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Abstract

We study multi-buyer multi-item sequential item pricing mechanisms for revenue maximization with
the goal of approximating a natural fractional relaxation – the ex ante optimal revenue. We assume that
buyers’ values are subadditive but make no assumptions on the value distributions. While the optimal
revenue, and therefore also the ex ante benchmark, is inapproximable by any simple mechanism in this
context, previous work has shown that a weaker benchmark that optimizes over so-called “buy-many”
mechanisms can be approximable. Approximations are known, in particular, for settings with either a
single buyer or many unit-demand buyers. We extend these results to the much broader setting of many
subadditive buyers. We show that the ex ante buy-many revenue can be approximated via sequential
item pricings to within an O(log2

m) factor, where m is the number of items. We also show that a
logarithmic dependence on m is necessary.

Our approximation is achieved through the construction of a new multi-dimensional Online Con-
tention Resolution Scheme (OCRS), that provides an online rounding of the optimal ex ante solution.
Chawla et al. [2023] previously constructed an OCRS for revenue for unit-demand buyers, but their con-
struction relied heavily on the “almost single dimensional” nature of unit-demand values. Prior to that
work, OCRSes have only been studied in the context of social welfare maximization for single-parameter
buyers. For the welfare objective, constant-factor approximations have been demonstrated for a wide
range of combinatorial constraints on item allocations and classes of buyer valuation functions. Our work
opens up the possibility of a similar success story for revenue maximization.

∗This work was funded in part by NSF award CCF-2217069.
†All co-authors are affiliated with the University of Texas at Austin.
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1 Introduction

In the last decade, strong connections have emerged between mechanism design, online selection, and optimal
stopping problems such as prophet inequalities, leading to a number of beautiful results and techniques in
both areas. Among the surprising insights to emerge from this body of work is the small gap between online
and offline optimization, as well as between simple and optimal mechanisms, for the objective of social
welfare maximization. Consider, in particular, a seller wishing to allocate m items across n buyers with
combinatorial valuations over the items, denoted by vi for i ∈ [n]. The seller’s goal is to find a partition
{S1, S2, · · · , Sn} of the set [m] of items and allocate set Si to each buyer i so as to maximize the social welfare,
defined as

∑

i∈[n] vi(Si). The seller can do so using the VCG mechanism. However, from a single buyer’s
perspective, his allocation and payment to the seller as functions of his and others’ values can be complicated
and inscrutable. It turns out that the seller can use a much simpler mechanism at a small constant factor
loss, when the buyers’ values are structured and drawn from known distributions. For example, if buyers
have fractional subadditive (i.e. XOS) values, the seller can obtain a 2-approximation via a sequential item
pricing: she interacts with each buyer one at a time, offering any remaining items at pre-computed fixed
prices, and allowing the buyer to select his favorite set of items to buy.

But what if the seller wants to maximize her revenue? Can a simple online mechanism like sequential
item pricing still approximate the optimal offline mechanism, and if so, under what assumptions? This work
addresses and answers these questions.

In this paper, we make an explicit connection between revenue maximization for many combinatorial
buyers and online contention resolution schemes (henceforth, OCRSes), a key technique in designing prophet
inequalities. We develop a framework for designing OCRSes for revenue maximization over a

given class of mechanisms, and instantiate it with an OCRS over sequential item pricings.

As a consequence of this construction, we obtain novel simplicity versus optimality results for revenue
maximization. Our results hold for arbitrary distributions over subadditive valuation functions. We discuss
these implications for mechanism design in detail below.

Contention Resolution Schemes and their connections to sequential mechanisms

An OCRS is an online rounding of a fractional relaxation of the offline objective for packing-type problems.
OCRSes were originally designed for maximizing set functions [Vondrák et al., 2011, Feldman et al., 2016],
the natural algorithmic counterparts of “single parameter” prophet inequalities. Let us consider the example
of a seller wishing to sell a single item. Each buyer’s type is described by a single value vi ∼ Di for the
item; the objective function is the expectation over the joint value distribution of the value of the buyer
who receives the item. The offline optimum, a.k.a. the prophet, receives a reward of Ev[maxi vi]. Let us
now consider a fractional relaxation where xi ∈ [0, 1] denotes the probability that buyer i receives the item.
Considering buyer i’s contribution alone to the objective, this contribution is maximized if the buyer receives
the item when his value is in the highest xi quantiles of his distribution. Let SWxi(Di) denote this expected
contribution. The fractional relaxation then maximizes maxx∈[0,1]n:

∑
i xi≤1

∑

i SWxi(Di). This fractional
relaxation has a natural economic interpretation: we relax the ex post supply constraint (namely, that we
have one item to sell) to an ex ante supply constraint (namely, that the expected number of items sold is
one). Accordingly, this relaxation is called the ex ante relaxation.

An OCRS takes as input an ex ante feasible solution x and “rounds” it in an online fashion into an
ex post feasible solution as follows: we first sample each i ∈ [n] with probability xi, forming a (possibly
infeasible) set R(x) ⊆ [n]; we then pick a feasible subset of R(x) in an online fashion. The goal is to show
that (1) each element has a low probability of being “blocked” by previously selected elements, and (2)
conditioned on being sampled and unblocked, each element is picked with sufficiently high probability by the
online algorithm. Owing to the concavity of social welfare as a function of the allocation probability1, we
then obtain an approximation to the ex ante relaxation. Since the ex ante relaxation bounds the prophet’s
reward from above, this immediately implies a prophet inequality. Furthermore, the online rounding can be

1i.e., SWx(Di) ≥
x
y
SWy(Di) for all 0 < x < y.
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interpreted as a sequential posted pricing mechanism as it effectively sets a value threshold for each buyer,
above which the buyer is served.

Lee and Singla [2018] in fact showed a tight connection between prophet inequalities, OCRSes, and the
ex ante relaxation: For any downwards closed feasibility constraint P in the single parameter setting,2 the
optimal competitive ratio achievable against the prophet’s reward, which is also the worst-case gap between
the optimal social welfare and that achievable by a sequential posted pricing, is exactly equal to the optimal
competitive ratio achievable against the ex ante relaxation via an OCRS.

A multi-dimensional OCRS for revenue. We now turn to the revenue objective in the context of
allocating many items. In a multi-dimensional OCRS, as in the single-dimensional case, our goal is to
“round” an ex ante feasible solution x in an online/sequential fashion. Consider a setting with n buyers,
whereDi denotes buyer i’s value distribution, andD = D1×· · ·×Dn denotes the joint value distribution across
all buyers. Let xi denote a vector of probabilities where the jth component xij is the probability of allocating
item j to buyer i. We will say that a single-buyer mechanism for buyer i satisfies the ex ante constraint xi if
this mechanism allocates each item j with probability at most xij to the buyer, where the probability is taken
over the randomness in the mechanism as well as the randomness in the buyer’s values. Then, we can write
Revxi(Di) as the maximum revenue that can be obtained from buyer i from any mechanism that satisfies
the constraint xi. The ex ante relaxation for revenue is then given by EARev(D) := maxx

∑

i Revxi(Di),
where the maximum is taken over all vectors {xi}i∈[n] satisfying

∑

i xi � (1, 1, · · · , 1).3 Likewise, we can
define Revxi(Di, C) and EARev(D, C) by optimizing over a specific class C of single-buyer mechanisms.

The OCRS generates a sequential mechanism in which the seller interacts with the buyers one at a time.
At each iteration i, the seller offers a (potentially different) single-buyer mechanism over the as-yet-unsold
items, say Si, to the current buyer i, and buyer i purchases some subset of these items. The goal is to
design a single-buyer mechanism for each i that extracts a sufficiently large fraction of the target revenue
Revxi(Di) from Si while continuing to satisfy the ex ante constraint xi. Of course, in order for this to be
possible, Si should contain sufficiently many items. We formally define a revenue OCRS as follows.

Definition. An α-OCRS for revenue maximization under a class of mechanisms C takes as input
an ex ante allocation constraint x ∈ [0, 1]m, a value distribution D, and a random subset of items S ⊆ [m],
and returns a single-buyer mechanism M(D, S, x) ∈ C such that:

(a) M only allocates items in S to the buyer. Furthermore, for each j ∈ S, M allocates j to a buyer with
value distribution D with probability at most xj .

(b) M ’s expected revenue from a buyer with value distribution D is at least a 1/α fraction of β ·Revx(D, C),
where β := minj∈[m] Pr[j ∈ S].

We show that if a class C of single-buyer mechanisms admits an α-OCRS, then there exists a sequential C
mechanism that achieves an O(α)-approximation to EARev(D, C). In other words, the gap between online
and offline C mechanisms is bounded by O(α).

The existence of an OCRS depends on the properties of the class C of mechanisms being considered, as
well as on the valuation functions of the buyers. Our main theorem shows the existence of an O(logm)-OCRS
for item pricing mechanisms and subadditive valuations.

Informal Theorem 1. There exists an O(logm)-OCRS for revenue maximization under item pricing mech-
anisms when all buyers have (arbitrary distributions over) subadditive values over m items and the ex ante
constraint x satisfies xj ≥ 1/ poly(m) for all j ∈ [m].

We remark that although multi-item, i.e. combinatorial, prophet inequalities have been studied exten-
sively for the social welfare objective (see, e.g., Feldman et al. [2015]), they do not use OCRSes and are
based on other techniques. We review this literature in Section 9. On the other hand, whereas prophet

2Here P is the convex hull of the incidence vectors of all subsets of buyers that can be feasibly served.
3For vectors y and z, we say y � z if for all coordinates i we have yi ≤ zi.
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inequalities designed for the social welfare objective in the single-parameter setting extend immediately to
the revenue objective via virtual values, no such general connections exist between revenue and social wel-
fare in the multi-item setting (some exceptional special cases are discussed in Section 9). This necessitates
designing an OCRS specifically tailored to the revenue objective. To our knowledge, the only work prior to
ours containing a multi-dimensional OCRS for revenue is the recent work of Chawla et al. [2023] that proves
a 2-OCRS for unit-demand valuations – a special case of our result above.

Implications for revenue maximization

Revenue maximization for buyers with multi-dimensional values is notoriously challenging. Even for set-
tings with just one buyer and two items, the optimal revenue is inapproximable to within any factor by
a simple mechanism (indeed, by any mechanism with a finite description complexity) [Briest et al., 2015,
Hart and Nisan, 2019]. A recent line of work initiated by Chawla et al. [2022b] overcomes this challenge by
considering revenue maximization over so-called Buy-Many Mechanisms, that essentially restrict the seller to
offering subadditive pricings over allocations to the buyer. Chawla et al. showed that the optimal buy-many
revenue for a single buyer is approximable to within an O(logm) factor by item pricings for any distribution
over buyer values, where m is the number of items. This result is tight.

Multi-buyer settings present a further challenge in the manner that buyers impose externalities upon
one another (i.e. the potential loss in revenue from allocating an item to one buyer instead of another). In
single item settings, we can characterize this externality using virtual values. But in multi-item settings the
unwieldy structure of multi-dimensional incentive constraints disallows such a characterization. The ex ante
relaxation was first proposed by Alaei [2014] to address precisely this challenge: it allows breaking up and
reducing the multi-agent problem into its single-agent counterparts and approximating each one separately.

In a recent work, Chawla et al. [2023] brought these two lines of work together and defined an ex ante
relaxation for multi-buyer buy-many mechanisms, EARev(D,BuyMany). They showed that when every
buyer has a unit-demand valuation function, the buy-many ex ante relaxation can be approximated by a
sequential item pricing mechanism to within an O(logm) factor. They left open the question of designing
an approximation for the buy-many ex ante relaxation for other classes of valuations. Our work resolves this
open question by bounding this gap for arbitrary distributions over subadditive values to within a O(log2 m)
factor as a direct consequence of our OCRS construction.

Informal Theorem 2. For settings with subadditive buyers over m items, sequential item pricing obtains
at least an O(logm) fraction of the ex ante item pricing revenue and at least an O(log2 m) fraction of the
optimal multi-buyer buy-many revenue.

We summarize our results on the approximation of the ex-ante item pricing revenue by sequential item
pricings for different classes of value distributions in Table 1. All of our upper bounds extend to approxi-
mation against the optimal buy-many revenue at a loss of an additional O(logm) factor via the results of
[Chawla et al., 2023].

Upper Bounds Lower Bounds Reference

Unit-Demand 2 2 [Chawla et al., 2023]

Gross Substitutes 2 2 Theorem 5 and [Chawla et al., 2023]

XOS O(logm) Ω
(

log1/2 m
)

Theorems 2 and 4

Subadditive O(logm) Ω
(

log1/2 m
)

Theorems 2 and 4

Monotone min{n, 4m2} Ω (min{n,√m}) Theorems 18 and 19

Table 1: Summary of known results and our contributions for approximating EARev(D, ItemPricing) by
Rev(D,SeqItemPricing) for different families of buyer valuations.
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Designing the OCRS for item pricings

Let us now consider the single-agent problem at the heart of our multi-dimensional OCRS. We are given
a random subset S of items that contains every item with (say) 1/2 probability and an ex ante supply
constraint x. We want to extract (say) half as much revenue from the buyer over this subset of items,
as the optimal mechanism (call it M∗) obtains from the buyer over the entire set of items, with both our
mechanism and the optimal one satisfying the given ex ante constraint x. Let T ∗ denote the set of items a
buyer purchases under M∗. If we could manage to sell T ∗ ∩ S to the buyer at the same prices as M∗, then
we would be done. But the trouble with having only a subset of items available for sale is that the buyer
may switch from wanting to buy T ∗ ∩ S to a completely different set of items, say T . This leads to two
challenges: first T may not be able to generate as much revenue as T ∗; second, this switch may cause us to
violate the ex ante supply constraint by selling some items with a higher probability than intended (e.g. the
items in T \ T ∗). We show how to resolve both of these issues for item pricings.

Our first main technical contribution is to show that if the buyer has subadditive values and we are
allowed to ignore the ex ante constraint x, for any given set S, we can generate revenue from the items in S
that is comparable (within a logarithmic factor) to the revenue M∗ obtains from the same set S of items.
We use the subadditivity of values to argue that the buyer obtains sufficiently high utility under M∗ from
the items in S. Then, using an approach developed by Chawla et al. [2022b], we scale up the prices in M∗

to extract a fraction of this utility as revenue. This Revenue Recovery Scheme (RRS) (formally defined in
Section 2) satisfies the revenue requirement of an OCRS as well as guarantees that the total number of items
sold is not much larger than the number sold by M∗. However, it does not necessarily satisfy the given
per-item allocation constraints.

Our second technical contribution fixes the per-item allocation constraints while losing only a constant
factor in revenue. We make use of the fact that a revenue recovery scheme as described above exists for every
subset T of items and only allocates items in T . To obtain an OCRS, we carefully choose a distribution
over all subsets T of S and apply the RRS to the chosen subset to obtain a random pricing. Suppose, for
example, that the RRS applied to the entire set S oversells some item j. Then, instead of deterministically
choosing the pricing corresponding to S, with some appropriate probability we drop the item j, apply the
RRS to S\{j}, and choose the corresponding pricing. Having to drop items in this manner hurts our revenue
guarantee. But importantly, the RRS cannot oversell too many items as it satisfies the ex ante constraint
in aggregate over all items. Therefore it becomes possible to choose a random set T such that the total
revenue contribution over T is large enough, while at the same time, the per-item allocation probabilities
match those of the given ex ante constraint. We call this procedure the Convex Hull Sampler as it produces
a random pricing in the convex hull of those given by the RRS at different sets T ⊆ S.

Unfortunately, the multiplicative loss in revenue for the RRS we design depends on the ratio of the
maximum to the minimum price charged in M∗, and this dependence is necessary. This dependence can
arise due to a potential long tail of the buyer’s value distribution leading to exponentially large prices
coupled with exponentially small allocation probabilities. Our final technical contribution is to eliminate
this dependence in our approximation of ex ante revenue. In particular, as long as each ex ante constraint
xj is at least Ω(1/ polym), it becomes possible to obtain an O(logm)-OCRS for item pricings. This in turn
provides the O(logm) approximation to the ex ante revenue for item pricings stated in Informal Theorem 2.

Finally, we remark that our OCRS and sequential item pricing are fully constructive and can be found
in time polynomial in n, m, and the support sizes of the distributions Di, assuming: (1) We have access to
the ex ante optimal solution x and the corresponding optimal (random) pricing p; (2) We have access to
a demand oracle that given an item pricing and a value function in the support of ∪iDi returns the set of
items bought by the buyer with value v.

Overview of the rest of the paper

In Section 2 we formally introduce the ex ante benchmark, the OCRS for revenue maximization, and an
outline of our approach towards designing an OCRS for item pricings. We present the four main parts of
our upper bound construction in Sections 3 to 6. All our constructions are presented as existential results;
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we address the computational aspects in Section 7. In Section 8 we provide an Ω(
√
logm) lower bound on

the existence of an OCRS for item pricing over the class of XOS valuation functions. Our lower bound in
fact applies to the gap between the ex ante item pricing relaxation and the revenue of any ex post feasible
item pricing mechanism. We defer a discussion of gross substitutes and general valuations to the appendix.
Section 9 discusses related work. We conclude and outline directions for future work in Section 10.

2 Definitions and an Outline of Our Construction

We consider the standard mechanism design setting with m items and n buyers with the objective of maxi-
mizing the total revenue of the seller. Buyers have combinatorial valuations over the items, vi : 2

[m] → R≥0

for i ∈ [n], drawn from known independent distributions Di. We write D = D1 × · · · ×Dn as the joint value
distribution. Section A of the appendix describes different classes of valuations and Bayesian incentive com-
patible (IC) mechanisms for readers unfamiliar with mechanism design. Henceforth, we assume knowledge
of these concepts.

For a buyer with valuation v and a single-buyer mechanism represented as a (random) pricing p over
lotteries, we write Util(v, p) as the utility of the buyer; Alloc(v, p) as the allocation made to the buyer
(in the form of a random subset of items or an indicator vector for that subset); and Rev(v, p) as the
corresponding revenue of the mechanism. We extend these definitions to a value distribution D by taking
expectations over v ∼ D, and to a class of mechanisms C by taking the maximum over all p ∈ C of the
expected revenue of p. For j ∈ [m], a subscript of j on each of these quantities indicates the contribution of
item j to the corresponding quantity, where well-defined. Finally, for any valuation function v and a subset
S ⊆ [m] of items, we denote by v|S the valuation function given by v|S(T ) = v(T ∩ S) for all T ⊆ [m];
analogously, we denote by D|S the value distribution that first samples a valuation v ∼ D, and then returns
v|S . In other words, D|S captures the valuation of buyer D if we can only offer them items in S.

2.1 The Ex Ante Relaxation

As discussed previously, the ex ante relaxation provides an upper bound on the revenue of an optimal
mechanism by relaxing the ex post supply constraint, namely that each item should be sold at most once,
to an ex ante supply constraint, namely that the expected number of copies of the item sold is at most one.

Following the approach of Chawla et al. [2023], we can define an ex ante relaxation with respect to a
specific class of mechanisms. Let C be a class of single-buyer Bayesian IC mechanisms, and let M be a
distribution over mechanisms in this class. For a buyer with value distribution D, and an ex ante constraint
x ∈ [0, 1]m, we say that the distributionM satisfies the ex ante constraint x over D if it holds that:

E
M∼M

[Alloc(D,M)] � x.

The optimal revenue achievable from a class C of mechanisms given ex ante constraint x is:

Revx(D, C) := max
M∈∆C:M satisfies x over D

E
M∼M

[Rev(D,M)] .

The optimal ex ante revenue from n buyers with joint value distribution D is then defined as follows.

Definition 1 (Optimal Ex Ante Revenue under Mechanism Class). Given a class C of single-buyer mecha-
nisms and a joint value distribution D, we define the optimal ex ante revenue under C as

EARev(D, C) := max
x∈P

n
∑

i=1

Revxi(Di, C),

where P denotes the polytope of feasible ex ante allocations; that is

P :=

{

x = (x1, x2, . . . , xn) : xi ∈ Rm
≥0 ∀i ∈ [n] and

n
∑

i=1

xij ≤ 1 ∀j ∈ [m]

}

.
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Note that the ex ante revenue EARev(D, C) provides an upper bound on the revenue of any Bayesian
IC mechanism M = (A, π), each single-agent component of which is a C mechanism; that is, for all i ∈ [n],
the distribution (A(vi, ·), π(vi, ·)) taken over the randomness in v−i lies in ∆C .

Chawla et al. [2023] prove the following connection between the ex ante revenue over buy many mecha-
nisms and the ex ante item pricing revenue.

Theorem 1 ([Chawla et al., 2023]). For any multi-buyer value distribution D over m items,

EARev(D,BuyMany) ≤ O(logm) ·EARev(D, ItemPricing).

2.2 Our Main Results

Given the connection between the ex ante buy-many and item pricing revenues established in Theorem 1,
we focus on approximating the ex ante relaxation for item pricings. Our main result is as follows:

Theorem 2. Let D be any joint distribution for n buyers and m items over subadditive valuation functions,
and let SeqItemPricing denote the class of all Sequential Item Pricing mechanisms. Then,

EARev(D, ItemPricing) ≤ O(logm) ·Rev(D,SeqItemPricing).

As a corollary, we obtain the following approximation to ex ante buy-many revenue.

Corollary 3. Let D be any joint distribution for n buyers and m items over subadditive valuation functions.
Then we have,

EARev(D,BuyMany) ≤ O(log2 m) ·Rev(D,SeqItemPricing).

We show that the dependence on m in Theorem 2 is necessary for subadditive valuations: there is an
Ω(
√
logm) gap between ex ante item pricing revenue and the revenue of sequential item pricings even when

buyer valuations are XOS (fractionally subadditive). In fact, the lower bound also applies to the gap between
the ex ante item pricing revenue and the revenue of any ex post feasible (random) item pricing mechanism.
We prove this lower bound in Section 8.

Theorem 4. There exists a joint value distribution D for n buyers and m items over fractionally subadditive
(XOS) valuation functions for which

EARev(D, ItemPricing) ≥ Ω
(

√

logm
)

·Rev(D,SeqItemPricing).

We then consider other classes of value distributions. Chawla et al. [2023] previously showed that sequen-
tial item pricings obtain a constant fraction of the ex ante item pricing revenue over the class of unit demand
value distributions. We show an extension of that result to gross substitutes valuations in Appendix C. Note
that the factor of 2 is tight even for m = 1 items.

Theorem 5. Let D be any joint distribution for n buyers and m items over gross substitutes valuation
functions. Then we have,

EARev(D, ItemPricing) ≤ 2 ·Rev(D,SeqItemPricing).

Finally, in Appendix B we demonstrate upper and lower bounds for the family of general monotone
valuations. Our results are summarized in Table 1.

2.3 Online Contention Resolution Schemes for Revenue

Our main goal in this paper is to approximate the ex ante revenue for a given class C of mechanisms using a
sequential C mechanism. To this end, we define the following Online Contention Resolution Scheme (OCRS).

6



Definition 2 (OCRS for Revenue Maximization). Let D be a family of single-buyer value distributions
over m items and α ≥ 1. We say that D admits an α-OCRS for revenue maximization under a class of
mechanisms C if, for any allocation constraint x ∈ [0, 1]m, any distribution D ∈ D and any random subset of
items S ⊆ [m], there exists a (possibly random) pricing menu q = q(D, S, x) ∈ C such that:

(a) ES

[

Alloc(D|S , q)
]

� x, and,

(b) ES

[

Rev(D|S , q)
]

≥ 1
α · β ·Revx(D, C), where β := minj∈[m] Pr[j ∈ S].

When C is the class of item pricings, we replace (b) with a stronger condition, namely

(b’) ES

[

Rev(D|S , q)
]

≥ 1
α · ES,p

[

∑

j∈S pjAllocj(D, p)
]

,

where p is the (random) item pricing that achieves Revx(D, ItemPricing).

The following lemma connects OCRSes for revenue to approximations for ex ante revenue. We present
its proof in Section 5.

Lemma 6. If a family of value distributions D admits an α-OCRS for revenue maximization under a class
of mechanisms C, then for any D ∈ D, we can obtain a 4α-approximation to EARev(D, C) using a sequential
C mechanism.

2.4 Establishing OCRSes through Revenue Recovery Schemes

As we saw, in order to design an OCRS for revenue maximization, we need to be able to satisfy an allocation
condition as well as a revenue condition over the given set of available items. Our first main technical
contribution is to show that for item pricing mechanisms we can ignore the allocation condition and instead
simply require that the pricing we construct is component-wise not much smaller than the ex ante-optimal
pricing. To that end, we introduce the concept of a Revenue Recovery Scheme (RRS).

Definition 3 (Revenue Recovery Scheme). Let D be a family of single-buyer value distributions over m
items and α ≥ 1. We say that D admits an α-RRS if for any D ∈ D, any item pricing p and any subset of
items S ⊆ [m], there exists an item pricing q = q(D, S, p) such that:

(a) qj ≥ 1
α · pj for any j ∈ S, and,

(b) Rev(D|S , q) ≥ 1
α ·
∑

j∈S pjAllocj(D, p).

Perhaps surprisingly, we show in Section 4, that the lower bounds on prices enforced in condition (a) are
enough to guarantee an OCRS for the class of item pricing mechanisms, even though no condition on the
allocation is explicitly imposed.

Lemma 7. Any family of value distributions D that admits an α-RRS also admits an e
e−1α-OCRS for

revenue maximization under ItemPricing.

It remains to argue that good revenue recovery schemes exist for valuation functions of interest. As a
warm-up, we observe that gross substitutes valuations admit a 1-RRS. Indeed, consider the RRS that sets
q := p. Clearly, the first scaling condition holds for α = 1. Furthermore, we can interpret the offering of
prices p over a subset S of items as being equivalent to offering the prices qj = pj for j ∈ S and qj = ∞
for j 6∈ S. Then, by the definition of gross substitutes valuations, a buyer with value v that purchases some
item j ∈ S under p continues to purchase j under q, and the condition (b) follows. This is summarized in
the following proposition. Combined with Lemma 6 this immediately implies a constant approximation to
the ex ante revenue for gross substitute valuations. We show how to improve the approximation to 2 and
prove Theorem 5 in Appendix C.

Proposition 8. Gross substitutes valuations admit a 1-RRS and an e
e−1 -OCRS.
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Our main result for revenue recovery schemes applies to the much more general class of subadditive
valuations and is stated through the following lemma that we prove in Section 3.

Lemma 9. The family of subadditive valuations admits an O(logm+ log Γ)-RRS, where Γ := pmax/pmin is
the aspect ratio of the item pricing p to be revenue-recovered.

Observe that Theorem 2 does not immediately follow by combining Lemma 6, Lemma 7, and Lemma 9
because of the dependence on the aspect ratio Γ in Lemma 9. This dependence is in fact intrinsic to the
RRS definition, as there are XOS instances where it is impossible to obtain an o(

√
m)-RRS—a more detailed

discussion can be found in Appendix D. We show how to remove this dependence for Theorem 2 in Section 6
via an end-to-end argument.

3 An RRS for Subadditive Valuations (Proof of Lemma 9)

In this section, we design a Revenue Recovery Scheme for subadditive valuations, proving Lemma 9. Fix any
item pricing p ∈ Rm

≥0 and any set of items S ⊆ [m]. Let Γ′ := (maxj∈S pj)/(minj∈S pj), where the minimum
excludes any j such that pj = 0. Although the definition of an RRS calls for a deterministic pricing q, we
first show the existence of a random pricing that satisfies the conditions of the scheme.

Our algorithm samples a real γ ∈ [ℓ, h] from the distribution with density f(γ) = 1/(γ · log h
ℓ ) for ℓ = 1/2

and h = mΓ′ and then returns a uniform scaling of p by γ, i.e. q := γp. Clearly, any price is scaled down
by at most 1/2, so the scaling RRS condition holds. In order to prove Lemma 9, we will now show that for
any subadditive buyer v,

Rev(v|S , q) ≥
1

2 log(2mΓ′)
·
∑

j∈S

pjAllocj(v, p). (1)

As a first step towards proving this inequality, we employ Lemma 3.1 from [Chawla et al., 2022b] that
connects the revenue from any buyer with the buyer’s utility under a uniform scaling of an arbitrary pricing.

Fact 1 (Lemma 3.1 of [Chawla et al., 2022b]). For any monotone valuation function v, any pricing p and
any 0 < ℓ ≤ h, if γ ∈ [ℓ, h] is drawn from the distribution with density f(γ) = 1/(γ · log h

ℓ ), then

Eγ [Rev(v, γp)] ≥ 1

log(h/l)
·
(

Util(v, ℓp)−Util(v, hp)

)

.

By applying this lemma to v|S and q, we immediately obtain that

Rev(v|S , q) ≥
1

log(2mΓ′)
·
(

Util(v|S , p/2)−Util(v|S ,mΓ′p)

)

. (2)

We now proceed to bound the difference in the utility terms. Observe that as a function of the scaling
γ, Util(v|S , γp) := maxT⊆S(v(T ) − γp(T )) is non-negative and non-increasing. Furthermore, as long as it
remains strictly positive, it decreases at a rate of p(T ) for some T ⊆ S, which is at least minj∈S pj. Thus,
assuming that Util(v|S , hp) > 0, we obtain that

Util(v|S , ℓp)−Util(v|S , hp) ≥ (h− ℓ) ·min
j∈S

pj ≥
m

2
·max

j∈S
pj ≥

1

2
·
∑

j∈S

pjAllocj(v|S , p)

under our definition of ℓ and h.
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It remains to bound the utility drop if Util(v|S , hp) = 0; this is precisely where the subadditivity of
values is required. Let A∗ := Alloc(v, p). Then, by definition we have that

Util(v|S , ℓp) := max
T⊆S

(

v(T )− 1

2
p(T )

)

≥ v(A∗ ∩ S)− 1

2
p(A∗ ∩ S)

≥ v(A∗)− v(A∗ \ S)− 1

2
p(A∗ ∩ S)

= (v(A∗)− p(A∗))− (v(A∗ \ S)− p(A∗ \ S)) + 1

2
p(A∗ ∩ S)

≥ 1

2
p(A∗ ∩ S) =

1

2
·
∑

j∈S

pj ·Allocj(v, p),

where the second line uses the subadditivity of v, the third line uses the additivity of prices and the last one
uses the fact that A∗ is the utility maximizing set of items for v under pricing p.

Thus, we have shown that in either case

Util(v|S , ℓp)−Util(v|S , hp) ≥
1

2
·
∑

j∈S

pjAllocj(v|S , p), (3)

and combining (3) with (2) we obtain (1) as desired. Finally, by taking the expectation of (1) over any
distribution D, we obtain

Eq

[

Rev(D|S , q)
]

≥ 1

2 log(2mΓ′)
·
∑

j∈S

pjAllocj(D, p).

and thus there must exist some deterministic pricing q (i.e. some deterministic scaling γ) for which the
revenue condition holds. The proof is then completed by observing that Γ′ ≤ Γ.

4 Revenue Recovery Implies OCRS (Proof of Lemma 7)

In this section we prove Lemma 7, stating that any family of valuations that admits a α-RRS will also admit
an (e/(e − 1))α-OCRS for revenue maximization under ItemPricing. Let (D, S, x) be the given instance
of the OCRS. Let p denote the random pricing that achieves the revenue bound Revx(D, ItemPricing).
Recall that to design an OCRS, our goal is to find a pricing over S that will recover a large fraction of
Revx(D, ItemPricing) while respecting the ex ante constraint x.

To develop some intuition for this result, let us suppose that S and p are deterministic, and that the
pricing p is uniform – say pj = 1 for all j. Applying the RRS to (p, S) provides us with a pricing q with
qj ≥ 1/α for all j that achieves good revenue. Since the prices qj are comparable to the prices pj, and the
revenue of q is no more than the revenue of p, we may conclude that the total number of items allocated by q
is not much larger than the total number allocated by p. In other words, the allocation constraint is satisfied
in aggregate. In fact, we can achieve the same property over any subset T of S by applying the RRS to p
over T to obtain pricing qT . The aggregate allocation of each qT is comparable to the allocation of p over the
set T . We want to argue that there is a distribution over the qT ’s, corresponding to an expected allocation
vector that is small in each coordinate. At the same time, we want the aggregate expected allocation of the
random pricing to be comparable to that of p, so as to get back a revenue guarantee.

The key technical ingredient in our proof that enables the above properties is a novel algorithmic process
called ConvexHullSampler (Algorithm 1). This process takes as input a target k-dimensional vector
w ∈ Rk

≥0 and a collection of 2k vectors yT ∈ Rk
≥0 corresponding to subsets T ⊆ [k], with yTj = 0 for all T and

j 6∈ T . The goal is to find a vector in the convex hull of the {yT }’s that is component-wise dominated by w
but at the same time comparable to w in length. We show that if each yT is long enough, i.e. |yT | ≥∑j∈T wj ,

then we can always find such a vector z with |z|/|w| ≥ 1− 1/e.4

4Here |z| :=
∑

j≤k zj denotes the ℓ1 length of the vector z.
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We summarize this property of the convex hull sampler in the lemma below.

Lemma 10. Let w ∈ Rk
≥0 and yT ∈ Rk

≥0 for all T ⊆ [k] satisfy (i) yTj = 0 for all T and j 6∈ T , and, (ii)

|yT | ≥∑j∈T wj . Then, ConvexHullSampler(k, w, {yT }T⊆[k]) returns a distribution {λT }T⊆[k] such that:

(a)
∑

T λT y
T � w, and,

(b) |∑T λT y
T | ≥ e−1

e · |w|.

Algorithm 1 Algorithm ConvexHullSampler(k, w, {yT }T⊆[k])

1: Initialize variables w̃ ← w, Q← [k], σ ← 0 and λT ← 0 for all T ⊆ [k].
2: while Q 6= ∅ and σ < 1 do

3: Let τ be the largest number for which τ · yQ � w̃, i.e. τ ← minj∈Q(w̃j/y
Q
j ).

4: Update λQ ← min{τ, 1− σ}, σ ← σ + λQ and w̃ ← w̃ − λQ · yQ.
5: Update Q← {i ∈ [k] : w̃i > 0}.
6: Set λ∅ ← 1− σ.
7: Return the distribution {λT }T⊆[k].

Before we prove the lemma, let us see how it leads to a proof of Lemma 7. Our preceding discussion
suggests that we should apply the Convex Hull Sampler to the allocation vectors of the pricings p and
{qT }. However, since the prices for different items can differ considerably, and in order to relate the total
revenue of the pricings to the ℓ1 lengths of the corresponding vectors, we apply the procedure to the revenue
contribution of each item.

Proof of Lemma 7. We instantiate a pricing p from the distribution that generates Revx(D, ItemPricing),
and instantiate a set S from its distribution. For T ⊆ S let qT be the deterministic pricing returned by the
α-RRS on input (D, T, p).

Define wj := pjAllocj(D, p) for j ∈ S, and yTj := α · qTj Allocj(D|T , q
T ) for each T ⊆ S and j ∈ S.

We first observe that the vectors w and yT satisfy the assumptions in Lemma 10. Assumption (i) holds by
construction, and (ii) follows by noting:

∑

j∈T

yTj =
∑

j∈T

α · qTj Allocj(D|T , q
T ) = α ·Rev(D|T , q

T ) ≥
∑

j∈T

pjAllocj(D, p) =
∑

j∈T

wj .

Here the inequality follows from property (b) of the α-RRS (Definition 3).
Now, let λ := {λT }T⊆[k] be the distribution returned by ConvexHullSampler on (S,w, {yT }T⊆S).

Consider the following random pricing: we pick a random set T from the distribution λ and return the
random pricing q̃ := qT .

Let us first analyze the expected allocation of this random pricing. We first note that for all T , we have
yTj = α · qTj Allocj(D|T , q

T ) ≥ pj · Allocj(D|T , q
T ) from property (a) of the α-RRS (Definition 3). The

expected allocation of the random pricing q̃ is then given by:

Allocj(D|S , q̃) =
∑

T⊆S

λT ·Allocj(D|T , q
T ) ≤

∑

T⊆S

λT ·
yTj
pj
≤ wj

pj
≤ Allocj(D, p),

where the second to last inequality follows from property (a) in Lemma 10 and the last inequality follows
from the definition of w.

Next let us consider the revenue obtained by q̃. By the definition of the yT ’s, we have:

Rev(D|S , q̃) =
1

α
·
∑

T⊆S

λT |yT | ≥
1

α
·
(

1− 1

e

)

· |w| = 1

α
·
(

1− 1

e

)

·
∑

j∈S

pjAllocj(D, p).

The lemma then follows by taking expectations for both the allocation and the revenue bounds over the
randomness of S and p.
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We conclude this section by presenting the proof of Lemma 10.

Proof of Lemma 10. We first observe by construction that λ := {λT }T⊆[k] forms a proper probability distri-
bution. Also, it follows by construction that

∑

T λT y
T � w. This is because we track the vector w−∑T λT y

T

in the form of vector w̃ in the algorithm, and our choice of λQ ensures that no coordinate of this vector ever
becomes negative. It remains to prove property (b).

Suppose the algorithm runs for s steps. Let w̃1, w̃2, . . . , w̃s and Q1, Q2, . . . , Qs be the vector w̃ and set Q
after each step of the algorithm, and conventionally define that w̃0 = w and Q0 = [k]. We first observe that

∣

∣

∣

∣

∣

∑

T

λT · yT
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

s−1
∑

i=0

λQi · yQi

∣

∣

∣

∣

∣

= |w − w̃s| =
s
∑

i=1

|w̃i−1 − w̃i| ,

since λT = 0 for any (non-empty) T not realized in some iteration, and w = w̃0 ≻ w̃1 ≻ . . . ≻ w̃s ≻ 0.
If σ < 1 after the algorithm terminates, we necessarily have Qs = ∅, which means that w̃s = 0 and thus
|∑T λT · yT | = |w|, which is clearly enough for property (b) to hold.

Thus, it remains to argue about the σ = 1 case, under which we know that
∑s−1

i=0 λQi = 1. For notational
convenience, define the constants

γi =
|w̃i−1 − w̃i|
|w̃i−1|

, i ∈ [s],

and observe that since w = w̃0 ≻ w̃1 ≻ . . . ≻ w̃s ≻ 0, we have that |w̃i| =
∏i

j=1(1− γj) · |w| and thus:

∣

∣

∣

∣

∣

∑

T

λT · yT
∣

∣

∣

∣

∣

=

s
∑

i=1

γi · |w̃i−1| = |w| ·
s
∑

i=1

(

γi ·
i−1
∏

j=1

(1 − γj)

)

= |w| ·
(

1−
s
∏

i=1

(1− γi)

)

,

where the last equality follows from an expansion of the sum of products. Up next, we will argue that
γi ≥ λQi−1 or equivalently that |yQi−1 | ≥ |w̃i−1| as |w̃i−1 − w̃i| = λQi−1 · |yQi−1 |. This can be easily shown
to be true for our given definitions of these vectors, as

|yQi−1 | ≥
∑

j∈Qi−1

wj ≥
∑

j∈Qi−1

w̃i−1,j = |w̃i−1|,

where the first inequality follows from the definition of w and yQ as well as the scaling guarantee of the
RRS, the second inequality holds from w = w̃0 � w̃i−1 and the final equality holds from the fact that all
the coordinates of w̃i−1 not in Qi−1 are 0. Equipped with γi ≥ λQi−1 , we can finally show property (b) by
observing that

∣

∣

∣

∣

∣

∑

T

λT · yT
∣

∣

∣

∣

∣

≥ |w| ·
(

1−
s
∏

i=1

(1− λQi−1)

)

≥ |w| ·
(

1−
(
∑s

i=1(1− λQi−1)

s

)s)

= |w| ·
(

1−
(

1− 1

s

)s)

.

Here, the second inequality is an application of the AM-GM inequality, and the equality follows from
∑s−1

i=0 λQi = 1.

5 OCRS Approximates Ex Ante Revenue (Proof of Lemma 6)

In this section, we prove Lemma 6, which is restated for convenience. We remark that the argument we
employ is standard and is used, e.g., to prove a competitive ratio of 4 for the single item prophet inequality
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in [Chawla et al., 2010]. We reproduce it here for completeness. An informed reader can safely skip this
section.

Lemma 6. If a family of value distributions D admits an α-OCRS for revenue maximization under a class
of mechanisms C, then for any D ∈ D, we can obtain a 4α-approximation to EARev(D, C) using a sequential
C mechanism.

Consider some D = D1 × · · · × Dn in D and recall that

EARev(D, C) =
n
∑

i=1

EARevx∗

i
(Di, C)

for some ex-ante constraint {x∗
i }ni=1 with

∑n
i=1 x

∗
ij ≤ 1 for all items j ∈ [m]. We will now describe a sequential

C mechanism; call it M . Let Si denote the set of available (i.e. unsold) items when buyer i arrives.

1. Initially, S1 = [m].

2. When buyer i ∈ [n] arrives:

(a) Present them with the pricing menu qi ∈ C that is produced from the α-OCRS on distribution
Di, subset of items Si, and allocation constraint 1

2x
∗
i .

(b) Let Bi ⊆ Si be the set of items that the buyer purchases under this pricing; update Si+1 = Si\Bi.

Let Rev(D,M) denote the expected revenue of the above mechanism. Note that the mechanism clearly
satisfies the ex post supply constraint, as only available items are ever sold. The lemma then follows from
the following sequence of steps bounding its revenue.

(i) We have

Rev(D,M) =

n
∑

i=1

ESi

[

Rev(Di|Si
, qi)

]

≥ (1/α) ·
n
∑

i=1

βi ·Rev 1
2x

∗

i
(Di, C),

where βi = minj∈[m] Pr[j ∈ Si]. Here the first equality is from the definition of M and the second
inequality follows from the revenue condition of an α-OCRS.

(ii) For each i and Di, we have Rev 1
2x

∗

i
(Di, C) ≥ 1

2 ·Revx∗

i
(Di, C), because one way to satisfy the ex ante

constraint 1
2x

∗
i is to flip a coin and use the mechanism that satisfies the ex ante constraint x∗

i with
probability 1/2 and set all prices to ∞ with probability 1/2.

(iii) For any item j ∈ [m] and any buyer i ∈ [n], it holds that Pr[j ∈ Si] ≥ 1
2 . That is, βi ≥ 1

2 for all i.

It remains to prove the claim in (iii), for which the following sequence of inequalities suffices:

Pr[j ∈ Si] = 1−
∑

k<i

Pr[j ∈ Bk | j ∈ Sk] ≥ 1−
∑

k<i

1

2
x∗
k,j ≥

1

2
.

Here, the first inequality follows from the allocation condition of the OCRS (instantiated on constraints 1
2x

∗
i )

and the second follows from the ex ante constraint. This completes the proof of Lemma 6.

6 An O(logm)-Approximation for Subadditive Valuations

Thus far we have shown through a Revenue Recovery Scheme construction that there exists a sequen-
tial item pricing mechanism that achieves an O(logm + log pmax/pmin) approximation with respect to
EARev(D, ItemPricing), whenever the valuations in D are subadditive. Naturally, this dependency on
the aspect ratio of the ex ante prices is not desirable, as it can potentially become very large. In this section,
we show how to remove this dependency, and prove Theorem 2, which we re-state for convenience:
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Theorem 2. Let D be any joint distribution for n buyers and m items over subadditive valuation functions,
and let SeqItemPricing denote the class of all Sequential Item Pricing mechanisms. Then,

EARev(D, ItemPricing) ≤ O(logm) ·Rev(D,SeqItemPricing).

The key observation resulting in Theorem 2 is that the log(pmax/pmin) factor we suffer in the design of
an RRS is manifested through the set of items we attempt to sell to the buyer; in other words, if we only
sell items whose ex ante optimal prices lie in some window of aspect ratio poly(m), then our approximation
guarantee would indeed be O(logm). The problem is that by restricting what items we are allowed to sell,
we will lose the potential revenue that could be collected from them. Unsurprisingly, the revenue lost from
not selling very low price items can be neglected, as it consists only a small portion of the total revenue that
we wish to approximate. However, the same argument cannot be made for the revenue lost from not selling
very high price items, as they can potentially contribute an arbitrary large fraction of the total revenue. In
fact, in Appendix D we show that this loss is necessary for some XOS value distributions – no RRS can
obtain more than a poly(m) fraction of the desired revenue. We circumvent this obstacle by designing a
different sequential item pricing mechanism that captures the revenue contributed by the very high price
items by exploiting the fact that these items are sold with polynomially small probabilities.

We will now make the above approach concrete. Consider any joint distribution D and for convenience,
let Obj = EARev(D, ItemPricing) denote the objective we wish to approximate. Let p = (p1, . . . , pn) be
the vector of (random) item pricings that achieve the optimal ex ante revenue Obj. We will partition prices
into “small”, “medium”, and “large” sets as follows. Define

S :=

[

0,
Obj

m2

)

, M :=

[

Obj

m2
, 8m2Obj

]

, L :=
(

8m2Obj,+∞
)

.

Note that Obj = S-Obj+M-Obj+ L-Obj, where

S-Obj := E
v∼D,p





n
∑

i=1

m
∑

j=1

pijAllocj(vi, pi) · 1(pij ∈ S)



 ,

is the fraction of Obj recovered via items with optimal ex ante prices in S, and M-Obj and L-Obj are
defined analogously for M and L. We first note that S-Obj is a negligible fraction of Obj. Indeed,

S-Obj ≤ Obj

m2
· E
v∼D,p

[

∑

i,j

Allocj(vi, pi)

]

=
Obj

m2
·

m
∑

j=1

n
∑

i=1

Allocj(Di, pi) ≤
Obj

m2
·

m
∑

j=1

1 ≤ Obj

m
,

with the second-to-last inequality following from the ex-ante condition. From this, observe that if we can
obtain an O(logm)-approximation to M-Obj and L-Obj via two separate sequential item pricing mecha-
nisms, then by flipping a fair coin at the beginning to decide which mechanism to run, we will obtain a
new sequential item pricing mechanism whose expected revenue also approximates Obj up to a factor of
O(logm); this is precisely the mechanism that achieves the guarantee of Theorem 2.

As already mentioned, handling M-Obj is easy using the machinery we established in the previous
sections. When buyer i arrives, instead of attempting to sell any available item in Si, we will only attempt
to sell items j ∈ Si∩M(pi) where pi ∈ Rm

≥0 is the (sampled) ex ante price for the buyer andM(pi) denotes the
set of “medium” priced items, i.e. M(pi) := {j : pij ∈M}. We can then apply the O(logm+log pmax/pmin)-
OCRS guaranteed by the combination of Lemma 7 and Lemma 9 to Si ∩M(pi). Using the fact that the
price ratio between any two prices in M is at most 8m4, we will obtain a (random) pricing qi such that
Alloc(Di|Si∩M(pi), qi) � Alloc(Di, pi) and

∑

j∈Si
pijAllocj(Di, pi) ≤ O(logm)·Rev(Di|Si∩M(pi), qi). By

taking the corresponding expectation over the sampled pi, we obtain a O(logm) approximation to M-Obj,
as desired.

Finally, we are left with the task of obtaining a O(logm) approximation to L-Obj; in fact, we will show
that a constant approximation is possible for all distributions over monotone valuation functions.
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Lemma 11. For any value distribution D and any item pricing p, there exists an item pricing q such that
qj ≥ 2m ·Obj for all j ∈ [m], and

Rev(D, q) ≥ 1

4
·

m
∑

j=1

pjAllocj(D, p) · 1[pj ∈ L].

Before proving Lemma 11, let us first argue why it directly implies a O(1) approximation to L-Obj.
Consider the sequential item pricing mechanism that upon buyer i’s arrival observes the set of available (i.e.
unsold) items Si and proceeds as follows. If at least one item is unavailable, it skips the buyer, selling him
nothing. Otherwise, it samples a pricing pi from the optimal ex ante pricing for buyer i, and presents the
buyer with the pricing qi guaranteed by Lemma 11. We will prove that with constant probability this process
sells no items, and therefore, obtains in expectation a constant fraction of the revenue contribution of each
buyer i to L-Obj. Formally:

Claim 12. For each buyer i, Si = [m] with probability at least 1/2.

It remains to prove Lemma 11 and Claim 12.

Proof of Lemma 11. We define the item pricing q as follows.

qj :=

{

pj/2 if pj ∈ L, i.e. pj ≥ 8m2 ·Obj,

max{pj, 2m ·Obj} otherwise.

It is straightforward to see that qj ≥ 2m ·Obj for every j. To prove the lemma, it suffices to show that for
any fixed buyer v it holds that

Rev(v, q) ≥ 1

4
·

m
∑

j=1

pjAllocj(v, p) · 1(pj ∈ L),

and then simply taking an expectation over v ∼ D will produce the claim. Fix the buyer v and define
T := Alloc(v, p) and T ′ := Alloc(v, q) to be utility-maximizing sets under pricings p and q respectively.
We will overload notation and use L to denote the set of indices j where pj ∈ L. Then note that the LHS
of the above claimed inequality is q(T ′) and the sum in the RHS is p(T ∩ L). So, we need to show that

q(T ′) ≥ 1

4
· p(T ∩ L).

This clearly holds when T ∩ L = ∅, so we assume that T ∩ L 6= ∅. On one hand,

p(T )− q(T ) = p(T ∩ L)− q(T ∩ L) + p(T \ L)− q(T \ L) ≥ 1

2
· p(T ∩ L)− 2m2 ·Obj ≥ 1

4
· p(T ∩ L) (4)

where the first equality uses additivity of prices; the middle inequality uses that pj = 2qj for all j ∈ L, while
qj ≥ 2m ·Obj for all j /∈ L; and the last inequality uses that p(T ∩ L) ≥ 8m2 ·Obj as T ∩ L is nonempty.
On the other hand,

p(T ′)− q(T ′) = p(T ′ ∩ L)− q(T ′ ∩ L) + p(T ′ \ L)− q(T ′ \ L) ≤ q(T ′ ∩ L) ≤ q(T ′) (5)

where we used qj ≥ pj for j /∈ L. Finally, as v(T )− p(T ) ≥ v(T ′) − p(T ′) and v(T ′) − q(T ′) ≥ v(T )− q(T )
by the definition of T and T ′, we have q(T )− q(T ′) ≥ v(T )− v(T ′) ≥ p(T )− p(T ′), or

p(T ′)− q(T ′) ≥ p(T )− q(T ). (6)

The lemma then follows from combining Equations (4) to (6).
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Proof of Claim 12. It suffices to show that
∑

i′<i

∑m
j=1 Allocj(Di′ , qi′) ≤ 1

2 , from which our claim follows
from a union bound. Notice that here qi′ is a random variable that depends on the pricing pi′ that our
algorithm draws.

We first note that Allocj(Di′ , qi′) ≤ 1
2m for every buyer i′5; otherwise, as qi′,j ≥ 2m ·Obj, by simply

using q for the buyer i′ with valuation Di′ (and not selling anything to any other buyer) we would get
an expected revenue that is strictly larger than Obj := EARev(D, ItemPricing) which is obviously a
contradiction by the optimality of the ex-ante solution. This means that for every buyer i′, we have

m
∑

j=1

Allocj(Di′ , qi′) ≤
1

2
.

We now prove the claim via contradiction. Suppose the claim is not true for some i ∈ [n]. Then there
must exists a first index k ≤ i where it becomes not true, namely,

∑

i′<k

m
∑

j=1

Allocj(Di′ , qi′) ≤
1

2
and

∑

i′≤k

m
∑

j=1

Allocj(Di′ , qi′) >
1

2
.

Note that as
∑m

j=1 Allocj(Dk, qk) ≤ 1
2 , we have

∑

i′≤k

m
∑

j=1

Allocj(Di′ , qi′) ≤ 1.

Therefore, the pricing vector q′ which is equal to q on the first k buyers and to infinity on the remaining
buyers satisfies the ex-ante constraint, and its ex-ante revenue will be at least

E





∑

i′≤k

m
∑

j=1

qj ·Allocj(Di′ , qi′)



 ≥ 1

2
· 2m ·Obj ≥ mObj,

which contradicts ex-ante optimality.

7 Computational Considerations

In this section, we summarize Sections 3 through 6 to present a top-down overview for the existence of
the sequential item pricing mechanism that achieves the guarantees of Theorem 2, namely the O(logm)-
approximation to the ex ante revenue under subadditive valuations, as well as comment on the computational
aspects of our approach.

Computational Aspects. Recall that our objective is to approximate

EARev(D, ItemPricing) =
n
∑

i=1

EARevx∗

i
(Di, ItemPricing)

under some (optimal) ex-ante allocation constraint {x∗
i }ni=1. Our approach crucially relies on access to this op-

timal solution, as well as the distributions (over item pricings) p∗i that achieve EARevx∗

i
(Di, ItemPricing)

for each buyer i ∈ [n]. We comment that finding the revenue-optimal item pricing is hard even in the
absence of an ex ante constraint [Chalermsook et al., 2013], but approximations may exist in special cases
(e.g., [Chawla et al., 2022a]).

5Observe that from this, if the ex ante allocations are at least 1/(2m) then we can cast this algorithm as a O(1)-OCRS w.r.t.
L-Obj. Combined with the O(logm)-OCRS w.r.t. M-Obj, this justifies the claim of Informal Theorem 1.
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Our approach also requires access to an oracle that, given distribution Di and pricing q, can compute
the expected allocation Alloc(Di, q) and expected revenue Rev(Di, q). Note that if the supports of the
buyers’ value distributions are small and we have access to a demand oracle over subadditive values, we can
compute these quantities.

We remark that assuming access to x∗
i , p

∗
i , and the demand oracle as discussed above, the remainder of

our algorithm is fully constructive, i.e. we can efficiently construct the Sequential Item Pricing achieving our
claimed bounds in time polynomial in n, m, and the support sizes of the value distributions.

Construction Overview. As described in Section 6, our construction begins by flipping a fair coin in
order to decide whether it will focus on high-price items or medium-price items throughout the execution.

If the coin lands on high-price items, we proceed to address the buyers sequentially, until we sell at least
one item to a buyer; once this happens, we completely ignore the rest of the buyers. To address buyer i,
we sample an item pricing pi from distribution p∗i and present them with the pricing qi = qi(pi) that we
define in Lemma 11. Assuming access to the value of the (optimal) ex ante revenue, this construction is
straightforward and thus the entire sequential item pricing is constructed in O(nm) time. In fact, since qi
doesn’t depend on the set of available items, we can pre-compute these prices in advance, i.e. our sequential
item pricing is oblivious to the order in which the buyers arrive, as well as the randomness of their valuations.

If the coin lands on medium-price items, then whenever buyer i arrives we observe the set of available
items Si and offer them a realization of the (random) item pricing qi = OCRS(Di, Si,

1
2x

∗
i ). Note that this

sequential item pricing is adaptive both to the order in which the buyers arrive, and to the realizations of their
values, as both affect the set of available items Si. Furthermore, to avoid having to sample from the optimal
pricing distribution that respects 1

2x
∗
i , we can instead present them with the pricing qi = OCRS(Di, Si, x

∗
i )

with 1/2 probability (and entirely skip the buyer with the remaining 1/2 probability); it is easy to see that
the proof of Section 5 also holds for this alternative.

In order to construct qi = OCRS(Di, Si, x
∗
i ), we sample an item pricing pi from distribution p∗i . We

then compute the vector wj = pijAllocj(Di, pi) for j ∈ Si as in Section 4, and then run the algorithm
ConvexHullSampler. An important observation is that instead of pre-computing the yT vectors for all
T ⊆ Si, we can compute them on demand; then, since ConvexHullSampler clearly runs for at most m
steps, we only need to compute m of these vectors.

To compute a yT vector, we need to find a pricing qT satisfying the revenue guarantee, and then compute
its revenue. From Section 3, we know that picking the best scaling γ ∈ [ℓ, h] and setting q = γ · p suffices.
In fact, because of the linear dependence of the price of any particular set of items on γ, at the loss of a
factor of 2 it suffices to choose γ as the best power of 2 in the range [ℓ, h].

Once ConvexHullSampler completes its execution and returns the distribution λT over the subsets
T ⊆ Si, we simply sample such a set T from it and return qi = qT .

8 Lower Bounds for XOS Valuations (Proof of Theorem 4)

In this section, we prove that the gap between sequential item pricings and ex ante item pricings can be as
large as Ω(

√
logm) under XOS valuations, as stated in Theorem 4, which we restate for convenience:

Theorem 4. There exists a joint value distribution D for n buyers and m items over fractionally subadditive
(XOS) valuation functions for which

EARev(D, ItemPricing) ≥ Ω
(

√

logm
)

·Rev(D,SeqItemPricing).

In fact, a stronger separation holds. Let ExPostItemPricing be the class of multi-buyer mechanisms
which take all buyers’ valuations vi as input, and offer each buyer a randomized item pricing Mi,v−i over
the items which depends only on Di and the other buyers’ valuations v−i := {vi′ : i′ 6= i}. Provided
that the allocations under the Mi,v−i are feasible, these are feasible and truthful multi-buyer mechanisms.
Furthermore, this generalizes SeqItemPricing, since any randomized sequential item pricing mechanism
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can be simulated by a mechanism in ExPostItemPricing. We will show that the separation holds for this
class of mechanisms as well.

Theorem 13. There exists a joint value distribution D for m items and n =
√
m buyers for which

EARev(D, ItemPricing) ≥ Ω
(

√

logm
)

·Rev(D,ExPostItemPricing).

Theorem 4 then follows as a corollary of Theorem 13, since every mechanism M ∈ SeqItemPricing may
be simulated by a mechanism in ExPostItemPricing.

The rest of this section is devoted to proving Theorem 13. We begin by specifying our instance. We
first define a set of parameters that will be useful towards stating our claims; let k :=

√
m, and t :=

√
log k,

taking logarithms to be base two. By incurring at most a constant factor, we can assume that all of these
parameters are integer-valued, and also that t is even.

The buyers. Conveniently, the n buyers vi ∼ Di are all (independently) identically distributed, with
valuations sampled according to the following process:

1. A set of items A ⊆ [m] with |A| = k is sampled uniformly at random.

2. An integer h ∈ {1, 2, . . . , 12 log k} is drawn uniformly at random. We denote ℓ := 2h.

3. The valuation of the buyer is then realized as an XOS function, which is given by the maximum over
the following additive valuations:

(a) For the set A, we define an additive valuation vA such that vA(j) = 1 + t for items j ∈ A and
vA(j) = 0 for items j /∈ A.

(b) For every set B of cardinality |B| = t·ℓ, we define an additive valuation vB such that vB(j) = 1+ k
ℓ

for items j ∈ B and vB(j) = 0 for items j /∈ B.

Observe that for our selected parameters t · ℓ ≤ m always, and all parameters are integer-valued, so this is a
well-defined XOS instance. Let Ai be the A-set for buyer i.

Informally, this valuation ensures that each buyer i is nearly indifferent between the (single) high-revenue
set Ai on the one hand, and one of the (many) low-revenue sets B on the other. For any sequential item
pricing mechanism, as the set of available items shrinks, Ai becomes less valuable to i, while the most
valuable low-revenue set B does not. As a result, it quickly becomes unlikely that the available fraction of
Ai is large enough for i to choose it, resulting in reduced revenue.

Ex-ante revenue. To demonstrate a gap, we need a lower bound on EARev(D, ItemPricing) for the
above instance D. The key observation is that ex ante, all buyers can be allocated their A-sets. Consider
the item pricing pij = 1 for all buyers i ∈ [n] and items j ∈ [m], meaning that each buyer is presented with
the exact same set of uniform prices over the items. For this pricing, the utility of the A set and any B sets
are precisely

Utili(A) = vi(A) − pi(A) = k(1 + t− 1) = kt, and,

Utili(B) = vi(B)− pi(B) = tℓ

(

1 +
k

ℓ
− 1

)

= kt.

By breaking ties for A (or by slightly increasing A’s valuation by ǫ > 0) we can assume the buyer will always
buy set A. Since A is a uniformly random subset of [m] with cardinality k, each item will therefore be sold
to the buyer with probability k/m = m−1/2. Since we have n =

√
m identical buyers in total, this means

that the fractional total allocation of each item is precisely 1, and thus the ex ante constraint is satisfied for
our proposed pricing p, implying that

EARev(D, ItemPricing) ≥
n
∑

i=1

Rev(Di, pi).
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Since we have already showed that under this pi buyer i always purchases Ai, the per-buyer revenue is simply
Rev(Di, pi) = |Ai| = k and so for our choice of parameters n = k =

√
m,

EARev(D, ItemPricing) ≥ n · k = m. (7)

Revenue and allocation for single-buyer item pricings. The following are crucial to analyzing this
instance. They establish conditions under which a buyer can be sold items according to their A-type versus
B-type additive valuations, and upper bounds on the expected revenue in each case. Omitted proofs appear
in Appendix E. We begin with claims that hold for all valuations v ∼ Di from the above distribution, all
item pricings p, and all subsets of available items S ⊆ [m]. Let EA(vi, p) denote the event that buyer vi
facing prices p chooses an allocation where their valuation is supported by vA; define EB(vi, p) analogously
when their valuation is supported by any of the vB.

Lemma 14. For any vi, p such that EA(vi, p) holds, buyer i purchases at least kt
t+1 items.

Lemma 15. For some c1 ∈ R≥0 and sufficiently large k, for all p, Evi

[

Rev(vi, p) | EA(vi, p)
]

≤ c1 · k.

Lemma 16. For some c2 ∈ R≥0 and sufficiently large k, for all p, Evi

[

Rev(vi, p) | EB(vi, p)
]

≤ c2 · t · k
log k .

These will enable us to reason about item-pricing mechanisms in multi-buyer settings for this instance.

Revenue and allocation for multi-buyer item pricings. Lemma 14 implies that no buyer facing an
item pricing will choose an A-type allocation unless they receive a large proportion of their A-set Ai. We
will now argue that with high probability only a few buyers can receive large proportions of their A-sets
(and therefore choose a A-type allocations), even if the mechanism is given access to A1, . . . , An upfront.

We will make use of the abstraction of an assignment, which is an arbitrary mapping of items to buyers.

Definition 4. Let σ : [m]→ [n] ∪ {⊥} be an assignment of items to buyers.

Note that every multi-buyer mechanism—item-pricing or otherwise—induces a distribution over assign-
ments, where σ−1(⊥) are the items not allocated to any buyer. We will call an allocation feasible for a buyer
if it allocates them at least a (1− c)-proportion of their Ai:

Definition 5. A buyer i ∈ [n] is (1 − c)-feasible under σ if |Ai ∩ σ−1(i)| ≥ (1 − c)n. For I ⊆ [n], I is
(1− c)-feasible under σ if all i ∈ I are (1− c)-feasible under σ.

Using these definitions we present the following combinatorial lemma, which together with Lemma 14
implies that for any multi-buyer mechanism which presents buyers with item pricings, the number of buyers
with A-type allocations is small with high probability:

Lemma 17. Let Imax(v) be the largest I ⊆ [n] for which I is (1− 1
t+1 )-feasible under σ, for any assignment

σ. Then for some c3 and sufficiently large k, Ev [|Imax(v)|] ≤ c3 · nt .

We are now ready to prove Theorem 13.

Proof of Theorem 13. The proof is intuitive: with high probability, no mechanism can allocate A-sets to
more than a (1/t)-proportion of the buyers and get revenue k from each, and since it presents buyers with
item pricings, its revenue on the remaining buyers is at most tk/ log k each. Then, t =

√
log k balances these

terms, resulting in the gap.
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Formally, fix an ex post randomized item pricing mechanism M ∈ ExPostItemPricing. Then M is a
collection of randomized item pricings Mi,v−i , and the expected revenue is

Rev(D,M) = E
v

[

∑

i

(

E
pi∼Mi,v−i

[Rev(vi, pi)]

)]

= E
v

[

∑

i

(

E
pi∼Mi,v−i

[

E
vi
[Rev(vi, pi)]

]

)]

,

because Mi,v−i is independent of vi. Then conditioning on the events EA := EA(vi, pi) and EB := EB(vi, pi),

= E
v

[

∑

i

(

E
pi∼Mi,v−i

[

E
vi

[

Rev(vi, pi) | EA
]

· Pr
vi

[

EA
]

+ E
vi

[

Rev(vi, pi) | EB
]

· Pr
vi

[

EB
]

]

)]

≤ E
v

[

∑

i

(

E
pi∼Mi,v−i

[

c1 · k · Pr
vi

[

EA(vi, pi)
]

+ c2 ·
tk

log k

]

)]

= c2 ·
ntk

log k
+ c1 · k · E

v

[

∑

i

(

E
pi∼Mi,v−i

[

Pr
vi

[

EA(vi, pi)
]

]

)]

,

for some constants c1, c2, by Lemmas 15 and 16. Next, observe that for fixed v, p the allocationsAlloc(vi, pi)
form an assignment σ, since M is a feasible mechanism. Let I(v, p) be the set of buyers for which this
assignment is (1− 1

t+1 )-feasible. Then Lemma 14 implies that EA(vi, pi) ⊆ {i ∈ I(v, p)}, so

≤ c2 ·
ntk

log k
+ c1 · k · E

v

[

∑

i

(

E
pi∼Mi,v−i

[

Pr
vi

[i ∈ I(v, p)]

]

)]

= c2 ·
ntk

log k
+ c1 · k · E

v

[

E
p∼M

[|I(v, p)|]
]

.

Next let Imax(v) be a maximum-size (1− 1
t+1 )-feasible subset of the buyers v over any assignment σ : [m]→

[n]∪ {⊥}, and note that |I(v, p)| ≤ |Imax(v)|. Then by Lemma 17 we have that Ev [|Imax|] ≤ c3n/t for some
constant c3. Therefore

Rev(D,M) ≤ c2 ·
ntk

log k
+ c1 · k · E

v
[|Imax(v)|]

≤ c2 ·
ntk

log k
+ c1 · k ·

c3 · n
t

.

By our choice of parameters n = k =
√
m and t =

√
log k this implies that Rev(D,M) = O(m log−1/2 m),

while by (7) the ex ante item pricing revenue forD is at leastm. This holds for allM ∈ ExPostItemPricing,
completing the proof.

9 Related Work

Multi-parameter Revenue Maximization. As mentioned previously, multi-parameter revenue max-
imization is a notoriously hard problem. Briest et al. [2015] and Hart and Nisan [2019] showed that the
optimal revenue is inapproximable within any finite factor by simple mechanisms (such as item pricings)
even with just two items and one unit-demand or additive buyer. Much of the literature on simplicity versus
optimality for revenue maximization accordingly makes strong assumptions on the buyers’ value distribu-
tions, such as requiring the values to be independent across items. Under these assumptions, mechanisms
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such as sequential item pricing, grand bundle pricing and two part tariffs obtain constant factor approxima-
tions to the optimal revenue. See, e.g., [Chawla et al., 2015, Babaioff et al., 2014, Rubinstein and Weinberg,
2018, Cai and Zhao, 2017, Cai et al., 2019].

There are several connections between this literature and our work. Chawla et al. [2010] showed that
under the item independence assumption, the revenue maximization problem for unit demand buyers under
various feasibility constraints can be reduced to a single-parameter prophet inequality. They were the first
to use an ex ante relaxation in multi-buyer settings, a technique that was later formalized by Alaei [2014].
Chawla and Miller [2016] extend a similar approach based on the ex ante relaxation and prophet inequalities
to matroid rank values, still with an independence-across-items assumption.

It is worthwhile contrasting our main results with those of Cai and Zhao [2017]. They consider buyers
with subadditive values and bound the gap between the revenue of a sequential two-part tariff mechanism
and the ex ante relaxation. There are several similarities and differences from our work: (1) Like the papers
referenced above, Cai and Zhao require values to be independent across items, a significant restriction. Our
results do not require any distributional assumptions. (2) Under the independence assumption however, they
are able to compete against the ex ante optimal revenue, where our approximations only apply to the ex
ante buy-many revenue, a weaker benchmark. (3) Cai and Zhao’s mechanism is a two-part tariff, meaning
that every buyer needs to pay an entry fee to enter the mechanism and is then offered an item pricing. Two-
part tariffs are necessary to obtain constant factor approximations to the optimal revenue. (4) Finally, Cai
and Zhao obtain a constant factor gap for XOS valuations and an O(logm) gap for subadditive valuations,
whereas we obtain an O(log2 m) gap for both. The O(logm) factor for subadditive values was subsequently
improved to an O(log logm) factor by Dütting et al. [2020b] via the construction of a new prophet inequality
for welfare maximization over subadditive values.

Buy-Many Mechanisms. Another line of work on simple versus optimal multi-parameter mechanisms
considers approximating a weaker benchmark, namely buy many mechanisms, rather than introducing as-
sumptions on the value distributions. This line of work was introduced by Briest et al. [2015] for unit-demand
buyers and extended to general buyers by Chawla et al. [2022b]. These papers consider the single-buyer
mechanism design problem and bound the gap between the revenue of item pricing and the optimal buy
many mechanism. This gap is shown to match the best possible gap achievable by any mechanism with
subexponential description complexity. Chawla et al. [2023] were the first to consider buy-many mechanisms
in multi-buyer settings. They argue that any reasonable extensions of buy-many mechanisms to multiple
buyers are upper bounded by ex ante buy-many revenue. As mentioned previously, this work bounds the gap
between sequential item pricing revenue and the ex ante buy-many revenue, a result we extend to subadditive
buyers.

Prophet inequalities and contention resolution. Prophet inequalities were first introduced to mech-
anism design by Hajiaghayi et al. [2007]. Chawla et al. [2010] showed how to apply them to revenue maxi-
mization settings and motivated the design of prophet inequalities for more general settings. Further work
on prophet inequalities has considered variants with different feasibility constraints, arrival models, limited
information settings, buyer correlations, etc. We refer the reader to the survey by Lucier [2017] for an
overview of this work.

As mentioned previously, single-parameter prophet inequalities have strong connections with Online
Contention Resolution Schemes. Contention Resolution Schemes were first defined by Vondrák et al. [2011]
in the context of offline maximization of set functions under various feasibility constraints as an abstraction
for rounding the fractional relaxations of these objectives. Subsequently Feldman et al. [2016] defined Online
CRSes as analogous online rounding primitives for a range of online adversaries. Feldman et al. observed
that good OCRSes imply good prophet inequalities for combinatorial constraints and linear objectives. Using
duality, Lee and Singla [2018] showed that the converse also holds – good prophet inequalities imply good
OCRSes.
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Combinatorial prophet inequalities. Prophet inequalities have also been studied extensively in the
multi-item setting for the social welfare objective where buyers have combinatorial valuations over the items.
This line of work was introduced by Feldman et al. [2015]. Inspired by the matroid prophet inequality of
Kleinberg and Weinberg [2012], Feldman et al. introduced the approach of using balanced prices to design
prophet inequalities. This has become the dominant technique for designing combinatorial prophet inequal-
ities (see, e.g., [Dütting et al., 2020a,b,a]), although some constructions use duals or other approaches for
constructing prices [Zhang, 2022, Correa and Cristi, 2023]. We remark that all of these approaches are quite
different from OCRSes in that they do not necessarily preserve the probabilities of allocation of the ex ante
relaxation. Finally, we note that for the social welfare objective over subadditive values, Correa and Cristi
[2023] recently developed a constant factor prophet inequality.

10 Conclusion and Open Problems

Our work develops polylogarithmic upper and lower bounds on the ratio between the revenue obtained by
sequential item pricings and the ex ante item pricing (or buy many) revenue. Although the O(logm) gap
between the sequential item pricing revenue and the ex ante buy-many revenue is tight for unit-demand
valuations, it is not clear whether an additional logm factor is necessary to lose for XOS or subadditive
values.

Another important direction is to make our result algorithmic. Constructing our item pricing requires
access to the optimal solution to the ex ante item pricing relaxation. While optimizing item pricing revenue is
hard even in the absence of ex ante constraints, approximations may be possible under suitable assumptions.
Another possible avenue is to first construct an approximately optimal ex ante buy-many mechanism and
then convert it into an approximately optimal ex ante item pricing. The complexity of optimizing revenue
over buy-many mechanisms is not well understood. Furthermore, we note that the upper bound on the gap
between the ex ante item pricing and buy many revenues (due to [Chawla et al., 2023]) is non constructive.
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A Mechanism Design Basics

In this section we cover the necessary background on mechanism design that is required for this paper. We
consider a setting with m items and n buyers with combinatorial valuations over the items, with the objective
of maximizing the total revenue of the seller. We begin by establishing some notation.

Buyers and valuations. A buyer is modeled through a valuation function v : 2[m] → R≥0 that is drawn
from a known distribution D and assigns a non-negative value to each subset of the m items. Some of our
results reference special classes of valuations that we define below.

• Unit-Demand: A valuation v is unit-demand if v(S) = maxj∈S v({j}) for all S ⊆ [m]. For convenience,
we write v({j}) as simply vj .

• Gross Substitutes: Let p and p′ be two item pricings with p � p′ and let S = {j : pj = p′j} denote the
set of items where the two pricings charge equal prices. We say that a value function v satisfies gross
substitutes if for all such pricings p and p′, Alloc(v, p)∩S ⊆ Alloc(v, p′)∩S. In other words, under
the new pricing p′ the buyer continues to purchase those items in Alloc(v, p) whose prices did not
increase.

• Fractionally Subadditive (XOS): A valuation v is fractionally subadditive if there exists a set A of
m-dimensional vectors a ∈ Rm

≥0, such that v(S) = maxa∈A
∑

j∈S aj for all S ⊆ [m].

• Subadditive: A valuation v is subadditive if v(S) + v(T ) ≥ v(S ∪ T ) for all S, T ⊆ [m].

• Monotone: A valuation v is monotone if v(S) ≤ v(T ) for all S ⊆ T ⊆ [m].

Observe that we have Unit-Demand ( Gross Substitutes ( XOS ( Subadditive ( Monotone.
Finally, for any valuation function v and a subset S ⊆ [m] of items, we denote by v|S the valuation

function given by v|S(T ) = v(T ∩ S) for all T ⊆ [m]; analogously, we denote by D|S the value distribution
that first samples a valuation v ∼ D, and then returns v|S . In other words, D|S captures the valuation of
buyer D if we can only offer them items in S.

Bayesian Incentive Compatible Mechanisms. In the multi-buyer setting, we will use Di to denote
the value distribution of buyer i and D = D1×· · ·×Dn to denote the joint value distribution of all n buyers.
Note that each buyer draws his value independently from his respective distribution. For i ∈ [n], vi denotes
the value function of buyer i, v denotes the joint value function of all n buyers, and v−i the joint value
function of all buyers other than i.

A multi-buyer mechanism maps the joint value function v to an outcome A(v) and a payment π(v) where
Ai(v) denotes the set of items allocated to buyer i and πi(v) denotes the corresponding payment made by
buyer i. A mechanism (A, π) is incentive compatible if no buyer can benefit from misreporting his value
regardless of others’ values. In other words, if for all i, vi, v

′
i, v−i, it holds that

vi(Ai(vi, v−i))− πi(vi, v−i) ≥ vi(Ai(v
′
i, v−i))− πi(v

′
i, v−i)

A Bayesian incentive compatible (BIC) mechanism (A, π) is a pair for which the above inequality holds for
all i, vi, and v′i in expectation over v−i ∼ D−i. The revenue of a multi-buyer BIC mechanism M = (A, π) is
given by Rev(D,M) := Ev∼D[

∑

i∈[n] πi(v)]. We use Rev(D) := maxBIC mechanism M Rev(D,M) to denote
the optimal revenue achievable by any BIC mechanism over the joint distribution D.

Single-Buyer Mechanisms as Pricings. From the viewpoint of a single buyer i, any given mechanism
M = (A, π) generates as a function of the buyer’s valuation vi a distribution over outcomes (A(vi, ·), π(vi, ·)).
In the following discussion of single parameter mechanisms, where clear from context, we will drop the
subscript i to simplify notation. By the taxation principle, we can interpret this single buyer mechanism as
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a (possibly random) price menu p : ∆2[m] → R+ that maps each distribution6 over subsets of [m], a.k.a. a
lottery, to a price the buyer must pay to receive it. We will assume without loss of generality that p(∅) = 0
with probability 1. Under this price menu, the buyer’s utility for a (random) set or lottery S ⊆ [m] of items
is given by

Util(v, p, S) := ES

[

v(S)− p(S)

]

.

The buyer purchases their utility maximizing random set, and the seller collects the associated revenue:

Alloc(v, p) := argmax
S∈∆2[m]

Util(v, p, S),

Rev(v, p) := p

(

Alloc(v, p)

)

.

In the case of ties, we assume that the buyer purchases any set of maximal price from among the ones that
maximize their utility. For simplicity we will overload notation and also let Alloc(v, p) denote the indicator
vector of the set purchased by the buyer, and further abuse notation by calling the average such indicator
vector the expected allocation, and denoting it and the expected revenue of the mechanism p by

Alloc(D, p) := E
p,v∼D

[Alloc(v, p)],

Rev(D, p) := E
p,v∼D

[Rev(v, p)].

Note that the jth coordinate of Alloc(D, p) is the probability that a buyer with valuation v ∼ D purchases
item j under pricing p; we will denote this probability by Allocj(D, p).

Item Pricings and Sequential Item Pricings. For much of this work we will focus on item pricing
mechanisms. For a single buyer, we represent an item pricing as a (potentially random) vector p ∈ Rm

+

mapping individual items to prices, and extend it to sets additively by letting p(S) :=
∑

j∈S pj for S ⊆ [m].
For a single buyer, we denote by ItemPricing the class of all randomized item pricing mechanisms, meaning
that p ∈ Rm

+ may be chosen at random.
In the multi-buyer setting we will further consider Sequential Item Pricing mechanisms. These mecha-

nisms interact with buyers in a fixed order7. Let Si denote the set of items left over after the mechanism
has interacted with buyers 1 through i − 1. When buyer i arrives, the mechanism presents an item pricing
over items Si. The buyer instantiates his value and purchases his favorite bundle of items under the pricing,
and then the mechanism moves on to the next buyer. The pricing presented to buyer i may depend on the
instantiations of values of buyers 1 through i− 1 as well as the set Si, but does not depend on the values of
buyers i · · ·n.

Buy Many Mechanisms. In our results, we will also briefly refer to single-buyer buy-many mechanisms
as defined by Chawla et al. [2022b]. Informally, a price menu p is buy-many if for every adaptive buyer
strategy for sequentially purchasing a sequence of lotteries, there exists a single lottery in the menu that is
cheaper and allocates more items to the buyer. We refer the reader to [Chawla et al., 2022b] for a formal
definition.

B General Monotone Valuations

In this section, we focus on general monotone valuation functions. We propose a sequential item pricing to
achieve an O(min{n,m2}) approximation to ex-ante item pricing revenue, and we show that there are no
item pricing mechanisms that achieve a revenue of o(min{n,√m}) of ex-ante revenue.

6For a groundset X, we use the notation ∆X to denote the set of all probability distributions over X.
7Our results work for an arbitrary given order over buyers, although in some contexts it may be beneficial for the seller to

choose a particular order.
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B.1 Upper Bound

Theorem 18. Let D be any joint distribution for n buyers and m items over general monotone valuation
functions. Then

EARev(D, ItemPricing) ≤ min{n, 4m2} ·Rev(D,SeqItemPricing)

Proof. Let (x∗, p∗) be the optimal solutions achieving EARev(D, ItemPricing), with x∗
i denoting the ex

ante allocation constraint for buyer i and p∗i denoting the corresponding distribution over item pricings. For
convenience, let

Obj = EARev(D, ItemPricing) :=
n
∑

i=1

Rev(Di, p
∗
i ).

We will first show how to obtain the O(n) upper bound. This is in fact trivial. We first sample a buyer
i ∈ [n] uniformly at random, and then present them with an item pricing that is instantiated from p∗i ,
while ignoring all other buyers i′ 6= i. This will recover a revenue of precisely Rev(Di, p

∗
i ) and then the

proof is completed from the fact that we chose buyer i uniformly at random and thus we clearly obtain a
n-approximation.

Up next, we show how to obtain a O(m2) upper bound. Recall that since we are restricted to item
pricings,

Obj = E
p∗





n
∑

i=1

m
∑

j=1

pij ·Allocj(Di, pi)



 ,

and thus, there exists some item j∗ ∈ [m] for which

E
p∗

[

n
∑

i=1

pij∗ ·Allocj∗(Di, pi)

]

≥ Obj

m

For a fixed buyer i, consider the (random) uniform item pricing that sets the price of each item j ∈ [m]
to pij∗/m, given a price pi that is instantiated from p∗i . Observe that for any realization vi ∼ Di where the
ex ante buyer allocates to item j∗ under pricing pi, the bundle being allocated (and by monotonicity, also
the set of all items [m]) has value at least pij∗ . Therefore, since under price vector qi the cost for buying all
the items is precisely pij∗ , buyer vi will buy at least one item (assuming that all items are available), as it
would rather buy the entire bundle rather than buy nothing.

In effect, the probability of buyer i buying at least one item under pricing qi is λi ≥ Allocj∗(Di, pi)
whenever all the items are available. Therefore, by rejecting to sell anything (via setting qi to be infinity)

with probability 1 − Allocj∗ (Di,pi)

2λi
, we can ensure that the buyer i buys at least one item with probability

Allocj∗ (Di,pi)

2 , netting a revenue of at least pij∗/m when doing so.
Finally, we go through each buyer i one-by-one, selling at price qi with rejection as defined if all m items

are available, and not selling anything if some item has already been sold. Notice that since we sample pi
from p∗i , the probability that a buyer i doesn’t purchase anything is precisely x∗

ij∗/2 under our pricing. To
complete the argument, it remains to argue that whenever each buyer i ∈ [n] arrives, there is a constant
probability that all the items are available. As

∑n
i=1 x

∗
ij∗ ≤ 1, by an OCRS argument similar to Lemma 6, all

items are available with probability at least 1/2 upon reaching any buyer; hence, the total revenue extracted
from this sequential item pricing is at least

E
p∼p∗

[

n
∑

i=1

1

2
· pij∗
m
· Allocj∗(Di, pi)

2

]

≥ Obj

4m2
.

The proof is completed by comparing n to 4m2 and picking the better sequential item pricing out of the
two.
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B.2 Lower Bound

We now present an instance that shows one cannot achieve an approximation of factor better than min{n,√m}
of ex-ante revenue through sequential item pricing for general monotone valuations.

Theorem 19. There exists a joint distribution D for n buyers and m items over general monotone valuations
for which

EARev(D, ItemPricing) ≥ Ω
(

min{n,√m}
)

·Rev(D,SeqItemPricing).

As with the
√
logm lower bound for XOS valuations in Section 8, this lower bound on the gap between ex

ante and sequential item pricing for the class of monotone valuations is more about the difficulty of finding an
integral partition of the items that satisfies a typical realization of the buyers’ valuation functions than it is
about doing so in a sequential, item pricing setting. In particular, the family of instances which demonstrate
Theorem 19 will show the same gap for ExPostItemPricing as well, which is an even stronger separation.

This gap is even more precipitous in the sense that it is purely combinatorial, and does not rely on the
strategic limitations of mechanisms at all. In particular, this gap holds even for a “clairvoyant” mechanism
which is given direct access to the realizations vi ∼ Di and can extract the full surplus of the buyers’
valuations of their allocations as revenue.

Before constructing our instance, we will introduce the key property which we require of it.

Definition 6. Let m = ℓ2 be the number of items. Let P = (B0, . . . , Bℓ−1) be a partition of these m
items to ℓ groups of ℓ items each, so that we have |Bi| = ℓ and Bi ∩ Bj = ∅ for all i 6= j. Let P be
a collection of such partitionings. We call a collection P a good collection if for every two partitionings
Pa = (A0, . . . , Aℓ−1), Pb = (B0 . . . , Bℓ−1) ∈ P , we have that Ai ∩Bj 6= ∅ for all i, j ∈ [ℓ].

In other words, a good collection is one that for any two partitions Pa and Pb and any two bundles from
them, the intersection of the bundles is non-empty. We would like to assign to each buyer such partition, so
that if a buyer purchases one bundle, other buyers would not be incentivized to buy any items.

Lemma 20. For any prime number ℓ and m = ℓ2, there exists a good collection of size ℓ.

Proof. Set the ℓ2 items in a ℓ × ℓ matrix, such that each item is indexed by a tuple of form (i, j) where
0 ≤ i, j ≤ ℓ− 1. We define partition Pi = (Bi0, . . . , Bi(ℓ−1)) as follows:

Bij = {(x, y) : y = (xi + j) mod ℓ},

where (x, y) here is the index of the corresponding items. Now first note that for each i ∈ {0, 1, . . . , ℓ − 1},
each item (x, y) belongs to exactly one bundle Bij , and each bundle consists of exactly ℓ items. So the
defined Pi’s indeed create a collection of partitions.

Next, we need to prove that for any i, i′, j, j′ ∈ {0, 1, . . . , ℓ−1} with i 6= i′, bundles Bij and Bi′j′ intersect.
Equivalently, we need an item (x, y) for which

y ≡ xi+ j ≡ xi′ + j′ (mod ℓ)

As Zℓ is a field due to ℓ being prime, combined with i′ − i 6= 0, there exists some x ∈ {0, 1, . . . , ℓ− 1} where
x(i′ − i) ≡ j′ − j (mod ℓ). Setting y = (xi + j) mod ℓ concludes the proof.

Lemma 21. For any positive integer m, there exists a good collection of size at least ℓ = ⌊√m⌋
2 that uses ℓ2

items.

Proof. Due to Bertrand’s postulate, we know that for any n > 3, there exists at least one prime number

p such that 2n − 2 > p > n. Let n = ⌊√m⌋+2
2 . Therefore, there exists a prime number p such that

⌊√m⌋ > p > ⌊√m⌋+2
2 . Now using Lemma 20, we know that we can build a collection of size p since p is a

prime, and we know that p > ⌊√m⌋+2
2 > ⌊√m⌋

2 . This concludes the proof.
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Proof of Theorem 19. Let ℓ be the closest prime number no more than
√
m and let N = min(n, ℓ). We prove

the theorem in 3 parts: First, we show how to build the instance’s valuation function. Then, we show that
no ex-post mechanism can gain revenue of more than 1 under this valuation. Finally, we show that there
exists an ex-ante pricing under which the revenue is at least N(1− ǫ). This concludes the proof of theorem.

Instance. We index both the items and buyers from 0. Let P = {P0, . . . , Pℓ−1} be the good collection on
the first ℓ2 items from Lemma 20. For Pi = (Bi1, . . . , Bi(ℓ−1)s), let the valuation of buyer i on the m items
be deterministic and as follows:

vi(S) = 1

[

Bib ⊆ S for some b ∈ {0, 1, . . . , ℓ− 1}
]

for 0 ≤ i ≤ ℓ− 1, vi(S) = 0 for i ≥ N

In other words, we have set zero value for all but the first ℓ2 items, and any buyer with index i ≥ N has
zero valuation on any set of items. Moreover, buyer i ∈ {0, 1, . . . , N − 1} values any set containing one of
their bundles by 1, and otherwise 0. This is a monotone valuation, but not sub-additive.8

Upper bound on revenue of a mechanism. Using the property of the good collection, if an ex-post
mechanism sells a set S containing one of their bundles to a buyer, all the other buyers will value the
remaining sets of items by zero. This is because the set S contains at least one item from any bundle of any
of the other buyers, and a buyer values a set by zero if their set does not include one of their whole bundles.
This means that any mechanism—sequential item pricing mechanisms included—can sell to at most one
buyer. Since the maximum social welfare of a buyer is 1, the maximum revenue achievable will also be at
most 1, and can be gained by selling one bundle to a buyer.

Lower bound on ex ante revenue. Up next, consider the following mechanism. For each of the buyers
i ∈ {0, 1, . . . , N − 1}, pick one of their bundles uniformly at random. This will happen with probability 1

ℓ
for each bundle. Price all of the items in this bundle at 1−ǫ

ℓ for some ǫ > 0, and all other items at infinity.
In this case, the buyer purchases the randomly selected bundle, and gains a utility of 1 − ℓ · 1−ǫ

ℓ = ǫ > 0.
The revenue from this draw and this buyer will be 1− ǫ. Now note that each item is sold to each buyer with
probability 1/ℓ (i.e. the probability that its corresponding bundle is selected) and so the total allocation of
item j is N/ℓ ≤ 1. Therefore, the ex-ante constraint is satisfied, and this mechanism gets a total revenue of
N · (1− ǫ).

We can conclude that for this instance, no ex-post mechanism can get a revenue of better than a factor
of N of ex-ante revenue. Now using Lemma 21, we know that ℓ = Ω(

√
m). This concludes the bound in the

theorem statement.

C Gross Substitutes Valuations

The analysis presented in the main part of this work establishes the existence of a sequential item pricing
mechanism that achieves a 4e/(e − 1)-approximation to EARev(D, ItemPricing) whenever D is a dis-
tribution over gross substitutes (henceforth, GS) valuations. This was achieved through the design of a
1-RRS for GS valuations (Proposition 8), which in turn implies a e/(e− 1)-OCRS (Lemma 7) and finally a
4e/(e− 1)-approximation of EARev(D, ItemPricing) (Lemma 6).

However, the previous work of Chawla et al. [2023] established a 2-approximation for unit demand val-
uations (which are also GS), and furthermore this constant is easily shown to be tight for unit-demand
valuations even for m = 1 items via standard prophet inequality bounds. In this section, we will show that
one can obtain this factor of 2 even for GS valuations, proving Theorem 5 which we restate for convenience.

Theorem 5. Let D be any joint distribution for n buyers and m items over gross substitutes valuation
functions. Then we have,

EARev(D, ItemPricing) ≤ 2 ·Rev(D,SeqItemPricing).
8Let Bib be a bundle of buyer i. Then for any S ( Bib, |S| > 0 we have that vi(S) + vi(Bib \ S) = 0 < vi(Bib) = 1.
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In Section C.1 we argue that the analysis ofConvexHullSampler can be tightened under GS valuations
to show that we can actually turn the 1-RRS for GS valuations into a 1-OCRS, removing the loss of e/(e−1).
This already implies a 4-approximation for EARev(D, ItemPricing), through Lemma 6. Unfortunately,
we cannot further reduce the approximation constant, as it is inherited from the generality with which we
have stated our definitions, in order to capture harder families of valuations.

In Section C.2 we replicate the analysis of Chawla et al. [2023], in order to obtain a 2-approximation for
EARev(D, ItemPricing) under any GS valuationD and prove Theorem 5. While the proof in [Chawla et al.,
2023] was only shown for unit demand valuations, we observe that the same arguments also hold for GS
valuations. We comment that while the idea in this proof is similar to the ones used in this paper, it heavily
relies on the GS property and thus, cannot be directly applied to the more general families of valuations
that this work addresses.

C.1 Analysis of ConvexHullSampler for GS valuations

In this section, we show that the (1 − 1/e)-loss in revenue from the analysis of ConvexHullSampler in
Section 4 is actually not necessary under GS valuations. First, recall that when we defined our 1-RRS for
GS valuations, we simply set q := p as the GS condition handles the revenue constraint (see the paragraph
above Proposition 8 for the full argument). Let the {yT} and w vectors be defined exactly as in the application
of ConvexHullSampler in Section 4. Then, observe that by the definition of the {yT} vectors we have
that for any set Q ⊆ [k] and any j ∈ Q:

yQj = α · qQj Allocj(D|Q, q
Q) = pj ·Allocj(D|Q, p) ≥ pj ·Allocj(D, p) = wj (8)

where the inequality crucially uses the fact that D is GS, and thus the allocation of an item under any
restriction (that includes it) will never decrease. This inequality is all we need in order to provide a better
analysis of ConvexHullSampler that doesn’t suffer the (1− 1/e)-loss.

Specifically, we proceed to analyze ConvexHullSampler exactly as in the proof of Lemma 10, with
the only difference that instead of proving that

∑

T⊆S

λT · |yT | ≥
(

1− 1

e

)

· |w|,

we will actually show that
∑

T⊆S

λT · |yT | ≥ |w|,

from which it becomes clear that the (1− 1/e)-factor is no longer lost. To prove this, let s be the number of
iterations of ConvexHullSampler and recall that either σ = 1 or Qs = ∅ from our termination condition.
We will show that (8) implies that Qs = ∅ necessarily. Indeed, assume that this is not the case, and let

j ∈ Qs. Since Qs 6= ∅, it must be the case that σ = 1 and thus
∑s−1

i=0 λQi = 1. Since j ∈ Qs, we have that

0 < w̃s,j := wj −
s−1
∑

i=0

λQi · yQi

j

which is clearly a contradiction from (8), as the sum is simply a linear combination of terms that are at least
wj . Thus, we have concluded that Qs = ∅ always, which means that xs = 0 and thus w =

∑

T⊆S λT · yT ,
which is precisely what we wanted to show.

C.2 A 2-approximation for GS valuations

In this section, we replicate the analysis of Chawla et al. [2023] to prove Theorem 5. The proof is centered
around the following lemma, which essentially combines the Revenue Recovery Scheme and the Convex Hull
Sampling steps of our approach.
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Lemma 22. Fix any GS valuation D, any distribution over subsets of items S, any deterministic item
pricing p, and let w := ES∼S [Alloc(D|S , p)]. Then, for any vector y � w there exists a randomized item
pricing q = q(D,S, p, y) such that:

(a) ES∼S [Alloc(D|S , q)] = y, and,

(b) ES∼S [Rev(D|S , q)] =
∑m

j=1 pj · yj.

Proof. For each set of items T ⊆ [m], we define the vector xT := ES∼S [Alloc(D|S∩T , p)] and observe that
xT
j = 0 for any j /∈ T and xT

j ≥ w for any j ∈ T , due to the GS property of D. Thus, since y � w, we can

immediately deduce that vector y lies in the convex hull of the xT vectors, or equivalently that there exist
non-negative coefficients {λT }T⊆[m] such that

∑

T⊆[m] λT = 1 and y =
∑

T⊆[m] λT · xT .

The proposed item pricing q samples a set T ⊆ [m] according to the probabilities λT , and then presents
the buyer with pricing qT , defined as qTj = pj if j ∈ T and qTj =∞ otherwise. We will now argue that this
pricing satisfies the two conditions of the claim.

For the expected allocation, we have

E
S∼S

[Alloc(D|S , q)] =
∑

T⊆[m]

λT · E
S∼S

[Alloc(D|S , q
T )] =

∑

T⊆[m]

λT · E
S∼S

[Alloc(D|S∩T , p)] = y,

with the first equality following from q’s definition, the second equality follows from the fact that qT is
equivalent to p under valuations restricted on T , and the last equality follows from the definition of xT and
the fact that y =

∑

T⊆[m] λT · xT .
Likewise, for the expected revenue, with similar arguments we have

E
S∼S

[Rev(D|S , q)] =
∑

T⊆[m]

λT

m
∑

j=1

pj E
S∼S

[Allocj(D|S∩T , p)] =

m
∑

j=1

pj ·
(

∑

T⊆[m]

λTx
T
j

)

=

m
∑

j=1

pj · yj.

We are now ready to prove Theorem 5. Consider any GS valuations D = D1 × · · · × Dn and recall that

EARev(D, ItemPricing) =
n
∑

i=1

EARevx∗

i
(Di, ItemPricing)

for some ex-ante constraint {x∗
i }ni=1 with

∑n
i=1 x

∗
ij ≤ 1 for all items j ∈ [m]. Consider the sequential

item pricing mechanism that offers each buyer i ∈ [n] the pricing qi = q(Di,Si, pi, yi) of Lemma 22 over
only the available items, for the following instantiations: Di is the distribution of valuations for buyer
i; Si is the distribution of available items when i arrives (that depends on the randomness of pricings
and allocations over previous buyers); pi is an item pricing sampled from the distribution that achieves
EARevx∗

i
(Di, ItemPricing); and yi = (1/2) ·Alloc(Di, pi).

Define wi := ESi∼Si [Alloc(D|Si
, pi)]. As long as we can prove that yi � wi for all i ∈ [n], then the

guarantees of Lemma 22 will hold, and from condition (b) we will immediately obtain that the revenue the
above sequential item pricing collects from each buyer i (call it Revi) will satisfy

Revi = E
Si∼Si,pi

[Rev(D|Si
, qi)] =

1

2
E

Si∼Si,pi





m
∑

j=1

pj ·Allocj(Di, pi)



 =
1

2
· EARevx∗

i
(Di, ItemPricing),

and thus the proof of Theorem 5 will be completed.
In order to argue that yi � wi, observe that for any item j ∈ [m] we have

wij = E
Si∼Si

[Allocj(D|Si
, pi)] = Pr[j ∈ Si] · E

Si∼Si

[Allocj(D|Si
, pi)

∣

∣j ∈ Si] ≥ Pr[j ∈ Si] ·Allocj(Di, pi),
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where the inequality follows from the GS property, under which the allocation of any item under any
restriction that includes it can only increase. Thus, a sufficient condition to show that yi � wi is to prove
that Pr[j ∈ Si] ≥ 1

2 for all buyers i ∈ [n]. This will certainly be true for the first buyer, as S1 = [m]. Then,
from condition (a) of Lemma 22 we obtain that the expected allocation of items to the first buyer is exactly
y1. Inductively, we proceed to show that each buyer i′ < i gets expected allocation yi′ . Then, we get that

Pr[j ∈ Si] = 1−
∑

i′<i

yi′j ≥ 1−
n
∑

i′=1

yi′j = 1− 1

2

n
∑

i′=1

x∗
i′j ≥

1

2
,

with the last inequality following from the ex ante constraint. Thus, we have shown via induction that
Pr[j ∈ Si] ≥ 1/2 for all j ∈ [m] and i ∈ [n], completing the proof.

D A Lower Bound for RRSes on XOS Valuations

In Lemma 9, we proved the existence of an O(logm+ log Γ)-RRS, where Γ := pmax/pmin is the aspect ratio
of the given price. We now show that this dependency on Γ is necessary: without it, we would have to suffer
a factor of Ω(

√
m) in our approximation. This is captured through the following.

Theorem 23. For all m, there exists a distribution D over XOS valuations, a deterministic item pricing p,
and a deterministic subset of items S ⊆ [m], such that for all item pricings q,

Rev(D|S , q) ≤
1

Ω(
√
m)
·
∑

j∈S

pj ·Allocj(D, p).

This rules out the existence of any o(
√
m)-RRS for XOS valuations.

Before proceeding, we note that this lemma is not a counterargument to Informal Theorem 1, as the ex
ante allocation constraints for the counterexample are indeed exponential in m. Our counterexample is as
follows.

Available items and pricings. We define the subset of items S := [m− 1] (i.e. only the last item is not
available), and the pricing vector p := (β, β2, . . . , βm−1, 0), where β :=

√
m− 1.

Valuation distribution. We define the (deterministic) XOS valuation function vi,R that is parametrized
by an index i ∈ [m− 1] and a set R ⊆ [i− 1]. Such a valuation function consists of two additive components
v1i,R and v2i,R, i.e.

vi,R(T ) := max

{

∑

j∈T

v1i,R(j) ,
∑

j∈T

v2i,R(j)

}

for any T ⊆ [m], where the additive components are defined as

v1i,R(j) =











βi if j = i,

ǫ +
∑

k∈R(β
i − βk) if j = m,

0 otherwise.

and v2i,R(j) =

{

βi if j ∈ R,

0 otherwise.

for some tine ǫ > 0. The buyer valuation distribution D is then defined via the following sampling procedure:

1. An index i ∈ [m− 1] is sampled proportionally to β−i, i.e. with probability β−i

σ for σ :=
∑m−1

i=1 β−i.

2. A set R ⊆ [i − 1] is sampled by including each element j ∈ [i − 1] with probability (m − 1)−1/2

independently.
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3. Finally, valuation vi,R is realized.

We now begin the proof by examining the right-hand side of the statement of Theorem 23. Observe that
for any i ∈ [m−1] and R ⊆ [i−1], the utility-maximizing set under the valuation function vi,R and our chosen
pricing p is the set {i,m}; note that this is the utility-maximizing set for the first additive component with
utility of ǫ+

∑

k∈R(β
i−βk), while the maximum utility from the second additive component is

∑

k∈R βi−βk.
Therefore, we have Allocj(D, p) = β−j/σ for all j ∈ S (as whenever we draw j in the sampling process of
D, we know automatically that the utility-maximizing set is {j,m}). Hence,

∑

j∈S

pj ·Allocj(D, p) =
m−1
∑

j=1

βj · β
−j

σ
= σ−1 · (m− 1).

We also comment that the allocation probabilities are exponentially small in m, and thus they do not satisfy
the assumption of Informal Theorem 1.

To complete the proof, it suffices to show that under any pricing q, we have

Rev(D|S , q) ≤ 4σ−1
√
m− 1. (9)

Fix any pricing q. We define a labelling vector ℓ ∈ Zm−1, where ℓj = ⌈logβ qj⌉ for all j ∈ [m − 1]. We
now consider the maximum revenue we can extract from vi,R|S for any i and R. Since vi,R is defined as
the maximum over two additive valuations, we consider the three following ways via which we can extract
revenue from it.

Revenue is extracted from v1i,R|S and ℓi 6= i. Since revenue is extracted from v1i,R|S and m /∈ S, the

only item that can be purchased is i, valued at βi. Furthermore, since ℓi 6= i, we can conclude that qi ≤ βi−1

and therefore, the total revenue extracted from this case is at most

Ei,R[β
i−1] =

m−1
∑

i=1

βi−1 · β
−i

σ
= σ−1 · m− 1

β
= σ−1

√
m− 1.

Revenue is extracted from v1i,R|S and ℓi = i. In this case, the revenue extracted is at most βi. A
critical observation here is that we need ℓj ≥ i for all j ∈ R in order for this case to happen; note that the
utility of S under v1i,R|S is βi − qi < βi − βi−1, since ℓi = i, while if any item j ∈ R has ℓj ≤ i − 1, then its

utility under v2i,R|S is βi − qj ≥ βi − βi−1, and thus the buyer would deviate away from buying item i and

towards buying this j under v2i,R|S .

We now define the set U = {i ∈ S : ℓi = i}, and note that revenue in this case can only be extracted
from items in U . Furthermore, consider any item i ∈ U and any R, we can only extract revenue from item
i under v1i,R|S if R ∩ U = ∅; otherwise, some item j ∈ R has ℓj = j < i, and by the previous observation

we cannot extract revenue from item i under v1i,R|S . Therefore, if we enumerate U = {u1, u2, . . . , ut} where
u1 < u2 < . . . < ut, the total revenue extracted in this case is at most

E
i,R

[βi · 1(revenue from v1i,R|S and ℓi = i)] ≤ E
i,R

[βi · 1[i ∈ U ∧R ∩ U = ∅]]

=

t
∑

j=1

βk Pr[i = uj] Pr[R ∩ U = ∅ | i = uj]

=

t
∑

j=1

βuj · β
−uj

σ
·
(

1− 1√
m− 1

)j−1

≤ σ−1
∞
∑

j=0

(

1− 1√
m− 1

)j

= σ−1
√
m− 1

where the second line uses the fact that each item u1, u2, . . . , uj−1 does not appear in R with probability
1− 1√

m−1
independently.
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Revenue is extracted from v2i,R|S. We first fix any item j, and for convenience let l = ℓj . Observe that

item j can only be sold in this case if l ≤ i (otherwise when l > i, we have qj > βl−1 ≥ βi = v2i,R|S(j));

furthermore, we obviously have qj ≤ βl. Therefore, the total revenue extracted from item j in this case is
at most

E
i,R

[βl · 1(revenue from v2i,R|S and j is included)] ≤ E
i,R

[βl · 1[j ∈ R ∧ i ≥ l]]

= βl
m−1
∑

k=1

Pr[i = k] Pr[j ∈ R | i = k]

≤ βl

√
m− 1

m−1
∑

k=l

β−k

σ

≤ βl

√
m− 1

· 2β
−l

σ
=

2σ−1

√
m− 1

where the second line uses that Pr[j ∈ R | i = k] is 1√
m−1

if i > j, or 0 otherwise; the second line assumes

that β =
√
m− 1 ≥ 2, which means we can bound

∑m−1
k=l β−k ≤ 2β−l.

Thus, the total revenue extracted from this case is at most

E
i,R





m
∑

j=1

βℓj · 1(revenue from v2i,R|S and j is included)



 ≤ 2σ−1
√
m− 1.

Combining the three cases gives us an upper bound of 4σ−1
√
m− 1 on Rev(D|S , q) for any q.

E Deferred Proofs from Section 8

We start by reproducing the description of our instance for convenience.

The buyers. Let n buyers vi ∼ Di be (independently) identically distributed, with valuations sampled
according to the following process:

1. A set of items A ⊆ [m] with |A| = k is sampled uniformly at random.

2. An integer h ∈ {1, 2, . . . , 12 log k} is drawn uniformly at random. We denote ℓ := 2h.

3. The valuation of the buyer is then realized as an XOS function, which is given by the maximum over
the following additive valuations:

(a) For the set A, we define an additive valuation vA such that vA(j) = 1 + t for items j ∈ A and
vA(j) = 0 for items j /∈ A.

(b) For every set B of cardinality |B| = t·ℓ, we define an additive valuation vB such that vB(j) = 1+ k
ℓ

for items j ∈ B and vB(i) = 0 for items j /∈ B.

We will take n = k =
√
m and t =

√
log k. Observe that for our selected parameters t · ℓ ≤ √m · logm ≤ m,

and all parameters are integer-valued, so this is a well-defined instance. Let Ai be the A-set for buyer i.

In order to prove the instance-specific claims in Section 8, we will require more notation. We use
Rev(vi, p) to denote the revenue that we collect from the i-th buyer if their valuation is realized to vi
and the pricing is some fixed vector p ∈ Rm

≥0. Note that this is a deterministic quantity, as all sources of
randomness are fixed.
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For our instance we will define the events EA(vi, p) and EB(vi, p) that subset of items [m] that buyer i
with valuation vi purchases is of type A or B respectively; more formally, EA(vi, p) holds if for prices p the
buyers’ utility for their preferred bundle T ⊆ [m] is given by

ui(T ) = vi(T )− p(T ) =
∑

j∈T

(vA(j)− pj),

and otherwise EB(vi, p) holds if their valuation is given by some vB.

Lemma 14. For any vi, p such that EA(vi, p) holds, buyer i purchases at least kt
t+1 items.

Proof of Lemma 14. We consider a fixed buyer v = vi (and thus also the set A and the integer ℓ in the
valuation description) and a fixed pricing p. Since EA(v, p) holds, we know that the buyer will purchase a
set of items such that their utility is maximized through the linear valuation vA; in particular, including a
subset AT ⊆ A given by

AT := argmax
T⊆A

(vA(T )− p(T )) = {j ∈ A : pj ≤ t+ 1}.

We will show that |AT | ≥ kt
t+1 . To that end, let BAT ⊆ AT be a maximal B-utility subset of AT . Observe

that since t ≤ k
ℓ for our chosen parameters, every item worth buying under an A-valuation vA will also be

worth buying under some B-valuation vB. Thus, BAT is any maximal-cardinality subset of AT of size at
most tℓ.

Since EA(vi, p) holds we know that i prefers AT to BAT , meaning AT has higher utility than BAT , so

∑

j∈AT

(t+ 1− pj) ≥
∑

j∈BAT

(

1 +
k

ℓ
− pj

)

. (10)

We first argue that |AT | > tℓ. Otherwise BAT = AT , and thus (10) can only be satisfied if t ≥ k
ℓ which is

not the case as tℓ ≤ √log k ·
√
k < k. Therefore |AT | ≥ tℓ. In this case, |BAT | = tℓ and (10) can be restated

as
∑

j∈AT \BAT

(t+ 1− pj) ≥
∑

j∈BAT

(

k

ℓ
− t

)

= kt− t2ℓ, (11)

and since pj ≥ 0 for all j this implies that

(t+ 1) · (|AT | − tℓ) ≥ kt− t2ℓ.

This immediately implies that |AT | ≥ kt
t+1 , as claimed.

Lemma 15. For some c1 ∈ R≥0 and sufficiently large k, for all p, Evi

[

Rev(vi, p) | EA(vi, p)
]

≤ c1 · k.

Proof of Lemma 15. We will prove this claim for every item pricing p and every buyer valuation v = vi ∼ Di,
provided that the event EA(vi, p) holds. The claim will then follow from taking the conditional expectation
over vi.

We use the same setup as in the proof of Lemma 14 to define the sets AT and BAT . Since EA(vi, p) holds
by assumption, we know that Rev(vi, p) = p(AT ) because the buyer maximizes their utility via vA and buys
this set. Therefore we will bound p(AT ).

Just as before, (10) implies that |AT | ≥ tℓ and that

∑

j∈AT \BAT

(t+ 1− pj) ≥ kt− t2ℓ (12)
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holds for any subset BAT of AT with cardinality tℓ; in particular it holds for BAT the tℓ items in AT of
minimum price. For this choice of BAT the average item price in AT \ BAT exceeds the average item price
in AT , i.e.

p(AT \BAT )

|AT \BAT |
≥ p(AT )

|AT |
.

Plugging this into (12) and observing that |AT \BAT | = |AT | − tℓ yields

kt− t2ℓ ≤
∑

j∈AT \BAT

(1 + t− pj) = (1 + t)(|AT | − tℓ)− p(AT \BAT ) ≤ (|AT | − tℓ) ·
(

1 + t− p(AT )

|AT |

)

.

Solving for p(AT ) we obtain

p(AT ) ≤ |AT | ·
|AT |(t+ 1)− t(k + ℓ)

|AT | − tℓ
,

and using that |AT | ≤ |A| = k (by definition) and that |AT | ≥ kt
t+1 by Lemma 14 since EAi (v, p, S) holds, we

finally obtain that

p(AT ) ≤ k · k(t+ 1)− t(k + ℓ)
kt
t+1 − tℓ

.

The proof is completed by showing
k(t+ 1)− t(k + ℓ)

kt
t+1 − tℓ

≤ c1

for some constant c1 and all sufficiently large k, which easily follows from observing that k ≥ 2tℓ for our
choice of parameters t =

√
log k and ℓ ∈ [2,

√
k].

Lemma 16. For some c2 ∈ R≥0 and sufficiently large k, for all p, Evi

[

Rev(vi, p) | EB(vi, p)
]

≤ c2 · t · k
log k .

Proof. Consider a fixed item pricing p ∈ Rm
≥0. We can relabel the items so that their prices are non-decreasing,

i.e. we assume without loss of generality that p1 ≤ p2 ≤ . . . ≤ pm.
Since we are conditioning on event EBi (v, p, S), we know that the buyer always buys a set of items whose

utility is maximized through a B-valuation, thus they buy a set of at most tℓ items where ℓ is a buyer-
dependent parameter that is drawn uniformly at random from L = {2, 4, 8, . . . ,

√
k}. Furthermore, the

buyer will clearly prioritize the cheaper items, as all items have the same (additive) valuation of 1 + k/ℓ
under B and cheaper items contribute more to the buyer’s utility. Thus, for a given ℓ, the buyer will purchase
items T which are a prefix of the items in ascending-price-order:

T = {1, 2, 3, . . . , x} ⊆ [m],

where x is the maximum index for which x ≤ tℓ and px ≤ 1 + k
ℓ . We will bound the conditional expected

revenue, which is precisely the conditional expectation of p(T ), by observing that

E
vi

[

Rev(vi, p) | EB(vi, p)
]

=
∑

ℓ′∈L

E
vi

[

Rev(vi, p) | EB(vi, p) ∧ ℓ(vi) = ℓ′
]

· Pr
vi

[ℓ(vi) = ℓ′]

=
1

|L| ·
∑

ℓ′∈L

E
vi

[

p(T ) | EB(vi, p) ∧ ℓ(vi) = ℓ′
]

. (13)

Here we use ℓ(vi) to denote the value of ℓ that vi ∼ Di realizes, and we used that Prvi [ℓ(vi) = ℓ′] = 1
|L| =

2
log k

for all ℓ′ ∈ L. We will bound this sum (13) by c2 · tk
log k for some constant c2 and sufficiently large k. We

will do this by a combination of case analysis and grouping the possible values of ℓ as a function of the
non-uniform prices. Let

ℓ∗ := max

({

ℓ ∈ L : ptℓ ≤
k

ℓ
+ 1

})

.

This set is nonempty and the threshold parameter value ℓ∗ exists provided that p2t ≤ k
2 +1. This is because

the thresholds k
ℓ +1 are decreasing in ℓ, while the prices ptℓ are increasing in ℓ. Therefore we have two cases

to consider.
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Case 1. First, we consider the case that p2t >
k
2 + 1. In this case, since t+ 1 ≤ k

2 + 1 for t =
√
log k and

also k
ℓ + 1 ≤ k

2 + 1 for ℓ ≥ 2, we know the buyer will not buy any item j for j ≥ 2t; since pj is too high it
would necessarily decrease their utility. Furthermore, the maximum revenue attainable from each of the 2t
remaining items is at most equal to their value to the buyer, which is (kℓ +1) for ℓ ∈ L uniformly at random.
Thus, from (13) we obtain

E
vi

[

Rev(vi, p) | EB(vi, p)
]

≤ 2t
∑

ℓ∈L

1

|L| ·
(

1 +
k

ℓ

)

=
1

|L| · (2t|L|+ 2tk) ≤ 6tk

log k
,

where the last statement follows from |L| = 1
2 log k and the fact that L = {2, 4, 8, . . . ,

√
k} follows a geometric

progression and so the ℓ−1 terms sum to at most 1.

Case 2. We now address the case where ℓ∗ is well-defined. We consider a buyer v = vi and again use ℓ(v)
to denote the ℓ value that their valuation realized. We analyze their expected revenue based on whether
ℓ(v) < ℓ∗, ℓ(v) = ℓ∗, or ℓ(v) > ℓ∗.

If ℓ(v) = ℓ∗, then we know that the buyer will purchase at most tℓ∗ items, and also that each item
contributes at most the buyer’s per-item value to the revenue, which is k

ℓ∗ + 1. Thus we have

E
v

[

Rev(v, p) | EB(v, p) ∧ ℓ(v) = ℓ∗
]

≤ tℓ∗
(

1 +
k

ℓ∗

)

= t(k + ℓ∗). (14)

If ℓ(v) < ℓ∗, then each item sold can contribute at most ( k
ℓ∗ + 1) to the revenue, and for each ℓ at most

tℓ items can be sold. Thus, we have

∑

ℓ∈L:ℓ<ℓ∗

E
v

[

Rev(v, p) | EB(v, p) ∧ ℓ(v) = ℓ
]

≤
∑

ℓ∈L:ℓ<ℓ∗

tℓ ·
(

1 +
k

ℓ∗

)

≤ t(k + ℓ∗), (15)

where the last inequality follows from
∑

ℓ∈L:ℓ<ℓ∗ ℓ ≤ ℓ∗ again because the terms of L follow a geometric
progression.

Finally, if ℓ(v) > ℓ∗ then each individual item can contribute at most k
ℓ(v) + 1 to the revenue, because

this is the buyer’s per-item value. And by the definition of ℓ∗ there can be at most tℓ∗ items such that
pj ≤ k

ℓ(v) + 1 ≤ k
ℓ∗ + 1; only these items may generate revenue. Thus, we have

∑

ℓ∈L:ℓ>ℓ∗

E
v

[

Revi(v, p, S) | EBi (v, p, S) ∧ ℓ(v) = ℓ
]

≤ tℓ∗ ·
∑

ℓ∈L:ℓ>ℓ∗

(

1 +
k

ℓ

)

≤ tℓ∗ · |L|+ tk, (16)

where the last inequality once again follows because the terms of L follow a geometric progression, so the
sum of the ℓ−1 terms is at most 1.

Combining everything, applying (14), (15), and (16) to (13) we have

E
vi

[

Rev(vi, p) | EB(vi, p)
]

=
1

|L| ·
∑

ℓ∈L

E
vi

[

Rev(vi, p) | EB(vi, p) ∧ ℓ(v) = ℓ
]

≤ 1

|L| · (2t(k + ℓ∗) + tℓ∗|L|+ tk),

and since ℓ∗ ≤ max(L) =
√
k and |L| = 1

2 log k, we have that

E
vi

[

Rev(vi, p) | EB(vi, p)
]

≤ c2 ·
tk

log k

for some constant c2 and all suitably large k, as desired.
This holds in both cases, completing the proof.

36



Before proving the lemma 17, recall the definitions of an assignment σ of items to buyers and the definition
for I ⊆ [n] to be (1− c)-feasible under σ (Definitions 4 and 5). We will use the following more general claim:

Lemma 24. Let E(c, C, n) denote the event that there exist some subset of buyers I ⊆ [n] and assignment
σ : [m] → [n] ∪ {⊥} such that |I| ≥ Cn and I is (1 − c)-feasible under σ. For any fixed constant γ > 0, if

c = γ · log−1/2 n and C = 8c = 8γ log−1/2 n, then

Pr
v∼D

[E(c, C, n)] = O
(

e−n2/ log2 n
)

.

Proof of Lemma 24. To begin, consider a fixed I ⊆ [n] let α := |I|/n. We will be interested in the I for
which α ≥ C. Next let N(I) := ∪i∈IAi be the union of the A-sets for i ∈ I, and let Aσ

i := Ai ∩ σ−1(i), so
that σ is (1 − c)-feasible for i precisely when |Aσ

i | ≥ (1− c)|Ai| = (1− c)n.
Next observe that for all assignments σ,

min
i∈I
|Aσ

i | ≤
1

|I| ·
∑

i∈I

|Aσ
i | ≤

1

|I| · |N(I)|,

since Aσ
i ⊆ Ai by definition and the Aσ

i are disjoint because σ is a well-defined mapping. Therefore if σ is
(1− c)-feasible for I, then

|I|n(1− c) ≤ |I|min
i∈I
|Aσ

i | ≤ |N(I)|. (17)

We will argue that for fixed I a (1−c)-feasible assignment for I is unlikely to exist, because this would imply
that |N(I)| ≥ |I|(1− c)n by (17), which we will show is unlikely.

To this end, let Xij := 1{j ∈ Ai} indicate the event that j ∈ Ai; then let Yj := maxi∈I Xij indicate that
j is in at least one set Ai for i ∈ I. Then observe that Y :=

∑

j Yj = |N(I)|.
Claim 25. {Yj} is negatively associated (NA).

Proof. This follows from results about NA variables by Joag-Dev and Proschan [1983]; in particular closure
and composition properties for collections of NA variables.

First, consider each collection of indicator random variables Xi := {Xi′j : i′ = i}. Exactly n of
these are 1, indicating the subset A chosen uniformly at random from [m]; therefore this is a permuta-
tion distribution, and so by [Joag-Dev and Proschan, 1983] Theorem 2.11 this collection Xi is NA. Next,
consider the larger collection X := {Xij}; as the union of independent collections of NA variables, X is
also NA ([Joag-Dev and Proschan, 1983], Property P7). Finally, consider the collection Y := {Yj}. Since
Yj := maxi∈I Xij , each Yj is defined on a unique subset of the NA variables X ; for any Yj and Yj′ , the sets
of Xij upon which they depend are disjiont. Since max(·) is an increasing function, therefore Y is NA also
([Joag-Dev and Proschan, 1983], Property P6).

Bounding |N(I)|: Since Claim 25 demonstrates that Y is negatively associated, we can use concentration.
First note that for all j,

E
v∼D

[Yj ] = 1− Pr
v∼D

[

∧

i∈I

(j 6∈ Ai)

]

= 1− (1− 1/n)|I| = 1− (1− 1/n)αn.

Then we may bound the probability that |N(I)| ≥ |I|(1 − c)n by applying a Hoeffding bound to
∑

j Yj for
any I with |I| ≥ Cn as follows:

Pr
v∼D

[

|N(I)| ≥ αn2(1− c)
]

= Pr
v∼D

[

Y − E
v∼D

[Y ] ≥ αn2(1− c)− E
v∼D

[Y ]
]

≤ exp

(

−2
(

αn2(1 − c)− Ev∼D [Y ]
)2

n2

)

= exp

(

−2
(

αn2(1 − c)− n2(1 − (1− 1/n)αn)
)2

n2

)

.
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Since 1− (1− 1/n)αn ≤ 1− e−α(1−O(1/n))α ≤ 1− e−α + e−α ·O(1/n) ≤ α− α2/2+ α3/6+ e−α ·O(1/n),
therefore

Pr
v∼D

[

|N(I)| ≥ αn2(1− c)
]

≤ exp

(

−2α2n2

(

(1− c)− (1− α

2
+

α2

6
+

e−α

α
O(n−1)

)2
)

= exp

(

−2α2n2

(

α

2
− α2

6
− e−α

α
O(n−1)− c

)2
)

≤ exp

(

−1

8
n2α4

(

1− 2α

3
− 4

e−α

α2
O(n−1)

)2
)

,

since α ≥ C > 4c, and since α ≥ C ≫ n−1/3 for sufficiently large n this last term is o(α), so

≤ exp

(

−1

8
n2α4

(

1− 3α

4

)2
)

≤ exp

(

− 9

128
n2α4

)

,

where we used that 1− 3α/4 ≥ 3/4. Since I is a set for which α ≥ C, by (17), we therefore know that

Pr
v∼D

[∃σ : σ is (1− c)-feasible for I] ≤ exp

(

− 9

128
n2C4

)

. (18)

Concluding: We finish our argument with a union bound over the sets I ⊆ [n] for which |I| ≥ Cn. There
are at most 2n < en such sets; therefore by (18),

Pr
v∼D





∨

I⊆[n]:|I|≥Cn

(∃σ : σ is (1− c)-feasible for I)



 ≤
∑

I⊆[n]:|I|≥Cn

Pr
v∼D

[∃σ : σ is (1− c)-feasible for I]

≤ exp

(

n− 9

128
· n2C4

)

= O(e−n2/ log2 n)

for our choice of C = O(log−1/2(n)). The left-hand side is precisely the probability of the event E(c, C, n),
and so this demonstrates the stated claim.

With this lemma in hand, Lemma 17 follows as a direct corollary.

Lemma 17. Let Imax(v) be the largest I ⊆ [n] for which I is (1− 1
t+1 )-feasible under σ, for any assignment

σ. Then for some c3 and sufficiently large k, Ev [|Imax(v)|] ≤ c3 · nt .
Proof. Since t =

√
logn for our choice of parameters, observe that any I which is (1 − 1

t+1 )-feasible under

some assignment σ is also (1− 2
t )-feasible under σ.

We may take therefore take γ = 2 and c = 2
log1/2 n

and C = 16
log1/2 n

and apply Lemma 24, which implies

that
Pr
v∼D

[E(c, C, n)] = O
(

e−n2/ log2 n
)

.

Therefore, turning to |Imax(v)|, we have

E
v
[|Imax(v)|] = E

v
[|Imax(v)| | ¬E(c, C, n)] Pr

v
[¬E(c, C, n)] + E

v
[|Imax(v)| | E(c, C, n)] Pr

v
[E(c, C, n)]

≤ Cn+ n · Pr
v
[E(c, C, n)]

≤ n · 16
t

+ n · c1 · e−n2/ log2 n ≤ 17 · n
t

for some constant c1 and for sufficiently large k = n, as claimed.
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