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Abstract
Source localization aims to locate information diffusion sources

only given the diffusion observation, which has attracted extensive
attention in the past few years. Existing methods are mostly tailored
for single networks and may not be generalized to handle more
complex networks like cross-networks. Cross-network is defined
as two interconnected networks, where one network’s function-
ality depends on the other. Source localization on cross-networks
entails locating diffusion sources on the source network by only
giving the diffused observation in the target network. The task is
challenging due to challenges including: 1) diffusion sources dis-
tribution modeling; 2) jointly considering both static and dynamic
node features; and 3) heterogeneous diffusion patterns learning. In
this work, we propose a novel method, namely CNSL, to handle
the three primary challenges. Specifically, we propose to learn the
distribution of diffusion sources through Bayesian inference and
leverage disentangled encoders to separately learn static and dy-
namic node features. The learning objective is coupled with the
cross-network information propagation estimation model to make
the inference of diffusion sources considering the overall diffusion
process. Additionally, we also provide two novel cross-network
datasets collected by ourselves. Extensive experiments are con-
ducted on both datasets to demonstrate the effectiveness of CNSL
in handling the source localization on cross-networks. The code
are available at: https://github.com/tanmoysr/CNSL/

1 Introduction
Source localization aims at locating the origins of information dif-

fusion within networks, which stands as a famous inverse problem
to the estimation of information propagation. Source localization
not only holds practical significance but also helps us grasp the
intricate characteristics of network dynamics. By accurately identi-
fying the sources of information propagation, we can significantly
mitigate potential damages by cutting off critical pathways through
which information, and potentially misinformation, spreads. Over
the past years, existing works have made considerable efforts to-
ward addressing this critical challenge. Earlier works [19, 26, 30, 31]
leverage rule-based methods to locate diffusion sources under pre-
scribed and known diffusion patterns. Furthermore, Learning-based
methods [7, 15, 24, 25] were proposed to employ deep neural net-
works to encode neighborhood and graph topology information,
which achieve state-of-the-art performance. These efforts under-
score the importance of source localization in maintaining the
integrity and reliability of information across the digital landscape.

Figure 1: Example of misinformation propagation on cross-
network between GitHub and Stack Overflow, where each
node in the GitHub network denotes a repository, and each
node in the Stack Overflow represents a discussion thread.

Existing techniques for source localization have primarily been
designed for single networks. However, much of today’s infrastruc-
ture is organized in the form of cross-networks. Communications be-
tween different communities, cross-country financial transactions,
and systems of water and food supply can all be cross-networks,
where the functionality or performance of one network depends on
other networks. The presence of cross-networks has also made us
vulnerable to various network risks that belong exclusively to cross-
networks, such as the spreading of misinformation from one social
media to another and safety alerts found in downstream stages
of the food supply chain. The complexity of cross-network inter-
actions is further illustrated by an incident involving a malicious
GitHub repository, as detailed in the upper part of Figure 1 and
identified in [10], which was linked to over 40 discussion threads
on Stack Overflow. Questioners and less experienced users may
be directed into using the alleged solution without maintaining a
healthy skepticism. Once using the code from the malicious GitHub
repository, the victims’ devices might be compromised (e.g., system
operations being disrupted). The challenge of tracing the origins and
pathways of such misinformation is exacerbated in cross-network
environments, where the initial propagation occurs in a network
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different from where the observations are made, as in the transi-
tion from GitHub to Stack Overflow. Furthermore, this complexity
is compounded by multiple rounds of propagation and the pos-
sibility that contributors to Stack Overflow discussions may not
intentionally disseminate misinformation, highlighting the need
for more powerful source localization methodologies that account
for cross-networks.

Cross-network source localization is defined as locating diffusion
sources from the source network by only giving the diffused ob-
servation of the target network, which is still under-explored. The
challenge primarily lies in the separation between the networks
where the diffusion originates and where it is observed, making
traditional source localization techniques less effective due to the
following critical obstacles. 1) The difficulty of characterizing the
distribution of diffusion sources only given the diffused observation of
another network. Understanding the distribution of potential sources
is crucial for understanding the nature of diffusion processes and
for quantifying the inherent uncertainties associated with identi-
fying these sources [3, 15, 16]. However, accurately learning the
distribution of diffusion sources in a cross-network context requires
the formulation of a conditional probability model that accounts for
the observed diffusion within one network, given the structural and
dynamical properties of another. This task requires fully consider-
ing different Network topologies, diverse node features, and varied
propagation patterns, which makes the learning objective hard to
model and optimize. 2) The difficulty of jointly capturing dynamic
and static features of the nodes in the cross-network. Characterizing
the distribution of diffusion sources is often conditioned on the
intrinsic nature of the nodes and their connections. Existing works
hardly leverage node features (e.g., text description and statistical
node features) since entangling both types of features would lead to
a high-dimensional and often intractable distribution of diffusion
sources. Moreover, the nodes from different networks may have
different intrinsic characteristics that help profile their diffusion
dynamics and can predominantly help locate the sources. 3) The
difficulty of jointly capturing the heterogeneous diffusion patterns of
the cross-network. Besides the difficulty of learning the distribution
of diffusion sources, the diffusion patterns in both networks are
also unknown to us. By correctly modeling the overall diffusion
process, it is also essential to jointly consider the different propaga-
tion patterns of both networks. Additionally, the communication
between different networks (i.e., cross-network propagation paths
as noted in Figure 1) also cannot be ignored.

In this work, we propose the Cross-Network Source Localization
(CNSL) method for locating the diffusion sources from a source
network given its diffused observation from another target network
under arbitrary diffusion patterns. Specifically, for the first chal-
lenge, we design a novel framework to approximate the distribution
of diffusion sources by mean-field variational inference. For the
second challenge, we propose a disentangled generative prior to
encoding both static and dynamic features of nodes. For the last
challenge, we model the unique diffusion dynamics of each network
separately and integrate the learning process of these information
diffusion models with the approximation of diffusion source distri-
bution. This ensures accurate reconstruction of diffusion sources
considering the specific propagation mechanisms of each network.
We summarize our major contributions of this work as follows:

• Problem. We design a novel formulation of the cross-network
source localization and propose to leverage deep generative mod-
els to characterize the prior and approximate the distribution of
diffusion sources via variational inference.

• Technique. We propose a unified framework to jointly capture
1) both static and dynamic node features, and 2) the heteroge-
neous diffusion patterns of both networks. The approximation
of diffusion sources is fully aware of various node features and
the interplay of cross-network information diffusion patterns.

• Data. Cross-network source localization lacks high-quality data,
which is highly difficult to craft. We collect and curate a real-
world dataset that accounts for the Cross-platform Communi-
cation Network, which records the real-world misinformation
propagation from Github to Stack Overflow. We also provide a
simulated cross-network dataset using agent-based simulation to
disseminate misinformation across physical and social networks.

• Experiments. We conduct experiments against state-of-the-art
methods designed originally for single-network source localiza-
tion. Results show substantially improved performance of our
method for cross-network source localization.

2 Related Works
Information Source Localization. Diffusion source localization
is defined as inferring the initial diffusion sources given the current
diffused observation, which has attracted many applications, rang-
ing from identifying rumor sources in social networks [9] to finding
blackout origins in smart grids [22]. Early approaches [19, 26, 31, 32]
focused on identifying the single/multiple source of an online dis-
ease under the Susceptible-Infected (SI) or Susceptible-Infected-
Recover (SIR) diffusion patterns with either full or partial obser-
vation. Later on, Dong et al. [7] further leverage GNN to enhance
the prediction accuracy of LPSI. However, existing diffusion source
localization methods cannot well quantify the uncertainty between
different diffusion source candidates, and they usually require
searching over the high-dimensional graph topology and node
attributes to detect the sources, both drawbacks limit their effective-
ness and efficiency. Moreover, in the past few years, more methods
[15, 20, 24, 25, 27] have been proposed to address the dependency of
prescribed diffusion models and characterize the latent distribution
of diffusion sources, which have achieved state-of-the-art results.
However, their methods still may not generalize to cross-network
source localization due to the unique interconnected structure.
Information Diffusion on Cross Network. The interconnec-
tion between cross-networks allows information to flow seamlessly
from one platform to another through overlapping nodes. However,
it is important to note that the patterns of influence and information
propagation differ between various networks and can even vary
within the same network. Recent studies in information diffusion
across interconnected networks have made notable advancements.
Earlier works [4, 11, 17, 28] have developed different frameworks for
correct modeling of the information flow within different network
formats, such as wireless networks, social networks, and supply
chains. Later on, many works have been proposed to study different
features and applications of cross-networks, e.g., mitigating cas-
cading failures [8, 23]. However, until today, there are few works
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[6, 14] trying to correctly model the information diffusion pattern
in the interconnected network system.

3 Cross-network Diffusion Source Localization
In this section, the problem formulation is first provided be-

fore deriving the overall objective from the perspective of the
divergence-based variational inference. A novel optimization algo-
rithm is then proposed to infer the seed nodes given the observed
cross-network diffused pattern.

3.1 Problem Formulation
Cross-network G = (𝐺𝑠 ,𝐺𝑡 ) consists of a Source Network 𝐺𝑠 =

(𝑉𝑠 , 𝐸𝑠 ) and a Target Network 𝐺𝑡 = (𝑉𝑡 , 𝐸𝑡 ). Both 𝐺𝑠 and 𝐺𝑡 are
composed of a set of vertices𝑉𝑠 and𝑉𝑡 corresponding to individual
users of the network as well as a set of edges 𝐸𝑠 ⊆ 𝑉𝑠 × 𝑉𝑠 and
𝐸𝑡 ⊆ 𝑉𝑡 × 𝑉𝑡 denote connecting pairs of users in both networks,
respectively. In addition, 𝑓𝑠 ∈ R𝑁𝑠×𝐹 and 𝑓𝑡 ∈ R𝑁𝑡×𝐹 and denote
the static features of both networks (e.g., associated text embedding,
user age, social relations, etc.), where 𝐹 denotes the dimension of
the node feature, and 𝑁𝑡 , 𝑁𝑠 denote the number of nodes in each
network, respectively. To connect the cross-network G, there exists
a set of bridge links between𝐺𝑠 and𝐺𝑡 denoted by𝐿 = {(𝑣𝑠 , 𝑣𝑡 ) |𝑣𝑠 ∈
𝑉𝑠 , 𝑣𝑡 ∈ 𝑉𝑡 }, which represent the propagation paths from 𝐺𝑠 to 𝐺𝑡 .

The information propagation in the cross-network is a one-
directional message passing from 𝐺𝑠 to 𝐺𝑡 . More specifically, the
propagation initiates from a group of nodes denoted as𝑥𝑠 ∈ {0, 1}𝑁𝑠

in the source network𝐺𝑠 , where each entry has a binary value rep-
resenting whether the node is seed or not. After a certain period,
the information propagates from 𝐺𝑠 to 𝐺𝑡 and infects a portion of
nodes in 𝐺𝑡 through the bridge links 𝐿. We use 𝑦𝑡 ∈ [0, 1]𝑁𝑡 to
denote the infection probability of each node in 𝐺𝑡 .
Problem1 (Cross-network diffusion source localization). Given
G and the diffused observation of the target network𝑦𝑡 , the problem
of diffusion source localization in cross-networks (i.e., the inverse
problem of diffusion estimation) requires finding 𝑥𝑠 ∈ {0, 1}𝑁𝑠 from
the source network 𝐺𝑠 , such that the empirical loss | |𝑥𝑠 − 𝑥𝑠 | |22 is
minimized, under the constraint that the diffused observation in
the target graph 𝑦𝑡 could be generated from 𝑥𝑠 through 𝐿.

However, reconstructing 𝑥𝑠 from 𝑦𝑡 is difficult due to the fol-
lowing challenges. 1) The difficulty of characterizing the distribution
of seed nodes in the cross-network scenario. To consider all possi-
bilities of the seed nodes in cross-network source localization, it’s
desired to model the distribution of seed nodes 𝑝 (𝑥𝑠 ) by charac-
terizing the conditional probability 𝑝 (𝑥𝑠 |𝑦𝑡 ). However, learning
𝑝 (𝑥𝑠 |𝑦𝑡 ) requires jointly considering the topology structure of the
cross-network G as well as the stochastic diffusion pattern through
bridge links 𝐿. Existing works cannot be directly adapted due to the
incapability of considering the complex cross-network scenario. 2)
The difficulty of jointly capturing dynamic and static features of the
nodes in the cross-network. The intrinsic patterns of the seed nodes
consist of both dynamic patterns (i.e., the choice of seed nodes
𝑥𝑠 ) and static patterns (e.g., node features 𝑓𝑠 ). The correlated fac-
tors lead to the high-dimensional and often intractable distribution
𝑝 (𝑥𝑠 ), which makes maximizing the joint likelihood 𝑝 (𝑥𝑠 , 𝑦𝑡 ) to
be hard and computationally inefficient. 3) The difficulty of jointly
capturing the heterogeneous diffusion patterns of the cross-network.

The underlying diffusion process from 𝑥𝑠 to 𝑦𝑡 is not only affected
by numerous factors (e.g., the infectiousness of the misinformation
and the immunity power of the user), but the propagation patterns
in the cross-network are inherently different in different networks.

3.2 Latent Distribution Learning of Seed Nodes
To cope with the first challenge of characterizing the distribution

of diffusion sources in the cross-network, we propose to utilize
graph topology as well as the diffused observation to define the
conditional probability 𝑝 (𝑥𝑠 |𝑦𝑡 ). Since the diffused observation 𝑦𝑡
is conditioned on both networks G as well as the diffusion source 𝑥𝑠 ,
we derive a conditional probability 𝑝 (𝑦𝑡 |𝑥𝑠 ,G) ·𝑝 (𝑥𝑠 ), where 𝑝 (𝑥𝑠 )
is the distribution of infection sources within 𝐺𝑠 . To estimate the
optimal diffusion source 𝑥𝑠 , we employ the Maximum A Posteriori
(MAP) approximation by maximizing the following probability:

𝑥𝑠 = arg max
𝑥𝑠

𝑝 (𝑦𝑡 |𝑥𝑠 ,G) · 𝑝 (𝑥𝑠 ) = arg max
𝑥𝑠

𝑝 (𝑥𝑠 , 𝑦𝑡 |G).

However, since 𝑝 (𝑥𝑠 ) is often intractable and entangles both static
and dynamic features, we instead leverage deep generative models
to characterize the implicit distribution of 𝑝 (𝑥𝑠 ).

To tackle the second challenge of jointly considering all static and
dynamic node features, we propose a disentangled generativemodel
to map the intractable and potentially high-dimensional 𝑝 (𝑥𝑠 ) to
latent embeddings in low-dimensional latent space. Specifically,
we aim to learn the conditional distribution 𝑝 (𝑥𝑠 , 𝑦𝑡 ,G|𝑧𝑠 , 𝑧𝑓 𝑠 ) of
𝑥𝑠 given two latent variables 𝑧𝑠 and 𝑧𝑓 𝑠 . Specifically, 𝑧𝑠 ∈ R𝑘1

(𝑘1 ≪ 𝑁𝑠 ) and 𝑧𝑓 𝑠 ∈ R𝑘2 (𝑘2 ≪ 𝑁𝑠 ) are obtained by an approx-
imate posterior 𝑝 (𝑧𝑠 , 𝑧𝑓 𝑠 |𝑥𝑠 , 𝑦𝑡 ,G), where 𝑝 (𝑧𝑠 , 𝑧𝑓 𝑠 ) is the prior
distribution of node’s dynamic and static features. Note that 𝑘1 and
𝑘2 are the numbers of variables in each group, in order to capture
the different types of semantic factors.

The goal here is to learn the conditional distribution of 𝑝 (𝑥𝑠 )
given 𝑍 = (𝑧𝑠 , 𝑧𝑓 𝑠 ), namely, to maximize the marginal likelihood
of the observed cross-network diffusion in expectation over the
distribution of the latent variable set 𝑍 as E𝑝𝜃 (𝑍 ) [𝑝𝜃 (𝑥𝑠 , 𝑦𝑡 ,G|𝑍 )].
For a given observation of the information diffusion in the cross-
network, the prior distribution of the latent representations 𝑝 (𝑍 ) is
still intractable to infer. We propose solving it based on variational
inference, where the posterior needs to be approximated by the
distribution 𝑞𝜙 (𝑍 |𝑥𝑠 , 𝑦𝑡 , 𝑓𝑠 ,G). In this way, the goal becomes to
minimize the Kullback–Leibler (KL) divergence between the true
prior and the approximate posterior. Moreover, we assume 𝑧𝑠 and
𝑧𝑓 𝑠 capture different semantic factors. Specifically, 𝑧𝑠 is required to
capture just the independent dynamic semantic factors of which
nodes are infection sources, and 𝑧𝑓 𝑠 is required to capture the
correlated semantic factors considering both dynamic features and
static node features. To encourage this disentangling property of
both posteriors, we introduce a constraint by trying to match the
inferred posterior configurations of the latent factors to the prior
𝑝 (𝑧𝑠 , 𝑧𝑓 𝑠 ) by setting each prior to being an isotropic unit Gaussian
N(0, 1), leading to the constrained optimization problem as:

max
𝜃,𝜙

E𝑞𝜙 (𝑧𝑠 ,𝑧𝑓 𝑠 |𝑥𝑠 ,𝑦𝑡 ,G)
[
𝑝𝜃

(
𝑥𝑠 , 𝑦𝑡 ,G|𝑧𝑠 , 𝑧𝑓 𝑠

)]
,

s.t. 𝐾𝐿
[
𝑞𝜙 (𝑧𝑠 , 𝑧𝑓 𝑠 |𝑥𝑠 , 𝑓𝑠 , 𝑦𝑡 ,G)||𝑝 (𝑧𝑠 , 𝑧𝑓 𝑠 )

]
< 𝐼 .
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Furthermore, given the assumption that 𝑝 (𝑧𝑠 ) represents the distri-
bution of dynamic node features and 𝑝 (𝑧𝑓 𝑠 ) denotes the distribu-
tion of joint node features (entangles with both static and dynamic
features), the constraint term can be decomposed as:

𝑞𝜙 (𝑧𝑠 , 𝑧𝑓 𝑠 |𝑥𝑠 , 𝑓𝑠 , 𝑦𝑡 ,G) = 𝑞𝜙1 (𝑧𝑠 |𝑥𝑠 , 𝑦𝑡 ,G) · 𝑞𝜙2 (𝑧𝑓 𝑠 |𝑦𝑡 , 𝑓𝑠 , 𝑥𝑠 ,G)

Then the objective function can be written as:
max
𝜃,𝜙

E𝑞𝜙 (𝑧𝑠 ,𝑧𝑓 𝑠 |𝑥𝑠 ,𝑦𝑡 ,G)
[
𝑝𝜃

(
𝑥𝑠 , 𝑦𝑡 ,G|𝑧𝑠 , 𝑧𝑓 𝑠

)]
, (1)

s.t. 𝐾𝐿
[
𝑞𝜙1 (𝑧𝑠 |𝑥𝑠 , 𝑦𝑡 ,G)||𝑝 (𝑧𝑠 )

]
< 𝐼𝑠 ,

𝐾𝐿
[
𝑞𝜙2 (𝑧𝑓 𝑠 |𝑦𝑡 , 𝑥𝑠 ,G)||𝑝 (𝑧𝑓 𝑠 )

]
< 𝐼𝑓 𝑠 ,

where we decompose 𝐼 into two separate parts (i.e., 𝐼𝑠 and 𝐼𝑓 𝑠 ) of the
information capacity to control each group of latent variables so that
the variables inside each group of latent variables are disentangled.
In practice, 𝑞𝜙1 (·) and 𝑞𝜙2 (·) are implemented as two encoders
with multi-layer perceptron structure. More details can be found in
Figure 2.

3.3 Cross Network Diffusion Model Learning
To address the third challenge, i.e., making the source localiza-

tion be aware of the heterogeneous diffusion patterns between
networks, locating diffusion origins 𝑥𝑠 may not only involve esti-
mating the distribution of seed nodes but the process should also be
determined by correctly modeling the information diffusion across
diverse and interlinked network structures G. In the context of
cross-network information diffusion, the diffused observation 𝑦𝑡
is determined by the diffusion source 𝑥𝑠 under the cross-network
G through bridge links 𝐿. Therefore, the conditional distribution
𝑝𝜃 (𝑥𝑠 , 𝑦𝑡 , 𝑥 𝑓 ,G|𝑧𝑠 , 𝑧𝑓 𝑠 ) can further be decoupled as:
log 𝑝𝜃 (𝑥𝑠 , 𝑦𝑡 , 𝑥 𝑓 ,G|𝑧𝑠 , 𝑧𝑓 𝑠 ) = log[𝑝𝜓 (𝑦𝑡 |𝑥𝑠 ,G)]+log[𝑝𝜃 (𝑥𝑠 |𝑧𝑠 , 𝑧𝑓 𝑠 )],
where 𝑝𝜓 (·) models the probability of the infection status 𝑦𝑡 of
nodes in 𝐺𝑡 given seed nodes 𝑥𝑠 in 𝐺𝑠 . Moreover, the second
term 𝑝𝜃 (𝑥𝑠 |𝑧𝑠 , 𝑧𝑓 𝑠 ) reveals that the latent variables 𝑍 only encodes
information from 𝑥 (i.e., 𝑦𝑡⊥𝑍 |𝑥𝑠 ,G). According to the assump-
tion, we could also simplify both encoders as 𝑞𝜙1 (𝑧𝑠 |𝑥𝑠 ,G) and
𝑞𝜙2 (𝑧𝑓 𝑠 |𝑥𝑠 , 𝑓𝑠 ,G) in Eq. (1) by removing 𝑦𝑡 from the input.

Cross-network Information Propagation. Modeling the diffu-
sion from 𝑥𝑠 to 𝑦𝑡 is complex due to multiple influencing factors,
such as misinformation’s infectiousness and the distinct propa-
gation patterns across networks like GitHub and Stack Overflow,
which cater to different user communities. The unknown nature of
these diffusion patterns prevents the use of standard models like
Linear Threshold or Independent Cascade. This complexity under-
lines the need to decompose and simplify 𝑝𝜓 (𝑦𝑡 |𝑥𝑠 ,G) to analyze
the diverse diffusion behaviors in 𝐺𝑠 and 𝐺𝑡 through a learning
approach:

log𝑝𝜓 (𝑦𝑡 |𝑥𝑠 ,G) = log 𝑝𝜓1 (𝑦𝑠 |𝑥𝑠 ,𝐺𝑠 ) + log 𝑝𝜓2 (𝑦𝑡 |𝑦𝑠 , 𝑥𝑡 ,𝐺𝑡 ). (2)
In this simplified decomposition, 𝑝𝜓1 (·) characterizes the diffusion
pattern of 𝐺𝑠 given the seed nodes 𝑥𝑠 , which is independent of the
information propagation in 𝐺𝑡 . 𝑦𝑠 ∈ [0, 1]𝑁𝑠 records the infection
status of all nodes in the source network𝐺𝑠 . When the diffusion is
complete in 𝐺𝑠 , the infection probability is directly transferred to
the target network 𝐺𝑡 through bridge links 𝐿 so that some nodes

in 𝐺𝑡 have initial infection status (denoted as 𝑥𝑡 ) to initiate the
infection process in 𝐺𝑡 . The propagation in 𝐺𝑡 is then modeled by
𝑝𝜓2 (𝑦𝑡 |𝑦𝑠 , 𝑥𝑡 ,𝐺𝑡 ) by taking the graph structure 𝐺𝑡 and initial seed
infection probability 𝑥𝑡 as inputs. More details of the derivation is
provided in the Appendix.
Monotonic Constraint on Information Diffusion. The infor-
mation diffusion on the regular network is often regularized by
the monotone increasing property [5, 15]. In this work, we also
assume the same monotonic property holds in the cross-network
information diffusion, namely 𝑦 (𝑖 )𝑡 ⪰ 𝑦 ( 𝑗 )𝑡 , ∀ 𝑥 (𝑖 )𝑠 ⊇ 𝑥 ( 𝑗 )𝑠 . Specifi-
cally, selecting more seed nodes in 𝐺𝑠 would result in a generally
higher (or at least equal) infection probability of nodes in 𝐺𝑠 ac-
cording to the property of diminishing returns. Subsequently, the
bridge links would transfer the infection probability from 𝑦𝑠 to
𝑥𝑡 , and similarly, the probability of each node being infected in
𝑦
(𝑖 )
𝑡 (estimated from 𝑥

(𝑖 )
𝑡 ) should be greater or equal to 𝑦 ( 𝑗 )𝑡 (esti-

mated from 𝑥
( 𝑗 )
𝑡 ), such that 𝑦 (𝑖 )𝑡 ⪰ 𝑦 ( 𝑗 )𝑡 . Therefore, owing to the

monotonic increasing property of the information diffusion, we
add the constraint 𝜆

����max(0, 𝑦 ( 𝑗 )𝑡 −𝑦 (𝑖 )𝑡 )
����2

2,∀𝑥
(𝑖 )
𝑠 ⊇ 𝑥 ( 𝑗 )𝑠 , to Eq. (1),

where we transform the inequality constraint into its augmented
Lagrangian form to minimize ∥max(0, 𝑦 ( 𝑗 )𝑡 − 𝑦 (𝑖 )𝑡 )

����2
2 and 𝜆 > 0

denotes regularization hyperparameter.
Overall Objective for Training. The training procedure of the
proposed CNSL model is coupled with Eq. (1), Eq. (2), and the mono-
tonic increasing constraint:

Ltrain = max
𝜃,𝜙1,𝜙2

E𝑞𝜙
[
𝑝𝜃 (𝑥𝑠 , 𝑦𝑡 , 𝑥 𝑓 ,G|𝑧𝑠 , 𝑧𝑓 𝑠 )

]
, (3)

s.t. 𝐾𝐿
[
𝑞𝜙1 (𝑧𝑠 |𝑥𝑠 ,G)||𝑝 (𝑧𝑠 )

]
< 𝐼𝑠 ,

𝐾𝐿
[
𝑞𝜙2 (𝑧𝑓 𝑠 |𝑥𝑠 , 𝑓𝑠 ,G)||𝑝 (𝑧𝑓 𝑠 )

]
< 𝐼𝑓 𝑠 ,

𝑦
(𝑖 )
𝑡 ⪰ 𝑦 ( 𝑗 )𝑡 , ∀ 𝑥 (𝑖 )𝑠 ⊇ 𝑥 ( 𝑗 )𝑠 ,

= min
𝜃,𝜙1,𝜙2,𝜓1,𝜓2

−E𝑞𝜙
[

log𝑝𝜃 (𝑥𝑠 |𝑧𝑠 , 𝑧𝑓 𝑠 )

+ log𝑝𝜓1 (𝑦𝑠 |𝑥𝑠 ,𝐺𝑠 ) + log 𝑝𝜓2 (𝑦𝑡 |𝑦𝑠 , 𝑥𝑡 ,𝐺𝑡 )
]
,

s.t. 𝐾𝐿
[
𝑞𝜙1 (𝑧𝑠 |𝑥𝑠 ,G)||𝑝 (𝑧𝑠 )

]
< 𝐼𝑠 ,

𝐾𝐿
[
𝑞𝜙2 (𝑧𝑓 𝑠 |𝑥𝑠 , 𝑓𝑠 ,G)||𝑝 (𝑧𝑓 𝑠 )

]
< 𝐼𝑓 𝑠 ,����max(0, 𝑦 ( 𝑗 )𝑡 − 𝑦 (𝑖 )𝑡 )

����2
2,

where we only need to sample one 𝑥 (𝑖 )𝑠 and many 𝑥 ( 𝑗 )𝑠 ’s (such that
𝑥
(𝑖 )
𝑠 ⊇ 𝑥 ( 𝑗 )𝑠 ) as training samples for each mini-batch. The 𝑦 (𝑖 )𝑡 and
𝑦
( 𝑗 )
𝑡 ’s are estimated by arbitrary diffusion patterns. For simplicity,
we omit the subscript of E𝑞𝜙 (𝑧𝑠 ,𝑧𝑓 𝑠 |𝑥𝑠 ,𝑦𝑡 ,G) as E𝑞𝜙 when the context
is clear. The overall framework is summarized in Figure 2.

3.4 Cross-network Seed Set Inference
Upon training completion, the joint probability 𝑝 (𝑧𝑠 , 𝑧𝑓 𝑠 ) is ap-

proximated by the posterior 𝑞𝜙 (𝑧𝑠 , 𝑧𝑓 𝑠 |𝑥𝑠 , 𝑓𝑠 , 𝑦𝑡 ,G). Both 𝑝𝜓1 (·)
and 𝑝𝜓2 (·) effectively classify the diffusion patterns across net-
works. This study introduces a sampling method for 𝑥𝑠 ∼ 𝑝 (𝑥𝑠 ) by
marginalizing over 𝑝 (𝑧𝑠 ) ·𝑝 (𝑧𝑓 𝑠 ) to conduct MAP estimation, where
𝑝 (𝑥𝑠 ) =

∑
𝑧𝑠

∑
𝑧𝑓 𝑠

𝑝𝜃 (𝑥𝑠 |𝑧𝑠 , 𝑧𝑓 𝑠 )𝑝 (𝑧𝑠 , 𝑧𝑓 𝑠 ). However, marginalizing
the standard Gaussian prior 𝑝 (𝑧𝑠 , 𝑧𝑓 𝑠 ) necessitates extensive sam-
pling to align the sample distribution with the target distribution,
increasing computational load. Additionally, it is also hard to sample
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Figure 2: The training pipeline of CNSL contains three steps: 1) 𝑞𝜙1 and 𝑞𝜙2 approximate the distribution of 𝑝 (𝑧𝑠 , 𝑧𝑓 𝑠 ) in a
disentangled manner; 2) the inferred latent variables 𝑧𝑠 and 𝑧𝑓 𝑠 are concatenated to reconstruct 𝑥𝑠 ; 3) the reconstructed 𝑥𝑠 is
leveraged as initial seed nodes to initiate the cross-network information propagation and predict expected diffusion 𝑦𝑡 .

individual latent variables from the joint distribution of 𝑝 (𝑧𝑠 , 𝑧𝑓 𝑠 ).
To cope with both challenges, we consider the density over the
inferred latent variables induced by the approximate posterior in-
ference mechanism, and we propose the following objective w.r.t.
𝑧𝑠 to infer 𝑥𝑠 in an optimized manner. Specifically, the inference
objective function Lpred is written as:

Lpred = max
𝑧𝑠
E
[
𝑝𝜓 (𝑦𝑡 |𝑥𝑠 ,G) · 𝑝𝜃 (𝑥𝑠 |𝑧𝑠 , 𝑧𝑓 𝑠 )

]
, (4)

s.t. 𝑧𝑠 ∼ 𝑞𝜙1 (𝑧𝑠 |𝑥𝑠 ,G), 𝑧𝑓 𝑠 ∼ 𝑞𝜙2 (𝑧𝑓 𝑠 |𝑥𝑠 , 𝑓𝑠 ,G),

= min
𝑧𝑠
−E

[
log 𝑝𝜓 (𝑦𝑡 |𝑥𝑠 ,G) + log

[∑︁
𝑧𝑠

∑︁
𝑥𝑠
𝑝𝜃 (𝑥𝑠 |𝑧𝑠 , 𝑧𝑓 𝑠 )

] ]
s.t. 𝑧𝑠 ∼ 𝑞𝜙1 (𝑧𝑠 |𝑥𝑠 ,G), 𝑧𝑓 𝑠 ∼ 𝑞𝜙2 (𝑧𝑓 𝑠 |𝑥𝑠 , 𝑓𝑠 ,G),

where we sample many 𝑥𝑠 from the training set, and obtain equal
amount of 𝑧𝑠 from 𝑞𝜙1 (·). Note that we optimize 𝑧𝑠 (dynamic latent
variable) only, instead of both 𝑧𝑠 and 𝑧𝑓 𝑠 (static-dynamic entangled
latent variable), which is rooted in the specific roles these variables
play in the model. 𝑧𝑠 is targeted for optimization because it encodes
dynamic information crucial for identifying better seed nodes in the
context of information diffusion. This dynamic aspect is mutable
and can be optimized to improve source localization accuracy. On
the other hand, 𝑧𝑓 𝑠 entangles both dynamic and static informa-
tion, where the static part represents unchangeable node features.
Optimizing 𝑧𝑓 𝑠 would be less efficient because static features, by
their nature, cannot be optimized. The optimization process aims
to adjust variables to improve model performance, but since static
features remain constant, attempting to optimize 𝑧𝑓 𝑠 would not
enhance the model’s ability to localize diffusion sources.
Implementation of the Seed Set Inference.We provide imple-
mentation details of the overall inference process here. Specifically,
the inference framework first samples 𝑘 seed node set 𝑥𝑠 from the
training set, and we can take the average value 𝑧𝑠 and 𝑧𝑓 𝑠 from the
learned latent distributions with taking 𝑘 different 𝑥𝑠 as input:

𝑧𝑠 =
1
𝑘

∑︁𝑘

𝑖
𝑞𝜙1 (𝑧𝑠 |𝑥

(𝑖 )
𝑠 ,G), 𝑧𝑓 𝑠 =

1
𝑘

∑︁𝑘

𝑖
𝑞𝜙2 (𝑧𝑠 |𝑥

(𝑖 )
𝑠 , 𝑓𝑠 ,G). (5)

We concatenate 𝑧𝑠 and 𝑧𝑓 𝑠 as input to minimize the inference loss
in Eq. 4. The latent variable 𝑧𝑠 is iteratively optimized according
to the inference objective function to minimize − log 𝑝𝜓 (𝑦𝑡 |𝑥𝑠 ,G).
In practice, Eq. (4) cannot be optimized directly, we thus provide
a practical version of the inference objective function: since the

diffused observation 𝑦𝑡 fits the Gaussian distribution and the seed
set 𝑥𝑠 fits the Bernoulli distribution, we can simplify Eq. (4) as:

Lpred = min
𝑧𝑠
−
[

log
[∏𝑁𝑠

𝑖=0
𝑓𝜃 (𝑧

(𝑖 )
𝑠 , 𝑧

(𝑖 )
𝑓 𝑠
)𝑥
(𝑖 )
𝑠 (1 − 𝑓𝜃 (𝑧

(𝑖 )
𝑠 , 𝑧

(𝑖 )
𝑓 𝑠
)1−𝑥

(𝑖 )
𝑠

]
+
𝑦𝑡 − 𝑦𝑡 2

2

]
(6)

where the 𝑦 is given as the optimal influence spread (i.e., 𝑦𝑡 = 𝑁𝑡 ).
In other words, the inference objective is guided by the discrepancy
between the inferred 𝑦𝑡 and the ground truth 𝑦𝑡 . We visualize the
overall inference procedure in Figure 2 (b). Specifically, we sample
𝑧𝑓 𝑠 and 𝑧𝑠 , according to Eq. (5), and leverage 𝑝𝜃 (·) to decode 𝑥𝑠 .
The predicted 𝑥𝑠 is leveraged to initiate the cross-network diffusion
and predict𝑦𝑡 . The optimization supervision consists of 1) the mean
squared loss between 𝑦𝑡 and the ground truth 𝑦𝑡 as well as 2) the
probability of node 𝑣𝑖 being seed node 𝑓𝜃 (𝑧

(𝑖 )
𝑠 , 𝑧

(𝑖 )
𝑓 𝑠
) ∈ [0, 1].

4 Experimental Evaluation
This section reports both qualitative and quantitative experi-

ments that are carried out to test the performance of CNSL and
its extensions on a simulated dataset that simulates the spread
of misinformation across a city-level population and a collected
real-world cross-network dataset obtained by crawling two online
networking platforms and cross-references between them.

4.1 Real-world Dataset: Cross-Platform
Communication Network

We collected real-world data from GitHub and Stack Overflow to
form the cross-platform communication network, where informa-
tion flows from Github to Stack Overflow since many posts in Stack
Overflow have mentioned or discussed Github Repositories when
addressing user’s questions. We started by downloading the Stack
Overflow public data dump provided by the Internet Archive. Then,
we extracted all the Stack Overflow posts where their post texts
contain a URL to GitHub (i.e., 439,753 posts mapping to 439,753
repositories). We further built the Stack Overflow network by find-
ing the question posts, answer posts, and related posts of the current
439,753 posts. This yielded a total of 1,410,600 Stack Overflow posts,
encompassing data from 2008 up to 2023.
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To obtain the GitHub network, we expanded our initial GitHub
network by finding all GitHub repositories that the existing reposi-
tories depended upon. We utilized an open-source tool1, which uses
the GitHub GraphQL API to obtain the dependency information.
The resulting GitHub network contains 533,240 repositories. For
our experiment, we sampled GitHub repositories from the year 2021
and their dependent repositories from the year before 2021 (i.e.,
1204 nodes and 1043 edges). We then found their corresponding
Stack Overflow posts (i.e., 3862 nodes and 3149 edges). We obtained
the ground truth in a pseudo-setting: we randomly sampled 10% of
the GitHub nodes as seed nodes, and simulated their diffusion pro-
cess within the GitHub network and the Stack Overflow network
(i.e., 120 GitHub seed nodes, 354 GitHub infected nodes, 195 Stack
Overflow seed nodes, and 482 Stack Overflow infected nodes).

4.2 Simulated Dataset: Agent-Based Geo-Social
Information Spread

We leverage and agent-based simulation framework based on
realistic Patterns of Life [12, 13] to simulate the spread of misin-
formation across social and physical networks. In this simulation,
an agent represents a simulated individual who commutes to their
workplace, eats at restaurants, and meets friends and recreational
sites. Inspired by the Theory of Planned Behavior [1] and Maslow’s
Hierarchy of Needs [18] as theories of human behavior, agents are
driven by physiological needs to eat and have a shelter, safety needs
such as financial stability requiring them to go to work, and needs
for love requiring them to meet friends and build and maintain a
social network. Details of the theories of social science informing
this simulation are found in [33] and details to use this simulation
for data-generation are described in [2].

We augmented this simulation framework to simulate the spread
of misinformation using a simple Susceptible-Infectious disease
model. The simulation is initialized with 15,000 agents. A small
number of 𝑛 (by default, 𝑛 = 5) agents are selected randomly as the
sources of misinformation and flagged as “Infectious” and all other
agents are initially flagged as “Susceptible”. Agents can spread mis-
information in two ways: 1) through collocation, allowing an agent
to spread the misinformation in-person to other agents located at
the same workplace, restaurant, or recreational site, and 2) through
the social network, allowing an agent to spread misinformation to
their friends regardless of their location. To allow the generation of
large datasets for source localization, each spreading misinforma-
tion is stopped after five simulation days. At this time, the following
datasets are recorded:
• Ground Truth. The set of 𝑛 agents that were initially seeded with

the misinformation.
• Misinformation Spread. The list of agents to whom the misinfor-

mation has spread after five days.
• The Complete Co-location Network. This network captures the

agents who meet each other and thus, may spread misinforma-
tion through co-location.

• The Observed Co-location Network. This network is a randomly
sampled subset of agents from the complete co-location network.
It represents the agents in the complete co-location network that
are parts of the simulated location tracking. This network is used

1https://github.com/edsu/xkcd2347

to simulate the realistic case of not having access to the location
data of every individual.

• The Complete Social Network. This network records the friend
and family connections of all agents which may infect each other
through social contagion.

• The Observed Social Network. This network includes a randomly
sampled subset of agents from the complete social network and
simulates the social media environment. This network simulates
the realistic case where an observed social media network may
not capture the entire population.

• Cross-Network Links through Identity. Links between the two
observed networks are defined through identity. Any individual
agent in the co-location network is (trivially) connected to itself
in the social network.

Once this data is collected, the misinformation spread status of
all agents is set to “Susceptible” and 𝑛 new agents are selected as the
seed nodes of a new case of misinformation. This process of creating
new cases of misinformation is iterated every five simulation days
to create an unlimited number of realistic datasets of information
spread across the physical and social spaces.

For the dataset used for the following experiments, there are
5,281 agents and 8,276 edges in the observed co-location network,
and 5,669 agents and 17,948 edges in the observed social network.
Each case of misinformation spread yields between 50-200 agents
to which the misinformation spreads after five days. This syn-
thetic dataset allows us to capture realistic misinformation spread
across both networks. Due to some agents not being captured
in the two networks, this dataset allows us to simulate the re-
alistic case where misinformation may spread outside of the ob-
served networks. We provide the code for our agent-based misin-
formation simulation framework in a GitHub repository found at
https://github.com/Siruiruirui/misinformation. This repository also
contains the generated dataset used in the following experiments.

4.3 Experiment Setup
Implementation Details. We employ a two-layer MLP for learn-
ing node features, which are concatenated with the seed vector
in the subsequent stage before being input to the encoder 𝑞𝜙2 (·).
Both encoders (𝑞𝜙1 (·), 𝑞𝜙2 (·)) and the decoder 𝑝𝜃 (·) utilize three-
layer MLPs with non-linear transformations. We use GNN model
architecture coupled with a two-layer MLP network as the aggrega-
tion network with 64 hidden units for the two propagation models
(𝑝𝜓1 (·) and 𝑝𝜓2 (·)). The learning rates for encoder-decoder, 𝑝𝜓1 (·),
and 𝑝𝜓2 (·) are set to 0.0001, 0.005, and 0.01 respectively in a multi-
optimization manner. Additionally, the number of epochs is 15
for all datasets, with a batch size of 2. The iteration numbers for
inference are set to 2 for all datasets.
Comparison Methods. We illustrate the performance of CNSL in
various experiments against two sets of methods: 1) Rule-based
methods: LPSI [26] predicts the rumor sources based on the con-
vergent node labels without the requirement of knowing the un-
derlying information propagation model; OJC [31] aims at locating
sources in networks with partial observations, which has strength
in detecting network sources under the SIR diffusion pattern. 2)
Learning-based methods: GCNSI [7] learns latent node embed-
ding with GCN to identify multiple rumor sources close to the

https://github.com/edsu/xkcd2347
https://github.com/Siruiruirui/misinformation
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LT2LT LT2IC LT2SIS

Category Method PR RE F1 AUC PR RE F1 AUC PR RE F1 AUC

Rule-based LPSI 0.156 0.841 0.263 0.583 0.141 0.849 0.242 0.533 0.079 0.942 0.127 0.497
OJC 0.104 0.035 0.052 0.500 0.116 0.036 0.054 0.502 0.113 0.036 0.053 0.501

Learning
based

GCNSI 0.103 0.858 0.184 0.636 0.103 0.866 0.184 0.622 0.114 0.801 0.199 0.635
IVGD 0.228 0.948 0.368 0.139 0.227 0.874 0.359 0.138 0.123 0.985 0.215 0.240
SL-VAE 0.249 0.947 0.395 0.703 0.192 0.847 0.313 0.689 0.242 0.931 0.385 0.612
DDMSL 0.251 0.923 0.394 0.815 0.309 0.845 0.454 0.732 0.320 0.842 0.464 0.772

Our Method CNSL 0.332 0.996 0.498 0.888 0.332 0.997 0.498 0.889 0.332 0.997 0.498 0.890
CNSL-W/O 0.103 0.922 0.185 0.520 0.103 0.930 0.186 0.511 0.103 0.917 0.186 0.517

Table 1: Performance comparison for cross-platform communication network under LT diffusion pattern for the first network
with LT, IC, and SIS diffusion pattern for the second network.

IC2LT IC2IC IC2SIS

Category Method PR RE F1 AUC PR RE F1 AUC PR RE F1 AUC

Rule-based LPSI 0.124 0.868 0.217 0.489 0.215 0.657 0.324 0.562 0.129 0.906 0.226 0.522
OJC 0.117 0.032 0.050 0.503 0.097 0.027 0.042 0.499 0.115 0.032 0.050 0.502

Learning
based

GCNSI 0.142 0.638 0.233 0.623 0.170 0.476 0.251 0.627 0.152 0.602 0.243 0.630
IVGD 0.120 0.979 0.210 0.733 0.548 0.391 0.083 0.439 0.115 0.825 0.195 0.733
SL-VAE 0.254 0.881 0.394 0.719 0.195 0.909 0.321 0.703 0.185 0.829 0.302 0.592
DDMSL 0.286 0.827 0.425 0.818 0.318 0.886 0.468 0.753 0.270 0.833 0.408 0.689

Our Method CNSL 0.333 0.990 0.498 0.887 0.333 0.998 0.499 0.891 0.332 0.997 0.498 0.888
CNSL-W/O 0.103 0.922 0.186 0.514 0.103 0.935 0.185 0.515 0.103 0.928 0.185 0.516

Table 2: Performance comparison for cross-platform communication network under IC diffusion pattern for first network with
LT, IC, and SIS diffusion pattern for the second network.

G2S-A-D0 G2S-B-D0 G2S-A-D1 G2S-B-D1

Category Method PR RE F1 AUC PR RE F1 AUC PR RE F1 AUC PR RE F1 AUC

Rule-based LPSI 0.147 0.982 0.256 0.512 0.165 0.954 0.281 0.609 0.152 0.903 0.260 0.475 0.224 0.973 0.364 0.578
OJC 0.053 0.018 0.022 0.496 0.125 0.039 0.051 0.507 0.063 0.040 0.043 0.497 0.115 0.058 0.071 0.505

Learning
based

GCNSI 0.123 1.000 0.216 0.744 0.117 1.000 0.207 0.351 0.183 1.000 0.300 0.250 0.221 1.000 0.341 0.193
IVGD 0.139 1.000 0.244 0.502 0.138 1.000 0.242 0.500 0.218 1.000 0.352 0.490 0.266 1.000 0.409 0.500
SL-VAE 0.364 0.863 0.512 0.707 0.289 0.788 0.423 0.611 0.289 0.754 0.418 0.664 0.425 0.893 0.576 0.725

Our Method CNSL 0.481 0.816 0.605 0.931 0.452 0.885 0.598 0.933 0.499 0.779 0.609 0.894 0.539 0.987 0.698 0.901
CNSL-W/O S 0.122 1.000 0.219 0.503 0.117 1.000 0.2101 0.488 0.183 0.998 0.309 0.499 0.221 0.999 0.362 0.501

Table 3: Performance comparison for Geo-Social Information Spread Data (G2S) for two types (A, B) of simulation. Here 𝐷0
considers the initial sources of misinformation as seed nodes and 𝐷1 considers the initial sources of misinformation and the
infected agents at the first day as seed nodes.

actual source; IVGD [24] propose a graph residual model to make
existing graph diffusion models invertible; SL-VAE [15] proposed to
learn the graph diffusion model with a generative model to charac-
terize the distribution of diffusion sources. DDMSL [29] proposed a
diffusion model-based source localization method to recover each
diffusion step iteratively. Note that existing comparison methods
are not designed for cross-network source localization, in order to
conduct a fair comparison, we repeated each model separately for
two networks and learned the two networks. We used bridge links
𝐿 to connect these two models.
Evaluation Metrics. Source localization is a classification task so
that we use two main metrics to evaluate the performance of our
proposed model: 1). F1-Score (F1) and 2). ROC-AUC Curve (AUC), as
they are classical metrics for classification tasks. since most real-
world scenarios tend to have an imbalance between the number of
diffusion sources and non-source nodes (fewer diffusion sources),

we additionally leverage PR@100 to evaluate the precision of the
top-100 prediction returned by models.

4.4 Quantitative Analysis
We evaluated themodels in different diffusion configurations. For

the cross-platform communication data, the underlying diffusions
are LT (Table 1) and IC (Table 2) for the first network which was
followed by other three diffusion patterns (LT, IC, and SIS) for the
second network in each case. For the Geo-Social information spread
data (Table 3), the underlying diffusion pattern has been explained
in Section 4.2. For that dataset, we used two different simulations (A
and B) and also used two different types of seed selections. Here 𝐷0
considers the initial sources of misinformation as seed nodes and
𝐷1 considers the initial sources of misinformation and the infected
agents on the first day as seed nodes.
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Performance in the cross-platform communication network.
Table 1 shows that CNSL excels others across all metrics and diffu-
sion patterns. In the first network with LT diffusion pattern (LT2LT,
LT2IC, LT2SIS), CNSL achieves the highest recall (RE) in all scenar-
ios, with scores of 0.996, 0.997, and 0.997, respectively, indicating
its superior ability to identify all relevant instances in the dataset.
Additionally, CNSL also exhibits the best precision (PR) in LT2LT
and LT2IC scenarios, and competitive precision in the LT2SIS sce-
nario. The F1 scores, which balance precision and recall, are also
highest for CNSL, peaking at 0.498 in both LT2LT and LT2IC pat-
terns, demonstrating the method’s overall efficiency and accuracy.
The AUC scores for CNSL are robust, ranking highest in LT2LT and
LT2SIS scenarios, signifying excellent model performance across
various threshold settings. In the Table 2 first network with IC dif-
fusion pattern (IC2LT, IC2IC, IC2SIS), CNSL’s performance remains
impressive, maintaining the highest recall scores of 0.990, 0.998,
and 0.997, respectively. CNSL also boasts the highest F1 scores
in all scenarios, with a notable 0.499 in IC2IC, suggesting a bal-
anced performance between precision and recall. The AUC scores
for CNSL are again the highest, with 0.887 in IC2LT and 0.891 in
IC2IC, indicating its strong discriminative ability. Overall, CNSL
demonstrates considerable strength in reliably identifying relevant
instances across different diffusion patterns and networks, while
maintaining high precision and excellent area under the ROC curve.
Performance in geo-social information spread data. In Table
3, the performance of various methods on Geo-Social Information
Spread Data (G2S) is evaluated for two simulation types, A and
B, with two different seeding strategies, D0 and D1. Our method,
CNSL, exhibits strong performance across all scenarios. In the G2S-
A-D0 simulation, CNSL achieves a high precision (PR) of 0.481,
showing its effectiveness in correctly identifying misinformation
spread. It also has the highest F1 score of 0.605 and an AUC of 0.931,
indicating a balanced precision-recall trade-off and excellent model
discrimination ability, respectively. For the G2S-B-D0 simulation,
CNSL’s precision (0.452) and F1 score (0.598) are notable, and the
AUC of 0.933 is the highest compared to other methods, suggest-
ing CNSL’s consistency and reliability. In the G2S-A-D1 scenario,
CNSL maintains a high recall (RE) of 0.779 and an impressive AUC
of 0.894, which signifies its capacity to identify true misinforma-
tion cases effectively when the seeding includes infected agents
from the first day. Remarkably, in the G2S-B-D1 scenario, CNSL
stands out with the highest precision (0.539) and F1 score (0.698),
and it achieves an outstanding AUC of 0.901. This demonstrates
CNSL’s superior ability to differentiate between misinformation
and non-misinformation spread, especially when the initial condi-
tion includes both sources of misinformation and infected agents.
The recall of 0.987 in this scenario also indicates that CNSL can
identify nearly all instances of misinformation spread. Overall, the
CNSL method outperforms other rule-based and learning-based
methods in most metrics across different simulations and seeding
strategies in geo-social networks.
RuntimeAnalysis. Figure 3 presents a runtime comparison among
four learning-based methods: CNSL, SL-VAE, GCNSI, and IVGD
across ten different diffusion configurations (a to j). CNSL, which is
ourmethod, shows a competitive inference time in all datasets when
compared to the SL-VAE. In cross-platform communication network
datasets (a) LT2LT, b) LT2IC, c) LT2SIS, d) IC2LT, e) IC2IC, and f)
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Figure 3: Runtime Comparison with learning based methods
for dataset a) LT2LT, b) LT2IC c) LT2SIS, d) IC2LT, e) IC2IC,
f) IC2SIS, g) G2S-A-D0, h) G2S-A-D1, i) G2S-B-D0, j) G2S-B-D1
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Figure 4: Precision@100: the precision rate of the top 100
nodes being predicted as seed nodes. The comparison is con-
ducted between our method: CNSL and the current state-of-
the-art: SL-VAE.

IC2SIS)), CNSL demonstrates an inference time that is neither the
fastest nor the slowest, indicating a balanced computational demand
for these more complex scenarios. However, in datasets geo-social
information spread data (g) G2S-A-D0, h)G2S-A-D1, i)G2S-B-D0,
and j)G2S-B-D1), CNSL’s runtime is noticeably lower, suggesting
that while CNSL is highly effective in identifying misinformation
spread. Overall, CNSL shows a strength in providing a good balance
between accuracy and computational efficiency. While there are
scenarios where CNSL’s runtime is higher, these may correlate
with more complex network conditions where deeper analysis is
necessary, which CNSL seems to handle without compromising the
quality. This makes CNSL a robust method for practical applications
where runtime is a critical factor alongside precision and accuracy.
Precision analysis at top 100 nodes predicted by models. Fig-
ure 4 illustrates the precision at top 100 (PR@100) comparison
between CNSL and the state-of-the-art SL-VAE across various dif-
fusion patterns. PR@100 measures the precision rate of the top
100 nodes predicted as seed nodes, indicating how accurately each
method can identify the most influential nodes in the spread of in-
formation or misinformation. CNSL shows a strong performance in
this metric, outperforming SL-VAE in all diffusion patterns. CNSL
exhibits higher PR@100 rates, indicating that it is more precise
in identifying the key seed nodes. This precision is crucial in sce-
narios where it is important to quickly and accurately pinpoint
the main drivers of information spread within a network. Notably,
CNSL’s precision suggests that its algorithm is particularly adept
at handling complex diffusion patterns where the identification
of influential nodes is more challenging. The strength of CNSL,
as highlighted by Figure 4, lies in its ability to consistently rank
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the most relevant nodes higher than SL-VAE. The precision at the
top 100 nodes is essential for practical applications where inter-
ventions need to be targeted and efficient, such as in the case of
misinformation containment or viral marketing.

5 Conclusion
In conclusion, information diffusion source localization on cross-

networks requires locating the origins of information diffusion
within and across networks. We propose a Cross-Network Source
Localization (CNSL) framework in this work, which stands as a
pivotal advancement in addressing the complexities introduced by
cross-network environments, where traditional source localization
methods fall short. By ingeniously approximating the distribution
of diffusion sources through mean-field variational inference, en-
coding both static and dynamic features of nodes via a disentangled
generative prior, and uniquely modeling the diffusion dynamics of
interconnected networks, CNSL offers a comprehensive solution to
the problem. Extensive experiments, including quantitative anal-
ysis, case studies, and runtime analysis, have been conducted to
verify the effectiveness of the framework across different real-world
and synthetic cross-networks. The significance of this work lies not
only in its methodological innovation but also in its practical impli-
cations for safeguarding the integrity and reliability of information
in an increasingly interconnected digital world.
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A CNSL Technical Supplements
A.1 Derivation of Eq. (2)

log𝑝𝜓 (𝑦𝑡 |𝑥𝑠 ,𝐺𝑠 ,𝐺𝑡 ) = log[∑𝑥𝑡 𝑝𝜓1 (𝑥𝑡 |𝑥𝑠 ,𝐺𝑠 ) · 𝑝𝜓2 (𝑦𝑡 |𝑥𝑡 ,𝐺𝑡 )],
where 𝑥𝑡 inherited infection probability from 𝑦𝑠 . In practice, we
assume 𝑝𝜓1 (𝑥𝑡 |𝑥𝑠 ,𝐺𝑠 ) follows delta distribution, where only the
𝑥𝑡 is 1 that corresponds to the 𝑥𝑠 and the rest of 𝑥𝑡 ’s are 0. This
property is also assumed in many works [21] using VAE. Therefore,
log 𝑝𝜓 (𝑦𝑡 |𝑥𝑠 ,𝐺𝑠 ,𝐺𝑡 ) is simplified as Eq. (2).
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Figure 5: The graphical model for CNSL, where the
solid arrows indicate the variational approximation
𝑞𝜙1 (𝑧𝑠 |𝑥𝑠 ,𝐺𝑠 ) and 𝑞𝜙2 (𝑧𝑓 𝑠 |𝑥𝑠 , 𝑓𝑠 ,𝐺𝑠 ) to the intractable poste-
rior 𝑝 (𝑍 |𝑥𝑠 , 𝑓𝑠 ,𝐺𝑠 ). Dashed arrows denote the generative
process that decodes 𝑥𝑠 from 𝑝𝜃 (𝑥𝑠 |𝑍 ) and predicts the
information diffusion 𝑝𝜓 (𝑦𝑡 |𝑥𝑠 ,G).

A.2 Graphical Model of CNSL
We provide the graphical model for the CNSL framework in

Figure 5. As shown in the figure, solid arrows indicate the varia-
tional approximation 𝑞𝜙1 (𝑧𝑠 |𝑥𝑠 ,𝐺𝑠 ) and 𝑞𝜙2 (𝑧𝑓 𝑠 |𝑥𝑠 , 𝑓𝑠 ,𝐺𝑠 ) to the
intractable posterior 𝑝 (𝑍 |𝑥𝑠 , 𝑓𝑠 ,𝐺𝑠 ). Dashed arrows denote the gen-
erative process that decodes 𝑥𝑠 from 𝑝𝜃 (𝑥𝑠 |𝑍 ) and predicts the
information diffusion 𝑝𝜓 (𝑦𝑡 |𝑥𝑠 ,G). The two directional arrow be-
tween 𝑦𝑠 and 𝑥𝑡 indicates 𝑥𝑡 inherits the infection probability from
the diffusion observation 𝑦𝑠 through bridging nodes 𝐿.

B Experiment Supplement
B.1 Case Study

In a case study depicted in Figure 6, we illustrate the distribution
of selected seed nodes. Here violet nodes represent the nodes that
are not seeds. On the other hand, green nodes are the original
seeds that were not selected by CNSL; orange nodes are wrongly
identified as seeds by CNSL; and the Blue color nodes are correctly
identified as seeds by CNSL.

(a) LT2LT

(b) LT2IC (c) LT2SIS

Figure 6: Seed inference by CNSL.

B.2 Algorithm

Algorithm 1 CNSL Training Framework
Require: 𝐺𝑠 , 𝐺𝑡 , 𝑓𝑠 , 𝐿, 𝑥𝑠 , 𝑦𝑡
Ensure: Trained 𝑞𝜙 (·), 𝑝𝜃 (·), and 𝑝𝜓 (·)
1: for 𝑒𝑝𝑜𝑐ℎ in 1 to 𝑛𝑢𝑚_𝑒𝑝𝑜𝑐ℎ𝑠 do
2: for each batch in 𝑡𝑟𝑎𝑖𝑛_𝑠𝑒𝑡 do
3: 𝑧𝑠 = 𝑞𝜙1 (𝑥𝑠 ,𝐺𝑠 ) ⊲ Dynamic Encoder
4: 𝑧𝑓 𝑠 = 𝑞𝜙2 (𝑥𝑠 , 𝑥 𝑓 𝑠 ,𝐺𝑠 ) ⊲ Static Encoder
5: 𝑥𝑠 = 𝑝𝜃 (𝑧𝑠 , 𝑧𝑓 𝑠 ) ⊲ Decoder
6: 𝑦𝑠 = 𝑝𝜓1 (𝑥𝑠 ,𝐺𝑠 ) ⊲ Source Network Diffusion
7: 𝑥𝑡 ← 𝑦𝑠 ⊲ 𝐿 = {(𝑣𝑠 , 𝑣𝑡 ) |𝑣𝑠 ∈ 𝑉𝑠 , 𝑣𝑡 ∈ 𝑉𝑡 }
8: 𝑦𝑡 = 𝑝𝜓2 (𝑥𝑡 ,𝐺𝑡 ) ⊲ Target Network Diffusion
9: Calculate Ltrain ⊲ Equation (3)
10: Backpropagate loss
11: Update model parameters
12: end for
13: end for

For training, we want to use observed 𝑥𝑠 and 𝑦𝑡 to learn the
approximate posterior𝑞𝜙 (𝑍 |𝑥𝑠 ,G), the decoding function 𝑝𝜃 (𝑥𝑠 |𝑍 ),
and the cross-network diffusion prediction function 𝑝𝜓 (𝑦𝑡 |𝑥𝑠 ,G).
Specifically, we separately obtain two latent variables 𝑧𝑠 and 𝑧𝑓 𝑠 in
Line 2-3. Both 𝑧𝑠 and 𝑧𝑓 𝑠 are fed to reconstruct 𝑥𝑠 in Line 5. After
the seed set reconstruction, we conduct cross-network diffusion
prediction as shown in Line 6-8. The backpropagation is calculated
based on Eq. (3) that consists of seed nodes reconstruction error,
diffusion estimation error, as well as constraints of KL divergence
and influence monotonicity.

Algorithm 2 CNSL Inference Framework

Require: 𝑝𝜃 (𝑥𝑠 |𝑧𝑠 , 𝑧𝑓 𝑠 ); 𝑝𝜓1 (𝑦𝑠 |𝑥𝑠 ,𝐺𝑠 ); 𝑝𝜓2 (𝑦𝑡 |𝑦𝑠 , 𝑥𝑡 ,𝐺𝑡 ); the
number of iteration 𝜂; learning rate 𝛼 .

Ensure: 𝑥𝑠
1: 𝑧𝑠 =

1
𝑘

∑𝑘
𝑖 𝑞𝜙1 (𝑧𝑠 |𝑥

(𝑖 )
𝑠 ,G) ⊲ 𝑥

(𝑖 )
𝑠 sampled from training set.

2: 𝑧𝑓 𝑠 =
1
𝑘

∑𝑘
𝑖 𝑞𝜙2 (𝑧𝑠 |𝑥

(𝑖 )
𝑠 ,G) ⊲ 𝑥

(𝑖 )
𝑠 sampled from training set.

3: for 𝑖 = 0, ..., 𝜂 do
4: 𝑥𝑠 = 𝑝𝜃 (𝑧𝑠 , 𝑧𝑓 𝑠 ) ⊲ Decoder
5: 𝑦𝑠 = 𝑝𝜓1 (𝑥𝑠 ,𝐺𝑠 ) ⊲ Source Network Diffusion
6: 𝑥𝑡 ← 𝑥𝑠 ⊲ 𝐿 = {(𝑣𝑠 , 𝑣𝑡 ) |𝑣𝑠 ∈ 𝑉𝑠 , 𝑣𝑡 ∈ 𝑉𝑡 }
7: 𝑦𝑡 = 𝑝𝜓2 (𝑥𝑡 ,𝐺𝑡 ) ⊲ Target Network Diffusion
8: 𝑧𝑠 ← 𝑧𝑠 − 𝛼 · ∇Lpred (𝑦𝑡 , 𝑧𝑠 , 𝑧𝑓 𝑠 )
9: end for
10: 𝑥𝑠 = 𝑝𝜃 (𝑧𝑠 , 𝑧𝑓 𝑠 )

For the seed set inference, we first sample 𝑘 different 𝑥 (𝑖 )𝑠 from
the training set, and we marginalize them to obtain two latent vari-
ables 𝑧𝑠 and 𝑧𝑓 𝑠 (Line 1-2). For 𝜂 iterations, we decode the predicted
𝑥𝑠 based on (𝑧𝑠 , 𝑧𝑓 𝑠 ) (Line 4) and conduct cross-network informa-
tion diffusion prediction (Line 5-7). The error between predicted 𝑦𝑡
and the observed 𝑦𝑡 is leveraged to update 𝑧𝑠 based on Eq. (6).
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