
HOIN: High-Order Implicit Neural Representations
Yang Chen Ruituo Wu,

Yipeng Liu, Senior Member Ce Zhu, Fellow IEEE

D
en

oi
se

S
u

p
er

R
es

ol
u

ti
on

PSNR: 20.44     SSIM: 0.51 PSNR: 22.81     SSIM: 0.68 PSNR: 22.45     SSIM: 0.63 PSNR: 22.09     SSIM: 0.65 PSNR: 25.66     SSIM: 0.83

PSNR: 28.41     SSIM: 0.83 PSNR: 28.20     SSIM: 0.81 PSNR: 27.92     SSIM: 0.83 PSNR: 29.78     SSIM: 0.87

PSNR: 24.91     SSIM: 0.77 PSNR: 29.51     SSIM: 0.87 PSNR: 28.52     SSIM: 0.87 PSNR: 27.97     SSIM: 0.80 PSNR: 30.93     SSIM: 0.91

In
p

ai
n

ti
n

g

WIRE SIREN HOIN (Ours)Input INCODE

Figure 1: In this work, we propose a novel universal solution for inverse problems based on implicit neural representation
(INR) - HOIN. Compared with traditional INR methods such as WIRE [33], INCODE [22], and SIREN [37], HOIN significantly
improves the model’s ability to perceive high-frequency information, effectively characterizes signal details, and achieves the
best performance in a series of classic inverse tasks such as image denoise, super-resolution, and inpainting.

ABSTRACT
Implicit neural representations (INR) suffer fromworsening spectral

bias, which results in overly smooth solutions to the inverse prob-

lem. To deal with this problem, we propose a universal framework

for processing inverse problems called High-Order Implicit Neu-
ral Representations (HOIN). By refining the traditional cascade

structure to foster high-order interactions among features, HOIN

enhances the model’s expressive power and mitigates spectral bias

through its neural tangent kernel’s (NTK) strong diagonal prop-

erties, accelerating and optimizing inverse problem resolution. By

analyzing the model’s expression space, high-order derivatives, and

the NTK matrix, we theoretically validate the feasibility of HOIN.

HOIN realizes 1 to 3 dB improvements in most inverse problems,

establishing a new state-of-the-art recovery quality and training ef-

ficiency, thus providing a new general paradigm for INR and paving

the way for it to solve the inverse problem.

KEYWORDS
Implicit Neural Representation, Inverse Problem, High-Order Fea-

ture Interaction.

1 INTRODUCTION
Convolutional Neural Networks (CNNs) effectively learn signals

but struggle with high-frequency signals due to high impedance,

i.e. spectral bias, which has become a significant challenge in signal

processing. But deep image prior (DIP) [42] takes advantage of
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spectral bias, successfully tackling image restoration tasks such as

denoising, super-resolution, and other visual inverse challenges

[5, 12, 17]. DIP benefits from its independence from vast external

data sets. However, its need for many training parameters and

extended time frames limit practical use [1, 18, 19].

Implicit Neural Representation (INR) [37] refines signal mod-

eling by integrating coordinate inputs with neural networks. By

its structural advantages [34], this method efficiently addresses

inverse problems with reduced parameter count and processing

time [22, 33]. However, traditional INR methods can lead to wors-

ening spectral bias, which results in overly smoothed solutions

that omit vital high-frequency details [33]. New strategies have

been introduced to solve this problem, such as adding an encoding

layer that elevates coordinate inputs to higher-dimensional spaces

[14, 26, 28, 36, 39] and utilizing periodic [22, 25, 37] or non-periodic

activation functions [30, 33]. These modifications aim to fine-tune

frequency responses automatically, mitigating the issue of spectral

bias and enhancing the DIP process, thus getting more detailed

outcomes.

However, the existing solutions still have challenges. On the

one hand, They tend to be tailored for specific tasks [33], needing

more versatility for the broad spectrum of inverse problems. On

the other hand, experimental evidence suggests that while these

solutions may reduce spectral bias, they often fail to restore high-

frequency details completely [22, 25, 33]. During our experiments,

as shown in Figure 3, we observed that hash coding [15, 27], de-

spite its efficiency in eliminating spectral bias, inadvertently blends

high-frequency noise with the signal when applied to inverse prob-

lems. This issue is incredibly challenging in tasks such as image

denoising and deblurring. Therefore, there is an evident need for a
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solution universally applicable to all types of inverse problems and

appropriately addresses spectral bias.

Incorporating high-order interaction structures [4, 44] into neu-

ral networks has dramatically expanded the hypothesis space, rapidly

enhancing the ability to learn specific signal characteristics. This

advancement is notably present in networks like Transformers

[43] and Polynomial Neural Networks (PNNs) [9, 21, 46], which

integrate multiplicative interactions and successfully address high-

frequency signal processing challenges. Inspired by recent advance-

ments, we diverge from traditional reliance on coding layers and

activation functions, introducing an MLP block focused on higher-

order feature interactions to presentHigh-Order Implicit Neural
Representations for Inverse Problems (HOIN), a novel, gener-
alized approach for tackling inverse problems through INRs. Our

research shows that HOIN enhances the translational invariance

and eigenvalue distribution in the Neural Tangent Kernels (NTK)

[8, 20] linked to INRs, thereby expanding the functional space of the

model. HOIN significantly improves its capacity to mitigate spec-

tral bias, excels at modeling high-frequency signals, and effectively

minimizes noise interference.

To conclude, our contributions can be summarized as follows:

• We propose a new high-order interaction block to mitigate

the worsening spectral bias in INR.

• We propose a universal inverse problem-handling frame-

work, the HOIN, that can apply INR to any inverse problem.

• We analyze the expression ability, higher-order derivatives,

and NTK matrices of the higher-order blocks and theoreti-

cally prove the higher-order blocks’ effectiveness.

• HOIN maintains the state-of-the-art (SOTA) performance

in various models that use INR to solve inverse problems

and representation tasks.

2 BACKGROUND
2.1 Inverse Problem
Solving inverse problems, which aim to reconstruct original signals

from measurements, is crucial in critical applications like image

restoration and sound source localization. Traditional methods for

these problems often rely on existing knowledge, proposing solu-

tions that meet certain conditions or combine an understanding

of the target’s structure with sparsity assumptions [2, 6, 32, 40].

However, These approaches face challenges in more complex situa-

tions. Deep learning methods introduce innovative solutions like

deep image priors (DIP) [42] and implicit neural representations

(INR) [37]. Leveraging spectral deviation priors, INR can rapidly

address and derive solutions for inverse problems from a single

sample. This approach demands fewer parameters than methods

based on convolutional networks and markedly abbreviates the

training duration.

2.2 Implicit Neural Representation Details
INR [37] uses coordinate grids to approximate continuous signals,

showing advantages in rendering, computational imaging, medical

imaging, and virtual reality over traditional methods [7, 24, 26].

Recently, INR’s approach to solving inverse problems has gained

notable attention [33].

In an inverse problem, suppose coordinate inputs x ∈ R𝐷𝑖
cor-

responding to the clean signals 𝑆 (x) : R𝐷𝑖 ↦→ R𝐷𝑜
and the noise

signal 𝑁 (x) : R𝐷𝑖 ↦→ R𝐷𝑜
. For image, we have the coordinate input

(𝑥𝑖 , 𝑥 𝑗 ), and the corresponding image 𝑆 (x) ∈ R3×𝐻×𝑊
. The noise

signal can be modeled as

𝑁 (x) = 𝑆 (x) + n, (1)

where n is assumed to be 𝑖 .𝑖 .𝑑 .GaussianNoise drawn fromN
(
0, 𝜎2I

)
with I being the identity matrix.

INR parameterizes the clean signal 𝑆 (x) via a network 𝐹𝜃 (x) :

R𝐷𝑖 ↦→ R𝐷𝑜
and is optimized to fit the noisy signal 𝑁 (x), formu-

lated as:

𝜃∗ = arg min

𝜃

L (𝑁 (x) ; 𝐹𝜃 (x)) , 𝑆∗ (x) = 𝐹𝜃 ∗ (x) . (2)

Such parameterization allows lower-frequency contents to be

fitted before the higher-frequency ones, exhibiting high impedance

to signal noises or degradations. In practice, 𝜃 is usually learned

using an MLP, and the overall network architecture of INR is as

follows:

z0 =𝛾 (x),
z𝑙 =𝜑 (C𝑙 z𝑙−1

)
=𝜑 (W𝑙 z𝑙−1

+ b𝑙 ) , 𝑙 = 1, 2, . . . , 𝐿 − 1,

𝐹𝜃 (x) =W𝐿z𝐿−1 + b𝐿,

(3)

where z 𝑙 denotes the output of layer 𝑙 , 𝜃 = {𝑊 𝑙 , b 𝑙 | 𝑙 = 1, 2, ..., 𝐿 −
1}, 𝐿 is the number of layers, 𝜑 is the nonlinear activation function,

𝛾 (·) is the coding layer. C𝑙 is linear function with respect to z𝑙−1
.

2.3 Motivation
In traditional approaches, INR can tackle inverse problems but is

constrained by worsening spectral bias. This worsening spectral

bias typically leads to excessively smooth solutions that lack cru-

cial high-frequency details. Methods such as nonlinear activation

functions and high-dimensional encoding have been implemented

to mitigate this issue, but their effectiveness across a wide range

of inverse problems is limited. Acknowledging these challenges,

our goal is to conduct an in-depth analysis of the root causes of

spectral bias and devise a solution strategy that is more universally

applicable.

3 HOIN: HIGH-ORDER IMPLICIT NEURAL
REPRESENTATIONS

3.1 Overview
In this Section, we introduce High-Order Implicit Neural Repre-

sentations for Inverse Problems (HOIN). As illustrated in Figure

2, the HOIN framework is through the coding layer and the high-

order interaction block stages. 1) The coding layer transforms the

coordinate input of signals (e.g. audio, image, video, etc.) x into a

high-dimensional space (Section 3.2); 2) By utilizing various activa-

tion functions, the high-order interaction block facilitates complex

interactions among features within this expanded space (Section

3.3). During training, we find the peak performance point and stop

the fitting process there.

2
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Figure 2: Overview of HOIN. We select the corresponding encoding layer based on the type of inverse problem, mapping the
coordinate input x into a higher dimensional space 𝛾 (x). Then, the low-frequency and high-frequency information in the
signal is captured through a High-Order Block structure. During training, we find the peak performance point, stop the fitting
process there, and find the solution 𝐹𝜃 (x). ⊙ denotes Hadamard product, ⊞ is addition, 𝜑 is the nonlinear activation function.

3.2 Encoding Layer
Using the encoding layer first in HOIN aims to alleviate spectral bias

by mapping the signal coordinates to high-dimensional space, en-

hancing the model’s ability to capture details [26, 39]. INR alleviates

spectral bias bymapping the signal coordinates to high-dimensional

space, enhancing the model’s ability to capture details [26, 39]. In

addressing inverse problems, the deployment of coding layers has

become crucial. Essential coding methods include positional coding

(Pos. Enc), Fourier features (FFN), and hash table mapping (Instant-

NGP). In our proposed HOIN framework, as shown in Figure 2, we

adopt the following specific encoding strategies based on different

types of inverse problems:

• Hash Table [27]:

𝛾 (x) =
(
𝐷𝑖⊕
𝑑=1

𝑥𝑑𝜋𝑑

)
mod 𝑇, (4)

• Position Encoding [26]:

𝛾 (x) =
[
cos

(
2𝜋𝜎 𝑗/𝑚x

)
, sin

(
2𝜋𝜎 𝑗/𝑚x

)]
T

𝑗 = 0, . . . ,𝑚, (5)

• Fourier Features [39]:

𝛾 (x) = [cos(2𝜋Bx), sin(2𝜋Bx)]T, (6)

where ⊕ denotes the bit-wise XOR operation and 𝜋𝑑 are unique

large prime numbers. 𝑇 is the size of the hash table. each entry in

B ∈ R𝑚×𝐷𝑖
is sampled from N

(
0, 𝜎2

)
,𝑚 is the mapping size, and

𝜎 is chosen for each task and dataset with a hyperparameter sweep.

3.3 High-Order Interaction Block
3.3.1 Rethinking Plain Block and Residual Block. To address

the worsening spectral bias in inverse problems, past enhancements

have mainly concentrated on refining the coding layer and activa-

tion function, overlooking the crucial role of the MLP architecture

within the INR. This oversight leaves the cascade architecture of

the MLP unexamined, which is instrumental in the root cause of

the worsening spectral bias [25, 47].

For the classic INR model, the Plain MLP Block is

• Plain Block [29]:

z𝑙 = 𝜑 (C𝑙 z𝑙−1
). (7)

The cascade effect observed in plain blocks is the primary cause

of spectral bias in INR. This problem presents itself in two signifi-

cant ways: Firstly, with an increase in the number of block layers,

the vanishing gradient issue becomes more pronounced, making

the training process more challenging [29]. Secondly, using the

ReLU activation function can lead to the loss of high-order signal

derivatives, further intensifying spectral bias [16].

Residual blocks featuring residual connections have been amethod

to improve gradient flow to deeper layers. The expression is as fol-

lows

• Residual Block [16]:

z𝑙 = 𝜑 ((I + C𝑙 ) z𝑙−1
) . (8)

However, the residual block continues to face challenges with

worsening spectral bias and learning high-frequency information

[3]. It has yet to improve the efficiency of processing inverse prob-

lems significantly.

3.3.2 HOBlock. Inspired by high-order interactions[10, 13, 31] in
neural networks, we introduce a novel element into the MLP archi-

tecture of INR, which is called the High-Order (HO) Block. This
addition aims to facilitate complex feature interactions at a higher

level than traditional methods. This structure can be expressed in

the following form:

z𝑙 = 𝜑 ((J + C𝑙 z𝑙−1
) ⊙ z𝑙−1

), (9)

where ⊙ denotes Hadamard product, J is the all-one matrix

We incorporate second-order interaction within the plain block

by multiplying the previous layer’s outputs with those of the cur-

rent layer and then summing them up. This approach evolves into

creating HO blocks through a hierarchical linkage, empowering

the model to facilitate 2
(𝐿−1)/2

-order feature interactions. Such an

augmentation in high-order interactions diminishes the model’s

reliance on low-frequency learning. With increasing model depth,

high-order blocks are designed to avoid the issue of gradient van-

ishing, enabling effective fitting of both high and low frequencies

in the initial stages of training. This capacity allows for a swift

alignment with the objective function of the real signal 𝐺 (x).
3
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Figure 3: (a) Comparison of learning speeds at different frequencies. The target image is transformed into 10 frequency bands
through the Fourier transform (x-axis, 0 represents the lowest frequency band), and we compare the learned components
with the proper amplitude. On the color chart scale, 1 represents a perfect approximation. HO block can effectively alleviate
spectral bias. Hash encoding does not exhibit spectral bias. (b) PSNR learning curves for different blocks. HO block maintains
the highest PSNR.

The HOIN framework tailors its approach to various inverse

problems by selecting suitable encoding layers and activation func-

tions to meet the specific demands of each task. An overly ag-

gressive correction for spectral bias and the rapid acceleration of

high-frequency learning might inadvertently blend noise with the

signal, often detrimentally affecting the task. We introduced HO

blocks to SIREN [37], Pos.Enc [26], and FFN [39], creating HO-
SIREN, HO-Pos.Enc, and HO-FFN, respectively. For particular
inverse problem scenarios, we evaluate these models to identify the

most effective one for deployment.

4 THEORETICAL ANALYSIS OF HOIN
In this section, we perform a theoretical analysis of HO blocks. In

Sections 4.1, 4.2, and 4.3, we analyze the expressive ability, high-

order derivatives, and NTK properties of various blocks.

4.1 Expression Ability Exploration
In INR frameworks, the dimension of a network’s functional space is

a crucial metric for assessing the network’s capacity for expression

[4]. The architecture of the network is denoted byD = {𝐷1, ..., 𝐷𝑙 },
where 𝐷𝑙 indicates the number of neurons in the 𝑙-th layer. Any

given activation function block can be decomposed into a series of

polynomial functions with leading degree 𝑟 through Taylor approxi-

mation. This process helps understand how activation functions and

network configurations influence INR models’ functional capacity

and expressiveness.

For the network architecture 𝐷𝑙 with an activation function of

leading degree 𝑟 , we represent the leading functional space of the

neural network as FD,𝑟 . The leading functional variants of plain

Block, residual block, and HO block can be defined as the 𝑍𝑎𝑟𝑖𝑠𝑘𝑖

𝑐𝑙𝑜𝑠𝑢𝑟𝑒 [23] of their leading functional space, i.e.V𝑃
D,𝑟

,V𝑅
D,𝑟

and

V𝐻𝑂
D,𝑟

(similar to the ones presented in [4, 23]). Using these defini-

tions, we have:

Theorem 4.1. For an activation function with leading degree 𝑟 ≥ 1

and network architecture D = {𝐷1, ..., 𝐷𝑙 }, the leading functional
variety of Plain Block, V𝑃

D,𝑟
, HO Block, V𝐻𝑂

D,𝑟
, and Residual Block,

V𝑅
D,𝑟

, satisfy:

V𝐻𝑂
D,𝑟

= V𝑅
D,2𝑟

= V𝑃
D,2𝑟

. (10)

Proof. See Supplementary

Theorem 4.1 posits that within an identical network architec-

ture, HO block with a leading degree of 𝑟 and plain and residual

block with a leading degree of 2𝑟 exhibit the same variation in ho-

mogeneous polynomial functions. This implies that HO block can

support a diversity of leading functions, specifically (2𝑟 )𝑙−1
homo-

geneous polynomials, in contrast to neural networks of the same

structure and activation function, which are limited to 𝑟 𝑙−1
. Conse-

quently, the HO block possesses a more expansive expression space,

representing a broader range of frequency signal components.

Besides, we give the frequency decay rates for different blocks

as follows:

Theorem 4.2. For a single-layer MLP, the number of neurons is 𝑑 .
For frequency 𝑘 , the frequency decay rate of the Plain and Residual
Block is 𝑘−𝑑 , while on the contrary, the frequency decay rate of the
HO Block is 𝑘−𝑑/2.

Proof. See Supplementary

Theorem 4.2 suggests that HO blocks can capture more high-

frequency information than plain blocks, facilitating a faster reso-

lution of inverse problems.

We perform an image representation experiment to verify the

phenomenon of spectral bias for different models. We employ an

MLP model with three hidden layers, utilizing a ReLU activation

function and positional encoding, to train on authentic natural

images from the DIV2K [41] dataset. Our evaluation centers on the

model’s capacity to learn information across different frequency

bands. Following the methodology outlined in [35], we partition the

image spectrum into ten frequency bands and monitor the model’s

learning progress on these frequency bands during the training

process. The experimental results are depicted in Figure 3, where

darker red colors indicate weaker learning abilities of the model for

those frequency bands. The findings suggest that the plain block

struggles to learn high-frequency information in the image, even

4



HOIN: High-Order Implicit Neural Representations

P-RELU

200

400

600

HO-RELU

250

500

750

1000

1250

P-POS.ENC

100

200

300

HO-POS.ENC

600

800

1000

1200

1400

P-FFN

100

200

300

HO-FFN

600

800

1000

1200

1400

P-SIREN

0

500

1000

1500

2000

HO-SIREN

0

500

1000

1500

2000

(a)

0 100 200 300 400 500
Index of Eigenvalues

4

3

2

1

0

1

2

3

4

Ei
ge

nv
al

ue
s a

fte
r l

og
 o

pe
ra

tio
n

P-RELU
P-POS.ENC
P-FFN
P-SIREN

HO-RELU
HO-POS.ENC
HO-FFN
HO-SIREN

(b)

Figure 4: (a) Visualization of NTK and corresponding eigenvalues in different models. (b) Draw the corresponding feature values.
Because the maximum eigenvalue is much larger than the minimum eigenvalue, all eigenvalues are processed by logarithmic
functions for visualization. HO blocks significantly enhance the eigenvalues on the diagonal of the NTKmatrix, thus enhancing
the ability of the INR to capture high-frequency information. Plain, residual, and high-order blocks are abbreviated as P, R,
and HO.

with positional encoding. Conversely, the HO block captures high-

frequency features early in training, showcasing fast learning rates

and excellent representation ability.

Additionally, upon introducing mainstream hash encoding repre-

sentations, we observe its capability to learn balanced high-frequency

and low-frequency information, exhibiting no spectral bias. Hash

coding, a lattice-based interpolation method, learns low and high-

frequency information. However, in inverse tasks, this leads to

the blending of signal noise and high-frequency details, causing

noise to be fitted early in the training, which is undesirable for

inverse tasks. Specific experiments on this are conducted in the

supplementary material.

4.2 Derivative Analysis
In signal processing, first and second derivatives are pivotal for

encapsulating rich high-frequency information. Spectral bias often

arises because high-order derivatives gravitate towards zero during

the learning process with plain and residual blocks, leading to a sub-

stantial loss of high-frequency details. The HO block is ingeniously

designed to mitigate this issue. Specifically, the first derivative of

the HO block ∇z𝑙 is
∇z𝑙 = C𝑙 ⊙ z𝑙−1

+ C𝑙 z𝑙−1
+ J. (11)

The second derivative of the HO Block Δz𝑙 is

Δz𝑙 = 2C𝑙 . (12)

Furthermore, we compute the first-order derivatives of the plain

and residual blocks, with the findings presented in Table 1. Accord-

ing to Table 1, the second derivative of plain blocks equals zero,

indicating a significant loss of signal detail during processing. In

contrast, the second derivative of the HO block remains constant, a

property that significantly enhances its ability to capture detailed

signal information. This characteristic of the HO block is instru-

mental in efficiently accelerating the resolution of inverse problems

by preserving and leveraging high-frequency details often lost in

traditional processing blocks.

Table 1: First and second-order derivatives of different blocks.
Plain, residual, and high-order blocks are abbreviated as P,
R, and HO. O is an all-zero matrix.

Block ∇z𝑙 Δz𝑙
P C𝑙 O
R C𝑙 + I O
HO C𝑙 ⊙ z𝑙−1

+ C𝑙 z𝑙−1
+ J 2C𝑙

4.3 Neural Tangent Kernel Perspective
Our proposedHOINmethod can effectively capture the high-frequency

components of the signal. However, it is difficult to study this char-

acteristic of spectral bias theoretically. The function constructed by

the neural network is implicit, and its dependence on low-frequency

component learning cannot be directly analyzed. Recently, some

researchers have studied the learning process of neural networks

through kernel function approximation [20]. The neural tangent

kernel theory uses a first-order Taylor expansion of the model

parameters 𝜃 , that is:

𝐹𝜃 (x) ≈ 𝐹𝜃0
(x) + (𝜃 − 𝜃0)⊤ ∇𝜃 𝐹𝜃0

(x) . (13)

When the width of the layer in 𝐹𝜃 (x) is close to infinity, and the

learning rate of the optimizer is close to 0, 𝐹𝜃 (x) can converge to

the kernel regression solution of the neural tangent kernel during

the training process, i.e. the kernel function

KNTK

(
x, x

′ )
= E𝜃∼N ⟨𝐹𝜃 (x)

𝜕𝜃
,
𝐹𝜃 (x

′ )
𝜕𝜃

⟩. (14)

By analyzing the eigenvalue distribution of the NTK kernel func-

tion, we can deeply understand the learning behavior of the neural

network [38, 47].When the larger eigenvalues of the kernel function

are mainly concentrated in the diagonal area, the kernel function

exhibits better translation invariance [25]. This structural property

enables the model to learn signals more efficiently during training.

5
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Table 2: Results of image representation of different downsampling factors. Best 3 scores in each metric are marked with gold
, silver and bronze .

Methods

8× 4× 2× 1×
#Param ↓ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ LPIPS ↓ #Param ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

InstantNGP [27] 0.233 54.081 0.992 36.928 0.938 0.065 1.588 41.864 0.960 0.012 36.112 0.856 0.116

WIRE [33] 0.437 54.392 0.996 38.809 0.947 0.036 0.889 42.335 0.963 0.012 35.037 0.895 0.111

INCODE [22] 0.207 50.697 0.989 39.236 0.918 0.057 1.029 42.771 0.967 0.013 36.723 0.882 0.108

SIREN [37] 0.199 51.651 0.995 35.633 0.924 0.055 0.791 41.478 0.965 0.015 33.505 0.872 0.155

Pos. Enc [26] 0.204 31.016 0.901 31.322 0.872 0.136 0.805 36.789 0.939 0.046 32.954 0.884 0.159

FFN [39] 0.329 46.031 0.986 38.609 0.960 0.047 1.314 41.801 0.973 0.013 34.206 0.916 0.122

Ours
HO-SIREN 0.199 59.199 0.997 41.060 0.981 0.031 0.794 42.852 0.987 0.015 37.696 0.958 0.131

HO-Pos. Enc 0.206 44.638 0.991 40.034 0.978 0.024 0.805 41.974 0.986 0.017 37.095 0.954 0.103

HO-FFN 0.329 54.637 0.997 45.393 0.991 0.008 1.317 46.845 0.995 0.004 39.203 0.967 0.097

In addition, when the feature value is larger, the model has a more

vital high-frequency learning ability. This means that the model can

respond more sensitively and learn high-frequency components in

the signal.

We analyze the NTKs for various models, including activation

functions like ReLU and SIREN (no encoding layers) and models

that utilize encoding layers such as Pos. Enc and FFN coupled with

a ReLU activation function. We visualize the NTK matrices for

these models configured with Plain and high-order blocks. Unless

otherwise specified, we all use three hidden layer networks to

generate the NTK kernel matrix in the rest of this article.

As shown in Figure 4(a), the kernel function of the plain block

exhibits poor diagonal properties, leading to challenges in learn-

ing both low and high frequencies. Conversely, the HO block ker-

nel matrix showcases significant diagonal eigenvalues, facilitat-

ing effective learning of low-frequency signals while concurrently

capturing high-frequency signals. Furthermore, the HO block ex-

hibits excellent diagonal properties and large feature values for

SIREN, Pos. Enc, and FFN. This attribute is a crucial factor con-

tributing to the successful characterization of high-frequency sig-

nals by these INRs. The model’s diagonal width is further reduced

upon integrating the high-order structure, and the eigenvalues are

augmented. This advancement enhances the model’s capacity to

capture high-frequency information beyond the original model,

facilitating nearly simultaneous learning of high-frequency and

low-frequency information. Figure 4(b) showcases the shift in the

eigenvalue distribution, revealing a significant increase in the num-

ber of eigenvalues exceeding 10
1
when utilizing HO blocks. This

observation underlines the enhanced capability of the HOIN frame-

work to learn high-frequency information effectively.

5 EXPERIMENTS
In this Section, we conduct an extensive experimental evaluation of

HOIN. Our experimental setup is detailed in Section 5.1. In Sections

5.2, 5.3, 5.4, 5.5, and 5.6, we explore the application of the HOIN

framework to specific image inversion tasks, including image rep-

resentation, denoising, super-resolution, CT reconstruction, and

image completion. Additional ablation studies and visualizations

are provided in the supplementary experiments section for fur-

ther insights into the effectiveness and operational mechanisms of

HOIN.

5.1 Experimental details and setup
For our experimental benchmarks, we select four models: WIRE

[33], SIREN [37], Pos. Enc [26], and FFN [39]. To these models, we

integrate the HO block into SIREN, Pos. Enc, and FFN to identify the

most effective configurations, collectively termed HOIN. We also

add InstantNGP [27] and INCODE [22]. The experimental scope

includes tasks such as image representation (5000 epochs), image

denoising (2000 epochs), image super-resolution (2000 epochs), CT

image reconstruction (5000 epochs), and image completion (1000

epochs). The data for these tasks comprise randomly selected 10

images with dimensions of 1644 × 2040 × 3 from the DIV2K [41]

dataset. We set the evaluation metrics of the Peak Signal-to-Noise

Ratio (PSNR) and Structural Similarity Index Measure (SSIM) [45].

Further experimental details are available in the supplementary

materials.

5.2 Image Represention
Image representation can be viewed as a particular inverse problem.

Its performance intuitively presents the model’s improvement in

spectral bias. In the experiment, we subject the images to various

degrees of downsampling, namely 1×, 2×, 4×, and 8×, to cater to the
diverse requirements of image representation at different downsam-

pling rates. For the experiments involving 1× and 2× downsampling

rates, the hidden layers are configured with 512 neurons each. Con-

versely, in the experiments with 4× and 8× downsampling, the

number of neurons per hidden layer is set to 256. To maintain a fair

comparison across all models, we adjust the parameter count of

the InstantNGP model to align with the order of magnitude of the

parameters in the other models. The outcomes of these experiments

are presented in Table 2.

Table 2 demonstrates that integrating the High-Order structure

markedly enhances our model’s capacity for high-frequency repre-

sentation, yielding PSNR results compared to the baseline model.

Notably, the HO-FFN model records the highest PSNR, registering

approximately 8.1dB greater than the original FFN model. Figure

5 illustrates the error distribution during the reconstruction of 2×
6
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InstantNGP SIREN FFNInput Pos. Enc

WIRE INCODE HO-FFNHO-SIREN HO-Pos. Enc

PSNR: 37.71     SSIM: 0.95 PSNR: 41.48     SSIM: 0.98PSNR: 34.18     SSIM: 0.94PSNR: 37.44     SSIM: 0.96 PSNR: 38.20     SSIM: 0.97

PSNR: 33.38     SSIM: 0.93PSNR: 27.11     SSIM: 0.81PSNR: 33.56     SSIM: 0.92 PSNR: 33.79     SSIM: 0.94

0

0.15

Figure 5: Visualization of Image Representation. Here, we demonstrate the representation errors of different models. The
brighter areas indicate higher representation errors. HO-FFN accurately reconstructs all the detailed information of the image.

Table 3: Image denoising results under different Gaussian
noise 𝜎 .

Methods

10 25 50

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
InstantNGP [27] 29.483 0.773 0.211 22.786 0.540 0.398 17.754 0.382 0.567

WIRE [33] 30.802 0.846 0.185 26.411 0.725 0.323 22.864 0.589 0.451

INCODE [22] 30.478 0.811 0.196 25.113 0.644 0.357 21.841 0.509 0.489

SIREN [37] 31.140 0.849 0.169 26.748 0.734 0.309 23.407 0.625 0.426

Pos. Enc [26] 27.271 0.736 0.281 25.756 0.685 0.306 23.459 0.643 0.414

FFN [39] 31.131 0.852 0.180 26.335 0.716 0.317 22.805 0.583 0.453

Ours
HO-SIREN 32.338 0.896 0.144 27.043 0.766 0.300 23.451 0.642 0.425

HO-Pos. Enc 32.452 0.910 0.123 27.561 0.801 0.264 23.858 0.677 0.390

HO-FFN 32.057 0.882 0.152 26.596 0.726 0.310 22.990 0.574 0.447

downsampled images, revealing theHO-FFNmodel’s near-complete

reconstruction of high-frequency details, including edges and tex-

tures. For models like Pos. Enc, introducing HO structures can

also effectively enhance their ability to represent high-frequency

information.

5.3 Image Denoise
In the image denoising experiment, to each image to assess the

denoising abilities of the models, we add Gaussian noise with three

noise levels, including 𝜎 = 10, 𝜎 = 25, and 𝜎 = 50. Each model is

set up with a hidden layer containing 256 neurons. The results of

these experiments are detailed in the following Table 3.

Table 3 reveals that the HO-Pos.Enc model, benefiting from the

moderate acceleration provided by the HOIN framework in learn-

ing high-frequency information, exhibits superior performance

across all denoising experiments. Networks utilizing the ReLU acti-

vation function have effectively learned low-frequency information,

whereas the HOIN framework has demonstrated a significant ad-

vantage in acquiring high-frequency details. Furthermore, in line

with previous analyses, excessive acceleration in high-frequency

information learning by models such as InstantNGP and HO-FFN

can result in the undesirable amalgamation of high-frequency noise

with details. This conflation can detrimentally affect the outcome

of denoising tasks. Detailed discussions and visualizations related

to the denoising experiments are thoroughly presented in the sup-

plementary.

Table 4: Results of Image Super-Resolution.

Methods

×2 ×4 ×6 ×8

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
InstantNGP [27] 19.74 0.400 16.42 0.203 16.44 0.212 16.35 0.246

WIRE [33] 31.50 0.846 29.09 0.786 26.77 0.717 24.44 0.686

INCODE [22] 31.94 0.853 28.97 0.812 26.47 0.759 24.95 0.694

SIREN [37] 31.61 0.851 28.26 0.803 26.23 0.736 24.18 0.715

Pos. Enc [26] 30.39 0.805 24.26 0.745 24.36 0.718 23.28 0.713

FFN [39] 31.38 0.856 27.93 0.795 26.16 0.783 24.49 0.728

Ours
HO-SIREN 33.03 0.898 29.61 0.854 27.53 0.815 25.69 0.771

HO-Pos. Enc 32.47 0.876 28.91 0.824 26.43 0.762 24.78 0.720

HO-FFN 33.10 0.898 29.30 0.839 27.30 0.798 25.44 0.759

5.4 Image Super-Resolution
In our image super-resolution experiment, we initially downsample

the original images by 2, 4, 6, and 8 factors. These downsampled

images are used in the training phase to leverage the inherent inter-

polation capabilities of INR. Subsequently, in the testing phase, we

aim to restore them to their original dimensions. The comprehen-

sive results of these experiments are meticulously documented in

Table 4, showcasing the effectiveness of our approach in enhancing

image super-resolution.

As shown in Table 4, the HOIN framework markedly enhances

the performance across all evaluated models. Notably, HO-SIREN

exhibits outstanding PSNR and SSIM metrics across most super-

resolution tasks. In contrast, due to its intrinsic methodology, the

InstantNGP model, which relies on hash table indexes for recon-

struction, proves less adept for pixel-aligned super-resolution tasks.

Additional visualization results and detailed analyses are available

in the supplementary.

5.5 CT Reconstruction
Our CT image reconstruction experiment utilizes 10 CT lung images

from the publicly accessible lung nodule analysis dataset on Kaggle

[11]. To assess the efficacy of our model in CT reconstruction tasks,

these images are downsampled to a resolution of 256 × 256. The

experiment involves measuring reconstruction at four angles: 50,

100, 200, and 300. The findings of these experiments are compre-

hensively detailed in Table 5.
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InstantNGP SIREN FFNInput Pos. Enc

WIRE INCODE HO-FFNHO-SIREN HO-Pos. Enc
PSNR: 21.44     SSIM: 0.80 PSNR: 28.59     SSIM: 0.71 PSNR: 24.14     SSIM: 0.85 PSNR: 30.16     SSIM: 0.76

PSNR: 28.97     SSIM: 0.71 PSNR: 29.93     SSIM: 0.72 PSNR: 34.15     SSIM: 0.96 PSNR: 30.93     SSIM: 0.94 PSNR: 32.45     SSIM: 0.95

Figure 6: Visualization of Computed Tomography Reconstruction. Here, we demonstrate various methods for CT-based
reconstruction of 256 × 256 images at 100 angles. HO-FFN maintains the best reconstruction results.

Table 5: CT reconstruction results from different angles.

Methods

50 100 200 300

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
InstantNGP [27] 17.56 0.569 18.65 0.662 20.59 0.743 22.21 0.795

WIRE [33] 21.93 0.648 26.28 0.799 29.01 0.814 29.20 0.818

INCODE [22] 22.76 0.674 26.63 0.701 31.16 0.819 32.22 0.861

SIREN [37] 22.96 0.714 26.96 0.745 27.97 0.822 30.32 0.847

Pos. Enc [26] 22.72 0.734 23.78 0.784 24.20 0.809 24.30 0.801

FFN [39] 26.03 0.779 30.17 0.898 31.79 0.925 32.03 0.936

Ours
HO-SIREN 28.02 0.866 32.12 0.932 34.41 0.963 34.82 0.968

HO-Pos. Enc 26.94 0.906 28.39 0.933 28.79 0.944 29.40 0.949

HO-FFN 26.85 0.769 30.82 0.912 34.90 0.962 34.83 0.961

CT reconstruction involves creating computational images from

sensor measurements, with sparse CT reconstruction tackling the

challenge of producing accurate images from limited measurement

data. This challenge is primarily due to the difficulty in reconstruct-

ing images with scarce data. HO block substantially improves the

quality of the reconstruction results by efficiently capturing high-

frequency components throughout the reconstruction process. As

detailed in Table 5, the HOIN model outperforms others in all mea-

surement scenarios, showcasing its superior performance. Figure 6

illustrates that the HO-SIREN model is particularly adept at recon-

structing images’ texture and contour details. In comparison, the

SIREN model, much like the WIRE and INCODE models, is prone

to artifacts, whereas InstantNGP struggles with significant pixel

loss issues.

5.6 Image Inpainting
In the image inpainting experiment, we select an image of a Celtic

spiral knot with a resolution of 572×582×3. Themask applied in this

experiment is generated randomly, obscuring approximately 10%

of the image’s pixel area. The architectural configuration for this

experiment is aligned with that used in the image representation

task, with the findings presented in Figure 7.

Compared to existing SOTA methods based on INR, the HO-FFN

model demonstrates considerable superiority in image inpainting

tasks, particularly in accurately rendering details. To corroborate

InstantNGPInput Mask

SIREN FFNINCODE

HO-FFNWIRE HO-SIREN

PSNR: 19.36  SSIM: 0.66 PSNR: 18.60 SSIM: 0.54 PSNR: 19.07 SSIM: 0.65

PSNR: 18.66 SSIM: 0.58 PSNR: 19.47 SSIM: 0.67 PSNR: 19.89 SSIM: 0.71

PSNR: 37.71 SSIM: 0.95 PSNR: 18.03 SSIM: 0.61

Figure 7: Visualization of Image Inpainting. Here, we only
use 10% of the original image’s pixels for reconstruction. HO-
SIREN effectively reconstructs detail levels such as texture
edges.

the efficacy of our approach in image completion tasks, additional

relevant experiments are included in the supplementary for further

examination.

6 CONCLUSION
In this paper, we proposeHigh-Order Implicit Neural Represen-
tations for Inverse Problems (HOIN), an innovative framework

for addressing inverse problems. By integrating high-order interac-

tion blocks into INR, HOIN substantially enlarges the functional
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space of INR to enhance the model’s capacity to capture high-

frequency information. The NTK matrix associated with HOIN

features notable diagonal and translational invariance, offering

robust theoretical backing to mitigate spectral bias. Unlike alterna-

tive approaches, HOIN is adept at diminishing noise interference

and swiftly and efficiently resolving inverse problems. Through

comprehensive experiments, HOIN has been shown to outperform

other models utilizing INR for inverse problem-solving and has also

excelled in representation tasks.
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ses, proofs (see section A), and numerous additional experiments

(see section B and C).

A THEORETICAL ANALYSIS
In this section, we detail the theory and proofs regarding the ex-

pression spaces and high-order derivatives of HOIN, as referenced

in the main paper.

A.1 Expression Ability Exploration
In INR frameworks, the dimension of a network’s functional space is

a crucial metric for assessing the network’s capacity for expression

[4]. The architecture of the network is denoted byD = {𝐷1, ..., 𝐷𝑙 },
where 𝐷𝑙 indicates the number of neurons in the 𝑙-th layer. Any

given activation function block can be decomposed into a series of

polynomial functions with leading degree 𝑟 through Taylor approxi-

mation. This process helps understand how activation functions and

network configurations influence INR models’ functional capacity

and expressiveness.

For the network architecture 𝐷𝑙 with an activation function of

leading degree 𝑟 , we represent the leading functional space of the

neural network as FD,𝑟 . The leading functional variants of plain

Block, residual Block, and HO block can be defined as the 𝑍𝑎𝑟𝑖𝑠𝑘𝑖

𝑐𝑙𝑜𝑠𝑢𝑟𝑒 [23] of their leading functional space, i.e.,V𝑃
D,𝑟

,V𝑅
D,𝑟

and

V𝐻𝑂
D,𝑟

(similar to the ones presented in [4, 23]) as follows

Definition A.1. Suppose there is a neural networkD = {𝐷1, ..., 𝐷𝑙 }
whose leading space satisfies the following condition:

FD,𝑟 = Sym𝑟 𝑙−1

(
R𝐷0

)𝐷𝑙

. (15)

For a filling functional variety, its leading functional variety satis-

fies:

V𝒅,𝑟 = FD,𝑟 = Sym𝑟 𝑙−1

(
R𝐷0

)𝐷𝑙 . (16)

Thus, the function space or the varieties of the network do not

have to completely occupy the ambient space of homogeneous

polynomials. Instead, we only need to consider the space of homo-

geneous polynomials whose leading degrees are contained as being

adequately filled.

Proposition A.2. For a single-layer network D = (𝐷𝑙 ) utilizing
a linearly activated (𝑟 = 1) High-Order (HO) Block, the network has
a filling functional space of degree 2. That is, its leading functional
space satisfies the following criteria:

F𝐻𝑂
D,1

= Sym
2
(R𝐷𝑙 )𝐷𝑙 . (17)

Proof. We can relate the linear HO Block to a quadratic poly-

nomial regression. Consider a HO Blcok:

z𝑙 = (J + C𝑙 z𝑙−1
) ⊙ z𝑙−1

= z𝑙−1
+ (C𝑙 z𝑙−1

) ⊙ z𝑙−1
,

(18)

Where z𝑙 represents a primary linear term with Sym
1
(R𝐷𝑙 )𝐷𝑙

, and

(C𝑙 z𝑙−1
) ⊙ z𝑙−1

is a quadratic term with Sym
2
(R𝐷𝑙 )𝐷𝑙 . This qua-

dratic term outlines the primary functional space of the HO Block.

By Definition A.1, a single-layer HO Block encompasses a filling

functional space of degree 2. □

Theorem A.3. For an activation function with leading degree 𝑟 ≥
1 and network architecture D = {𝐷1, ..., 𝐷𝑙 }, the leading functional
variety of Plain Block, V𝑃

D,𝑟
, HO Block, V𝐻𝑂

D,𝑟
, and Residual Block,

V𝑅
D,𝑟

, satisfy:

V𝐻𝑂
D,𝑟

= V𝑅
D,2𝑟

= V𝑃
D,2𝑟

. (19)

Proof. This can be proven by discussing the equivalence of

functional space for every Block using Proposition A.2. For the

𝑖-th layer in the HO Block, 𝑖 = 1, 2, ..., 𝑙 , before applying nonlin-

ear activation, it hasV𝐻𝑂
(𝐷𝑖 ),1 = sym

2
(R𝐷𝑖 )𝐷𝑖 = V𝑃

(𝐷𝑖 ),2 = V𝑅
(𝐷𝑖 ),2

(since a single-layer Blcok with polynomial activation of degree

2 has a filling functional space of degree 2). This proves the case

for 𝑟 = 1. For nonlinear activations of leading degree 𝑟 , applying

the activation function to the spaceV𝐻𝑂
(𝐷𝑖 ),1, we obtain:V

𝐻𝑂
(𝐷𝑖 ),𝑟 =(

V𝐻𝑂
(𝐷𝑖 ),1

)⊗𝑟
=

(
V𝑃

(𝐷𝑖 ),2

)⊗𝑟
= V𝑃

(𝐷𝑖 ),2𝑟 , where ⊗ denotes Kro-

necker product. Since the relation applies to each layer, thus we

have V𝐻𝑂
D,𝑟

= V𝑃
D,2𝑟

= V𝑅
D,2𝑟

. □

Theorem A.3 posits that within an identical network architec-

ture, HO block with a leading degree of 𝑟 and plain and residual

block with a leading degree of 2𝑟 exhibit the same variation in ho-

mogeneous polynomial functions. This implies that the HO block

can support a diversity of leading functions, specifically (2𝑟 )𝑙−1
ho-

mogeneous polynomials, in contrast to neural networks of the same

structure and activation function, which are limited to 𝑟 𝑙−1
. Conse-

quently, the HO block possesses a more expansive expression space,

representing a broader range of frequency signal components.

Besides, we give the frequency decay rates for different blocks

as follows:

Theorem A.4. For a single-layer MLP, the number of neurons is 𝑑 .
For frequency 𝑘 , the frequency decay rate of the Plain and Residual
Block is 𝑘−𝑑 , while on the contrary, the frequency decay rate of the
HO Block is 𝑘−𝑑/2.

Proof. For Plain and Residual Block, the frequency attenua-

tion rate and proof are shown in [3]. For HO Blcok, the frequency

attenuation rate and proof are shown in [8]. □

A.2 Derivative Analysis
The first and second derivatives are pivotal for encapsulating rich

high-frequency information in signal processing. Spectral bias of-

ten arises because high-order derivatives gravitate towards zero

during the learning process with plain and residual blocks, leading

to a substantial loss of high-frequency details. The HO block is

ingeniously designed to mitigate this issue.
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Figure 8: Results of the audio representation. (a) Reconstruction error. (b) Reconstructed PSNR. HO-SIREN excels by minimizing
reconstruction errors and demonstrating rapid convergence.

Consider a HO Block in 18, the first derivative of the HO block

∇z𝑙 is as follows

∇z𝑙 =
𝜕z𝑙
𝜕z𝑙−1

= 𝜕z𝑙−1
((J + C𝑙 z𝑙−1

) ⊙ z𝑙−1
)

= (𝜕z𝑙−1
(J + C𝑙 z𝑙−1

)) ⊙ z𝑙−1
+ (J + C𝑙 z𝑙−1

) ⊙ (𝜕z𝑙−1
(z𝑙−1

))
= C𝑙 ⊙ z𝑙−1

+ C𝑙 z𝑙−1
+ J.

(20)

The second derivative of the HO Block Δz𝑙 is

Δz𝑙 = ∇ (∇z𝑙 )

=
𝜕 (∇z𝑙 )
𝜕z𝑙−1

= 𝜕z𝑙−1
(C𝑙 ⊙ z𝑙−1

+ C𝑙 z𝑙−1
+ J)

= 𝜕z𝑙−1
(C𝑙 ⊙ z𝑙−1

) + 𝜕z𝑙−1
(C𝑙 z𝑙−1

+ J)
= (𝜕z𝑙−1

(C𝑙 )) ⊙ z𝑙−1
+ C𝑙 ⊙ (𝜕z𝑙−1

(z𝑙−1
)) + C𝑙

= C𝑙 + C𝑙
= 2C𝑙 .

(21)

The second derivative of the HO block remains constant, a prop-

erty that significantly enhances its ability to capture detailed signal

information. This characteristic of the HO block is instrumental

in efficiently accelerating the resolution of inverse problems by

preserving and leveraging high-frequency details often lost in tra-

ditional processing blocks.

B ADDITIONAL EXPERIMENTS AND DETAILS
In this section, we broaden the scope of our experiments to provide

a more thorough comparison between our method, HOIN, and the

current state-of-the-art (SOTA) method. We show that the inherent

simplicity of HOIN leads to enhanced performance, particularly in

terms of expressiveness and the ability to tackle inverse problems,

compared to the corresponding SOTA method. These results under-

score our approach’s effectiveness in extending the INR network’s

capabilities and enhancing its applicability across various domains.

We now include additional visualizations that distinctly highlight

the advantages of our method.

B.1 Experimental details
All implementations utilize MLP networks with three hidden layers.

Our experiments use PyTorch on an Nvidia RTX 3080 Ti GPU with

12GB of RAM. We employ the Adam optimizer, complemented by

a learning rate scheduler that decreases the learning rate by 0.1

upon completion of each epoch. Details on specific datasets and

architectures are provided for the corresponding tasks.

B.2 Signal Representation
B.2.1 Audio.
Data:We use the first 7 seconds of Bach’s Cello Suite No. 1: Prelude

[22], with a sampling rate of 44100 Hz as our example for the audio

representation task.

Architecture: All models use three hidden layers with 256 neurons

per hidden layer. We set the first layer𝑤0 = 10000 for SIREN, HO-

SIREN, INCODE. Each model is trained for a total of 1000 epochs.

Analysis:We present the audio representation visualization results

and their corresponding error plots in Figure 8. These visualizations

are crucial for illustrating the strengths of our approach. Regarding

sound playback quality, SIREN tends to introduce a distinct squeak-

like sound accompanying the main audio. With INCODE, certain

moments experience annoying noise, as the error chart indicates.

However, HO-SIREN significantly reduces noise interference and

outperforms the other methods.

B.2.2 Image.
Data: In the main paper and supplementary material experiments,

we select one of the larger nature images on the Internet with a

size of 3 × 4844 × 3219.

Architecture: For all models except InstantNGP, we use three hid-

den layers, each with 512 neurons. We set the first layer’s frequency

parameter 𝑤0 = 30 for SIREN, HO-SIREN, and INCODE. For the

Wire, we set the scaling parameter 𝑠0 = 20. Each model is trained

for a total of 1000 epochs.

Analysis: Figure 9 displays the visualization results of large-size

images. In terms of reconstruction quality, InstantNGP incorrectly

represents some colors. Because of its inherent spectral bias, SIREN

struggles with reconstructing high-frequency details, such as the

top of the house, with distinct light and dark variations. HO-SIREN

11
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InstantNGPInput SIREN

PSNR: 29.58 PSNR: 31.72

WIRE HO-SIREN HO-FFN

PSNR: 36.34 PSNR: 36.08 PSNR: 39.71

0 0.1

Figure 9: Image representation results. The second row is an error map. The darker the red color, the higher the error. For
PSNR, red is the best, and blue is the second best. HO-FFN is the best representation result.

and HO-FFN excel in capturing high-frequency details and consis-

tently maintain the best overall quality, 3 dB better than the current

top-performing WIRE (SOTA) model.

B.2.3 Occupancy Volume.
Data: We use the Lucy and Thai Statue datasets from the Stanford

3D Scanning Repository and follow the WIRE strategy [33]. We cre-

ate an occupancy volume through point sampling on a 512×512×512

grid, assigning values of 1 to voxels within the object and 0 to voxels

outside.

Architecture: Our network and training configuration is similar

to the image representation task, with the difference that INR now

maps 3D coordinates to signed distance function (SDF) values. Each

model is trained for a total of 100 epochs.

Analysis: The results in Table 6 demonstrate the effectiveness of

Table 6: Best 3 scores in each metric are marked with gold ,
silver and bronze .

Methods Thai Lucy

INCODE 0.9879 0.9951

WIRE 0.9903 0.9718

SIREN 0.9758 0.9885

Pos.Enc 0.9872 0.9927

Ours
HO-SIREN 0.9935 0.9948

HO-Pos.Enc 0.9918 0.9945

HO-SIREN as a formidable option for occupancy representation

12
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InstantNGP SIREN FFNInput Pos. Enc

WIRE INCODE HO-FFNHO-SIREN HO-Pos. Enc

PSNR: 23.54     SSIM: 0.75 PSNR: 26.62     SSIM:  0.83 PSNR: 29.14     SSIM: 0.87 PSNR: 26.84     SSIM: 0.83PSNR: 20.38     SSIM: 0.64

PSNR: 27.29     SSIM: 0.84 PSNR: 27.28     SSIM: 0.84 PSNR: 28.26     SSIM:  0.86 PSNR: 30.28     SSIM: 0.89 PSNR: 27.78     SSIM: 0.85

Figure 10: The result of image denoising. HO-Pos. enc maintains the best PSNR and SSIM.

InstantNGP SIREN FFNInput Pos. Enc

WIRE INCODE HO-FFNHO-SIREN HO-Pos. Enc

PSNR: 21.63     SSIM: 0.59 PSNR: 28.51     SSIM: 0.86 PSNR: 24.66     SSIM: 0.81 PSNR: 28.30     SSIM: 0.85

PSNR: 29.70     SSIM: 0.88 PSNR: 29.99     SSIM: 0.86 PSNR: 30.56     SSIM: 0.91 PSNR: 29.39     SSIM: 0.89 PSNR: 30.12     SSIM: 0.89

0 0.1

Figure 11: The result of image super-resolution. The second line is the error map. HO-SIREN maintains the best PSNR and
SSIM and can accurately characterize textures, edges, and other detailed information.

tasks. HO-SIREN significantly improves representation by effec-

tively utilizing the HO Block to capture complex interactions be-

tween features. This capability is especially evident in enhancing

high-frequency information while maintaining excellent capture

of low-frequency details. Our approach achieves higher "Intersec-

tion over Union" (IOU) values, significantly enhancing object detail

and scene complexity and rendering more accurately than existing

methods.

B.3 Inverse Problems
B.3.1 Image denoising.
Data: In the experiments in the main paper and supplementary

materials, we employ an image from DIV2K dataset [41], downsam-

pled by a factor of 1/4 from 1152× 2040× 3 to 288× 510× 3. we add

Gaussian noise with three noise levels, including 𝜎 = 10, 𝜎 = 25,

and 𝜎 = 50.

Architecture: The setup for the denoising experiment closely

mirrors that of the image characterization experiment, with the

modification that the neurons in each model were adjusted to 256.
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Figure 12: Reconstruction results for different projects. HO-FFN always maintains the best reconstruction results, keeping the
highest PSNR and SSIM.

Throughout the training process, we monitored the Peak signal-to-

noise ratio (PSNR) of both the noisy and clean images, considering

the peak PSNR of the clean image as the final result of the recon-

struction. Each model is trained for a total of 2000 epochs.

Analysis: Experimental results for the three noise scales are pre-

sented in themain paper. Here, we visualize the experimental results

of 𝜎 = 25. As shown in Figure 10, HO-Pos.Enc substantially en-

hances the fidelity of noisy images, achieving a 9.9 dB improvement

in PSNR and a 0.22 increase in Structural Similarity Index (SSIM).

Compared to the INCODE and SIREN methods, HO-Pos.Enc more

effectively reduces noise artifacts while delicately preserving image
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Table 7: The result of image inpainting.

Methods

20% 40% 60% 80%

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
InstantNGP 20.719 0.734 23.400 0.829 25.263 0.871 26.747 0.896

WIRE 21.118 0.710 24.015 0.827 26.073 0.885 26.677 0.895

INCODE 22.097 0.781 24.796 0.859 25.922 0.877 27.279 0.903

SIREN 21.318 0.719 24.044 0.828 25.495 0.865 26.380 0.885

FFN 21.862 0.773 25.127 0.868 27.617 0.912 29.754 0.938

Ours

HO-SIREN 22.119 0.777 24.961 0.866 26.376 0.881 27.279 0.894

HO-FFN 22.357 0.802 25.962 0.896 28.764 0.936 31.573 0.958

details. Furthermore, our method surpasses the Pos. Enc. method

in terms of SSIM by 0.02.

B.3.2 Image super resolution.
Data:We adopt an image from the DIV2K dataset [41] and down-

sampled the image with the size of 1356 × 2040 × 3 by factors of

1/2, 1/4, 1/6, and 1/8.

Architecture: We maintain the same architectural and training

settings as the image representation task. By employing a downsam-

pled image during training, we exploit the interpolation capabilities

of INRs to reconstruct an image of its original size in the test. Each

model is trained for a total of 500 epochs.

Analysis: The experimental results for four upsampling factors are

shown in the main paper. Here, we visualize the experimental re-

sults for one map with an upsampling factor of 4. The application of

INRs as interpolators holds significant promise in super-resolution,

leveraging inherent biases within INRs that can be utilized to en-

hance performance in such tasks. As depicted in Figure 11, HO-

SIREN and HO-FFN consistently achieve superior PSNR and SSIM

values across various super-resolution scales, surpassing competing

methods. Additionally, HO-SIREN excels in reconstructing detailed

elements like high-quality and transparent textures, avoiding the

background artifacts commonly associated with SIREN.

B.3.3 CT reconstruction.
Data: Our CT image reconstruction experiment utilizes 10 CT lung

images from the publicly accessible lung nodule analysis dataset

on Kaggle [11]. To assess the efficacy of our model in CT recon-

struction tasks, these images are downsampled to a resolution of

256 × 256. The experiment measures reconstruction at four angles

and projects: 50, 100, 200, and 300.

Architecture: We maintain the same architectural and training

settings as the image representation task. We generate a sinogram

according to the projection level using the radon transform. The

model predicts a reconstructed CT image. Subsequently, we calcu-

late the radon transform for the generated output and compute the

loss function between these sinograms to guide the model toward

generating CT images with reduced artifacts. Each model is trained

for a total of 5000 epochs.

Analysis: CT reconstruction involves creating computational im-

ages from sensor measurements. In sparse CT reconstruction, the

challenge is generating accurate images using only a limited subset

of the available measurements, complicating the imaging process.

As shown in Figure 12, HOIN addresses this challenge by effec-

tively integrating higher-order interactions between features using

the HO Block. The HO-FFN leverages 100 measurements to pro-

duce a sharp reconstruction with crisp details, achieving a notable

improvement of 5.12 dB over the standard FFN, thus distinguish-

ing itself in performance. In contrast, SIREN, similar to WIRE and

INCODE, exhibited artifacts. This underscores the robustness of

HO-FFN in managing noisy and undersampled inverse problems,

demonstrating its potential as a promising solution for constrained

image reconstruction, where it effectively balances image fidelity

with noise reduction.

B.3.4 Inpainting.
Data: We utilize Celtic spiral knots image with a 572 × 582 × 3

resolution. The sampling masks are generated randomly, with an

average of 20%, 40%, 60%, and 80% of pixels being sampled.

Architecture: We use the same structure as the image representa-

tion. Each model is trained for a total of 500 epochs.

Analysis: Image inpainting poses a significant challenge, as the

task requires the model to predict entire pixel values based on

only a small portion of trained pixel data. The experimental results

are shown in Table 7. The high capacity of INRs offers a unique

advantage in addressing this inverse problem. The strong prior

embedded within the INR function space facilitates applications

such as repairs from finite observations, where the model leverages

its learned representation to predict and fill in missing values. As

seen in other tasks, HO-FFN excels in capturing complex features,

particularly edges, which allows it to outperform other methods

that often yield ambiguous results.

C THEORETICAL EXPERIMENTAL
VERIFICATION

C.1 Convergence rate comparison
C.1.1 Experimental settings.
We use the band correspondence metric in [35] to check the input-

output correspondence across multiple bands in the frequency do-

main Multiple bands For this metric, let {𝜃 (1) , . . . , 𝜃 (𝑇 ) } denote the
trajectory of 𝑇 steps of gradient descent in the parameter space

and let {𝐹𝜃 (1) , . . . , 𝐹𝜃 (𝑇 ) } denote the corresponding trajectory in the

output space. We propose to analyze the Fourier spectrum of the

output images 𝐹𝜃 (𝑡 ) ,𝑡=1,...,𝑇 to show the convergence dynamics of

different frequency components of the target image. The Fourier
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Figure 13: Frequency-band correspondence metric. The left
image shows an example of correspondence map 𝐻 , which is
computed according to Eq. (22).Wedivide the correspondence
map into 𝑁 subgroups corresponding to 𝑁 non-overlapping
frequency bands. Since the correspondence map is symmet-
rical around the center, we group it uniformly according to
the distance between its elements and center, as illustrated
by the right image when 𝑁 = 5. Different colors represent
different subgroups. We compute the mean correspondence
for each band to transform the 2D map into the 1D one.

spectrum of the output image 𝐹𝜃 (𝑡 ) is obtained by the Fourier trans-

form ℱ, denoted as ℱ{𝐹𝜃 (𝑡 ) } for step 𝑡 . We similarly compute

the Fourier transform for the target image 𝐺 , denoted as ℱ{𝐺0}.
We then compute an element-wise correspondence between both

transforms as:

𝐻𝜃 (𝑡 ) =
ℱ{𝐹𝜃 (𝑡 ) }
ℱ{𝐺0}

. (22)

Intuitively, 𝐻𝜃 (𝑡 ) denotes to what extent any deep image prior at

step 𝑡 corresponds with image 𝐺0 in the frequency domain; the

closer the values are to 1, the higher the correspondence. As we are

interested in the spectral bias of the deep image prior, we divide

the correspondence map into 𝑁 subgroups corresponding to 𝑁

non-overlapping frequency bands. Since the correspondence map

is symmetrical around the center, we group it uniformly according

to the distance between its elements and its center, as illustrated

in Figure 13. To transform the 2D map to the 1D one, we compute

the mean correspondence for each band, denoted as 𝐻
(𝑛)
𝜃 (𝑡 ) , with

𝑛=1, . . . , 𝑁 . The value of 𝐻
(𝑛)
𝜃 (𝑡 ) indicates the convergence dynamics

of different frequency components of a target image.

C.1.2 Experimental results.
This section analyzes various models’ spectral bias and convergence

speed, including InstantNGP, INCODE, SIREN, and Pos. Enc, FFN,

HO-SIREN, HO-Pos. Enc, and HO-FFN. We use the configuration in

section C.1.1. We conducted an image representation experiment

where, as described in the main paper, the image is divided into 10

frequency bands from low to high. The metric is the ratio of the

learned frequency band values to the true image for each epoch.

As depicted in Figure 14, the darker the red color, the less in-

formation is learned in that frequency band. Models like SIREN,

Pos. Enc. and FFN struggle to learn high-frequency information in

the early stages of training. However, introducing the HO Block

significantly enhances the model’s perception of high-frequency

information. Among these, HO-SIREN and HO-FFN consistently

achieve the best results. But for InstantNGP, the approach involves

dividing the image into countless grids and simultaneously fitting

the values at these grid points, effectively learning low-frequency

and high-frequency information simultaneously. This method con-

tributes to its rapid fitting capabilities.

We also visualize the results across different epochs. After just

two epochs, HO-SIREN and HO-FFN could capture the outline

and color features of the tiger, performing even better than In-

stantNGP. Throughout subsequent iterations, HO-FFN consistently

maintained strong visual reconstruction results.

C.2 Spectral bias in inverse tasks
In this section, we address the application of mitigating spectral

bias in inverse problems. Properly reducing spectral bias to enhance

the perception of high-frequency information can accelerate the

resolution of inverse problems. However, excessive acceleration

might lead to premature coupling of high-frequency noise with the

signal’s high-frequency information, complicating the resolution

of inverse problems. Using image denoising as an example, we

visualize the PSNR learning curves for noisy and clean images in

Figure 15. HO-Pos. Enc and HO-SIREN effectively speed up the

learning process compared to Pos. Enc and SIREN are reflected in

both high noisy PSNR and clean PSNR. Conversely, InstantNGP

and HO-FFN, due to their overly aggressive mitigation of spectral

bias, experience coupling of noise and signal at high frequencies,

which is detrimental for image denoising tasks.

For the representation task, where excessive mitigation of spec-

tral bias is not a concern, HO-FFN emerges as the top-performing

model. In denoising tasks, HO-Pos.Enc strikes the best balance and

proves to be the most effective model. For tasks involving super-

resolution, CT reconstruction, and inpainting, both HO-SIREN and

HO-FFN stand out as the best models.
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Figure 14: Comparison of learning speeds at different frequencies. The target image is transformed into 10 frequency bands
through the Fourier transform (x-axis, 0 represents the lowest frequency band), and we compare the learned components with
the proper amplitude. On the color chart scale, 1 represents a perfect approximation. HO block can effectively alleviate spectral
bias.
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Figure 15: The PSNR learning curves for noisy and clean images are in Figure 10. HO-Pos. Enc and HO-SIREN effectively speed
up the learning process compared to Pos. Enc and SIREN are reflected in both high noisy PSNR and clean PSNR.
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Figure 16: The results across different epochs. After just two epochs, HO-SIREN and HO-FFN can capture the outline and
color features of the tiger, performing even better than InstantNGP. Throughout subsequent iterations, HO-FFN consistently
maintains strong visual reconstruction results.
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