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ABSTRACT

Human-designed algorithms have long been fundamental in solving a variety of scientific and
engineering challenges. Recently, data-driven deep learning methods have also risen to prominence,
offering innovative solutions across numerous scientific fields. While traditional algorithms excel
in capturing the core aspects of specific problems, they often lack the flexibility needed for varying
problem conditions due to the absence of specific data. Conversely, while data-driven approaches
utilize vast datasets, they frequently fall short in domain-specific knowledge. To bridge these gaps,
we introduce FMint (Foundation Model based on Initialization), a generative pre-trained model that
synergizes the precision of human-designed algorithms with the adaptability of data-driven methods.
This model is specifically engineered for high-accuracy simulation of dynamical systems. Starting
from initial trajectories provided by conventional methods, FMint quickly delivers highly accurate
solutions. It incorporates in-context learning and has been pre-trained on a diverse corpus of 500,000
dynamical systems, showcasing exceptional generalization across a broad spectrum of real-world
applications. By effectively combining algorithmic rigor with data-driven flexibility, FMint sets the
stage for the next generation of scientific foundation models, tackling complex problems with both
efficiency and high accuracy.

Keywords Foundation Model · Dynamical Systems · Fast Simulation · In-context Learning

1 Introduction

Throughout history, humanity has developed a myriad of algorithms to address real-world challenges. For instance,
numerical integration methods such as the Euler and Runge-–Kutta methods have significantly advanced our ability to
solve ordinary differential equations (ODEs) with guaranteed accuracy. More recently, deep learning has demonstrated
remarkable success in data-driven approaches across various scientific domains, including solving partial differential
equations (PDEs), learning operators, and addressing inverse problems. This success raises an intriguing question: is it
possible to integrate the strengths of traditional human-designed algorithms with modern data-driven methods?

Human-designed algorithms excel in capturing the structural nuances of specific problems but often lack the adaptability
needed for varying parameters and conditions. Conversely, data-driven approaches effectively utilize large data sets
but typically underperform in data-scarce environments and may lack essential domain knowledge. To address these
challenges, we introduce FMint, a generative pre-trained foundation model designed to synergize the strengths of
both approaches. FMint is equipped with in-context learning capabilities and has been pre-trained on over 500,000
dynamical systems, enabling it to generate highly accurate simulations from initial user-provided data. Moreover, our
model delivers rapid, high-accuracy solutions leveraging its generalization capabilities and the ability to perform direct
inference without the need for parameter updates. FMint represents the first foundation model to seamlessly integrate
human expertise with adaptable learning, making it a pioneering tool in the simulation of diverse dynamical systems.

∗Equal contribution.
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FMint: Foundation model for simulation

Problem set-up Dynamical systems are fundamental in describing the evolution of physical states across a wide
range of disciplines, including physics [1, 2, 3], chemistry [4, 5], engineering [6, 7, 8], and finance [9, 10]. Typically,
these systems are formulated as systems of ODEs:

du(t)

dt
= f [u(t)], u(0) = c0, (1)

where c0 denotes the initial condition of the system. To solve this system numerically, one employs a numerical
integration method given as

un+1 = un + S(f ,un,∆tn), u0 = c0, n = 0, 1, · · · . (2)

where S represents the numerical integration scheme, such as the Euler method, and ∆tn represents the step size at
n-th time step, and un ∈ Rn is the approximated solution at cumulative time

∑n
i=0 ∆tn. To obtain higher simulation

accuracy, users may adjust the integration scheme S and the time step ∆tn based on specific requirements. However,
large-scale simulation often necessitate simulating numerous trajectories, each with unique initial conditions. In these
scenarios, it is practical to standardize the time step ∆t := ∆t1 = ∆t2 = · · · across simulations, facilitating batch
processing. Yet, this standardization introduces a trade-off between accuracy and efficiency: A larger time step, e.g.
k∆t speeds up the simulation at the cost of increased error, and vice versa. The trade-off underlines a key limitation of
human-designed algorithms: their inability to dynamically adapt to the diverse conditions inherent in different types
of problems. Although human-designed numerical integration schemes such as the Euler method and Runge-–Kutta
method are essential for simulating a wide array of ODEs, these methods do not fully leverage data or incorporate
problem-specific information, which can restrict their effectiveness.

To address these challenges, we introduce FMint, a novel foundation model embedded within a meta-learning framework
designed for the rapid simulation of dynamical systems. This model significantly refines coarse solutions, delivering
highly accurate results through fast inference. Pre-trained on a diverse dataset of 500,000 ODEs, FMint demonstrates
robust generalization across various dynamical systems, consistently achieving high-accuracy solutions.

2 Related Work

2.1 Neural network based PDE solver

In recent years, neural network methods have increasingly been applied to tackle scientific problems, including
solving PDEs, operator learning, and inverse problems. For instance, Physics-Informed Neural Networks (PINNs)
[11, 12, 13, 14, 15] parameterize the PDE solution within a neural network framework. The network’s loss function is
constructed by enforcing the PDE constraints, integrating physical laws directly into the learning process. Similarly,
the Finite Expression Method (FEX) [16, 17, 18] parameterizes solutions to PDEs using computer algebra, effectively
capturing the solution structure and thus offering high accuracy and interpretable results. An alternative approach
involves learning a mapping from initial conditions or varying parameters to solutions, known as the neural operator.
This method achieves discretization invariance by learning a family of parametric maps, allowing it to generalize across
different parameters and conditions of PDEs [19, 20, 21, 22]. Another approach involves using a neural network as an
error corrector to enhance simulations. For instance, NeurVec [23] employs this strategy to enable rapid simulation of
ordinary differential equations (ODEs) with large time steps. This approach achieved decent accuracy with relatively
coarse integration steps on several classic dynamical systems. However, NeurVec requires specific training for each
distinct ODE system using a fixed coarse step k∆t, making its retraining both costly and computationally inefficient.
Moreover, its lack of generalization capability to out-of-distribution (OOD) systems significantly restricts its practicality
for large-scale real-world simulations.

2.2 Foundation Model in Scientific Machine Learning

Inspired by the breakthroughs achieved by large language models like GPT-4 [24], DALL-E [25], and Llama [26],
the scientific machine learning community has experienced a marked increase in the adoption of foundation models
over the past year. These models are characterized by their extensive pre-training on large datasets, which enables
impressive generalization and transfer learning capabilities. They are adaptable to downstream tasks through zero-shot
or few-shot learning approaches, or can be fine-tuned to tackle specific problems. For instance, Subramanian et al.
[27] explored the transfer learning capabilities of the Fourier Neural Operator (FNO) [19] by solving three classical
PDEs and investigating its applicability across various physics, scales, and data availability in downstream tasks. The
Unified Physics Solver (UPS) [28] extends this approach by covering a broader range of 1D and 2D PDEs, employing
a pre-trained large language model for operator learning. Additionally, McCabe et al. [29] introduced a method to
embed PDEs with varying physical properties into a shared embedding space, facilitating the simultaneous addressing
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of multiple heterogeneous PDEs. Rahman et al. [30] proposed an attention mechanism tailored to the codomain of
PDEs, enhancing the model’s ability to handle PDEs with varying dimensions.

Another burgeoning area within scientific machine learning focuses on leveraging in-context learning [31, 32, 33]. In
this approach, models are prompted with multiple example pairs and are trained to make predictions on new query data
based on patterns recognized during the training demonstrations. A notable implementation of this is the In-context
Operator Network (ICON), which Yang et al. have explored in several studies [34, 35, 36]. ICON demonstrates operator
learning by using example pairs that vary in parameters of the PDE and their corresponding solutions, thus enabling the
network to predict solutions for new query data points.

3 Methodology

FMint is pre-trained on a vast dataset comprising diverse solution trajectories of dynamical systems alongside their
corresponding error correction terms. This extensive pre-training enables the model to effectively apply transfer
learning, facilitating both zero-shot and few-shot inferences across a range of downstream applications. Our training
methodology leverages in-context learning: the model observes examples of input data pairs and uses this context to
make predictions on new, query data.

In solving Equation (1), one typically selects a numerical integration scheme that utilizes a large time step size, denoted
as k∆t. For illustrative purposes, we consider the Euler method, which yields the following numerical simulation
scheme:

û(t+ k∆t) = û(t) + f [û(t)] · k∆t, (3)
However, solving the dynamical system (1) with numerical scheme (3) and large step size unavoidably causes huge
simulation errors, as we can see from the Taylor expansion

u(t+ k∆t) = u(t) + f [u(t)] · k∆t︸ ︷︷ ︸
For Euler method

+

∞∑
n=2

1

n!

dn

dtn
u(t) · [k∆t]n︸ ︷︷ ︸

Error term err n

. (4)

From (4), the error term
∑∞

n=2 errn(k,∆t,u(t)) is non-negligible and limits the fast simulation of real-world dynamical
systems. We call (3) solutions obtained by vanilla numerical integration schemes as “coarse solutions”. With coarse
solutions as an initialization, our model is able to return highly accurate solution with fast inference time on a diverse
set of dynamical systems, i.e.,

ûk(n+1) = ûkn + S (f , ûkn, k∆t) + FMint (ûkn; Θ) , û0 = c0, n = 0, 1, · · · , (5)
where Θ represents all the parameters of the foundation model.

We consider 500K ODEs that are commonly observed in important applications in engineering and science. To prepare
our training data for the in-context learning of the model, we simulate each ODE system with coarse step size k∆t,
and its corresponding error correction errûkn

= uk(n+1) − ûkn − S (f , ûkn, k∆t). Therefore, the model takes the
collection of “demos”, a query data point ut and outputs an error correction term errt

{{û0, err0}, {ûk, errk}, . . . , {ûnk, errnk}, ût} → errt. (6)

Figure 1 illustrates our in-context learning approach for error correction, thus enabling fast inference of high accuracy
solution from initial solution by classical numerical methods.

3.1 Data preparation

Data setup To pre-train our foundation model, we initially generate time series data from key dynamical systems that
are prevalent across various applications. For each specified ODE, we create 1,000 variations with different parameters.
Additionally, for each variation, we produce trajectories from 100 unique initial conditions. Consequently, for each
ODE type, our dataset comprises the trajectories of 100,000 ODEs, each differentiated by varying coefficients and
initial conditions.

1. Decay equation. We consider a first-order linear ODE of exponential decay processes

dN

dt
= −λN,

where N is the quantity that changes over time, and λ ∼ Uniform(0.2, 0.5) is the rate of decay.
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Demo_1

… …

Demo_N

… … …

COND_NCOND_1 QOI_1 QOI_N Query

𝑢! 𝑒! 𝑢" 𝑒" 𝑢 𝑒

Error prediction

Transformer

Figure 1: In-context learning for error correction prediction. The model is prompted with N pairs of data, each
consisting of a coarse numerical solution and its corresponding error correction, and a query coarse solution. Then, the
model predicts the error in a forward pass without parameter update.

2. Newton’s Law of Cooling. It describes how the temperature T of an object changes towards the environment
temperature Tenv ∼ Uniform(15, 25) over time, and k ∼ Uniform(0.1, 0.5) is the cooling rate coefficient.

dT

dt
= −k(T − Tenv),

3. Lotka-Volterra system. It is a pair of first-order, nonlinear differential equations used to describe the dynamics
of biological systems 

dx

dt
= αx− βxy,

dy

dt
= δxy − γy,

where x is the number of prey, y is the number of predator, α ∼ Uniform(0.1, 0.2) is the natural growing
rate of prey in the absense of predators, β ∼ Uniform(0.04, 0.06) is the natural dying rate of prey due
to predation, γ ∼ Uniform(0.6, 0.7) is the natural dying rate of predators in the absence of prey, and
δ ∼ Uniform(0.03, 0.04) is the rate at which predators increase by consuming prey.

4. Van der Pol oscillator. We consider a non-conservative oscillator with nonlinear damping, and it exhibits
stable oscillatory solutions. The nonlinear damping also provides a rich framework for exploring complex
behaviors such as bifurcations, chaos and pattern formation. The ODE reads as

d2x

dt2
− µ(1− x2)

dx

dt
+ x = 0,

where x represents the state of system, µ ∼ Uniform(0.5, 1.5) is a parameter that controls the strength of
damping.

5. Damped harmonic oscillator. This equation is fundamental in physics and engineering for describing systems
that exhibit oscillatory behavior with damping

d2x

dt2
− 2ζω

dx

dt
+ ω2x = 0,

where x represents the state of system, ζ ∼ Uniform(0.01, 0.02) is the damping ratio, and ω ∼ Uniform(5, 10)
is the natural frequency of the undamped system.

The fine time step size ∆t, the number of time steps k, the range of initial conditions (IC), and the numerical integration
scheme are summarized in Table 1.
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Table 1: Parameter setup
Name k ∆t IC (1d) IC (2d) Integration scheme

Exponential decay 10 0.05 (100, 200) N/A Euler
Newton’s law of cooling 10 0.05 (0, 80) N/A Euler

Lotka Volterra 200 0.005 (10, 20) (2, 10) RK4
Van der Pol 100 0.005 (−2.0, 2.0) (−0.5, 0.5) RK4

Damped 100 0.001 (−2.0, 2.0) (−0.1, 0.1) RK4

3.2 Model architecture

Inspired by the recent successes of large language models (LLMs) [24, 37, 38], we designed our model using a
decoder-only transformer backbone [39]. This structure allows our model to predict the next “error” in a sequence by
learning from previous examples, effectively correcting errors in each step of the simulation.

As illustrated in Table 2, we structure our input using three types of tokens: condition tokens, Quantity of Interest
(QoI) tokens, and query tokens, following [34]. For the i-th example, each token comprises a key-value pair. The key
represents the coarse time step, denoted as ik∆t. The values for the condition and QoI tokens correspond to the coarse
solution and error correction term at time ik∆t, respectively, while the value for query tokens is populated with zero.

Each token undergoes transformation through a shared embedding layer to obtain a representative embedding vector.
This vector is then concatenated with a learnable positional embedding to maintain temporal context. To preserve order
invariance among key-value pairs, all tokens of the same type within an example share the same positional encoding.
The concatenated vectors are fed into the transformer model, and the transformer’s output is subsequently directed to a
prediction head for final error prediction. Our model is trained using the mean squared error as the loss function.

A major challenge in training decoder-only transformer models is the implementation of masking. Specifically, when
predicting the QoI, the model must consider the conditions and QoI values from preceding examples. This requirement
stems from the fact that all demonstration examples pertain to the identical ODE, differing only in their initial conditions.
Furthermore, predictions of QoI are independent and remain unaffected by the order of the tokens. To effectively
manage these constraints, we employ a specialized transformer masking technique, as described in Yang et al. [36].

Table 2: The tokens for a example.
condition QoI query

key 0 k∆t . . . (n− 1)k∆t 0 k∆t . . . (n− 1)k∆t 0 k∆t . . . (n− 1)k∆t

value û(0) û(t1) . . . û(tn−1) errû(0) errû(t1) . . . errû(tn−1) 0 0 . . . 0
v̂(0) v̂(t1) . . . v̂(tn−1) errv̂(0) errv̂(t1) . . . errv̂(tn−1) 0 0 . . . 0

4 Numerical Experiments

In this section, we aim to show the effectiveness of FMint in obtaining high accuracy solution based on initial coarse
solutions.

4.1 Model set-up

As a decoder-only transformer model, FMint is configured with approximately 15.8 million parameters. The model
features six heads for multi-head attention, with an input/output dimension of 256 for each layer. Additionally, the
dimension for the query, key, and value of each token is set to 256, while the hidden dimension of the feedforward
networks is 1024. All experiments were conducted on a NVIDIA A100 GPU with 80 GB of memory. We use AdamW
optimizer with a warmup-cosine-decay schedule, with peak learning rate 1e-4 and 300,000 training steps. The Adam β1

and Adam β2 are 0.9 and 0.999, respectively. The Adam weight decay is set to 1e-4.
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Table 3: Relative errors and RMSE errors
corrected coarse-grained ODE coarse-grained ODE

Name Avg. rel. err. RMSE Avg. rel. err. RMSE

Exponential decay 3.49e-2 7.80e-3 3.64e-1 6.47
Newton’s law of cooling 1.67e-4 5.57e-3 2.37e-2 1.31
Lotka Volterra 1.61e-3 5.85e-3 3.71e-1 1.54
damped harmonic oscillator 4.54e-2 1.22e-2 1.93 2.39
Van der Pol oscillator 2.02e-2 1.17e-2 6.83e-1 1.56

4.2 In-distribution ODE

For all test examples, we compute the mean relative errors (MRE) and average L2 errors for coarse-grained ODE
compared to fine-grained ODE solutions with five demonstrations:

MRE =
1

KN

N∑
i=1

K∑
k

|ûk + êrrk − uk|
|uk|

(7)

and

RMSE =

√√√√ 1

KN

N∑
i=1

K∑
k

∥ûk + êrrk − uk∥2 (8)

where êrr is the predicted error. As shown in Table 3, the MRE and RMSE of the corrected coarse-grained ODE
solutions are significantly lower than those of the coarse-grained ODE solutions. This demonstrates the effectiveness
of FMint in enhancing the accuracy of coarse-grained ODE solutions. Additional results are shown in Figure 2 and
Figure 3.

5 Conclusion

In conclusion, we presented FMint, a novel generative pre-trained model that successfully integrates the strengths of
human-designed algorithms and data-driven methods for the simulation of dynamical systems. By leveraging a vast
dataset of dynamical systems with varying parameters and conditions, FMint demonstrates a significant advancement in
the ability to generate accurate simulations swiftly and efficiently.

Our model’s incorporation of in-context learning, based on a decoder-only transformer architecture, allows for excep-
tional adaptability and generalization across a diverse range of dynamical systems. This approach not only surpasses
the performance of traditional numerical integration methods, which often struggle with flexibility and domain-specific
constraints, but also provides a robust solution to the challenges faced by other neural network-based methods, such as
NeurVec, which are limited by costly retraining and generalization capabilities.

Furthermore, FMint’s proficiency in zero-shot and few-shot learning makes it as a foundational tool in scientific
computing, capable of solving problems with unprecedented accuracy and speed. This makes it a powerful tool for
real-world applications where fast and reliable simulation of dynamical systems is critical.

As we continue to develop and refine FMint, future research will focus on expanding its applicability to even more
complex systems and exploring the potential synergies with other machine learning techniques. The ongoing evolution
of foundation models like FMint will play a crucial role in the advancement of scientific machine learning, offering
possibilities for broader applications.
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(e) ODE of Lotka Volterra
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(f) Error prediction of Lotka Volterra

Figure 2: The predicted fine-grained ODE solutions and ground truth fine-grained ODE solutions for exponential decay
(1D), Newton’s law of cooling (1D) and Lotka Volterra equation (2D) are shown in (a), (c) and (e). The predicted errors
and ground truth error are shown in (b), (d) and (f).
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FMint: Foundation model for simulation
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(a) ODE of Van der Pol oscillators
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(b) Error prediction of Van der Pol oscillators
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(c) ODE of damped harmonic oscillators
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(d) Error prediction of damped harmonic oxcillators

Figure 3: The predicted fine-grained ODE solutions and ground truth fine-grained ODE solutions for Van der Pol
oscillators (2D) and damped harmonic oscillators (2D) are shown in (a) and (c). The predicted errors and ground truth
error are shown in (b) and (d).
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