
ar
X

iv
:2

40
4.

14
66

4v
1 

 [
cs

.L
G

] 
 2

3 
A

pr
 2

02
4

Employing Layerwised Unsupervised Learning to Lessen Data and Loss
Requirements in Forward-Forward Algorithms

Taewook Hwang1 , Hyein Seo2 , Sangkeun Jung3

1,2,3Department of Computer Science and Engineering, Chungnam National University

{taewook5295,hyenee97}@gmail.com, hugman@cnu.ac.kr

Abstract

Recent deep learning models such as ChatGPT uti-
lizing the back-propagation algorithm have exhib-
ited remarkable performance. However, the dis-
parity between the biological brain processes and
the back-propagation algorithm has been noted.
The Forward-Forward algorithm, which trains deep
learning models solely through the forward pass,
has emerged to address this. Although the
Forward-Forward algorithm cannot replace back-
propagation due to limitations such as having to use
special input and loss functions, it has the poten-
tial to be useful in special situations where back-
propagation is difficult to use. To work around
this limitation and verify usability, we propose an
Unsupervised Forward-Forward algorithm. Using
an unsupervised learning model enables training
with usual loss functions and inputs without re-
striction. Through this approach, we lead to sta-
ble learning and enable versatile utilization across
various datasets and tasks. From a usability per-
spective, given the characteristics of the Forward-
Forward algorithm and the advantages of the pro-
posed method, we anticipate its practical applica-
tion even in scenarios such as federated learning,
where deep learning layers need to be trained sepa-
rately in physically distributed environments.

1 Introduction

Recently, large language models, including ChatGPT,
have demonstrated performance surpassing that of hu-
man capabilities. This achievement is largely attributed
to the back-propagation algorithm(BP) [Kelley, 1960;
Linnainmaa, 1970], a highly effective learning algorithm,
complemented by advancements in hardware technol-
ogy. However, one of the criticisms of BP lies in their
deviation from the biological processes underlying brain
behavior [Grossberg, 1987; Crick, 1989; Shepherd, 1990;
Marblestone et al., 2016]. Also, because BP utilizes a
backward pass, it has the limitation that all the layers that
make up the model must be connected in real time during the
training process.

Despite numerous learning algorithms being proposed
to address these issues, none have successfully sup-
planted BP due to performance and versatility constraints
[Rao and Ballard, 1999; Lillicrap et al., 2014; Hinton, 2022].
However, recently, [Hinton, 2022] proposed a new learning
algorithm named the Forward-Forward algorithm(FF) as a
key figure in the development of BP. In contrast of BP, the FF
addresses this issue by employing two forward passes, elimi-
nating the need for a backward pass.

However, FF also presents its own limitations. The FF di-
verges from traditional deep learning methodologies by re-
quiring three inputs and a specialized loss function. Although
these constraints prevent the FF from outright replacing BP,
it can be a potential alternative in specific scenarios where
traditional BP may not be optimal.

To address the limitation of FF and validate features of FF,
we propose the adoption of a compact unsupervised learn-
ing model as a substitute for the individual layers typically
used in the FF. In this paper, the proposed model is re-
ferred to as the Unsupervised learning Forward-Forward
model(UFF). This approach, leveraging an unsupervised
learning model trainable through input reconstruction, elim-
inates the need for the specialized inputs and loss function
used in the FF. Consequently, the inputs can be the same as
those used in standard deep learning process.

Additionally, a distinctive characteristic of the FF is the lo-
cal and independent training of each layer. This feature that
permits physical separation of layers during both learning and
inference phases, while still maintaining the capability for
inter-layer information exchange. In our proposed methodol-
ogy, we focus on confirming that when a using unsupervised
model, is employed instead of a single layer, termed ‘cell’
in this paper, as in the original FF, it is adept at information
transfer between each of these cells.

The main contributions of our paper are as follows:

• Overcoming the limitations inherent in the Forward-
Forward algorithm through using an unsupervised learn-
ing model.

• Searching unsupervised learning models that exhibit sta-
ble learning in the proposed method.

• Validating the scalability of employing a composite of
layers or models, instead of a singular layer.

Consequently, compared to traditional models employing

http://arxiv.org/abs/2404.14664v1


Positive
data

Negative
data

Neutral
data

Original
data

(a) Original data used for the proposed Unsupervised Forward-
Forward algorithm and the Positive, Negative, and Neutral data used
for the Forward-Forward algorithm.

FF Layer 1

FF Layer N

Classifier Layer

Positive
data

Neutral
data

Negative
data

FF Layer 2

Concat

(b) Overview of Forward-Forward al-
gorithm

Original
data

UFF Cell 1 Reconstruction
data

Reconstruction
data

UFF Cell N Reconstruction
data

Classifier Layer

Concat

Label

UFF Cell 2

(c) Overview of Unsupervised Forward-Forward algorithm

Figure 1: Using Data and Forward-Forward algorithm and Unsupervised learning Forward-Forward model.

BP, the UFF approach is expected to provide greater flexibil-
ity in adding, deleting, or replacing layers post-training. In
addition, it is expected to be highly useful in environments
where layers must be trained in physical separation, such as
federated learning.

Figure 1 presents a comprehensive overview. Figure 1a
illustrates the input data utilized by the FF and UFF. Fig-
ure 1b provides a comprehensive overview of the FF it-
self. Figure 1c depicts an overview of the UFF model, as
proposed in this study. UFF cells consist of independent
unsupervised learning models, such as AutoEncoders(AE)
[Hinton and Zemel, 1993] or Generative Adversarial Net-
works(GAN) [Goodfellow et al., 2014]. The hidden vector
from each cell serves as the input for the subsequent cell. This
structure facilitates the independent identification of crucial
information utilized by each cell.

2 Related Works

The criticisms raised against BP from a biological per-
spective are primarily as follows. In biological neu-
ral networks, the direction of neuron stimulus transmis-
sion is unidirectional, making a backward pass challenging.
Although reciprocal connections [Hubel and Wiesel, 1962;
Suzuki and Amaral, 1994] display elements of backward
transmission, they are restricted to local connections be-
tween adjacent neurons, complicating the development of

global feedback pathways as seen in BP. Additionally, the
weights in the forward pass synapses are not symmetri-
cal with those in the backward pass, complicating the ex-
ecution of feedback. To address these limitations, Feed-
back Alignment [Lillicrap et al., 2014] and Predictive Coding
[Rao and Ballard, 1999] have emerged.

Feedback Alignment is a method that utilizes random
weights for feedback during the weight update process.This
approach demonstrated the potential for learning in situations
where the weights in the synapses forward pass and back-
ward pass are not symmetrical. BP involves complex calcu-
lations to synchronize the weights of the forward and back-
ward passes for updates. However, Feedback Alignment sug-
gests that comparable learning to BP can be achieved with
random values, provided that the directionality of the weight
updates remains consistent. This directionality is refined
through iterative learning, allowing deep learning models to
progressively identify appropriate values. Therefore, it can
be posited that BP, diverging from a biological perspective,
imposes excessively strict updates, and Feedback Alignment
mitigates some of the biological criticisms directed at BP.

Predictive Coding is a method that implements local
feedback, where a current layer predicts the input for
the next layer and then calculates the loss by compar-
ing the actual input with the predicted value. This ap-
proach enables weight updates between adjacent layers.



Latent SpaceEncoder Decoder

Next input

Auto-Encoder Forward-Forward Cell

(a) Auto-Encoder cell

Latent Space
Noise +
Encoder

Decoder

Next input

Denoising Auto-Encoder Forward-Forward Cell

(b) Denoising Auto-Encoder cell

Latent Space
Conv

Encoder
ConvT

Decoder

Next input

Convolutional Auto-Encoder Forward-Forward Cell

(c) Convolutional Auto-Encoder cell

DiscriminatorReal Data

Generative Adversarial Network Forward-Forward Cell

Latent 
Space

Encoder DecoderNoise

Next input

(d) Generative Adversarial Network cell

Figure 2: Unsupervised deep learning model used in Unsupervised
Forward-Forward cell.

[Whittington and Bogacz, 2017; Millidge et al., 2022] have
shown that the Predictive Coding method achieves perfor-
mance similar to BP in various models such as Multi Layer
Perceptrons(MLPs) [Rumelhart et al., 1988], Convolutional
Neural Networks(CNN) [LeCun et al., 1989], and Recurrent
Neural Networks [Rumelhart et al., 1985].

Following the release of FF, [Ororbia and Mali, 2023] is
research that combines Predictive Coding with FF. The FF
algorithm uses only the forward pass, making it similar to the
brain’s operational method. However, it requires verification
to ensure effective information transfer between adjacent lay-
ers. [Ororbia and Mali, 2023] employed Predictive Coding to
facilitate local learning among layers, demonstrating perfor-

mance comparable to MLPs using BP.

3 Unsupervised Forward-Forward Algorithm

We propose the UFF learning approach, utilizing unsuper-
vised deep learning models. Our method eliminates the con-
straints on inputs and loss calculations present in FF, thereby
allowing for the adoption of input formats and loss computa-
tions typical of general deep learning models. Through this
algorithm, our goal is to maintain the learning direction of FF
while seeking compatibility with existing deep learning mod-
els, resulting in a versatile learning approach. We anticipate
that our proposed method will demonstrate high utility in sce-
narios where physical layer separation makes the use of BP
challenging.

3.1 Architecture

The overall structure of the model is depicted in Figure 1.
Original data is input into the first cell, and each cell en-
gages in unsupervised learning, similar to Auto-Encoders and
GANs, by attempting to reconstruct the input. This architec-
ture is flexible and can be applied to any system where local
loss can be calculated independently at each cell, regardless
of whether the input is reconstructed or not, provided that it
produces latent vectors of a uniform size.

The unsupervised learning models utilized in this study in-
clude Auto-Encoders(AE), Denoising Auto-Encoders(DAE)
[Vincent et al., 2010], Convolutional Auto-Encoders(CAE),
and Generative Adversarial Networks(GANs). Figure 2
presents the architecture where each unsupervised learning
model comprises cells. Figure 2a is a cell using AE, and Fig-
ure 2b is a model using AE with some random noise added to
the input. Figure 2c shows an AE model composed of a con-
volutional encoder and a transposed convolutional decoder.
Figure 2d is a cell that utilizes the structure of GAN, where
the generator is composed of the structure of AE, and the dis-
criminator compresses the fake data and real data generated
by the generator from random noise into one-dimensional
vectors to determine the authenticity.

Each unsupervised learning model is implemented using
the minimum number of deep learning layers. We fixed the
size of the latent vector at half the size of the input to ensure
computational convenience. Although there is no limit on
the number of cells, if additional cells are added when the
latent vector size cannot be reduced further, we maintained
the latent vector size of the added cell equal to the input size.

The last classifier layer serves as the layer that outputs the
overall results of the model. It is a general fully-connected
layer not an unsupervised learning model and can be com-
posed of different types of layers depending on the task. The
last layer employs concatenation of the latent vectors from all
cells as its input.

3.2 Model Training

The cells composed of AE series models function such that
the encoder transforms input data into a latent vector, and the
decoder is trained to generate data from this latent vector in
a way that it becomes identical to the input. During this pro-
cess, the latent vector generated by the encoder is utilized as
the input for the subsequent cell.



The cells composed of GANs use random noise as input
for their generators. Each encoder within the generators gen-
erates a latent vector from this input, and then the decoder of
the generators produces fake data from these latent vectors.
The discriminator receives both real and fake data, learning
to distinguish which is real. Following this, the generators
create new fake data from random noise, which the discrimi-
nators then assess, using the calculated loss for further train-
ing. After this process, the latent vector generated by the en-
coders of the generators, using inputs from the previous cell,
is passed on as the input for the subsequent cell.

The last layer of each model is trained to predict the an-
swers. The training approach varies based on the task, includ-
ing classification, regression, and generation. Furthermore,
this layer is also locally trained.

The loss function for the task of input reconstruction
employed mean squared error. For the discriminator in
GANs, we used binary cross-entropy loss. The classifier
layer utilized cross-entropy loss. For all models, AdamW
[Loshchilov and Hutter, 2019] was selected as the optimizer,
and the ReLU [Nair and Hinton, 2010] was employed as the
activation function.

Layer normalization [Ba et al., 2016] is applied to every
input of each layer to normalize the data distribution. This
was done to mitigate gradient vanishing and exploding is-
sue, and achieve more stable and faster learning and improved
generalization.

4 Experiments

Our goal is to validate the experiment that proposed UFF
models can replace traditional FF models in terms of perfor-
mance, and to evaluate their compatibility with various gen-
eral unsupervised learning methods. Additionally, we aim
to confirm whether these models can demonstrate stable and
consistent performance under conditions similar to BP. Fi-
nally, Our goal includes investigating the extent of perfor-
mance variation depending on the number of cells and quan-
tifying the difference in performance between these models
and a Single Layer Perceptron(SLP).

4.1 Models

We employed baselines consisting of SLP, MLP, and
CNN models trained using BP, along with FF mod-
els that we reproduced. Furthermore, we designed
our experiments using four UFF models as layers:
Auto-Encoder Forward-Forward(AEFF), Denoising Auto-
Encoder Forward-Forward(DAEFF), Convolutional Auto-
Encoder Forward-Forward(CAEFF), and Generative Adver-
sarial Network Forward-Forward(GANFF). Throughout the
experimental process, we maintained consistency in the con-
figuration of optimizers, hidden dimensions, and the number
of cells used.

For SLP, a single fully-connected layer was employed to
generate outputs directly from the input data. In the MLP
and FF models, each layer consisted of one fully-connected
layer and a ReLU activation function. The AEFF, DAEFF,
and GANFF models utilized a one fully-connected layer and
ReLU in each encoder and decoder layer. The discrimina-
tor in GANFF was designed with a fully-connected layer and

ReLU to convert the input into a hidden vector, and another
fully-connected layer to transform the hidden vector into an
output.

In the CNN and CAEFF, each layer included a convolution,
ReLU, and max pooling. For convolutional layers, a kernel
size of 3, stride of 1, and padding of 1 were used, and max
pooling had a kernel size of 2. The decoder of CAEFF em-
ployed transpose convolution for reconstruction, with a ker-
nel size of 2 and stride of 2. When using the MNIST dataset,
which has a width and height of 28, passing through two CA-
EFF layers results in widths and heights of 7, an odd number.
Under these circumstances, a convolution kernel size of 2 was
used, with the transpose convolution having a kernel size of 4
and a stride of 1.

4.2 Datasets

The datasets employed in our experiment were MNIST and
CIFAR10. MNIST comprises a total of 10 labels, with 60,000
training data samples and 10,000 test data samples. Simi-
larly, CIFAR10 also has 10 labels, consisting of 50,000 train-
ing data samples and 10,000 test data samples. In this study,
validation data was not utilized.

4.3 Computing infrastructure

All deep learning models used in this experiment were written
in PyTorch, the hardware and software specifications used in
this experiment are as follows:

• CPU : Intel Xeon Silver 4114 CPU 2.20GHz

• GPU : NVIDIA Tesla V100 SXM2 32Gb

• RAM : 512Gb (Only partially utilized)

• Framework : PyTorch 2.0.1

4.4 Experimental Setup

In this experiments, we utilized the FF source code1

implemented in PyTorch. We utilized the Weights &
Biases(WandB) [Biewald and others, 2020] hyper-parameter
tuning method known as Sweep to train our models. For each
experiment, we conducted 10 runs to measure performance.
The batch size was set at 512 for all experiments. For the
MNIST dataset, the maximum number of epochs was limited
to 100, while for the CIFAR10 dataset, it was set at 200. The
noise ratio for the DAEFF was fixed at 0.2. Additionally, the
hidden dimension for each model was established at 1,024. In
UFF models, the size of the hidden dimension was designed
to reduce by half upon each cell pass.

The hyper-parameters explored for the SLP and MLP are
as follows:

• Learning rate : [1e-3, 1e-5]

• Weight decay : [1e-2, 1e-4]

The hyper-parameters searched by FF, AEFF, DAEFF, CA-
EFF, and GANFF are as follows. We set different ranges for
the learning rate and weight decay in the final classifier layer
compared to the other FF layers and cells. Generally, the FF
layers and cells require a sufficiently small learning rate for
effective training.

1https://github.com/loeweX/Forward-Forward



MNIST SLP MLP CNN FF AEFF DAEFF CAEFF GANFF

Sequence training

2 layers

0.9274

0.9875 0.9921 0.9782 0.9689 0.9723 0.9791 0.9569
3 layers 0.9856 0.9942 0.9795 0.9706 0.9736 0.9821 0.966
4 layers 0.9875 0.9944 0.9751 0.9704 0.9722 0.9808 0.9581
5 layers 0.987 0.9951 0.9789 0.9713 0.9737 0.9793 0.9586

Separate training

2 layers

0.9274

0.9875 0.9921 0.9687 0.9707 0.9679 0.9828 0.9621
3 layers 0.9856 0.9942 0.9674 0.9704 0.9710 0.9813 0.9604
4 layers 0.9875 0.9944 0.9694 0.9731 0.9721 0.9801 0.9598
5 layers 0.9870 0.9951 0.9700 0.9717 0.9729 0.9824 0.9598

Table 1: Best performances on the MNIST dataset. Bold is best of each model, italic is best of each learning method, and highlight is the
best of our proposed models.

CIFAR10 SLP MLP CNN FF AEFF DAEFF CAEFF GANFF

Sequence training

2 layers

0.3895

0.5439 0.6979 0.4886 0.4705 0.4691 0.5704 0.4467
3 layers 0.5393 0.7645 0.4713 0.4751 0.4474 0.5726 0.4394
4 layers 0.5364 0.7598 0.4751 0.4745 0.4573 0.5219 0.4542
5 layers 0.5205 0.777 0.462 0.473 0.4535 0.5394 0.4436

Separate training

2 layers

0.3895

0.5439 0.6979 0.3308 0.4658 0.4539 0.5670 0.4420
3 layers 0.5393 0.7645 0.3508 0.4771 0.3788 0.5753 0.4410
4 layers 0.5364 0.7598 0.3939 0.4817 0.4772 0.6057 0.4573
5 layers 0.5205 0.777 0.3987 0.4813 0.4621 0.5705 0.4367

Table 2: Best performances on the CIFAR10 dataset. Bold is best of each model, italic is best of each learning method, and highlight is the
best of our proposed models.

• FF layer and cell learning rate : [1e-4, 1e-6]

• FF layer and cell weight decay : [1e-3, 1e-5]

• Classifier layer learning rate : [1e-3, 1e-5]

• Classifier layer weight decay : [1e-2, 1e-4]

Additionally, the size of the output channel for the first
layer in CNN and CAEFF was configured as follows. It was
set to double with each traversal through a convolution layer.

• First convolution output channel size : 8, 16, 32, 64

The SLP model performed hyper-parameter searching once
for each dataset and measured performance for 10 trials. For
other models, the number of layers was set to 2, 3, 4, and
5, and hyper-parameter searching was conducted for each
layer configuration, resulting in 40 performance measure-
ments across datasets.

When using the FF learning method, each cell is trained
independently. Therefore, two training strategies were em-
ployed. The first involves sequentially training from the ini-
tial cell to the last classifier layer in each epoch, referred to as
sequence training. The second strategy involves training each
cell fully up to the maximum epochs before moving on to the
next cell, termed separate training. In this experiment, FF,
AEFF, DAEFF, CAEFF, and GANFF models were compared
in terms of performance using both sequence and separate
training.

4.5 Experimental Results

Table 1 and 2 present the best performance achieved from 10
measurements conducted through hyper-parameter tuning in
all experiments using the sequence and separate training ap-
proaches. All performance in this experiment was measured

by accuracy. In the overall experiments, CNN trained with
BP consistently exhibited the highest performance. On the
MNIST dataset, both FF and UFF models showed slightly
lower performance than MLP, with CAEFF among them
achieving the highest performance. When applied to the CI-
FAR10 dataset, FF and UFF models generally demonstrated
lower performance than MLP; however, CAEFF consistently
outperformed MLP.

In the sequence training, where all cells were sequentially
trained for one epoch each, FF outperformed UFF models ex-
cluding CAEFF. However, in the separate training, where the
preceding cells were trained to their maximum epochs before
training the next cell, UFF models outperformed sequence
training and generally performed better than FF. Notably, FF
in the separate training experienced significant performance
degradation on the CIFAR10 dataset.

Figure 3, 4, 5, and 6 depict box plots of the 10 measure-
ments obtained from hyper-parameter tuning, encompassing
the entire range of experimental results. The y-axis repre-
sents accuracy, and the x-axis is labeled sequentially as SLP,
MLP, CNN, FF, AEFF, DAEFF, CAEFF, and GANFF. The
circular points within the box plots represent outliers, and the
colored line inside the box signifies the median value. The
range of each box extends from the 25th percentile to the
75th percentile.

Figure 3 represents the performance measured on the
MNIST dataset using the sequence training. Except for FF
and GANFF, the results generally exhibit a stable distribution.
Figure 4 displays the performance measured on the MNIST
dataset using the separate training. Notably, the performance
distribution of FF appears to be quite unstable.

Figure 5, which showcases the performance measured on



SLP MLP CNN FF AEFF DAEFFCAEFFGANFF

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

(a) 2 layers

SLP MLP CNN FF AEFF DAEFFCAEFFGANFF

0.88

0.90

0.92

0.94

0.96

0.98

1.00

(b) 3 layers

SLP MLP CNN FF AEFF DAEFFCAEFFGANFF

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

(c) 4 layers

SLP MLP CNN FF AEFF DAEFFCAEFFGANFF

0.88

0.90

0.92

0.94

0.96

0.98

1.00

(d) 5 layers

Figure 3: Performance of sequence training on the MNIST dataset. The x-axis represents models and the y-axis represents accuracy.
(From left to right, the x-axis displays SLP, MLP, CNN, FF, AEFF, DAEFF, CAEFF, and GANFF.)

SLP MLP CNN FF AEFF DAEFFCAEFFGANFF

0.80

0.83

0.85

0.88

0.90

0.93

0.95

0.98

1.00

(a) 2 layers

SLP MLP CNN FF AEFF DAEFFCAEFFGANFF

0.75

0.80

0.85

0.90

0.95

1.00

(b) 3 layers

SLP MLP CNN FF AEFF DAEFFCAEFFGANFF

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

(c) 4 layers

SLP MLP CNN FF AEFF DAEFFCAEFFGANFF
0.83

0.85

0.88

0.90

0.93

0.95

0.98

1.00

(d) 5 layers

Figure 4: Performance of separate training on the MNIST dataset. The x-axis represents models and the y-axis represents accuracy.
(From left to right, the x-axis displays SLP, MLP, CNN, FF, AEFF, DAEFF, CAEFF, and GANFF.))

SLP MLP CNN FF AEFF DAEFFCAEFFGANFF
0.20

0.30

0.40

0.50

0.60

0.70

(a) 2 layers

SLP MLP CNN FF AEFF DAEFFCAEFFGANFF
0.20

0.30

0.40

0.50

0.60

0.70

(b) 3 layers

SLP MLP CNN FF AEFF DAEFFCAEFFGANFF
0.30

0.40

0.50

0.60

0.70

(c) 4 layers

SLP MLP CNN FF AEFF DAEFFCAEFFGANFF
0.20

0.30

0.40

0.50

0.60

0.70

0.80

(d) 5 layers

Figure 5: Performance of sequence training on the CIFAR10 dataset. The x-axis represents models and the y-axis represents accuracy.
(From left to right, the x-axis displays SLP, MLP, CNN, FF, AEFF, DAEFF, CAEFF, and GANFF.)

SLP MLP CNN FF AEFF DAEFFCAEFFGANFF
0.10

0.20

0.30

0.40

0.50

0.60

0.70

(a) 2 layers

SLP MLP CNN FF AEFF DAEFFCAEFFGANFF
0.10

0.20

0.30

0.40

0.50

0.60

0.70

(b) 3 layers

SLP MLP CNN FF AEFF DAEFFCAEFFGANFF
0.10

0.20

0.30

0.40

0.50

0.60

0.70

(c) 4 layers

SLP MLP CNN FF AEFF DAEFFCAEFFGANFF
0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

(d) 5 layers

Figure 6: Performance of separate training on the CIFAR10 dataset. The x-axis represents models and the y-axis represents accuracy.
(From left to right, the x-axis displays SLP, MLP, CNN, FF, AEFF, DAEFF, CAEFF, and GANFF.)



MNIST CIFAR10
Sequence
training

Separate
training

Sequence
training

Separate
training

MLP 0.67 0.67 0.71 0.71
CNN 0.66 0.66 0.67 0.67

FF 0.97 1.11 1.36 1.72
AEFF 1.57 1.53 1.61 1.32

DAEFF 1.51 1.45 1.62 1.78
CAEFF 2.12 2.78 2.86 4.36
GANFF 3.83 3.91 3.78 3.74

Table 3: The average training time (in seconds) for 1 epoch across 5
runs for each model with two layers.

the CIFAR10 dataset using the sequence training, shows a
broader range of performance distribution compared to the
MNIST dataset. Notably, the distributions of FF and DA-
EFF appear to be unstable. Figure 6 presents the performance
measured on the CIFAR10 dataset using the separate training,
and similar to Figure 5, the performance distribution of FF
and DAEFF remains unstable. On the other hand, GANFF
demonstrates a notably stable distribution in contrast to its
performance on the MNIST dataset. The unstable distribu-
tion observed in DAEFF and GANFF is likely because these
models incorporate random noise during their training.

Table 3 represents the training time (in seconds) per epoch
measured for models with two layers or cells. The measure-
ments were taken using a single Nvidia V100 GPU, and the
presented values are the average of five runs. FF, AEFF and
DAEFF take approximately twice as long as MLP and CNN
in terms of training time. Also, it can be observed that CA-
EFF and GANFF require at least 3 to 7 times longer time
compared to the others.

5 Discussion

Through the conducted experiments in this study, we vali-
dated the performance and practicality of the proposed UFF
models. The UFF models consistently demonstrated superior
performance compared to SLP. This finding underscores that
even with the sole utilization of the forward pass in unsuper-
vised models, inter-layer information exchange and feedback
enable effective learning. However, UFF models generally
exhibited lower performance than MLP using BP, indicat-
ing the challenge of fully replicating BP’s performance solely
through the forward pass. Nevertheless, models like CAEFF,
which employ convolutions, demonstrated performance sur-
passing that of MLP, albeit lower than CNN. This implies that
our proposed UFF training method, while not outperforming
BP under identical conditions and models, has the potential
to perform similarly well when using deep learning models
that have previously demonstrated success with BP.

Our study verified that the proposed UFF method is ca-
pable of training deep learning models via the FF approach,
which employs only forward passes similar to biological pro-
cesses. Additionally, we demonstrated the feasibility of us-
ing standard data and a universal loss function with UFF, as
opposed to the specialized data and loss calculation methods
required by FF. This advancement addresses and overcomes

FF’s limitation which is difficult to apply to various models,
making it possible to use it universally. Experimental results
also indicated that while FF exhibits a larger performance de-
viation compared to BP when the same model is used, our
UFF method demonstrates significantly more stable perfor-
mance than FF in AEFF and CAEFF configurations.

The limitations of the UFF are its lower performance and
longer training time in comparison to BP. However, experi-
mental observations in [Hinton, 2022] indicating UFF’s supe-
rior performance relative to MLP using BP suggest the possi-
bility of UFF attaining performance levels comparable to BP
with the identification of optimal hyper-parameter settings.
Nonetheless, given the substantial variability in its perfor-
mance and a training duration approximately twice as long
as that of BP, achieving high efficacy with UFF would neces-
sitate additional time and effort on the part of the learner.

Considering the strengths and limitations of the proposed
method, it emerges as a feasible alternative to the original FF
approach. It effectively addresses the constraints of FF while
maintaining stable performance. Additionally, there remains
potential for further performance enhancements and applica-
bility to various large-scale models currently demonstrating
efficacy, indicating prospects for utilization and universality.
Although it cannot completely supplant BP due to its inher-
ent limitations, it offers a viable option in scenarios where
BP implementation is challenging. For instance, in feder-
ated learning[Konečný et al., 2016], where the physical sep-
aration of model layers complicates the use of BP, the UFF
method could facilitate more effective sharing of weights and
feedback between local and global models.

6 Conclusion

Our proposed Unsupervised leaerning Forward-Forward
methodology utilizing unsupervised learning models demon-
strated performance that was comparable to or better than ex-
isting Forward-Forward algorithms. Additionally, we con-
firmed that our model exhibited performance close to that
achieved by deep learning models using backpropagation.
Moreover, we addressed the issue of low versatility in the
traditional Forward-Forward algorithm by solving the prob-
lems related to the need for specific forms of input and loss
functions. This advancement addressed the problem of unsta-
ble performance, which was evident in significant variations
within the same model using the Forward-Forward approach.
Lastly, our research confirmed the potential applicability of
this methodology in areas where conventional deep learning
training methods face challenges.

For future research, we plan to apply our proposed training
method to a variety of large-scale deep learning models to fur-
ther verify its versatility. Additionally, we aim to explore the
potential applicability under various conditions through ex-
periments in scenarios where backpropagation is challenging
to implement, such as in federated learning. Lastly, we in-
tend to enhance the stability of our proposed methodology by
integrating it with several alternative approaches that could
replace backpropagation, thereby aiming to achieve perfor-
mance comparable to that of backpropagation.



References
[Ba et al., 2016] Jimmy Lei Ba, Jamie Ryan Kiros, and Ge-

offrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[Biewald and others, 2020] Lukas Biewald et al. Experiment
tracking with weights and biases. Software available from
wandb. com, 2:233, 2020.

[Crick, 1989] Francis Crick. The recent excitement about
neural networks. Nature, 337(6203):129–132, 1989.

[Goodfellow et al., 2014] Ian Goodfellow, Jean Pouget-
Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Gen-
erative adversarial nets. Advances in neural information
processing systems, 27, 2014.

[Grossberg, 1987] Stephen Grossberg. Competitive learn-
ing: From interactive activation to adaptive resonance.
Cognitive science, 11(1):23–63, 1987.

[Hinton and Zemel, 1993] Geoffrey E Hinton and Richard
Zemel. Autoencoders, minimum description length and
helmholtz free energy. Advances in neural information
processing systems, 6, 1993.

[Hinton, 2022] Geoffrey Hinton. The forward-forward algo-
rithm: Some preliminary investigations. arXiv preprint
arXiv:2212.13345, 2022.

[Hubel and Wiesel, 1962] David H Hubel and Torsten N
Wiesel. Receptive fields, binocular interaction and func-
tional architecture in the cat’s visual cortex. The Journal
of physiology, 160(1):106, 1962.

[Kelley, 1960] Henry J Kelley. Gradient theory of optimal
flight paths. Ars Journal, 30(10):947–954, 1960.

[Konečný et al., 2016] Jakub Konečný, H. Brendan McMa-
han, Felix X. Yu, Peter Richtarik, Ananda Theertha
Suresh, and Dave Bacon. Federated learning: Strategies
for improving communication efficiency. In NIPS Work-
shop on Private Multi-Party Machine Learning, 2016.

[LeCun et al., 1989] Yann LeCun, Bernhard Boser, John S
Denker, Donnie Henderson, Richard E Howard, Wayne
Hubbard, and Lawrence D Jackel. Backpropagation ap-
plied to handwritten zip code recognition. Neural compu-
tation, 1(4):541–551, 1989.

[Lillicrap et al., 2014] Timothy P Lillicrap, Daniel Cown-
den, Douglas B Tweed, and Colin J Akerman. Ran-
dom feedback weights support learning in deep neural net-
works. arXiv preprint arXiv:1411.0247, 2014.

[Linnainmaa, 1970] Seppo Linnainmaa. The representation
of the cumulative rounding error of an algorithm as a Tay-
lor expansion of the local rounding errors. PhD thesis,
Master’s Thesis (in Finnish), Univ. Helsinki, 1970.

[Loshchilov and Hutter, 2019] Ilya Loshchilov and Frank
Hutter. Decoupled weight decay regularization. In Inter-
national Conference on Learning Representations, 2019.

[Marblestone et al., 2016] Adam H Marblestone, Greg
Wayne, and Konrad P Kording. Toward an integra-
tion of deep learning and neuroscience. Frontiers in
computational neuroscience, 10:94, 2016.

[Millidge et al., 2022] Beren Millidge, Alexander Tschantz,
and Christopher L Buckley. Predictive coding approxi-
mates backprop along arbitrary computation graphs. Neu-
ral Computation, 34(6):1329–1368, 2022.

[Nair and Hinton, 2010] Vinod Nair and Geoffrey E Hinton.
Rectified linear units improve restricted boltzmann ma-
chines. In Proceedings of the 27th international con-
ference on machine learning (ICML-10), pages 807–814,
2010.

[Ororbia and Mali, 2023] Alexander Ororbia and Ankur A
Mali. The predictive forward-forward algorithm. In Pro-
ceedings of the Annual Meeting of the Cognitive Science
Society, volume 45, 2023.

[Rao and Ballard, 1999] Rajesh PN Rao and Dana H Ballard.
Predictive coding in the visual cortex: a functional in-
terpretation of some extra-classical receptive-field effects.
Nature neuroscience, 2(1):79–87, 1999.

[Rumelhart et al., 1985] David E Rumelhart, Geoffrey E
Hinton, Ronald J Williams, et al. Learning internal rep-
resentations by error propagation, 1985.

[Rumelhart et al., 1988] David E Rumelhart, James L Mc-
Clelland, PDP Research Group, et al. Parallel distributed
processing. Foundations, 1, 1988.

[Shepherd, 1990] Gordon M Shepherd. The significance of
real neuron architectures for neural network simulations.
Computational neuroscience, pages 82–96, 1990.

[Suzuki and Amaral, 1994] Wendy A Suzuki and David G
Amaral. Topographic organization of the reciprocal con-
nections between the monkey entorhinal cortex and the
perirhinal and parahippocampal cortices. Journal of Neu-
roscience, 14(3):1856–1877, 1994.

[Vincent et al., 2010] Pascal Vincent, Hugo Larochelle, Is-
abelle Lajoie, Yoshua Bengio, Pierre-Antoine Manzagol,
and Léon Bottou. Stacked denoising autoencoders: Learn-
ing useful representations in a deep network with a local
denoising criterion. Journal of machine learning research,
11(12), 2010.

[Whittington and Bogacz, 2017] James CR Whittington and
Rafal Bogacz. An approximation of the error backprop-
agation algorithm in a predictive coding network with
local hebbian synaptic plasticity. Neural computation,
29(5):1229–1262, 2017.


	Introduction
	Related Works
	Unsupervised Forward-Forward Algorithm
	Architecture
	Model Training

	Experiments
	Models
	Datasets
	Computing infrastructure
	Experimental Setup
	Experimental Results

	Discussion
	Conclusion

