assumption that the shock front passes through a given
point. Recently, without such an artificial assumption, the authors in [10] established the stability and
existence of transonic shock solutions to the two dimensional steady compressible Euler system in
an almost flat finite nozzle with the exit pressure, where the shock position was uniquely determined.
This was generalized to three dimensional axisymmetric case in [11].

On the other hand, there were many studies on the stability of the radially symmetric transonic
shock in a divergent nozzle. The authors in [1] studied the stability of transonic shocks for multi-
dimensional steady potential flows in divergent nozzles. The well-posedness of the transonic shock
problem in two dimensional divergent nozzles under the perturbations of the exit pressure was first
established in [17] when the opening angle of the nozzle is suitably small. This restriction was re-
moved in [16] and the transonic shock in a 2-D straight divergent nozzle is shown in [19] to be
structurally stable under the perturbations of the nozzle walls and the exit pressure. The existence and
stability of three-dimensional axisymmetric transonic shock flows in a conic nozzle were studied in
[15, 18, 21, 29]. In [21], the authors introduced a modified Lagrangian transformation to deal with
the corner singularities near the intersection points of the shock surface and nozzle boundary and the
artificial singularity near the axis simultaneously. The stability of spherically symmetric transonic
shocks in a spherical shell was studied in [20] by requiring that the background transonic shock so-
lutions satisfy some “Structure Conditions”. Recently, the authors in [24] had made a substantial
progress and established the existence and stability of cylindrical transonic shock solutions under
three dimensional perturbations of the incoming flows and the exit pressure without any restriction
on the background transonic shock solutions.

Let L, L,(> L) be fixed positive constants. The axisymmetric cylinder is described as

(1.1)

Np = {(x1,x2,x3) € R3 Ly <x1<1,,0< x% +x§ <1}

We first consider the one-dimensional steady Euler system with an external force in N, which is



governed by
(opup) (x1) = 0,
(opupty)(x1) + Pp(x1) = (opg)(x1),
pp(L) =p >0, up(Ly) =u>0,
Pp(Lp) = Pe,

(1.2)

where the flow state at the entrance x; = L; is supersonic, i.e., #* > c?(p) = yp”~!. By employing

the monotonicity relation between the shock position and the end pressure, the following Lemma
was established in [25] shows that there is a unique transonic shock solution to (1.2) when the end
pressure is a suitably prescribed constant P, and g(x;) > O for any x; € [Ly, L,]. Meanwhile, it is
shown that the external force has a stabilization effect on the transonic shock in the cylinder and the
shock position is uniquely determined.

Lemma 1.1. Suppose that the initial state (p, i) at x; = Ly is supersonic and the external force g
satisfying g(x1) > 0 for any x| € [L1, Ly], there exist two positive constants Py, P, such that if the end
pressure P, € (P, Py), there exists a unique piecewise transonic shock solution

¥, (x) := (4, (x1),0,0, P, (x1)), if Ly <x1 <Ly,

1.3
W) = (u (x1),0,0, PL (1), if Ly < x1 < Lo, (-

¥y (x) = (up, Pp)(X) = {

with a shock front located at x, = Ly, € (L1, Ly). Across the shock, the following Rankine-Hugoniot
conditions and entropy condition are satisfied:

lopupl(Ly) = 0,
lovui + Ppl(Ly) = 0,
[Pp](Lyp) > 0.

Moreover, the shock position x| = L, increases as the exit pressure P, decreases. In addition, the
shock position x| = Ly approaches to L if P, goes to P, and x| = Ly approaches to L; if P, goes to
P;.

The 1-D transonic shock solution ¥} with a shock occurring at x; = L; will be called the back-
ground solution in this paper. Clearly, one can extend the supersonic and subsonic parts of ¥j in a
natural way, respectively. For convenience, we still call the extended subsonic and supersonic so-
lutions W and ¥, . This paper is going to establish the structural stability of this transonic shock
solution under axisymmetric perturbations of the incoming supersonic flows, the nozzle walls, the
exit pressure and the external force.

Let (x, r, 6) be the cylindrical coordinates of (x1, xp, x3) € R3, that is

[ X3
X=X, r= x§+x§,9=arctan—.
X2

Any function v(x) can be represented as v(x) = v(x,r,8), and a vector-valued function h(x) can be
represented as h(x) = h,(x, r, )e, + h,(x, r, 0)e, + hy(x, 1, 0)ey, where

e, =(1,0,0), e, =(0,cosb,sinf), ey=(0,—sinb,cos0H).

We say that a function v(x) is axisymmetric if its value is independent of 6 and that a vector-valued
function h = (A, h,, hy) is axisymmetric if each of functions %,(x), &,(x) and /g(X) is axisymmetric.



Assume that
p(xX) = p(x,r), PX)=Pxr), wXx)=ux,re,+u(x,r)e,+ug(x,reg.
Then (1.1) can be simplified as
Ox(rpuy) + 0,(rpuy) = 0,

PU0x + u0)uy + 0P = pd, D,

pu (1.4)
p(uxOx + uy0,)u, — T +0,P = pd, D,

(10, + u0,)(rug) = 0.
The axisymmetric perturbed cylinder is given by
N:={(x,reR*:Li<x<Ly 0<r<l1+af(x)
where o is sufficiently small and f € C%?([Ly, L)) satisfies
@y = f'(Ly) = 0. (1.5)

Let the potential force ®@ and the supersonic incoming flow at the inlet x = L; be prescribed as

{(I)(x, r) = Op(x) + oD,(x, ), (1.6)

W (L, 1) =Y, (L1) + 0(Ugys Vops Weps Py )(1).
Here @, = g and ®,(x,r) € C%*(N) and Uz Vs Wans P2 )(r) € (C32[0, 1])*. On the nozzle wall,

the flow satisfies the slip condition u - n = 0, where n is the outer normal of the nozzle wall. Using
cylindrical coordinates, the slip boundary condition can be rewritten as

u, =0 f' (Quy, on T'={(x,r):r=1+0f(x), Ly <x < Ly}. (1.7)
On the exit of the nozzle, the end pressure is prescribed by
P(Ly,r) = Pe + 0Pex(r), (1.8)

where P,.(r) € C(R").

In this paper, we want to look for a piecewise smooth solution ¥, which jumps only at a shock
front S = {(x,7r) : x = &), r € [0, r.]}. Here (£(r.), r.) stand for the shock front and the intersection
circle of the shock surface with the nozzle wall. More precisely, ¥ has the following form

_ {‘I’_ = (uy, uy, uy, PO)(x, 1), iNnN_={L;<x<é&r), 0<r<1+af(x)}, (1.9)
W=l ul,ug, PY)(x,r), in Ny ={6(r) <x <L, 0<r<1+0f(x),
and satisfies the following Rankine-Hugoniot conditions on the shock surface S:
[ous] = &' (nlpu,]1 =0,
[t + P1 = € (")lpusau,] = 0, 110)

lpusu,] — € (P)lpu? + P] = 0,
[puyttg] — & (r)[puyugl = 0.

The existence and uniqueness of the supersonic flow to (1.4) follows from the the classical theory
to the boundary value problem for quasi-linear hyperbolic systems (See [13]).
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Lemma 1.2. Assume that the potential force and the supersonic incoming data given in (1.6) satisfy-
ing the following compatibility conditions
0,P.(x,0)=0
Ver(0) = w,,(0) = (v,,,)”(0) = (w,,)"(0) = (P,,)'(0) =0, (1.11)
V(1) =0, (P, (1) = 05, (1D)((w5,)*(1) + 000, @e(Ly, 1)).

Then there exists a constant oy > 0 depending only on the background solution and the boundary
data, such that for any 0 < o < 0, there exists a unique axisymmetric solution ¥~ = (u, u, , uy, P~)(x, r)

€ C2"’(N) to (1.4) with (1.6) and (1.7), which satisfies
Gy, s ug, P7) = (u,, 0,0, Pyl oo i) < Coo (1.12)
and
(uy, 82u7)(x,0) = (g, Btz )(x,0) = &, (uz, P)(x,0) = 0, Vx € [Ly, L], (1.13)

Therefore, the problem is reduced to solve a free boundary value problem for the steady axisym-
metric Euler system with an external force in which the shock front and the downstream subsonic
flows are unknown. Then to state the main result, we first introduce some weighted Holder spaces
and their norms. For any bounded domain P, let H be a closed portion of P. For x, X € P, define

Ox :=dist(x,H) and Jyg := min(dy, Ox).
For any positive integer m, o € (0, 1) and « € R, we define

[M]E{Kg;)) = Z sup 6?M(W|+K’O)|Dﬁu(x)|, k=0,1,--- ,m;
T ke

9 |DPu(x) — DPu(X)|
[u]g::’(; = Z sup 6max(m+af+l<0)

|ﬂ|_kxxeP X#X Ix — X|*

9

H
”qul(,a;; - Z[u]kOP + [u]ma/?’

with the corresponding function space defined as

CEIOP) = fu - lul|“7) < oo},

m,a;P

The main result in this paper is stated as follows.

Theorem 1.3. Assume that the compatibility conditions (1.5) and (1.11) hold. There exist suitable
positive constants o and C. depending only on the background solution ¥, defined in (1.3) and the
boundary data W~ (L1,-), f, Pey ,®. such that if 0 < o < oy, the problem (1.4) with (1.6), (1.7),
(1.8) and (1.10) has a unique axisymmetric solution ¥* = (uy,u;,u;, P*)(x, r) with the shock front
S satisfying the following properties.

(1) The function &(r) € C5,~*V"*)((0, 1)) satisfies

160 = Lolls oy < Cuor (1.14)

and

£(0) = £9(0) = 0. (1.15)



(aTpys)

(2) The solution ¥* = (uy,uf,u;, P*)(x,r) € C (N,) satisfies the entropy condition

2.«
P (&), r) > P(&(r), 1), ¥r e [0,r,] (1.16)
and the estimate _
=l o < Cuo (1.17)

with the compatibility conditions
(uf, 02 )(x,0) = (uf, D,14f)(x, 0) = 3,(ut, PY(x, 00 = 0, Vxe[&(),Lal,  (L18)

where
[ps={(,r):6(r) < x< Ly, r =1+0f(0)}.

Remark 1.4. Compared with the two-dimensional case in [25], one of the major difficulties for ax-
isymmetric flows is the possible singularity near the symmetric axis. Inspired by [21], the singular
term r in the density equation is of order O(r) near the axis r = 0, hence we can find a simple modified
Lagrangian transformation such that it is invertible near the axis and also straightens the streamline.

Remark 1.5. The previous work [11, 15, 21] reduced the steady axisymmetric Euler system in the
subsonic region into a elliptic system of the flow angle and pressure. One of main ingredients of our
analysis here is quite different from those in [11, 15, 21], we utilize the deformation-curl decompo-
sition introduced in [22, 23] to effectively decouple the hyperbolic and elliptic modes in the steady
axisymmetric Euler system with an external force. This decomposition is based on a simple observa-
tion that one can rewrite the density equation as a Frobenius inner product of a symmetric matrix and
the deformation matrix by using the Bernoulli’s law and representing the density as functions of the
Bernoulli’s quantity and the velocity field. The vorticity is resolved by an algebraic equation of the
Bernoulli’s quantity.

The rest of this article is organized as follows. In Section 2, we introduce the modified Lagrangian
transformation and decompose the hyperbolic and elliptic modes for the steady axisymmetric Euler
system with an external force in the subsonic region in terms of the deformation and curl, and the
corresponding reformulation of the Rankine-Hugoniot conditions. We also introduce a coordinate
transformation such that the free boundary becomes fixed. In Section 3, we design an iteration scheme
to prove Theorem 1.3.

2 The reformulation of the transonic shock problem

In this section, we first introduce the modified Lagrangian transformation, then the deformation-
curl reformulation developed in [22, 23] is employed to rewrite the steady axisymmetric Euler system
with an external force. Finally, we reformulate the Rankine-Hugoniot conditions and boundary con-
ditions and introduce another coordinates transformation to reduce the transonic shock problem into
a fixed boundary value problem.

2.1 The modified Lagrangian transformation

For generic perturbations of the cylinder wall, one can only expect the C* boundary regularity for
the solution in the subsonic region (see [28, Remark 3.2]). In order to avoid the difficulty in uniquely
determining the trajectory, we introduce a Lagrangian transformation to straighten the streamline.



However, in the three-dimensional axisymmetric setting, there is a singular term r in the density
equation. Inspired by [21], we can find a simple modified Lagrangian transformation to overcome
this difficulty and apply this modified Lagrangian transformation to rewrite (1.4) and (1.10).

Define (31, ¥2) = (x, ¥2(x, r)) such that

3 _ - ¥ _ ~

5 = reu, g =rpuy, if (xr) € N,

9y _ +o+ O _ oo+

a5 = retul, S =rptuy,  if (x,r) € N, (2.1)

¥2(L1,0) =0,  $2(L2,0) = 0.
On the axis r = 0 and the nozzle wall I", one derives that
d _ d _
—9(x,0) =0 and —¥(x,1+ of(x)) =0.
dx dx
Thus for any x € [L;, L,], we can assume ¥,(x,0) = 0. Then one has

Fa(x, 1+ 0 f(x) = M?, Vxe[L, L.,
Falx, 1 +0f(x) = M, Vxe€|[L., L),

where M and M are two constants to be determined, and (L., 1 + o f(L.)) is the intersecting point

of the shock fro_nt S with the nozzle wall I'. Next, we need to verify that $,(x, r) is well-defined and
belongs to Lip(V). Indeed, by using the first equation in (1.4), one obtains

dy dy
—Z(E() +0,1) = =2 (E(r) = 0,7).
dr dr
This yields M; = M, which can be computed as follows
1
M = f sp-u, (L, s)ds > 0.
0

Define the modified Lagrangian transformation as

{y =4 2.2)

1
Y2 =55 (x,r).

If (0*, uy, uy, uy) are close to the background solution (o;, 1, 0,0), there exist two positive constants
C and C;, depending on the background solution, such that

.
C1r? < 5ax,r) = f sp uy(Ly, s)ds < Cor.
0

Then one gets VCir < y2(x,r) < yCar. Therefore, the Jacobian of the modified Lagrangian trans-
formation satisfies

001, 1 0
O1.32) =\ rou  rpuc| = Mol >C3>0. (2.3)
Oer) |72 |

Hence the modified Lagrangian transformation is invertible.



Under the modified Lagrangian transformation, the shock front S and the flows before and behind
S are denoted by y; = ¥(y2) and (uy, w5, uy, P*)(y1,y2) respectively. Then the domains N_ and N,
are changed into

Dy ={(1,y2) : ¥(2) <y1 < Lo, y2 € [0, M)}.

The nozzle wall ', ; is straightened to be

{@_ = {(y1,y2) : L1 <y1 < ¢(y2),y2 € [0, M)},

Lpy ={0n,02) s yM) < y1 < Ly, yo = M. (2.4)

On the other hand, under this transformation, r as a function of (y;, y,) becomes nonlinear and
nonlocal. In fact, it follows from the inverse transformation that

0 r 0 2
d 22,00 =0.
Oyr  uxy  Oyr rpuy

Thus one obtains

V2 s 3
,y0) =2 — ds| . 2.5
r(y1,y2) ( fo D On.S) S) (2.5)

In particular, for the background solution (pg, ug, 0, 0), one has

rp(y2) = KpYy2, (2.6)

1

z, .
m) is a positive constant for any y; € [Ly, L,].
bbb
For simplicity of the notations, we neglect the superscript’+ for the solution in the subsonic

region. Then under the transformation (2.2), the system (1.4) becomes

2y, Uy
oy |[==)-a,,[Z] =0,
)l(l’pux) M(“x)
P P P
0 [+ ) - oo (2] - 22 ot
PlUx 2y,

where kp, = (

=0y, ® - —0,,D,
Uy rou? . 2yyu, (2.7)
2
r uy rp
0 + —0,,P - — = —0,,0,
yi Ur 29,02 i, 2y,
0y, (rug) = 0.
The Rankine-Hugoniot conditions (1.13) across the shock front S become
2 1 , u
= —]w(yz)[—’] =0,
ro| puy Uy
P r | Pu,
+ — |+ ¢ ()— =0,
Uy pux] l// (y2)2y2 [ i, ] (28)
, r
[ur] =@ (Yz)z—[P] =0,
y2
[ug] = 0.




2.2 The deformation-curl decomposition for the steady axisymmetric Euler system
with an external force

The steady axisymmetric Euler system with an external force is hyperbolic-elliptic coupled in the
subsonic region. An effective decomposition of the elliptic and hyperbolic modes is crucial for the
solvability of the nonlinear free boundary problem. Here we will use the deformation-curl decom-
position introduced in [22, 23] to derive an equivalent system (2.13), where the hyperbolic quantities
and elliptic quantities are effectively decoupled.

Define the Bernoulli’s function B by

1 vP
B=—luf+ - 2.9)
2 (y=Dp
Then one has
pu-B=0. (2.10)
By using the Bernoulli’s quantity, the density p can be represented as
1
-1 1 yT
p = H(B,®,uf’) = (y—(B +® - §|u|2)) : 2.11)
Y
Define the vorticity w = curlu = w,e, + w,e, + wyey, where
1
Wy = ;ar(l”ue)), W, = —0xUg, wg = Oxity — O,ly.
From the third equation in (1.4) and the Bernoulli’s law, one derives that
0B
wy = 0% _ 0D (2.12)
Uy Uy

Substituting (2.11) into the density equation and combining (2.10) and (2.12), the system (1.4) is
equivalent to the following system

c(p) + u2
(Cz(p) - u%)axux + (Cz(P) - u%)arur — uyu(Oxuty + Orty) + MrL

+ (U0, D + u,0,®) =0,

u (2.13)
uy(Oxuy — O,uty) = ugdyug + 7 - 0,B,

(uxOx + u,0,)(rug) = 0,
(ux0y + u,0,)B = 0.

Under the modified Lagrangian transformation, the system (2.13) can be rewritten as

2 2

rpu rou c“(p) + uy
(Cz(p) - ui) (6Ylux - W;ayzux) + (Cz(p) - “%) (W;ayzur) + f“r
= —u 0y, O + uxu, (‘9y1”r - %ayzur + %(%zux),

2y, 2y,
) (2.14)
rpu, YUy TpUy 9 FOUy
Oy uy — — 0y, uy — ——0 =20 + 0 _ .. B,

ux( it 2y, y2tir 2y> yzux) 2y, HoOy Mo 7 2y, 2
8}'1 (ru()) = 05
0y,B=0.




2.3 The reformulation of the Rankine-Hugoniot conditions and boundary conditions

Due to the mixed elliptic-hyperbolic structure of the steady axisymmetric Euler system with an
external force in the subsonic region, it is important to formulate proper boundary conditions and
their compatibility.

Define
vioLy2) = ux(y,y2) — up 3Ly, oL y2) = (L y2), vaLy2) = ug(v, y2),
V41, y2) = BO,y2) — By (y1,y2), V= (vi,v2,v3,4), vs(y2) = ¥(y2) — Lp.

Then the density and the pressure can be expressed as

— 1\ 1 : AT
p(1,y2) = p(v) = (7’7)7 (BZ +v4+ @y + 0D, - 5(“;; +v1)? - Z |Vj|2)y ,
=2
o 2 | 3 2 (2.15)
1 2
POty = P) = (T )7 (B v @ 4 0 = ) 0% = 3 1P

=2

By the third equation in (2.8), one derives

, 2ys[uy] - _
W02) = S = @), 3) + (R Ly +vs,32) = Wy (L v, VW) vs). (216)
where a; = m > 0 and
hl(‘I’_(Lh + hSay2) - lIll:(Lh + h5)5 V(l//a YZ), hS)
_ 2yo[u,] [ 2 2you, (Y (y2), ¥2)
= =Pl av2(Y(y2), y2) = v2 (r[P] ai Pl :
The functions #; is regarded as the error term which can be bounded by
il < C (1R + vs,y2) = W, (1 + vs)| + V(W )P + Ivsl?). 2.17)

Using the equation (2.16), we can eliminate the quantity ¢ in the first two equations of (2.8) to obtain

1 [u,] | ur _
S TP [u_] -0

- i] . ][ Puy| (2.18)
o PlUx [P] | ux B
Next, a simple calculation gives
[pux] - p”xp ux [P] [ux]’ (2 19)
2 - [u,] [Pu,] 2 ~ _lu] [u] '
[pux+P]_ p ux [P] [ux] +(pux+P)p u)C [P] [ux]'

Denote p(y1,y2) = p(y1,y2) = pj;(y1). Then the first equation in (2.19) implies that

Py (Lp)vi(W, y2) + uy (Lp)pWs, y2)
= —[opupl¥) + p“xp_”;% % + (0 u )W, y2) — (o, u )W)
— (uy + uy (L + vs) — uy, (Lp)p(, y2) — (o, (L + vs) — pj (Lp))vi (1, y2)
=R (P (Lp +vs,y2) = ¥y (Lp + vs), V(Y, y2), vs).
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Similarly, one can follow from the second equation in (2.19) that at (¥/(y2), y2), there holds
P (Lp)vi(,y2) + u, (Lp)pW, y2) = Rii (¥ (Lp + vs,y2) — ¥, (Lp + v5), V¥, y2), vs),
205U L)1, y2) + (W Lp)? + (L)) p y2) (2.20)
= —((o;, — )8 Lp)vs + Rio(¥ ™ (Ly + vs,y2) — ¥, (Lp + v5), VW, ¥2), Vs),
where

Riz = —{lppuy + Pol(Ly, + vs) = (o = pp)R)L)vs | + (0~ (u7)* + PO)W.y2) — (o (u)* + P ()

~ {2 + PYW32) = 0} )2 + PDW) = 20051 Loy

_ 2 - _[“r] [Pu,] ) ) [uy]
(e (L)) + A7 (L)) } TR T O+ P
Note that i J
—=(op11) (%) = 0, — (ppity + Pp)(x) = (068)(X).
X dx
Then

[opup](Ly + vs) = OW3),  [ppis + Ppl(Ly + vs) — (0} = pp)8)(Lp)vs = O(3).

Therefore, there exists a constant C > 0 depending only on the background solution such that
IR1i| < C (197 (Lp + vs,y2) = ¥} (L +v5)| + V(W y2)P + Ivs[?). .21

By solving the algebraic equations (2.20), one derives

P, y2) = b1vs(y2) + Ri(¥™(Lp + vs, y2) — ¥, (Lp + v5), V(, y2), Vs), (2.22)

Vi, y2) = bavs(y2) + Ro(¥™(Lp + vs, y2) = W, (Lp + vs), V(h, y2), vs), .
where

b = _(opL) = p), (Lb))g(Lh) uy (L) (o, (Lp) — p), (Lh))gh(Lh)
: c2(p; (Lp)) - (“+(Lb))2 2T Py (Lp)(c (o5 (Lp)) — (“+(Lb))2)
and
—2u; (Lp)R11 + Ri2
R, = ,
(c2(pf (L)) = (uy (Lp))?)
(G @) + L)) Rit — ] (Lp)Rr2
T P (op (L)) — (uy (Lp))?)
In the following, it follow from the Bernoulli’s quantity and (2.22) that
va(r, y2) = b3vs(y2) + R3(®™(Ly +vs,y2) — W, (Ly, +vs), Vb, ¥2), vs), (2.23)
where (05 (Lo) - P Lo)g(Ly) S(LpRy +R
b:hh_phhgbO,R:—Mbhll"‘lZR,
’ PR DR iy "
20+
(o, (Lp))
Ris = (@] (Ly + vs) = 1 (Ly)1 (W y2) — —o=2p(,y)
Py, (L)

1 3
+3 Z; W)+ T W = ) - ot ).
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Next, the superscript “+” in o}, u} , P}, B} will be ignored to simplify the notations. To derive the
boundary condition at the exit, it follows from the definition of the Bernoulli’s quantity and (1.8) that

va(La,y2) 0 Pey(r(L2,y2)) 2 E(v(L2,y2))
vi(la,y2) = - - Vvilla,y2) — ————, 2.24
A7 R P Ry DIN e 2y 229
where
E6Ony) = L (pa)S - 2L p7 (P(Y) - Py)
vy, y2) = ——(PWV) ¥ ——— - —(P(v b) —
y—-1 y-17° (y )
The boundary condition on the nozzle wall is
vy, M) = o f D) + viyi, M), on T'p,. (2.25)
Finally, we derive the equations for v; (j = 1,--- ,4). Note that
(c*(Bp, up, Dp) — ub)uh —Upg,
(B, [ul, ) = 1 = A(By, up, D) + 1 = (y = D(va + 0®,) = 53 = (y + Dupvy = I8 332,
Then it follows from (2.14) that
v
15y, v1 + da)(Oyev: + y—z) + ds(vi + dan)va = Fi(v),
0y, v2 — da(y1)0y,v1 + ds(y1)0y,v4 = F2(v), (2.26)
dy,(rv3) =0
Oy,v4 =0,
where
u;(y1) 1 (v — Duj,(y1)
diy) =1 - Mpy) >0, Mp(y)) = =2——, do(y1) = >0, di(y) = —S5———,
b b s (1))’ K (y1) (s (1)
gD — (v + Dpup)(y)) (1 +yM)g(y) 1
d3(y1) = > ; == P >0, ds(y)) = ———— >0,
c*(pp(y1)) c*(ep(y1)) — uy(y1) (kputp)(y1)
1 y+1, 7 -1 5 5,
Fi(v) = —( — () = (up +v1)* = P(op) + u2)dy, vy + (—v + 02 +v3) | u
rpv ro(up + vy) u
+((0) =y + D)) E20,,01 = A0V S0, + Ppp) B
2y, 2y,
+ 2 2 Ap);
+ cz(p)vgwayzvz _< (p)vz + ¢ (pb)vz - (0)v; Vo — o (up +v1)d,, @,
2y, r rp r
rpv) ro(up +vy)
+ (up + Vl)V2(ay1V2 — anz‘/Z + 2—y28y2v1))
rova rp(up +vy) TbPpUp 1 ("P(ub +v1) V3
F = —= +—"9 -—30 + 0 + =
2V) 2y, V2 2y, V1 2y, Y1 up + v 2y, ISR
_ rp(up +vi) TbPbUp

0,,v4 + ——0, V4).
2y2 2 2y2 2

Here F(v) and F»(v) are quadratic and high order terms.

Then to solve the problem (1.4) with (1.6), (1.7), (1.8) and (1.10) is equivalent to find a function
vs defined on [0, M) and vector functions (vy, - - - ,v4) defined on the D, := {(y1,y2) : Lp + vs(32) <
y1 < Ly,0 <y, < M}, which solves the system (2.26) with boundary conditions (2.16), (2.22)-(2.25).
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2.4 The coordinates transformation

In order to deal with the free boundary value problem, it is convenient to reduce it into a fixed
boundary value problem by setting

y1—¥(2) yi—Lp—ws
71 = Lz——l//(yz)(L2 —Ly)+Ly= m(L2 -Ly)+ Ly, 2=y, (2.27)
where
ws(y2) = ¥ (y2) — Lp.
Then L
2 — 211 w
= + =D 5,
=2z In— L;,WS 0
L, - L
dy, = : : o = Dvlvs’
Ly — Ly —ws(22)
01 = L2)d,,ws o
Oy, = 05y + mazl =Dy’

and the domain D, becomes

Q={(z1,22) : Lp <21 < L2,0 <o < MJ.

L, — 71 )
ws, 22, j=1,--+,4, w=(w, - ,wy).
LI, 522) J (wy 4)

Then the functions p(y, y») and P(y, y2) in (2.15) can be rewritten as

wi(z1,22) = V; (Zl +

3 1

-1 %1 1 -1
pz1z) = (77) (BoD?) + s + @HDL) + 0 = S (D) w1 = ) i)
j=2
, 3 , (2.28)
P _ (7= L\ ws ws 1 w5 2 2\ T
(z1,22) = " By(D\)”) + wa + @p(D,)”) + 0D, — E(ub(Do )+ wi)” - Z lwl
=2
Furthermore, after the coordinate transformation, (2.16) is changed to be
wi(z2) = aiwa(Lp, 22) + hi (¥ (Lp + ws,22) — W, (Lp + ws), W(Lyp, 22), ws). (2.29)

In the z-coordinates, the transonic shock problem can be reformulated as follows. By the second
equation in (2.22), the shock front will be determined as follows

1 1 - -
ws(22) = b_2W1(Lba22) - b—2R1(‘I’ (Lp + ws,22) = W, (Lp + ws), W(Lp, 22), W5). (2.30)

The function w3 will be determined by the following equation

{aﬂ(i’wﬁ =0, 2.31)

w3(Lp, 22) = uy (Lp + ws(22), 22),

where 1
2

22 N
7 s =2 W5\ ~ 0 d '
Fz1,22) (j; up(DyH)p(z1, 8) + (Pw1)(z1, 5) s)
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The Bernoulli’s quantity w4 will be determined by (2.23). That is

Oz w4 = 0. (2.32)
wa(Lp, 22) = b3ws(z2) + R3(¥™(Lp + ws, 22) — W, (Lp + ws), W(Lyp, 22), Ws). '
Next, the first and second equations in (2.26) can be rewritten as
w
di(z1)0;, w1 + dz(Z1)(5z2W2 + —2) +d3(z)w + da(z1)ws = F3(W, ws),
22 (2.33)
0z, wa — do(21)0, w1 + ds(21)07,wa = Fa(W, ws),

where
F3(w,ws) = F1(w,ws) = (di(Dy*)D}*wi = di(21)0;,w1) = (d3(Dyy*) = d3(z1))w1 — (da(Dyy*) — da(z1))wi

w W ) w»
~ (a0 (Do + W) - da(e)(0w + 2.
Fy(W,ws) = Fo(W, ws) — (D°wy = 8;,w2) + (do(Dyy*)D3 w2 — da(21)0,w1)

— (d5(Dy*)DYwy — ds5(21)0;,W4),

1 v+1 vy—1
Fi(w,w =—(— @) - (up +wy)? =2 +uH)D"wy + w2+ w2 +w2) | u,
1(w, ws) oo D) (@) — (up + wy) (op) + up)D " wy > > (wsy +w3) |u,
7D #p(up +
(@) =y + w2 Doy — 2 P EYD sy, 205, O s
2y, 2y, 2y>
~~ 2/~ 2 2 =\q 4,2
+ c“(p)w
+ cz(ﬁ)wngZSwz - ;@Wz 4 & (pb)wz - (p~ 3wy — o (up + w1)D? @,
2y, 7 rp 7
e #o(up +
+ (up + W1)W2(D‘;/5W2 - mD;VSWz + MD‘;‘SWl)),
PAY) 2y»
" " . 2
owy oy +wy) TbPbUL L (iplup +wy) w3
Fr(w,ws) = —=D 5wy + ——=Dw; — ———DPw; + ( wiD S ws + —
2y, 2 2y» 2 2y, 2 up + wi 2y, 2 7
o(up +wi) TbPpUp )
— D w4 + D>> .
2y» 2 M4 2y, 2 v
Finally, the boundary condition (2.24) at the exit becomes
N 3
wa(ln,22) 0 Pex(F(L2,22)) 1 E(w(L>,22))
wi(L,22) = e - D Wil ) - —— 22, (2.34)
up(La) (opup)(L2) 2up(L2) 4 up(L2)
where
Y s L y 5 R
E(wW(z1,22)) = ——(P(W)) 7 — ——P," — ——(P(W) — Pp) — 0®,.
y-1 y-1 P(z21)

The boundary condition on the nozzle wall is
wa(z1, M) = o f (D> Yup(Dy) + wi(zi, M), on T ={(z1,22) : Ly < 21 < Ly, 22 = M}. (2.35)

Therefore, after the coordinates transformation (2.27), the problem (2.26) with boundary condi-
tions (2.16), (2.22)-(2.25) is equivalent to solve the following problem.
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Problem 2.1. Find a function ws defined on [0, M) and vector functions (wy,--- ,ws) defined on
the Q, which solve the transport equations (2.31)-(2.32) and (2.33) with boundary conditions (2.29),
(2.30), (2.34) and (2.35).

Theorem 1.3 then follows directly from the following result.

Theorem 2.2. Assume that the compatibility conditions (1.5) and (1.11) hold. There exist suitable
positive constants oy and C, depending only on the background solution ¥}, defined in (1.3) and
the boundary data Y~ (L1,-), f, Pex ,D. such that if 0 < o < o0y, the problem (2.31)-(2.33) with
boundary conditions (2.29), (2.30), (2.34) and (2.35) has a unique solution (wy, wy, w3, wa)(21,22)
with the shock front S : z1 = ws(22) satisfying the following properties.

(1) The function ws(z2) € 5.\~ ([0, M) satisfies

sl oo < Coor (2.36)
and
wi(0) = wd(0) = 0. (2.37)
(2) The solution (wi,wy, w3, ws)(z1,22) € C;_:F” ’2)(Q) satisfies the estimate
: (—asTp2)
D Iwilly e < Coor (2.38)
i=1
with the compatibility conditions
(W2, 02,w2)(z1,0) = (W3, 0,,w3)(21,0) = O, (w1, wa)(z1,0) = 0,  Vzy € [Ly, L] (2.39)

3 Proof of Theorem 2.2

In this section, we first construct a suitable iteration scheme to linearize the problem (2.31)-(2.33)
with boundary conditions (2.29), (2.30), (2.34) and (2.35) . Especially, a linear first order elliptic
system with a nonlocal term can be derived. Then one can introduce a potential function to reduce
the first order elliptic system into a second order elliptic equation with a nonlocal term involving only
the trace of the potential function on the shock front and a free parameter. We solve this second order
nonlocal elliptic equation with a free parameter and establish some prior estimates and then complete
the proof of Theorem 2.2.

3.1 Aniteration scheme

In this subsection, we develop an iteration scheme to linearize the problem (2.31)-(2.33) with
boundary conditions (2.29), (2.30), (2.34) and (2.35). The solution class J consists of the vector

functions (wq,- -+ ,wy, ws) € (Cg_f;r” 'Z)(Q))“ X Cg_al_a;{M})([O, M))) satisfying the estimate
: (—ailpz)
-y, —1-a;{M
ow, wollly = > Iwjlly g + sl Loin® < 6 (3.1)

J=1
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and the following compatibility conditions
wi(0) = w(0) = (wa, 02, w2)(1, 0) = (W3,0:,w3)(21,0) = 0, (w1, wa)(z1,0) =0,  (3.2)

where § > 0 to be determined later. Given (W,Ws) € J, we will construct an iterative procedure
that generates a new (w, ws) € , and thus one can define a mapping from J to itself by choosing a
suitably small positive constant 6.

Step 1. The iteration scheme for ws.

The shock front ws is uniquely determined by

1 1 _ . _ N A N
ws(z2) = b—2W1(Lb,Z2) - b—2R1(‘I’ (Lp +Ws,22) — W, (L + Ws), W(Lyp, 22), Ws), (3.3)

provided that w;(Ly, z2) is obtained.

Step 2. The iteration scheme for w3 and wy.

We solve the transport equations for the swirl velocity and the Bernoulli’s quantity . The swirl
velocity wz will be determined by

aZl(;).vu3) = 07
B R (3.4)
w3(Lp, 22) = uy (Lp + Ws(22), 22),
where 1
2 s 2
Hz1,22) =2 f e — ds
0 up(Dy)p(z1, 5) + (PW1)(z1, 5)
Then wj can be solved as follows
F(Lp, z2)uy (Lp + Ws(22), 22)
w3(z1,22) = g . (3.5)

#z1,22)

The Bernoulli’s quantity wy satisfies

0, wq =0, (3.6)
wa(Lp, 22) = b3ws(z2) + R3(¥™ (L + Ws,22) — W, (Lp + Ws), W(Lyp, 22), Ws). .

This, together with (3.3), yields that

wa(z1,22) = baws(22) + R3(P(Ly, + Ws,22) — W, (L + Ws), W(Lyp, 22), Ws)

I i ) ) o A (3.7)
- b_zW1(Lb,y2) + Ry(W™ (L, + s, 22) = W, (Lpy +W5), WL, 22), Ws),

where
Ry(W™(Lp + Ws,20) — W, (Lp + Ws), W(Lyp, 22), Ws)

= R3(W™ (L + Ws,20) — W, (Lp +Ws), W(Lp, 22), W5)
b3 _ N _ N A N
- b—2R1(‘I’ (Lp +Ws,z2) — W, (Lp +Ws), W(Lp, 22), Ws).
Step 3. The iteration scheme for w; and w;.
We derive the equations for wy and wy. Firstly, it follows from (2.29) that

w5(22) = arwa(Lp, 22) + hi (B~ (Lp + Ws, 22) — W, (Lp + Ws), W(Lp, 22), Ws). (3.8)
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Substituting (3.7) into (2.33) and combining (3.3), (3.8), (2.34) and (2.35), one gets

w b A
di(z1)0,, w1 + dl(zl)(aZZWZ + —22) + d3(z1)wr + d4(Z1)—3W1(Lb,Zz) = G1(W, Ws),

0wy —da(z21)0,w1 + ds(Zl) 5z2W1(Lb,Zz) = Ga(W, Ws),

02, wi(Lp, 22) = arbawa(Ly, Zz) + hy(22), (3.9)

wi(la,22) = wi(Lp, 22) + h3(z2),

b3
bouy(Ly)
wa(z1,0) =0
wa(z1, M) = ha(z1),

where

G1(W,Ws) = F3(W,Ws) — dy(z1)R4(® ™ (Lp + W5, 22) — O, (Lp + Ws), W(Lp, 22), Ws),
Go(W,Ws) = Fa(W, Ws) — ds5(21)0,Ra(¥™ (L + Ws,22) — ¥ (Lp + Ws), W(Ly, 22), Ws),
ha(z2) = i (P (Lp + Ws, 22) = ¥, (Lp + Ws), W(Lyp, 22), Ws)
+ 0, R\(P™(Lp + Ws,22) — W, (Lp + Ws), W(Lp, 22), W5),
Ry(O™(Lp + Ws,22) — W, (Lp + Ws), W(Lp, 22), Ws) 0 Por(F(Ls, 22))
uy(Lo) T (o)L

3 .
3 2 _ EW(L2, 22))
2up(Lo) ; Wille.22) up(Ly)

ha(z1) = o f (DY) up(D}y) + Wiz, M)).

h3(z2) =

Then it follows from the expressions of F; and R; together with direct computations that

A (I-aslp ) 1 M) M)
> NG, Wl iy )+ Il S0 + WM hallo.azy 1 < € (o + 1I0W, W)I) . (3.10)
j=1

Next, the second eqaution in (3.9) can be rewritten as

b Mo
Oy wa — azz(dZ(Zl)Wl - dS(Zl)b—zwl(Lh,ZZ) - f Go(W, Ws)(z1, S)dS) =

22

which implies that there exists a potential function ¢ such that

b Mo
0,0 =wa, 0,0 =d(z1)w — dS(Zl)b_zwl(Lb,ZZ) - f Go(W, Ws)(z1, s)ds, ¢(Lyp, M) =0. (3.11)

2]
Therefore, one obtians

M L
(L 22) = b0, (L1, 2 + f sz,ws)(Lb,s)ds), by = do(Ly) - ds(Lh) _ Code)

>0,
2 Kh(Lb)

wi(z1,22) = 0, ¢ + ds(Z1) 3z1¢(Lh,Zz)+ f (G2(W, Ws)(z21, §) + bads(21)Ga(W, W5)(Lh,S))dS)

dar(z )(
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Then the problem (3.9) is reduced to

622
0;,(A1(21)0,,¢) + /12(21)(53515 + Z;p) - A3(21)0,, 0Ly, 22) = 0;,G1 + 0,,Ga,

02, (07, ¢(Lp, 22) — bsd(Lyp, 22)) = q2(22),

0;,96(L2, 22) = q3(22), (3.12)
8zz¢(Z1, 0)=0,

05, (21, M) = ha(z1),

where
_ Ao(z1) 3 dy 3 “ds
Ai(z)) = ) >0, A(z1)= /10(21)611 (z1) >0, Ao(z1) = eXP( j;b " (S)ds),
bsb. drd ds\ d
() = - 22“10@1)( e+ (d—z) (@) + d—‘l‘(zo)
bsby upg)z1) 2+ = DMi(z)
= A 0
b e e 1-Ma)

M
Gi(z1,22) = =A1(z1) (Go(W, Ws)(z1, 8) + bads(21)G2(W, Ws)(Lp, 5))ds,

22

Ado(z)) (2 . . ayby
Gi(w,w ,8)ds, bs=——
4G Jo 1(W, Ws)(z1, 5) 5=

A hy(z
2(22) = G, W5) (L, 22) + 2;42),

Gr(z1,22) =

> 0,

M
q3(z2) = —f Go(W,Ws)(Lo, s)ds + h3(z2).

22
The second equation in (3.12) implies that

0, d(Lp, 22) — bs(d(Lp, 22) + A) = §2(22), (3.13)
where

A=-

ws(M) M 1 _ . _ . . .
D oter) = - f 05 + SR (Ly + 5O M) = B3 Ly + 5OV (L M. M)

22

Substituting (3.13) into the first equation in (3.12) yields

0.,
07, (A1(21)0;,¢) + /12(21)(552¢ + Zf) = B3(z0)bs(P(Lp, 22) + A) = 0;,G1 + 0;,G2 + G,

07, ¢(Lp, 22) — bs(d(Lp, 22) + A) = §2(22),

0z, 0(L2, 22) = §3(22), (3.14)
05,¢(z1,0) = 0,

0z, 9(z1, M) = ha(z1),

where

G3(21,22) = 13(21)q2(22),  §3(22) = q3(22).
Furthermore, it follows from (3.10) that the following estimate holds:

3 3
(—aslpz) ~ —a;{iM A A
DUNGH " + D MW + Whallo.ary 1 < € (o + 116w, )1 ) (3.15)
j=1 j=2
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3.2 Solving a second order elliptic equation with a nonlocal term

Let ¢.(z1,22) = ¢(z1,22) + A. Then (3.14) is equivalent to the following problem
07, Qs

0, (e 60) + )6+ =)

0z,0+(Lp, 22) = bs¢s(Lp, 22) = §2(22),

aZl¢*(L25 ZZ) = q:’?(ZZ)a

azz¢*(zla 0)=0

0, ¢:(21, M) = ha(z1).

In order to deal with the singularity near z; = 0, we rewrite the problem (3.16) by using the cylindrical
coordinates transformation again. Define

= A3(21)bs5¢(Lp, 22) = 0,,G1 + 0,,G2 + G3,

(3.16)

M =21, N2 =22C08T, 3 =zp8inT, 7 € [0,2n],

and
Q) = {1, m2.m) Ly <mi < Lo,y +13 < MY, Qo = {(q2,m3) : 15 + 13 < M),

I ={n =(p.m)im+n5 = MY, Tpy =Ly, L] T,
() = (1, \J13 +13) = 011, 17D
Then W(n) satisfies

3
Oy (A1 (11)0y,P) + A2(m1) Z (9,27j‘1’ — A3(n1)bs¥(Ly, 1)
=)

3 ) , )
= 0 Gi0m, D+ Y 3y, (’hgz(ﬂb U I>) _ Gl
=2

7] 7] +Gs(m, D, (3.17)
O ¥ (Lo, 1) = bs¥(Lp, 1) = G2(I0'D),
O YL, 1) = q3(' D),
(120, + 130,,)¥ (1, 1") = Mha(npy).

Firstly, the weak solution to (3.17) can be obtained as follows. ¥ € H 1(Q)) is said to be a weak
solution to (3.17), if for any ¢ € H'(Q,), the following equality holds:

LY, 0) = F(p), YoeH (Q), (3.18)

where

LY, ) = f f fg A1(11)8, Y0y, ¢ + L(11)(0y, YOy, 0 + 0, Y0y, 0) + A3(1)bsY (L, n')p(71, 17" )dn1 dipadig
1

+ f f A1 (Lp)bs ¥ (Ly, 1" )Ly, 1" )dip2dn3,
Q

L
ro- [ glamwzn’?z - (65 - Z2Vpamamans — [ Ganr, Mogtms, My
7’| |77’ Ly
Ly
- f ) Gi(La, ' Ne(La, ') — Gi(Ly, I’ )Ly, 17 Ydnodns + i Mhg(n1)e(ny, Mydmn,

+fj£; (L)' D)e(La, n") — 1(Lp)g2(n' ))e(Lp, 7' )dmadns.
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Lemma 3.1. There exists a positive constant K depending only on the background solution such that
the following problem has a unique weak solution in H'(Q)

3
Oy (1 (1)0y, ®) + Aa(m1) ) 07 ¥ = (b5 P (L, 1) + KW
=2

3 ’
, n;G>(n1,In |)) G>(m1, 17D
=0,,G10m,IMH+ ) 0 ( -
I ; G 71
Oy Y(Lp,n") — bs¥(Lp, 1) = q2(I7']),
0y Y(Lo, ") = @3(I7'))s
(120, + 130,,)Y (1, 117’ ]) = Mha(ny).

+G3(m, '), (3.19)

Proof. The system (3.19) has the following bilinear form on H Q) x HY(Q)):
LW, 0) = LY, 9) + f f Wodnidnadis = F (@), Yo € H'(Q). (3.20)
Q

For any € > 0, one can use Cauchy’s inequality to get

f f f P (Lp, " )¥ (1, 1" )dip1dnpadns

Q
C 7 7
< ?1 f f W21, 1)) dm 1 dpadgs + € f f (0, ¥ (1, 7))y 3.
Q[ Ql

Note that G»(171, 0) = 0. Thus the boundedness and coercivity of Lx can be verified as follows

| Lk (Y, o)l < Cl¥llg1 ) llellan @)

3 3
F (@)l < C [Z 1G oy + D Nasllcon s, + ||h4||co,a[Lb,Lz]] lellzrt -

J=1 j=2

and
3
Lt 0 = [[[[ @, 07+ dm) Y (0,97 + b Lo G0+ K¥
1 i=2

+ f fg A(Lp)bs(¥(Lp, 1)) dipadiys,

C.
> c*(nwn,%z@l) + ¥ (Ls, -)||iz(gz)) + KW 2, = 7 10m Wl
G 2 ~ 2
- TH\P(Lba ')”LZ(QZ) - C*H\P”LZ(QI)
C.

K

2 2 2

> SV ) + I M) + S 11,

provided that K is sufficiently large. Then the existence and uniqueness of H'(Q;) solution ¥ to
(3.17) can be obtained by using the Lax-Milgram theorem, which completes the proof of Lemma

3.1. O
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Now we are going to solve the problem (3.17).

.pe -aT)p ~ (—aT7)
Proposition 3.2. Suppose that (G1.G2..G3) € (Cy =" "(Q))*.6211.0) = 0, (32.33) € (C| " ()}

1«
and hy € (C**([Ly, Ly)). Then the problem (3.17) has a unique solution ¥ € C_|~“"""(Q,) satisfy-

ing the estimate

3 3
(-1-asTp ) (=a;Tpy) ~ (aily)
Il gy " < Co| D NG "™ + D NGl gy, + Wallo gty o1 | (3.21)
=1 =2

J
where the constant Cy depends only on the coefficients A;, i = 1,2, 3, bs and thus depends only on the
background solution.

Proof. Firstly, we show that any H' (Q;) weak solution to (3.17) has a higher regularity C ;—al @l )(Q 1.

To this end, the first equation in (3.17) can be rewritten as a standard second order elliptic equation
for W:

3
Oy (1 (7)dy, ) + A1) ) 03 ¥
Jj=2

+G3(n1, I')).

3 . , )
= B01)bs (Lo, 1) + 05, Gi G ID + ), Iy, (’“Q 211, 1n '>) _ Galni. ')
=)

7d 7d

Since ¥ € H'(Q,), thus the trace theorem implies that W(Ly, ") € L*(Q,). Then one can apply [14,
Theorems 5.36 and 5.45] to get

niG2(m1, 'l

3
¥lcsaar) < CIbsA3@0 VLo, 1 M2y + Gl + ) o

=2
+ ‘

3 3
(—a:Tpy) - asly)
<y [M\PHHI(Q]) + G o + D Ml g + ||h4||o,a;[L,,,Lz]].
i=1 J=2

LAQy)

G (1, ')
ud

3
* + qj + ||
s, 16312 ;‘”q’”mz) i) (22

Hence bsA3(z))¥Y(Lp, 1) € C"(Q_l) and the Schauder estimate in [ 14, Theorem 4.6] would imply that

(_l_a;rp,r])
”lPHZ,a;Ql = Cﬂ

3 3
(~a;Tpy) ~ (el
Ml + ) IGH "™ + > 17 ey, +||h4||o,a;[Lb,L2]]. (3.23)
i=1 J=2

Next, to show the uniqueness of the H'(Q;) weak solution to (3.17), we first investigate the
following eigenvalue problem

(3.24)

2B+32B+uB =0, inQy,
(7720712 + T]3an3)ﬁ = 0, on 8Q2

By the standard elliptic theroy in [12], for u < 0, the problem (3.24) is uniquely solvable. Note that

WBE sy = [ @67 + @rpPaman.
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Then there exists a sequence of eigenvalues 0 = u; < pp < uz < --- < y; — oo and the corresponding
eigenfunctions {Bi(n2, m3)}72, € C°°(Q_2) associated with y;. The functions {B;(m2,73)};2, constitute a
complete orthonormal basis of L*(€,) and are also orthogonal in H Q).

Since ¥ € C l"’(Q_l) N C>%(Qy), then ¥ can be represented as

Wn) = ) Xin)Bin, 13),
i=0

where Xi(z1) = fLiz Y ()Bi(12. 13)dnadns € CH([Ly, Ly]) N C**((Ly, L)) solves the problem

L)X ) + L,000X; (1) — Aaz)pXi(m) — bsA3(p1)Xi(Ly) = 0,
X;(Ly) — bsXi(Lp) = 0, (3.25)
X;(Ly) = 0.

Suppose that X;(L,) = 0, then the maximum principle and Hopf’s lemma show that X;(57;) = O for
any 171 € [Lp, L»]. Suppose that X;(Lp) > 0, then

L)X () + L)X (1) — X)) = bsAs(p)Xi(Ly) > 0,
X;(Ly) = bsXi(Ly) > 0, (3.26)
X;(Ly) = 0.

Assume that there exists 1 € [Ly, L], such that X;(71) = max,;, ¢(z,,1,] Xi(171) > 0. Then the second
and the third equations in (3.26) imply that#; € (Ly, Lo]. If fi1 € (L, L), then X, (#) = 0, X; (1) < 0,
which contradicts to the first equation in (3.26). If fj; = L,, then Hopf’s lemma yields that X (1) > 0,
which also contradicts. Similarly, X;(L;) < 0 will induce a contradiction. Hence, X;(17;) = O for all
m € [Lp, Lp]. Therefore we get ¥ = 0 in Q;. Then we complete the proof of the uniqueness of the
H'(Q) weak solution to (3.17).

Next, we can use Lemma 3.1 and the Fredholm alternatives for elliptic equations and the argu-
ments in [12, Theorem 8.6] to deduce that there exists a unique H'(Q;) weak solution to (3.17).
Furthermore, the uniqueness helps us to derive the estimate (3.21) from (3.23). The invariance of the
equation and the boundary datum in (3.17) under the rotation transform in (172, 173) plane shows that
Y is axisymmetric. This completes the proof of the proposition. O

Proposition 3.2 shows that ¢.(z;,z2) is uniquely determined, then A = ¢.(Ly, M). Hence this
proposition actually implies that the following estimate for wi and wy.

Proposition 3.3. The problem (3.9) has a unique solution (wi,w;) € (C(_a;rp ’2)(Q))2 satisfying the

2,
estimate . o
willy e + Iwally o™ < C@* + o) (3.27)
and the compatibility conditions
02,w1(z1,0) = (w2, 82, w2)(z1,0) = 0. (3.28)
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Proof. 1t follows from Proposition 3.2 and the equivalence between || - IIE_(Z;;;”’Z) and || - ||(1_5;1;f ) that
the problem (3.9) has a unique solution (wy, w») € (C i_s;r”’Z)(Q))2 satisfying
- ;r)7 ! ;F v4
Il "™ + Il o
2
PN A P -a; -a;
< C( DG, W)l gy "+ Wl D+ sl M+ ||h4||o,m[L,,,Lz]) (3.29)
j=1
< C (o + lIw, )l ).
Furthermore, one can further verify that
wa(z1,0) = d,,w1(21,0) = 0.
Next, we estimate ||(w, wz)ll(z_g;l;”’Z). To this end, we rewrite (3.9) as
w2 PN
0, iz w) + @)(Bewn + 22 ) = Ga(w.vs)
0z, w2 — da(21)0,w1 = Ga(W, Ws),
wi(Lp, 22) = G5(22), (3.30)
wi(La, 22) = Ge(22),
wa(z1,0) =0,
wa(z1, M) = hy(z1),
where Ao(z) b
PN < P
Ga(W, ) = L2 (G1 () - daen 2w (L, 22) ),
di(z1) by
o R b
G4(W,Ws) = Go(W, Ws) — ds(Zl)b—z(dlbzwz(Lb,Zz) + ha(22)),
M
Gs(z2) = aiboA + bRy (Ly, M) — f (a1bawa(Lyp, 5) + ha(s))ds,
22
Golz2) = —2—wy (L, 22) + Is(22)
6\22) = T Willkp, 22 3(22).
baup(Lr)
Then w; satisfies
1 ) 1
a:, (mazl(/h(zl)wl)) +da(z1) (322W1 + Zazzwl)
G3(W, Ws)) < Ga(W,bs)
= ———— |+ 9,,G4(W, Ws5) + ———=, .
21 ( L) 2 Ga(W, Ws) = (3.31)
wi(Lp, 22) = Gs5(z2), wi(L2,22) = Ge(22),
0,w1(21,0) = 0, wi(z1, M) = wi(zi, M).
Note that G4(z1,0) = 0. Similar to the proof of Proposition 3.2, one has
(—aslp) . (1-alpz) - (—a:Tpz)
W1l ey < C[Z 1GH gy "+ D NG+ il e } < Clo+8). (3.32)
i=3 i=5
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This, together with the second equation in (3.30), gives

2 Q2-a;T’ J,z) 2 2-a;T’ ),Z) (—[I;F ),Z) (—a;I’ ,z) (1-a;T ),Z)
1wl ™+ 102wl ™ < g+ Wl 25 Gy
< Clo+6%).

Next, we derive that 8§2w2 (z1,0) = 0. It follows from the first equation in (3.30) and wy(z1,0) = 0
that

wa(z1,22) = fo 5(0;, (A1 (z)wi(z1, 8) — G3(z1, 5))ds. (3.34)

A (z1)22

Then w»(z1, z2) can be rewritten as

1 22
wa(z1,22) = . f s(R(z1, 8) = R(z1,0))ds + Z?21’?(@0), (3.35)
2 JO

where

1
R(z1,22) = mazl(/ll(zl)wl(zl,zz)) - G3(21,22).

Thus one gets d.,R(z1,0) = 0. Furthermore, it follows from (3.35) that

8?2W2 =hLh+hL+1;,

where 5 o
L = —3f s(R(z1, s) — R(z1,0))ds,
1
L= _Z(R(Zl,@) - R(z1,0)),

I3 = 0,R(z1,22).
Obviously, I3(z;,0) = 0. In addition,

| 1
I = —Z(R(ZhZz) - R(z1,0)) = —j(: 05, R(z1, 522)ds,

2 (2 2 (2!
I == f s(R(z1,8) = R(z1,0))ds = = f ( f 5zzR(Z1,tS)dt) s*ds.
Z5 Jo <5 JO 0

Hence 1,(z1,0) = Ir(z1,0) = 0. That is aiwz(zl, 0) = 0. The proof of Proposition 3.3 is completed.
O

In the following, we are ready to estimate w3, wy, and ws.

Proposition 3.4. ws, w3, and wy are uniquely determined by (3.3), (3.5) and (3.7), which satisfy the
following estimate

—1—a: - ;F z - ;F 0,2
sl sl 7" + walls e < €@ + o) (3.36)
and the compatibility conditions
w}(0) = w(0) = (w3, 9-,w3)(z1, 0) = 9z, w4(z1,0) = 0. (3.37)
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Proof. It follows from (3.3) that

—a{M (—alpz) - N - N N A (—alp2)
hwsliS o < C (Wil e + IRI (BT (Lp + 105, 22) = By (L + 5), W(Lp, 22), W3)lly gy )
(—asl'p ) P
< C(Iwilly g™ + o + I, Ws)Il%)
(3.38)

Meanwhile, (3.8) shows that

’ -, - ;FJZ - A - A A A — ;F 0,2
gl M < C (Iwally e + Iy (B (L + s, 22) = B (L + 5), WL 22), W)l gy’ ) 539
—aT), A .
< C(Iwally ey + o+ llew, W)l ).
Furthermore, using (1.11), (3.28) and the explicit expression of /4, one can verify that
wi(0) = w(0) = 0.
Next, (3.5) gives that
(W3, 0;,w3)(21.0) = 0 and [lwsll5 oo < Céor (3.40)
Fianlly, it follows from (3.7) that the following estimate and compatibility condition hold:
- ;r)7 i ;r)7 — A — A A A — ;F v4
wally o < C(Iwlly ey + IRa(R™(Lp + W5, 22) = Uy (L + Ws), WLy 22). W3)lly ") an)
B R .
< C(Iwilly g + o + 1w, )l
and
02,w4(z1,0) = 0.
Combining (3.39)-(3.41) together finishes the proof of the proposition. O
3.3 Proof of Theorem 2.2
Now, we start to prove Theorem 2.2. The proof is divided into two steps.
Step 1. The boundedness of the operator 7.
Given any (W, Wws) € 7, we define a mapping 7 as follows
T (W, Ws) = (W, ws), (3.42)

where (W, ws) is the solution obtained in Proposition 3.3 and 3.4. Combining (3.27) and (3.36), one
derives that
(W, ws)llg < Culo +6%). (3.43)

Setting § = 2C.o and choosing oy small enough such that 2C207 < % Then for any 0 < o < oy,
C.o+6%) = g +2C206 < 6, hence 7 maps J into itself.

Step 2. The contraction of the operator 7.

For any two elements (W', v?zg),i = 1,2, define (W, wg) = T (W, v?/g) fori = 1,2. Denote

(ko ks) = (WD) = %P0 and (K, ks) = (W, i) — (W, ).
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It follows from (3.9) that k| and k&, satisfy
k b
120 ki1 + daen)(Ocske + Z—Z) +dy @k + date)y k(L ) = Gv D, wl) = Grw®, W),
0 k2 — da(21)d, k1 + d5<zl) azzkl(Lh,@) = Go(w, wi") — Gow? W),

.,k1 (L, 22) = a1baky(Ly, zZ) + 1) (z2) = WP (2),

b
ki (Lo, 22) = b2—3k1(Lb,z2) + 1 (@) - K @),

up(Ly)
ka(z1,0) =0
ka(zi, M) = 1P (1) - i (@),
(3.44)
Then Proposition 3.3 gives that
2
—a; N N 1-a:Tp;
D Wl < Z 16,0V, 5 = GiOW® I e + IS = AP
4 <
(3.45)
e SR Y
< Col(e. ks)l|7-
Next, it follows (3.3) and (3.8) that
ks(z) = —k (Lyz2) — — (R - RY),
e PEes T, T (3.46)
Ki(z2) = a1k2<Lb,yz> + Y =,
Thus one gets
H Ipe I, -,
sl agive < € (Ml + el o™ + IR = RPI 0™ + W =171 00™) -

< Coll(k, k)l
Finally, (3.5)and (3.7) yield that
PO(Ly, )y (Ly + W (22),20)  FO(Lp, )y (Ly + WY (22), 22)
#D(z1,22) #@(z1,22) (3.48)
kq(z1,22) = i—zkl(Lh, 2)+ Rgrl) - Rf)-

k3(z1,22) =

Hence it holds that

—a;T,. T, PPN
sl e + lkally v < Corlle. ks)ll- (3.49)
Combining all the above estimates, one can conclude that
e, ks)lly < Cyoll(k, ks)l.g- (3.50)

Choosing o < min{4C2, 2Cu} then if 0 < o < o, ||(k, ks)ll7 < 2||(k: k5)||5 so that the mapping 7~ is
a contraction operator in the norm || - || 7. Thus there exists a unique fixed point (w, ws) € J such that
T (w,ws) = (W, ws). It is easy to see that this fixed point is the solution for the problem (2.31)-(2.32)
and (2.33) with boundary conditions (2.29), (2.30), (2.34) and (2.35).

Since the modified Lagrangian transformation is invertible, thus the soultion transformed back in
(x, r)-coordinates satisfies the properties (1.14)-(1.18) in Theorem 1.3. The proof of Theorem 1.3 is

completed.
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