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Abstract

But if you treat it as a two-form, you get three nontrivial renormalization group

fixed points! Which becomes the Heisenberg fixed point in three dimensions? Mo-

tivated by this question, we study the conformal bootstrap constraint in the O(d)

anti-symmetric matrix model in d dimensions, varying d as a continuous parameter.

Besides the one that is naturally connected to the Heisenberg fixed point in three

dimensions, we find “evanescent” kinks whose origin is yet to be identified. We

also bootstrap O(4), O(5), O(6) anti-symmetric matrix model in d = 3, aiming at

physical applications.
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1 Introduction

Since we live in 1+3 dimensional space-time, we are used to the idea that electric field and

magnetic field are both three-vectors, so much so that we sometimes treat the magnetic

field in other dimensions as if it were a vector. In generic dimensions, the magnetic field

and therefore a magnetization is rather a two-form. Treating it as a vector must be

regarded as a similar sin to the idea that the rotation can be described by a rotation

vector in higher dimensions.

When we learn the ϵ expansions [1] to estimate the critical exponents of the Heisenberg

model in three dimensions, we typically consider the O(3) vector model in 4−ϵ dimensions.

Here, we treat the magnetization as an internal O(3) vector rather than a space vector.

The origin of O(3) “rotational” symmetry in 4−ϵ dimension, however, is not immediately

obvious. Was it more appropriate to study the O(4 − ϵ) two-form (or anti-symmetric

matrix) model in 4− ϵ dimensions?

Of course, we can argue that the ϵ expansion is just a mathematical trick and we

should not speak of its physical meaning. There are infinitely different ways to approach

the Heisenberg fixed point by changing the dimensionality, and in a certain sense, there

is no “physically more reasonable” model. Still, it seems an interesting question to ask

what happens if we study the O(4−ϵ) two-form (or anti-symmetric matrix) model in 4−ϵ

dimensions rather than the O(3) vector model? It may give an intrinsic ambiguity in the

predictions of the ϵ expansions by taking the ϵ → 1 limit. A related question has been

addressed when we study (space-time) “spinors” in 4−ϵ dimensions. The spinor represen-

tation in non-integer dimensions is not well-defined and many different prescriptions exist.

The role of so-called evanescent operators there has not been completely understood (see

e.g. [2]).

We approach this question by using the non-perturbative conformal bootstrap. While

bootstrapping conformal field theories with physical symmetry in physical dimensions (e.g.

O(3) symmetric Heisenberg model in three dimensions) has achieved tremendous success,

in determining critical exponents and operator product expansions (OPE) coefficients with

unparalleled accuracy [3][4][5][6][7], interesting insights have been obtained by studying

conformal bootstrap with unphysical symmetry, such as O(N) with non-integer N , in

non-integer dimensions [8][9][10][11][12][13][15][14]. In a similar manner, keeping track of

the candidate of the conformal fixed point predicted by the conformal bootstrap while
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changing the dimensionality d, we will gain a non-perturbative understanding of what

happens to the O(4− ϵ) two-form model in 4− ϵ dimensions in the limit of ϵ → 3.

Since there are hundreds of papers working on conformal bootstrap, we only quote

some relevant ones whose main target is the Landau-Ginzburg model in various dimensions

[16][17][18][19] [20][21][22][23][24][25][26][27][28][29][30][31][32][33][34][35][36][37][38][39][40].

See e.g. reviews [41][42][43] and lecture notes [44][45] for a more complete list. We also

give some new bounds on conformal dimensions of operators in integer dimensions with

physical symmetry.

The organization of the paper is as follows. In section 2, we introduce the O(N) anti-

symmetric matrix model within the ϵ expansions. In section 3, we set up the conformal

bootstrap equations to study the constraint on the conformal dimensions of various spin-

zero operators. We also provide results of numerical conformal bootstrap in related models

for comparison. In section 4, we present further discussions and conclude.

2 O(N) anti-symmetric matrix model

Consider the O(N) anti-symmetric matrix model, where a real anti-symmetric N -by-N

matrix ϕ is a dynamical variable. We assume the O(N) global symmetry and ϕ transforms

as an adjoint representation of the O(N) symmetry. The action is

S =

∫
ddx− 1

2
Tr(∂µϕ∂

µϕ)− m2

2
Trϕ2 +

λ1

4!
(Tr(ϕ2))2 +

λ2

4!
Tr(ϕ4) . (1)

In the following, we will always assume that we fine-tune m2 so that it is located at

its critical value. Within the first-order perturbation theory in 4 − ϵ dimensions, the

renormalization group beta functions are given by

βλ1 = −ϵλ1 +
λ2
1

6
(N2 −N + 16) +

λ1λ2

3
(2N − 1) +

λ2
2

2
+O(λ3)

βλ2 = −ϵλ2 + 4λ1λ2 +
λ2
2

6
(2N − 1) +O(λ3) . (2)

In the small ϵ limit, there are four renormalization group fixed points βλ1 = βλ2 = 0.

Beside the trivial Gaussian fixed point (λ1, λ2) = (0, 0) and the O(N(N−1)/2) symmetric

Wilson-Fisher fixed point1(λ1, λ2) = ( 6
N2−N+16

ϵ, 0) (we call it the vector model fixed point

1The O(N) anti-symmetric matrix ϕ becomes O(N(N − 1)/2) vector ϕ⃗. Note Trϕ2 = −ϕ⃗ · ϕ⃗.
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V ), we have two genuine O(N) symmetric fixed points (we call them the matrix model

fixed points M±) located at

λ1 =
3
(
−4N2 + 4N + 143∓

√
−(2N − 1)2 (8N2 − 8N − 97)

)
4N4 − 8N3 − 123N2 + 127N + 1696

ϵ

λ2 =
6
(
4N4 − 8N3 − 75N2 + 79N − 20± 12

√
−(2N − 1)2 (8N2 − 8N − 97)

)
(2N − 1) (4N4 − 8N3 − 123N2 + 127N + 1696)

ϵ (3)

When N > Nc, these two fixed points M± become complex.2 In the small ϵ limit,

Nc =
1
4
(2 + 3

√
22) ∼ 4.01781. We show the one-loop renormalization group flow of O(3),

O(4) and O(5) anti-symmetric matrix model in fig 1.

Since in the cases N = 3 and N = 2, the anti-symmetric matrix model reduces to an

O(3) vector model and the Ising model and there is no genuine anti-symmetric matrix

to talk about, only the case N = 4 (or possibly N > 4 as well for larger ϵ) is of direct

physical relevance: it is a nontrivial question if the N = 4 fixed point remains as a real

fixed point in three dimensions. Currently, we do not know the precise value of Nc in

three dimensions.

Within the ϵ expansions, by using the standard perturbation theory, we can compute

the anomalous3 dimensions of (composite) operators

γϕ =
1

288

(
N2 −N + 4

) (
4λ1

2 + λ2
2
)
+

1

36
(2N − 1)(λ1λ2) +O(λ3)

γS =
λ1

6

(
N2 −N + 4

)
+

λ2

6
(2N − 1) +O(λ2)

γT =
λ1

6
(4) +

λ2

6
(N − 1) +O(λ2)

γA4 =
λ1

6
(4)− λ2

6
(2) +O(λ2)

γB4 =
λ1

6
(4) +

λ2

6
(1) +O(λ2) . (4)

Here S is O(N) singlet (i.e. Tr(ϕ2)), and T is a traceless symmetric (rank 2) tensor (i.e.∑
b ϕabϕbc − trace). A4 is a totally antisymmetric rank 4 tensor (i.e. ϕ[a,bϕc,d]), and B4

2The formal fixed points with complex coupling constants are known as complex fixed points (see e.g.

[46] and reference therein). Unlike the mild violation of unitarity for non-integer d and N [14][15], the

violation of the unitary in complex fixed points is typically large. It is thus expected that the nontrivial

features in the conformal bootstrap bound will disappear for N > Nc.
3“Anomalous” means that the conformal dimensions are measured from the Gaussian fixed point:

∆ = 2−ϵ
2 n+ γ, where n = 1 for ϕ and n = 2 for S, T,A4 and B4.
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Figure 1: One-loop renormalization group flow in O(5) (top), O(4) (middle), and O(3)

(bottom) anti-symmetric matrix model in d = 3.9. Red dots are real fixed points predicted

in the ϵ expansions.
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is a two-by-two “box” representation in terms of the Young Tableau (it has the same

symmetry as the Weyl tensor in general relativity). See also footnote 5 below for our

group-theoretic notation.

With the spirit of the ϵ expansion, as a model of magnetisation, we will study O(d)

anti-symmetric matrix model in d dimensions. The above ϵ expansion tells us that we have

three nontrivial fixed points; the one with enhanced O(N(N − 1)/2) symmetry (vector

model fixed point V ) and the O(N) symmetric genuine matrix model fixed point M±.

While it may seem natural to expect that the fixed point V will become the Heisenberg

fixed point when we set ϵ = 1, it is less obvious what will happen to the other two

fixed points. It may seem equally reasonable to keep track of the stable fixed point M+

(rather than V ) because the Heisenberg fixed point must be reached by fine-tuning only

one parameter. This is not only an academic question. The physical prediction may

depend on the choice, in particular, if we reshuffle the perturbation series with respect to

ϵ = 4− d = 4−N simultaneously.4

Since the order of limit may matter, let us also discuss the N → 3 limit while keeping ϵ

small. Before reaching N = 3, something interesting happens at N = N∗ =
1
2
(1+

√
33) ∼

3.3723, where one of the matrix model fixed point M+ collides with the vector model

fixed point V on the λ2 = 0 axis. Unlike the case at N = Nc, they are not annihilated

into the complex coupling constant space, but they remain in the real coupling constant

space even after the collision. Yet, the stability structure changes: while above N∗ =

1
2
(1 +

√
33) ∼ 3.3723 the matrix model fixed point M+ was the most stable fixed point,

below N∗ the vector model fixed point V becomes the most stable fixed point. See Fig 1.

If we stick to the idea that we should keep track of the most stable fixed point, we have

to change lanes and the road is non-analytic!

In the limit N → 3, all four fixed points remain real and they appear independent

in the coupling constant space, but in the physical sense, the two “nontrivial” fixed

points are equivalent to the other two fixed points. The matrix model fixed point M+ at

(λ1, λ2) = (18
77
ϵ, 6

77
ϵ) is equivalent to the vector model fixed point V at ( 3

11
ϵ, 0) (with the

same O(3) symmetry) and the matrix model fixed point M− at (λ1, λ2) = (3
7
ϵ,−6

7
ϵ) is

equivalent to the Gaussian fixed point (0, 0). The reason is that for the physical operators

such as ϕ, S or T , the anomalous dimensions depend only on the combination 2λ1+λ2 in

4An alternative possibility is they merge into a complex fixed point at a certain finite value of ϵ.
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the N = 3 limit, and they take the same values at both points. In contrast, the evanescent

operators such as A4 or B4, which do not exist in N = 3, do show different anomalous

dimensions at each point. We will come back to this when we discuss the results of the

numerical conformal bootstrap in later sections.

We would like to note that the appearance of N∗ is somehow related to the cubic

instability of the O(NV ) vector model fixed point (here NV = N(N−1)
2

). The cubic insta-

bility of the vector model has been under debate for many years since the birth of the

renormalization group method (see e.g. [47]). Here, we observe that the instability is

triggered by the same operator in the O(NV ) rank-four tensor representation T4 but with

different linear combinations (which vanish in the d → 3 limit). The one-loop anomalous

dimension of T4 is γT4 =
12

NV +8
ϵ and becomes relevant if NV < 4+O(ϵ). The recent results

in conformal bootstrap suggest that N∗
V < 3 (i.e. N∗ < 3 as well) in d = 3 [34], so it is

likely that M+ remains the most stable fixed point in the N → 3 limit in our problem.

Thus, after careful resummation of the O(d− ϵ) anti-symmetric model in 4− ϵ dimen-

sions, both the vector model fixed point V and the matrix model fixed point M+ should

approach the same Heisenberg fixed point in the ϵ → 1 limit without a collision. Such a

constraint may be useful to estimate the critical exponents of the Heisenberg fixed point

more accurately based on the ϵ expansions.

While we could pursue the higher order (resumed) perturbation theory to strengthen

the discussion (see e.g. [48] for the direction), we instead seek to approach them by using

the non-perturbative conformal bootstrap method. This will be investigated in the next

section.

3 Bootstrapping O(N) anti-symmetric matrix model

3.1 Bootstrap equations

In this paper, we study the bootstrap equation for the single four-point function ⟨ϕϕϕϕ⟩,
where ϕ is a spin-zero operator in the anti-symmetric tensor representation of O(N). We

decompose the OPE of ϕ×ϕ into the irreducible representations5 to obtain the OPE sum

5In terms of the Young Tableau, we have T = [1, 1] (whose dimension is dT = (N−1)(N+2)
2 ) , A = [2]

(dA = N(N−1)
2 ), A4 = [4] (dA4 = N(N−1)(N−2)(N−3)

24 ), B4 = [2, 2] (dB4 = N(N+1)(N+2)(N−3)
12 ), and

SA(= Y2,1,1) = [3, 1] (dSA = N(N+2)(N−1)(N−3)
8 ), where the number in the bracket denotes the number
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rule for the four-point functions: The so-called conformal bootstrap equations read

0 =
∑

O∈ϕ×ϕ

λ2
OV

(+)
S +

∑
O∈ϕ×ϕ

λ2
OV

(+)
T +

∑
O∈ϕ×ϕ

λ2
OV

(+)
A4

+
∑

O∈ϕ×ϕ

λ2
OV

(+)
B4

+
∑

O∈ϕ×ϕ

λ2
OV

(−)
A +

∑
O∈ϕ×ϕ

λ2
OV

(−)
SA (5)

where (±) denotes the even (+) or odd (−) spin contributions. By using the convention

F = v∆ϕg∆O,l(u, v)− u∆ϕg∆O,l(v, u)

H = v∆ϕg∆O,l(u, v) + u∆ϕg∆O,l(v, u) (6)

with the conformal block g∆O,l being normalized as in [49], whose explicit expression can

be found in [50], each representation contributes to the sum rule as

V
(+)
S =



(
1 + 2

N(N−1)

)
F

2
N(N−1)

F

2
N(N−1)

F

2
N(N−1)

F

2
N(N−1)

H

2
N(N−1)

H


, V

(+)
T =



N+2
N

F(
1 + N2−8

2N(N−2)

)
F

N−4
N(N−2)

F
−2(N+2)
N(N−2)

F
(N−4)(N+2)
2N(N−2)

H

−4
N(N−2)

H


, V

(+)
A4

=



(N−3)(N−2)
12

F

3−N
6

F

1
6
F

7
6
F

N−3
6

H

−1
6
H


,

V
(+)
B4

=



(N−3)(N+1)(N+2)
6(N−1)

F
(N−4)(N−3)(N+1)

6(N−2)(N−1)
F(

1 + N2−6N+11
3(N−2)(N−1)

)
F

(N+1)(N+2)
3(N−2)(N−1)

F
−(N−3)(N+1)(N+2)

6(N−2)(N−1)
H

−(N−4)(N+1)
3(N−2)(N−1)

H


, V

(−)
A =



F

N−4
2(N−2)

F

−1
N−2

F

2
N−2

F

−1
2
H

0


, V

(−)
SA =



(N−3)(N+2)
4

F
−(N−3)
N−2

F
−(N−4)
2(N−2)

F
−(N+2)
2(N−2)

F

0

−1
2
H


.

(7)

The sum rule is consistent with the crossing kernels in the literature [51][52].6

Now we can set up the semi-definite problem from the unitarity constraint (e.g. ∆ ≥
d−2
2

for spin-zero operators)7 and give the constraint on conformal data. It is important to

of column boxes.
6Note that some literature uses the convention which is different from ours in several signs in the

conformal block (e.g. in [45]).
7To be more precise, we impose the constraint slightly above the unitarity bound on spin-zero operators

to speed-up the optimization, which does not affect the final results as far as we have checked. See [31]

for a related discussion.
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realize that the single correlator bootstrap presented here can be studied for non-integer

N and d. Except for the tiny gap in the spin-zero sectors mentioned in footnote 7, our

conformal bootstrap does not have any artificial gap in any sector: it is a vanilla setup

that must be true in any unitary conformal field theories with the specified symmetry.

The constraint, therefore, is universal.

3.2 O(d) bootstrap in d dimensions

Let us first show the bound of the conformal dimensions of spin-zero operators in ϕ × ϕ

OPE in O(d) anti-symmetric matrix model in d dimensions with d = 3.98, 3.8, 3.4 and

finally 3. The numerical bootstrap was performed in the same setup as our previous paper

[24] but with Λ = 17.8 For each plot presented below, we have sampled about 20 ∆ϕ and

interpolated the bound by using a Mathematica function.9

It has been observed many times that if we study the bound on the spin-zero operators

that are singlet under the symmetry group (we call S sector), the bound coincides with

the bound of the singlet spin-zero operator with the enhanced O(NV ) symmetry, where

the O(NV ) is the maximal symmetry that external operator scalar operator can possess

as a vector representation (see e.g. [56][35][57]). In our case, the anti-symmetric tensor of

O(N) can be embedded in the vector of O(N(N − 1)/2) so it coincides with the bound of

the O(N(N − 1)/2) vector model. We will explicitly see this in the following plots (with

black lines).

We start with d = 3.98 presented in Fig 2, where the ϵ expansion should be reliable.

All S, T , A4 and B4 sectors have kinks around ∆ϕ = 0.99004. The explicit evaluation

of formula (4) tells us that three nontrivial fixed points have ∆ϕ = 0.99000409 at V ,

0.9900414 at M+, and 0.99000408 at M−, so they are coincidentally very close.

Compared with the perturbation theory, besides the O(d(d− 1)/2) vector model fixed

point V saturated by the kink in the S sector, we clearly see that the unstable fixed point

M− is located at the kink in the B4 sector (0.99000408, 1.98365) and potentially also at

the kink in the A4 sector (0.99000408, 1.98955). We later, however, argue that this may

8All the numerical computations in this paper are done on a single 8-core desktop computer. It uses

a customized version of cboot [53] as an interface with SDPB [54][55] as a semi-definite problem solver.
9The Mathematica interpolation and the scale of the vertical axis may make the kink less visible. The

raw data is available upon request.
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1.990
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Figure 2: Conformal bootstrap bound with O(3.98) symmetry in d = 3.98. Black S.

Red A4. Blue T . Orange B4. The horizontal axis is the conformal dimension of a spin-

zero operator in the anti-symmetric representation. Predictions of the ϵ expansions are

presented by Circle V , Box M−, and Triangle M+. The kink in the B4 sector seems

saturated by M− at (0.99000408, 1.98365). The kink in the A4 sector could be saturated

by M− at (0.99000408, 1.98955), but it may be accidental. The kink in the T sector is

unidentified.
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be just a coincidence and that the kink in the A4 sector does not correspond to the matrix

model fixed point. Another mystery is the kink in the T sector, where the fixed point in

the anti-symmetric matrix model has ∆T = 1.98287, 1.98144 and 1.97974 at V , M+ and

M− respectively, and none of them seems to saturate the bound or even close.

The situation seems similar to the “Platonic CFT” discussed in [26] (see [27][30] for

further investigations) when they studied the conformal bootstrap with the cubic symme-

try. There, they observed kinks whose origin in the ϵ expansion is not immediately clear.

In our case, one possibility is that in addition to the anti-symmetric matrix ϕ, the theory

has more fields such as O(N) singlet scalar, O(N) vectors, and even fermions. They can

give nontrivial fixed points with the same symmetry.

0.9001 0.9002 0.9003 0.9004 0.9005 0.9006
Δϕ

1.82

1.84

1.86

1.88

1.90

1.92

ΔO

Figure 3: Conformal bootstrap bound with O(3.8) symmetry in d = 3.8. Black S. Red

A4. Blue T . Orange B4.

If we lower d, what we first observe is while the kinks of S, T , and B4 are located at

similar ∆ϕ, the location of the kink in the A4 sector tends to deviate toward much smaller

∆ϕ. In the next section, we will see that this rapid change of the location of kink in the

A4 sector is caused mainly by the change of N rather than the change of d.

Secondly, we observe that the kink in the B4 sector becomes less sharp. This may

be understood if we note that one fixed point (e.g. M− here) cannot saturate two kinks

e.g. in the A4 and B4 sectors if the location of ∆ϕ is different. Nontrivial swapping of

the fixed points inside the bound can explain the behavior: now M− is deep inside the

10



0.702 0.704 0.706 0.708
Δϕ

1.5

1.6

1.7

1.8

1.9

ΔO

Figure 4: Conformal bootstrap bound with O(3.4) symmetry in d = 3.4. Black S. Red

A4. Blue T . Orange B4.
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●●

0.505 0.510 0.515 0.520 0.525 0.530
Δϕ

1.2

1.4

1.6

1.8

2.0

2.2

ΔO

Figure 5: Conformal bootstrap bound with O(3) symmetry in d = 3. Black S. Red A4.

Blue T . Orange B4. Circle is O(3) vector model in d = 3 (Heisenberg fixed point). The

kinks in the S and T sectors are saturated by the O(3) vector model.
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bound and does not saturate it. Or, the fixed point may have disappeared. Note that

the (weak) kink in the B4 sector cannot be identified with the vector model fixed point

V even though ∆ϕ appears close: such an identification would be inconsistent with the T

bound because at the vector model fixed point ∆T = ∆B4 .

In the d → 3 limit shown in fig 5, the bounds in the S and T sectors agree with the

bounds in the S and T sectors of the O(3) vector model studied in [5]. We naturally

expect such behavior because an O(3) anti-symmetric tensor is equivalent to an O(3)

vector, and thus the bound of the O(3) anti-symmetric matrix model is the same as the

bound of the O(3) vector model (at least for the physical operators; see below on the

evanescent operators).

It, however, makes the kink of the T sector near d = 4 discussed above, which cannot

be the O(NV ) vector model fixed point, even more puzzling. Do we obtain an unidentified

conformal fixed point by keeping track of the location of the kink realized by the physical

fixed point if we change the dimension d continuously? We do not know a direct answer

to this question at this point, but in the next subsection, we will see that the change of

N rather than d affects the interpretation of kinks more.

How about the kinks in the A4 and B4 sectors in d = 3? Since there are no A4 or B4

operators in the O(3) limit of the O(d) symmetry, the physical meaning of the kinks is

not immediately obvious. We call them evanescent kinks. Note that we cannot regard the

A4 kink as a limit of the A4 operator in the vector model fixed point V simply because

∆ϕ has a different value from the one at the O(3) invariant Heisenberg fixed point. If

the kink should be identified with a limit of certain conformal field theories with O(d)

symmetry, it must be distinct from the Heisenberg model in any respect.

What we can conclude so far is that it is always safe to study the bound in the S

sector and keep track of the symmetry-enhanced vector model fixed point to reach the

Heisenberg fixed point. The kinks in the B4 and T sectors may show swapping of fixed

points that saturate the bound. The eminent kink in the A4 sector is unidentified. To

gain more intuition, in the next subsection, we study conformal bootstrap bound in other

d and N to go away from the constraint N = d motivated by the magnetization.

12



3.3 More bootstrapping

The immediate question one may have is what is the meaning of constraining the dimen-

sion of operators that do not exist in the N → 3 limit such as A4 and B4. To address

this question, let us consider the simpler setup of the O(NV ) vector model in the NV → 1

limit. The OPE sum rule of the ⟨ϕϕϕϕ⟩ four-point function, where ϕ is a vector of O(NV ))

is

0 =
∑

S∈ϕ×ϕ

λ2
S


0

F

H

+
∑

T∈ϕ×ϕ

λ2
T


F

(1− 2
NV

)

−(1 + 2
NV

)H

+
∑

A∈ϕ×ϕ

λ2
A


−F

F

−H

 (8)

and we study the bound on ∆S and ∆T in the N → 1 limit.

As expected, the bound on the ∆S is the same as the bound on the Z2 case (i.e. Ising

case) studied in [3] and we do not report their result here. What seems more nontrivial

is the bound on ∆T . We present the bound in d = 3.98 and d = 3 in Fig 6. The kink

in d = 3.98 is located precisely at the prediction of the ϵ expansion in the N → 1 limit

(i.e. (∆ϕ,∆T ) = (0.9900037, 1.98444)) although the symmetric traceless representation

(i.e. T ) does not exist in the Ising model. The kink in d = 3 seems to be located at the

N = 1 limit of the O(N) vector models in d = 3. [11] finds the same conclusion in the

multi-correlator conformal bootstrap.

One lesson we can draw here is that bootstrapping the scaling dimensions of evanescent

operators (here T sector in the O(NV ) vector model) may give a kink located at the

physical fixed point. This observation makes the unidentified kink found in the A4 sector

of the O(3) anti-symmetric bootstrap much more interesting because the location of the

kink is not the Heisenberg fixed point. Can it indicate another physical fixed point with

the O(3) symmetry with an evanescent A4 operator?

Bootstrapping of O(N) anti-symmetric matrix model with N ̸= d may have some

interest in particular when N is an integer. We show the results of O(3) and O(6)

bootstrap in d = 3.98, and O(4) and O(6) bootstrap in d = 3. They may also shed some

light on the unidentified kinks in the previous subsection.

Let us begin with the O(3) case in d = 3.98. We see that the bounds in the T and S

sectors are the same as those in the O(3) vector model as was the case in d = 3. What

is more interesting is we have nontrivial kinks in the A4 and B4 sectors. The location of

the kink in the A4 sector is different from the one in the O(3) vector model fixed point,

13
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Figure 6: Conformal bootstrap bound of “the T sector with O(1) symmetry” in d = 3.98

(top) and in d = 3 (bottom). The horizontal axis is the conformal dimension of a spin-zero

operator in the fundamental representation. We see that kinks are located at the NV → 1

limit of the O(NV ) vector model fixed point. In d = 3.98 dimensions, the ϵ expansion

predicts (∆ϕ,∆T ) = (0.9900037, 1.98444) and shown as circle in the plot.
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Figure 7: Conformal bootstrap bound with O(3) symmetry in d = 3.98. Black S. Red

A4. Blue T . Orange B4. The horizontal axis is the conformal dimension of a spin-zero

operator in the anti-symmetric representation. The bounds in the T and S sectors are

the same as those of the vector model and the kinks are located at the O(3) vector model

V represented by Circle. We do not know a candidate for the kinks in the A4 and B4

sectors. The triangles are predictions of evanescent operators from M−. The predictions

from M+ are not shown here, which are located at ∆ϕ = 0.99 and violate the bound.
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as was the case in d = 3. We do not know any immediate candidate of the kink, and the

origin is of mystery. This indicates that the appearance of the unidentified kink is not

associated with the d = 3 limit, but rather universal in the N → 3 limit.

Some comments on evanescent operators are in order. Unlike in the NV → 1 limit

of the O(NV ) vector model discussed at the beginning of this subsection, the anomalous

dimensions of the evanescent operators in perturbation theory are different between V

and M+ and between M− and the Gaussian fixed point. Thus we do not have a definite

prediction of the conformal dimensions of the evanescent operators as an unambiguous

limit. Moreover, the limit of M− is inconsistent with the bootstrap bound because while

γϕ tends to zero, anomalous dimensions of A4 and B4 remain positive.

●●
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Δϕ
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ΔO

Figure 8: Conformal bootstrap bound with O(6) symmetry in d = 3.98. Red A4. Blue T .

Orange B4. Circle O(15) vector model. The bound in the S sector is the same as the one

in the O(15) vector model, so it is omitted. The kink in the B4 sector seems saturated

by the T operator of the O(15) vector model. Note M± are complex fixed points and not

shown in the plot.

Next, let us discuss the O(6) case in d = 3.98 presented in fig 8. The ϵ expansion

of the anti-symmetric matrix model shows that the matrix model fixed points M± are

complex fixed points and the only real fixed point is the O(15) vector model. We observe

that the kink in the B4 sector is precisely saturated by the T operator of the O(15) vector

model. It is uncommon to observe an enhancement of the symmetry in the bound of
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the non-singlet operator. The fact that the fixed point that saturates the B4 sector is

switched from M− (when N ∼ 4) to V (when N = 6) should coincide with 6 > Nc when

ϵ is small.

In the bound of the A4 sector, we see a kink at a larger value of ∆ϕ, which is not

predicted by the real fixed points in the O(6) anti-symmetric matrix model. Together

with the results at N = 3 and N = 3.98, we conjecture that the kink in the A4 sector

is not directly related to the anti-symmetric matrix model. We also see a kink in the T

sector. As in N = 3.98 (but unlike in N = 3 which is saturated by the vector model fixed

point), a potential kink in the T sector is not saturated by any known fixed point. We do

not know its origin.
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Figure 9: Conformal bootstrap bound with O(4) symmetry in d = 3. Black S. Red A4.

Blue T . Orange B4. Circle O(6) vector model. While the O(6) vector model is located

at the kink in the bound of the S sector, it does not saturate the bounds in the T and B4

sectors.

We finally present physically interesting bound with O(4), O(5) and O(6) symmetries

in d = 3. See Fig 9, 10 and 11. They could be realized in nature as the Landau-Ginzburg

model with O(N) anti-symmetric matrix order parameter. In the O(4) case, we find that

the T operator in the vector model fixed point with the enhanced O(6) symmetry does

not saturate any bound. The kink in the A4 sector around ∆ϕ = 0.516 and another one
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Figure 10: Conformal bootstrap bound with O(5) symmetry in d = 3. Red A4. Blue T .

Orange B4. Circle O(10) vector model. The bound in the S sector is the same as the

vector model, so it is omitted. The O(10) vector model is located closely at the kink in

the B4 sector. The kink in the A4 sector located at ∆ϕ = 0.542 and the weak kink in the

T sector located around ∆ϕ = 0.55 are not shown in the plot.
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Figure 11: Conformal bootstrap bound with O(6) symmetry in d = 3. Red A4. Blue T .

Orange B4. Circle O(15) vector model. The bound in the S sector is the same as the

vector model, so it is omitted. The O(15) vector model is located at the kink in the B4

sector. The kink in the A4 sector is located at ∆ϕ = 0.58 and is not shown in the plot.

in the B4 sector around ∆ϕ = 0.519 may indicate a nontrivial matrix model fixed point

such as M− or potentially M+. Compare them with the O(3.98) ∼ O(4) in d = 3.98 in

Fig 2, where M− seems to be located at kinks of A4 and B4. There, we have also seen

that the T operator in the vector model fixed point does not saturate any bound.

In contrast, if we look at the O(6) case in d = 3 presented in Fig 11, we see that the

T operator in the O(15) vector model fixed point is located at the kink in the bound of

the B4 sector. In addition, we find a weak kink in the T sector around ∆ϕ = 0.525. The

potential switching of the saturation of the B4 kink to the O(15) vector model fixed point

may suggest Nc < 6 in d = 3. While it is not shown in Fig 11, there exists a weak kink

in the A4 sector around ∆ϕ = 0.58. Currently, we do not know the origin of the kinks in

T and A4 sectors.

The analogous study of the O(5) case in d = 3 suggests that the weak kink in the B4

sector is located closely but not as precisely at the O(10) vector model (see Fig. 10). It

appears slightly below the bound, which may indicate that Nc ∼ 5 in d = 3. We also

observe a weak kink around ∆ϕ = 0.542(2) in the A4 sector and another weak kink around
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∆ϕ = 0.55 in the T sector, whose origins are not immediately identified.

d 3 3.98 3 3.98 3 3 3.98

N 3 3 4 3.98 5 6 6

S V V V V V V V

T V V very weak ? very weak very weak ?

A4 ? ? ? M−? weak weak ?

B4 ? ? ? M−(M+?) V ? V V

Table 1: (Conservative) Identification of kinks with known fixed points.

We have summarized a conservative identification of kinks with known fixed points in

table 1. Since we do not know the conformal dimensions in d = 3 other than the vector

model fixed point (such as those in M±) precisely, we do not present any conjectural

identification in this table.

The table suggests that the switching of the fixed point saturating the kink is more

sensitive to N rather than d. If we accept the hypothesis that the identification of the

kink shares a similar feature with N rather than d, we predict that the unstable fixed

point M− in O(4) anti-symmetric matrix model is located at ∆ϕ = 0.519(1).

4 Discussions

In this paper, we have studied the conformal bootstrap constraint in the O(d) anti-

symmetric matrix model in d dimensions, varying d as a continuous parameter. We

have also bootstrapped O(4), O(5), O(6) anti-symmetric matrix model in d = 3, aiming

at physical applications. We have found many kinks, some of which are identified with

the known fixed points, and some of which are yet to be identified.

To address the original question of what is the best way to approach the Heisenberg

model in d = 3 dimensions from the anti-symmetric matrix model, we find that keeping

track of the vector model fixed point with the enhanced O(d(d−1)/2) symmetry is always

safe. We do not, however, find a good way to keep track of the most stable fixed point

M+ within the single correlator vanilla bootstrap studied in this paper.

While we have focused on theO(d) anti-symmetric matrix model in d dimensions, it has

become more evident that the vast landscape of the O(N) anti-symmetric matrix model in
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d dimension when d ̸= N is yet to be explored. Some sample studies in section 3 reveal that

one kink associated with a known fixed point saturating one bootstrap bound becomes

not saturating when we change N or d. Is it a continuous process or a discontinuous

process? Is it related to the collision of the fixed points in the renormalization group

flow?

One obvious future direction is to use the more recent techniques in numerical con-

formal bootstrap such as “navigator functions” [37] and “skydiving” [40] to explore the

mixed correlation functions to isolate “islands” in anti-symmetric matrix models. In con-

trast to the vanilla setup used in this paper, the gap assumption necessary for the analysis

is nontrivial and potentially requires more physical input.

Another limitation of our study is that we have studied the bound in smaller ∆ϕ. It is

possible if we further increase ∆ϕ, we may find a kink (or even the second or higher ones

[58][59][60]) near or above ∆S ∼ d [24]. We may expect they are realized by non-Landau-

Ginzburg theories such as gauge theories or fermionic theories, but such interpretations

are, if any, still conjectural.

Understanding the stability of the conformal field theory realized at the boundary of

the conformal bootstrap bound, most importantly at kinks or islands, should be further

studied. For instance, in our problem, we naturally expect that if we identify a certain kink

with the unstable fixed point (e.g. M−), the spectrum read from the extremal functional

technique should include two relevant singlet operators. In reality, it is not necessarily

so. The absence of the second relevant singlet operator in the extremal functional was

observed in various examples (e.g. in the models studied in [16]). It is important to

understand why the crossing equation is not so sensitive to the (non)existence of the

second relevant operates in the spectrum.

We have restricted our analysis in d ≥ 3, but the study of the fixed point in O(N)

ant-symmetric matrix model in d < 3 (or even d > 4) may be of interest. For instance,

in a recent paper [61] they found much more surprising features in the renormalization

group flow by including ϕ6 interactions. Bootstrapping these theories seems of great

interest although the unitarity or even the conformal invariance of these fixed points may

be questioned.

In this paper, we have studied the consequence of treating the magnetization as a

two-form rather than a vector of the “internal” O(d) symmetry. It, however, becomes
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much more nontrivial if we further demand that the magnetization is a space vector (or

two-form). In particular, if we introduce the so-called dipolar interaction through the

exchange of the dynamical magnetic field, we are forced to regard the magnetization as a

two-form under the spatial rotation.

In [62][63][64] (see also [65][66] for more recent discussions), the magnetization was

treated as a space vector in 4 − ϵ dimensions with the dipolar interaction. In this ap-

proach, the dipolar interaction becomes effectively local, leading to the transverse con-

straint ∂iϕ
i = 0. On the other hand, if we treat the magnetic field as a two-form since

we cannot dualize the two-form in 4− ϵ dimensions in a meaningful sense, the interaction

remains non-local. This will make the problem more nontrivial than what we encounter

in this paper.

Finally, we wonder if the anti-symmetric matrix model with an integer N > 3 may

have some physical applications. Typically, the matrix index is tied up with the space

index, and if so it is unphysical to consider N > 3. The more abstract vector space may

be called for. See [67][68] and reference therein.10
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