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Abstract

Survival analysis is widely used as a technique to
model time-to-event data when some data is censored,
particularly in healthcare for predicting future patient
risk. In such settings, survival models must be both ac-
curate and interpretable so that users (such as doctors)
can trust the model and understand model predictions.
While most literature focuses on discrimination, inter-
pretability is equally as important. A successful inter-
pretable model should be able to describe how changing
each feature impacts the outcome, and should only use a
small number of features. In this paper, we present DyS
(pronounced “dice”), a new survival analysis model that
achieves both strong discrimination and interpretability.
DyS is a feature-sparse Generalized Additive Model,
combining feature selection and interpretable prediction
into one model. While DyS works well for all survival
analysis problems, it is particularly useful for large (in n
and p) survival datasets such as those commonly found
in observational healthcare studies. Empirical studies
show that DyS competes with other state-of-the-art
machine learning models for survival analysis, while
being highly interpretable.

1 Introduction

Predicting the time until an event occurs is a classic
and important problem in many domains, including
healthcare, customer churn, and machine failure. One
solution for such time-to-event prediction is using regres-
sion techniques that support a strictly positive response.
However, many such time-to-event problems face the ad-
ditional challenge of censoring, where the event is never
reached for a portion of samples. When the censoring
rate is low, removing all censored samples and using
regression may be reasonable. Often, though, the cen-

soring rate is quite high (e.g. in healthcare), in which
case removing censored samples loses valuable signal.
Thus, an alternative approach is necessary in order to
elegantly handle time-to-event data with censoring.

Survival analysis [29] is the standard and widely-
adopted alternative approach for time-to-event data
with censoring. Survival analysis models aim to esti-
mate the conditional distribution of time-to-event given
a collection of features, using loss functions that allow
learning from both censored and uncensored patients.
Statistical approaches for survival analysis, including
the Cox proportional hazards model [11] and the ac-
celerated failure time model [12], are traditional mod-
els in the field. More recently, a plethora of machine
learning [61] and deep learning [62] models have been
proposed for survival analysis, most of which are shown
to outperform traditional statistical models in terms
of discrimination. Nonetheless, many fields have yet
to fully adopt machine learning techniques for survival
analysis, instead favoring classical statistical approaches
due to their simplicity and inherent interpretability.

The field of Explainable AI (XAI) aims to bridge
this interpretability gap between simple statistical
approaches and more powerful machine learning ap-
proaches. Many XAI methods are designed to explain
the behavior of black-box machine learning methods
as a post-processing step [41, 51]; however, these meth-
ods are prone to approximation bias [32, 58, 2, 49].
More promising are inherently interpretable machine
learning models, or glass-box models, that offer explana-
tions without requiring post-hoc approximation. These
glass-box methods have surprisingly been shown to be
competitive with black-box models for classification
and regression on tabular datasets [43]. Nonetheless,
much less research has focused on XAI, and specifically
glass-box modeling, for survival analysis. Some previ-
ous methods have been proposed [59, 63, 48, 45], but
no existing glass-box survival model is able to both
compete with black-box survival models as well as scale
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to large and high-dimensional survival datasets.

To fill this gap, we propose a novel glass-box machine
learning model for survival analysis, called DyNAMic
Survival, or simply DyS (pronounced “dice”). DyS,
like many other glass-box machine learning models, is
a Generalized Additive Model (GAM) with additional
shape functions for feature interactions. Unlike previous
glass-box survival models, though, DyS is trained us-
ing a ranked probability score (RPS) loss function that
directly optimizes the survival predictions, leading to
better discrimination [30, 3]. Additionally, DyS can per-
form feature selection during the model fitting process,
both on the main effects and on the interaction terms,
which previous glass-box survival models are incapable
of doing. To summarize our main contributions:

• We present a new survival analysis model, DyS,
which achieves competitive discriminative perfor-
mance while being a glass-box model. DyS can gen-
erate feature importances as well as feature impact
plots at specific evaluation times (see Figure 1) with-
out requiring post-hoc approximation.

• We show how DyS can also be used for nonlinear
feature selection on survival data. Such feature se-
lection can be done as a preprocessing step, or can
be integrated directly into the prediction model to
generate feature-sparse intepretable predictions.

• We introduce a two-stage fitting approach which,
when combined with feature-sparsity, allows DyS to
scale to large survival analysis problems, where other
approaches are either too slow and/or require separate
feature selection as a preprocessing step.

1.1 Example Usage

Suppose a medical researcher wishes to study the
risk factors associated with heart failure. There are
two common approaches to such a problem: 1) the re-
searcher uses their medical expertise to select a small set
of features they believe to be important risk factors for
heart failure, and then builds a Cox proportional haz-
ards model using these selected features. The researcher
can use the regression coefficients of the Cox model,
and their associated p-values, to determine which risk
factors are most associated with heart failure. 2) the
researcher gathers data for all possible features, and
uses a large black-box survival model to predict heart
failure risk. The model achieves state-of-the-art discrim-
ination, but requires a post-hoc approximation method
like SHAP to interpret the model’s predictions.

Instead, the researcher can use DyS to achieve the
benefits of both approaches. To illustrate, we fit DyS on
a real heart failure dataset as described in Section 5.3

to produce the interpretability plots shown in Figure 1.
The feature importance plot (left) directly shows the
researcher which features are most important for heart
failure prediction, and the feature impact plots (right)
show how changes in each feature change the risk score
at specific times in the future. From these plots, the
researcher notices a surprising pattern in some feature,
and uses this observation to guide further research.

2 Background

2.1 Survival Analysis

Survival analysis is a standard approach for modeling
time-to-event data with censoring. Survival analysis is
most often used for modeling healthcare data, and has
many other applications such as predicting equipment
failure [44], economics [14], and customer churn [33].

Mathematically, survival analysis consists of data of
the form (X,T, δ). Here X ∈ Rp represents a vector of
p features, T ∈ [0,∞) represents the event time, and
δ ∈ {0, 1} represents the censor indicator. When δ = 1,
the sample is considered uncensored, and the time T
represents the time which the event of interest occurs.
When δ = 0, the sample is instead called censored, in
which case the value of T is unknown and is replaced
with the last available observation time. There are a
variety of reasons in which samples could be censored;
in healthcare setings, a patient could switch hospital
networks, die of unrelated causes, or not be diagnosed
with heart failure before the end of the study.

The goal of survival analysis is to estimate the con-
ditional distribution of T given X. Often, the quantity
directly of interest is the survival function:

S(t | X) = P (T > t | X). (1)

Some models instead predict the hazard function λ(t |
X), which is the conditional density at T = t condi-
tioned on surviving to at least time t:

λ(t | X) = p(t | T ≥ t,X) =
p(t)

S(t | X)
. (2)

For example, the most traditional model in survival
analysis is the Cox proportional hazards models [11],
which fits a linear function to the log hazard function:

λ(t | X) = λ0(t) exp(X
Tβ). (3)

Here λ0(t) is called the baseline hazard function, while
exp(XTβ) gives the offset to the baseline hazard for each
sample. This factorized approach results in predictions
with proportional hazards: for samples X,X ′, their
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Figure 1. Interpretable plots generated by DyS trained on heart failure data, across 10 trials. (Top
left) feature importances averaged across evaluation times. (Right) feature impact plots for individual
features at two evaluation times: 1 year and 3 years. (Bottom left) feature impact plots for interactions
at 1 year. These plots fully describe the behavior of the fitted DyS model without any extra processing
due to DyS’s glass-box structure.
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hazards λ(t | X) and λ(t | X ′) are proportional and
independent of t:

λ(t | X)

λ(t | X ′)
=

exp(XTβ)

exp(X ′Tβ)
⊥⊥ t. (4)

Several machine learning models have been proposed
to fit proportional hazards models by replacing f(X) =
XTβ with some nonlinear f [31, 22, 52]. Further, sev-
eral papers have proposed methods to overcome the pro-
portional hazards assumption, particularly using deep
learning [34, 47, 6]. Most of these methods, though, are
not interpretable; thus, an important goal of this paper
is to develop an interpretable machine learning model
for survival analysis that does not assume proportional
hazards.

2.2 Interpretable Machine Learning

The field of Explainable AI (XAI) aims to build
methods that explain the behavior of machine learning
models. These explanations can take many forms. In
this paper, we aim to deliver the following kinds of
model explanations:

• Feature importances: feature importances demon-
strate which features most impact the model’s per-
formance. Typically, each feature is assigned a single
importance score, with a higher score indicating a
more important feature.

• Feature impact plots: feature impact plots demon-
strate how changing a particular feature impacts the
model’s predictions. Feature impact plots can be
used to assess the relationship between individual
features and the response, which can either confirm
existing understanding or lead to new discoveries
about feature/response relationships.

XAI comprises two fundamentally different kinds of
interpretability: post-hoc and glass-box. Celebrated
post-hoc approximation methods have been developed
to explain black box machine learning models [17]. In
contrast, this paper instead focuses on glass-box ma-
chine learning, aiming to build models that provide nat-
ural explanations (both importance and impact plots)
without the need for post-hoc approximations. While
glass-box machine learning has a long history [38], only
recently have they been shown to deliver performance
comparable to modern black-box machine learning mod-
els [43].

Most modern glass-box machine learning models are
based on Generalized Additive Models (GAMs) [22]. For
a data vector X with p features, a GAM f is formulated

as

f(X) =

p∑
j=1

fj(Xj). (5)

The individual feature functions fj are sometimes re-
ferred to as shape functions. The GAM f can be opti-
mized with respect to any loss function, e.g. the cross
entropy loss for classification. If fj(Xj) = Xjβj , the
GAM is a generalized linear model. However, allowing
nonlinear shape functions fj typically results in more
accurate models. More recently, many methods have ex-
plicitly added interaction terms to GAMs [40], resulting
in so-called GA2Ms:

f(X) =

p∑
j=1

fj(Xj) +
∑
j ̸=ℓ

fj,ℓ(Xj , Xℓ). (6)

In these models, functions of a single feature are called
main effects, while functions of pairs of features are
called interactions. Different architectures can be used
to fit each of the shape functions. While splines have
historically been the most popular [22], recent works
have used decision trees [39, 40] and neural networks
[1, 8, 27, 9].

2.2.1 Feature Selection

An unappreciated yet important part of interpretability
is feature selection. When the number of features in a
dataset is large, the data can generally be approximated
well by a low-rank matrix [57]; as a consequence, many
features are likely to be highly correlated. Feature
correlation can negatively impact model interpretability,
as sets of correlated features can dampen each other’s
feature importance and feature impact plots, making
any individual feature in the set appear less important
[36]. Feature selection has additional benefits as well:
models with fewer features are easier to explain to
domain experts, require fewer model parameters, and
are easier to generalize to new datasets. In extreme
cases when the number of features is larger than the
number of samples (e.g. in genomics), feature selection
may be necessary for an interpretable model to perform
well.

3 Methodology

We now describe DyS, a novel glass-box machine
learning model for survival analysis. DyS is designed to
fill existing holes in the literature for glass-box survival
analysis. Specifically, DyS has the following properties:

• Interpretable. DyS is a glass-box machine learning
method, providing explanations inherently due to the
model structure.

4



• Performant. DyS performs on par with state-of-
the-art methods for survival analysis.

• Scalable. DyS can handle large datasets: for exam-
ple, a dataset with 2000 features and 500,000 samples
can be fit in less than an hour with 1 GPU and 30
GB of RAM.

• Feature-sparse. Last, DyS can automatically se-
lect features during fitting, yielding improved inter-
pretability for datasets with many features (see Sec-
tion 2.2.1) without requiring separate feature selec-
tion as preprocessing. Thus, DyS can be used for
feature selection as well as feature-sparse prediction.

Algorithm 1 DyS Survival Predictions

1: Input:
• Evaluation times t1, . . . , tK .
• Feature logits fj(Xj) ∈ RK .
• Interaction logits fj,ℓ(Xj , Xℓ) ∈ RK .

2: f(X)←
∑

j fj(Xj) +
∑

j,ℓ fj,ℓ(Xj , Xℓ).

3: {P̂ (T = tk | X)}Kk=1 ← softmax(f(X)) ∈ (0, 1)K .
4: for k = 1, . . . ,K
5: Ŝ(tk | X)← 1−

∑
t≤tk

P̂ (T = t | X).

6: return Survival predictions Ŝ(tk | X), k =
1, . . . ,K.

3.1 Model Architecture

The model architecture for DyS is summarized in
Figure 2. Following previous glass-box models, DyS
is a generalized additive model with interactions, or a
GA2M model. We choose to parameterize each shape
function in DyS using neural networks, specifically
MLPs, making DyS a neural additive model (NAM)
with interactions, or a NA2M.

DyS uses a discrete-time model, summarized in Al-
gorithm 1, to generate survival predictions. We as-
sume T is discrete with finite support at K distinct
times: T ∈ {t1, t2, . . . , tK}. Under this model, DyS pro-
duces K-dimensional outputs f(Xj), f(Xj , Xℓ) ∈ RK ,
for each featureXj and interaction (Xj , Xℓ). The global
K-dimensional output f(X) is obtained by summing
the outputs from all main effects and interactions, as in
Equation 6. Next, a softmax layer computes probability
mass estimates P̂ (T = tk | X) for k = 1, . . . ,K. The
probability of survival to time tk, Ŝ(tk | X), is one mi-
nus the sum of the probability mass estimates at earlier
times.

...

= parameter

= loss function...

......

= smooth-step function

Figure 2. Summary of the architecture of DyS.
For simplicity, the interaction effects are not
shown. When feature sparsity is desired, the
µj parameters are learned such that a subset
of s(µj), j = 1, . . . , p are equal to 0, preventing
the corresponding features from influencing
the predictions.

3.1.1 Interpretation Plots

DyS can be fully summarized by feature (and feature
interaction) impact plots, one for each evaluation time;
see Figure 1. Specifically, the feature impact plot for
feature j shows the logits of P (T = t | Xj) at each eval-
uation time t. Given a set of features X, the model’s
survival predictions Ŝ(t | X) can be obtained directly
from these plots by following Algorithm 1. DyS’s fea-
ture impact plots are critically different than partial
dependence plots [20], as DyS’s feature impact plots
directly describe the model behavior using only the
model structure.

DyS can also compute the importance of each feature
j at each time t by averaging the absolute value of
the logits of feature j and time t across all training
samples. If global feature importances are desired (i.e.
independent of evaluation time), the importances at
each evaluation time can further be averaged.

3.2 Loss Function

To train survival models, we must map the contin-
uous prediction function f(X) to a differentiable loss
function. Choosing an appropriate loss function for
survival analysis is critical. While traditional super-
vised machine learning problems often use a standard
loss functions (MSE for regression, cross-entropy for
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classification), there is no standard loss function for
survival analysis.

The most commonly used loss function in survival
analysis is the Cox proportional hazards loss:

−
∏

i:δ(i)=1

exp(f(X(i)))∑
j:T (j)≥T (i) exp(f(X(j)))

, (7)

where (X(i), T (i), δ(i)) is the ith sample in the training
dataset. This loss was originally derived as a negative
partial likelihood function for the Cox model [11] (in the
Cox model, f(X) = XTβ). Intuitively, the loss works
by maximizing the risk exp(f(X(i))) for uncensored
samples i at their event-times T (i), relative to the other
samples j : T (j) ≥ T (i) still at risk at time Ti. In
practice, the log of Equation 7 is usually optimized for
numerical stability.

There are two major problems with the Cox loss.
First, the Cox loss enforces proportional hazards, as
illustrated in Equation 4. This property asserts that
if the model predicts a higher risk for sample i than
sample j at time t, it also predicts a higher risk for
sample i at all other times, which may be unreasonable.
For example, consider mortality prediction: a childhood
cancer patient is at much higher risk of mortality than
a typical 60 year old patient, but if the child lives
into adulthood, their risk may drop relative to the
older patient. We revisit this example empirically in
Section 5.1. Second, the Cox loss (or anything similar,
e.g. the time-dependent Cox loss [54]) takes as input
risk predictions rather than survival predictions. Thus,
models that use the Cox loss must transform the model
predictions in order to obtain survival predictions, which
are usually the quantity of interest.

For these reasons, we choose the Ranked Probability
Score (RPS) loss function [30] instead of a Cox-based
loss. First, DyS follows Algorithm 1 to generate a
survival curve estimate Ŝ(t | X) from the prediction
function f(X). Then the RPS loss is calculated as

LRPS(Ŝ, T, δ) =
∑
t<T

(1− Ŝ(t | X))2 + δ
∑
t≥T

Ŝ(t | X)2

(8)
for a finite set of evaluation times t ∈ (0,max(T )). The
RPS loss is a discrete-time version of the Continuous
Ranked Probability Score [19, 3] originally proposed for
time series forecasting. The first term in LRPS max-
imizes survival for all samples before their respective
event time, while the second term in LRPS minimizes
survival for all uncensored samples after their event
time. Compared to Cox-style losses, the RPS loss di-
rectly optimizes survival predictions, the usual quantity
of interest.

3.3 Feature Sparsity

To obtain a feature-sparse model, inspired by [27],
we introduce binary gates into our GA2M model:

f(X) =
∑
j

fi(Xj)zj +
∑
j,ℓ

fj,ℓ(Xj , Xℓ)zj,ℓ. (9)

Each binary gate zj , zj,ℓ ∈ {0, 1} controls whether or
not each feature/interaction is used by the final model.
The binary gates are learned as parameters in the
model alongside the shape functions fj , fj,ℓ. Given
the discrete nature of the binary gates, we follow [27]
and replace the binary gates with smooth-step func-
tions s(µj), s(µj,ℓ) ∈ [0, 1] with real-valued parameters
µj , µj,ℓ ∈ R [23]. The smooth-step function is a contin-
uous function with range [0, 1], but unlike other such
functions like the sigmoid function, the smooth-step
function can actually reach 0, producing an exactly
sparse model (see Appendix A.1). The resulting GA2M
model is

f(X) =
∑
j

fj(Xj)s(µj)+
∑
j,ℓ

fj,ℓ(Xj , Xℓ)s(µj,ℓ). (10)

To induce feature sparsity, the smooth-step parameters
µj , µj,ℓ are learned via the RPS loss LRPS along with
the sparsity regularizer LSS(µ):

LSS(µ) = λ

∑
j

s(µj) + α
∑
j,ℓ

s(µj,ℓ)

 . (11)

Last, to control the rate at which the smooth-step func-
tions converge to {0, 1}, we add the entropy regularizer
LE(µ):

LE(µ) = τ

∑
j

Ω(s(µj)) +
∑
j,ℓ

Ω(s(µj,ℓ))

 , (12)

Ω(x) = −
(
x log(x) + (1− x) log(1− x)

)
(13)

where Ω(x) explicitly encourages each s(µj), s(µj,ℓ) to
converge to 0 or 1. DyS is trained by minimizing
LRPS +LSS +LE with respect to the trainable param-
eters in each shape function as well as the smooth-step
parameters.

3.3.1 Preset Feature Budget

Occasionally, a user may want a model that uses a fixed
number of features. This can be achieved by finding
a hyperparameter λ that yields the desired number of
non-zero features. One algorithmic way to select such a
hyperparameter is bisection, which uses a binary search
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algorithm to converge to a feasible hyperparameter
value; see Algorithm 3 in Appendix A.2. We will use
this algorithm later in Section 5.3.2 to compare feature
selection methods.

Algorithm 2 DyS Two-Stage Fitting

1: Input: Survival dataset D.
2: Fit main effects of DyS model f on D using LRPS +

LSS + LE.
3: Freeze existing parameters of f .
4: Gather candidate interactions (Xj , Xℓ) such that

s(µj) > 0 and s(µℓ) > 0 in f .
5: Fit parameters in f for candidate interactions.
6: return Fitted DyS model f .

3.4 Two-Stage Fitting

Training GA2Ms is computationally and memory
intensive when the number of features in a dataset is
large. For example, a dataset with p = 1, 000 features
contains ∼ 500, 000 possible interactions. Previous lit-
erature has suggested an initial round of interaction
screening in order to reduce the number of interactions
in the model: EBM [40] uses an efficient plane cutting
algorithm, while Grand-Slamin’ [27] fits shallow deci-
sion trees for all possible interactions to find the most
promising interactions. Unfortunately, we found even
these efficient methods to be too inefficient when both
n and p are large. For example, on our heart failure
dataset with training data of size (n, p) = (537836, 2410)
(see Section 5.3), the estimated run time for fitting a
single decision tree on all possible interactions (as in
[27]) is over 100 hours.

Instead, DyS takes advantage of the feature spar-
sity in the model. We first fit only the main effects of
the model. The fitting procedure naturally chooses an
active subset of the main effects by learning the smooth-
step function parameters. Then, we freeze the main
effects and fit interaction effects only for interactions
between two active main effects. This two-stage fitting
approach, summarized in Algorithm 2, has both com-
putational and interpretability benefits: fitting main
effects first ensures that each main effect captures the
entire available signal and does not leak into the inter-
action shape function. Hence, the shape function for
each main effect represents the “pure” effect of each
feature [35].

4 Related Work

Interpretable prediction and feature selection both
have long histories in machine learning for classification

and regression. In the broad field of Explainable AI
(XAI), many post-hoc methods for approximating fea-
ture importance and feature impact plots have been pro-
posed, most notably SHAP [41] and LIME [51]. Other
previous works have proposed naturally interpretable
models, mostly using GAMs [22]. Explainable Boost-
ing Machines [40, 43] fit GAMs with interactions for
interpretable ML using gradient boosted decision trees,
while neural additive models [1] and NODE-GAM [8]
use neural networks as shape functions. For feature
selection, many approaches utilize L1 penalization [55]
with either tree-based models [36, 15] or neural networks
[16, 65, 60]. Much rarer are machine learning models
capable of interpretable prediction and feature selection,
with a few works proposed very recently [27, 64].

Separately, many machine learning models have been
proposed for survival analysis, albeit most are not inter-
pretable nor can perform feature selection. Ensembles
of decision trees have been adapted to survival analysis,
including Random Survival Forests [28] and gradient
boosting methods [24, 10, 4]. Further, many deep learn-
ing approaches have been proposed for survival analysis.
These deep learning approaches largely fall into three
categories: models which use some form of the Cox loss
[31, 66, 42], models which fit a parametric distribution
to the time-to-event variable [6, 3, 7], and models which
fit a discrete distribution to the time-to-event variable
[34, 18]. Our paper is most similar to the third category,
as we use a discrete-time approach in DyS.

Last, some previous work has explored interpretable
prediction or feature selection for survival data. Using
GAMs for interpretable survival analysis was first de-
scribed in [22]; however, this paper, along with several
later works [5, 56, 37, 63], use the Cox loss and are thus
constrained by the proportional hazards assumption.
[59] fits classification GAMs for survival analysis with-
out assuming proportional hazards by using survival
stacking [13]. However, survival stacking is computa-
tionally challenging for larger datasets, and the method
in [59] requires feature selection as a distinct prepro-
cessing step. TimeNAM [45] fits GA2Ms with both
proportional and non-proportional hazards losses, but
uses a method similar to survival stacking that does
not scale well to larger datasets. PseudoNAM [48] fits
GAMs using pseudo-values as labels for the survival dis-
tribution, which is similar to our method but requires an
extra processing step to generate pseudo-values before
training, which can be computationally expensive.

5 Experiments

Our empirical results demonstrate the utility of DyS
as an interpretable survival analysis model. For all
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experiments, we run 10 trials, each trial with a dif-
ferent random seed. We split our datasets with an
80/20 train/test split, and further designated 20% of
the training data as validation data. When training
deep learning models, we train models with the Adam
optimizer and a learning rate of 10−4 for a total of 200
epochs, and stop trials if their performance on the vali-
dation set does not improve for 5 straight epochs. Our
main evaluation metric is time-dependent area under
the ROC curve (henceforth referred to as AUC), as
implemented in the scikit-survival package [46]. Time-
dependent AUC measures the discrimination ability of
a model at a provided set of evaluation times, account-
ing for the probability of censoring. Further, the mean
AUC across all times is calculated as a summary met-
ric for the model’s overall discrimination ability. This
mean AUC serves as our primary evaluation metric.

We perform three sets of experiments. First, we
use synthetic data to demonstrate the effectiveness of
our RPS loss versus the traditional Cox loss. Second,
we use a collection of (smaller) benchmark survival
analysis datasets to demonstrate the effectiveness of
DyS in terms of discrimination compared to existing
state-of-the-art survival models. Last, we use a large
observational healthcare dataset for heart failure pre-
diction to demonstrate the scalability of DyS, as well
as to evaluate DyS as a feature selection method. We
provide code to reproduce our results 1.

5.1 Synthetic Data

We start with an experiment on synthetic data to
demonstrate the utility of DyS as an accurate yet in-
terpretable survival model. We generate synthetic data
motivated by the example given in Section 3.2; to re-
call, a child cancer patient may have higher mortality
risk at very early or very late times, while an adult
may have higher mortality risk at times in between.
This experiment shows that replacing the RPS loss in
DyS with the Cox loss (which we will call CoxDyS,
similar to CoxNAM [63]) yields inferior results. We
construct synthetic data such that each sample X ∈ Rp

belongs to one of two groups with distinct time-to-
event windows. Group membership is decided by a
linear function Y = XTβ + ϵ, where smaller values
of Y correspond to group 1 and larger values of Y
correspond to group 2. In group 1, the time-to-event
variable T | X ∼ U [2, 6], where U is the uniform distri-
bution. In group 2, T | X ∼ U [0, 2] with probability
0.5, and T | X ∼ U [6, 8] with probability 0.5. In words,
samples in group 1 have moderate event times, while

1https://anonymous.4open.science/r/dys_paper_anon_

code

samples in group 2 have extreme event times, either
late or early. For complete details, see Appendix B.2.
This synthetic data fails the proportional hazards as-
sumption: λ(t | X, group = 1) = 0 for t < 2, whereas
λ(t | X, group = 2) = 0 for 2 < t < 6.

In Figure 3, we evaluate DyS versus CoxDyS on this
synthetic data. For each method, we plot the time-
dependent AUC as a function of time to illustrate how
each model performs at different times in the time-to-
event horizon. As expected, CoxDyS performs much
worse, as the data violates proportional hazards. Specif-
ically, CoxDyS and DyS perform similarly for later
times, but DyS performs much better than CoxDyS for
earlier times. This discrepancy is a direct result of the
loss function: the proportional hazards loss ranks the
samples in terms of risk independently of time, while
the RPS loss used in DyS can change the sample rank-
ings over time, which is necessary to correctly model
the data.

Figure 3 also shows shape functions generated by
each approach for the first feature. The coefficient for
feature 1 in the data generating process, β1, is 0.697,
meaning smaller values of feature 1 are more likely to be
in group 1, and larger values of feature 1 are more likely
to be in group 2. The shape functions for DyS reflect
this behavior: at event times typical of group 1 (t = 3
and t = 5), small values of feature 1 contribute most
to P (T = t), whereas at event times typical of group 2
(t = 1 and t = 7), large values of feature 1 contribute
most. Meanwhile, the single CoxDyS shape function
does not accurately describe this behavior. Instead, it
displays a negative slope, which accurately reflects the
risk only at some event times.

5.2 Benchmark Datasets

We compare DyS to several existing survival models
on a collection of standard survival analysis tasks. We
consider the following baseline models:

• CoxPH: Standard linear Cox proportional hazards
model [11].

• RSF: Random Survival Forest [28], an extension of
random forests to survival analysis.

• DeepSurv: Deep learning model that uses the Cox
loss [31].

• DeepHit: Discrete-time deep learning model [34].

• DRSA: Deep Recurrent Survival Analysis, using a re-
current neural network for multi-timestep prediction
[50].

• SA Transformer: Transformer-based architecture
for multi-timestep prediction [26].
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Figure 3. Performance of DyS (with RPS loss) versus s CoxDyS, i.e. DyS using the CoxPH loss,
on synthetic data which fails the proportional hazards assumption. (Left) Time-dependent AUC
measured as several evaluation times, with dotted lines representing mean AUC. Using the CoxPH
loss results in poor performance for smaller evaluation times. (Right) Shape functions for feature
1 under different loss functions. For RPS loss (bottom), shape function is shown at four different
evaluation times, since DyS outputs are time-dependent.

Table 1. Mean time-dependent AUC of DyS (with one-stage and two-stage fitting) compared to base-
lines on benchmark survival analysis datasets. All results are averaged over 10 trials, with standard
deviations shown. Results in bold are within 1 standard deviation from the best result for each
dataset.

Dataset flchain metabric mimic support

CoxPH 0.948 ± 0.001 0.677 ± 0.011 0.674 ± 0.003 0.797 ± 0.001
RSF 0.950 ± 0.001 0.732 ± 0.011 0.662 ± 0.004 0.819 ± 0.001
DeepSurv 0.949 ± 0.001 0.698 ± 0.008 0.671 ± 0.003 0.798 ± 0.001
DeepHit 0.944 ± 0.002 0.713 ± 0.011 0.656 ± 0.007 0.732 ± 0.016
DRSA 0.946 ± 0.006 0.745 ± 0.007 0.661 ± 0.006 0.818 ± 0.002
SA Transformer 0.945 ± 0.003 0.710 ± 0.012 0.659 ± 0.007 0.785 ± 0.006
PseudoNAM 0.947 ± 0.001 0.641 ± 0.029 0.577 ± 0.012 0.814 ± 0.001
DyS (ours) one-stage 0.951 ± 0.001 0.760 ± 0.004 0.674 ± 0.002 0.818 ± 0.001
DyS (ours) two stage 0.949 ± 0.001 0.760 ± 0.003 0.669 ± 0.002 0.814 ± 0.001
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• PseudoNAM: Interpretable neural additive model
which uses pseudo-values as labels [48].

We compare the above models to DyS on the following
standard survival analysis datasets: flchain, metabric,
mimic, support. Dataset descriptions as well as prepro-
cessing details can be found in Appendix B. Since these
datasets all have a relatively small number of features
(all have less than 100), we do not train DyS with any
feature sparsity (i.e. we only use LRPS and not LSS or
LE). Further, we train DyS with both one-stage and
two-stage training to assess whether two-stage train-
ing is as effective as jointly training main effects and
interactions.

The results are shown in Table 1. One-stage DyS is
one of the leading performers on all 4 datasets, indicat-
ing that DyS is competitive with the state-of-the-art
despite being interpretable. Two-state DyS, as well, is
either a leading performer or very closely behind on
all datasets, providing evidence that two-stage fitting
is very close to as good as fitting main effects and in-
teractions jointly. This is important because one-stage
fitting is not possible on larger datasets, but we have
evidence that two-stage fitting does almost as well when
both are possible. Additionally, PseudoNAM (the only
other interpretable model) is competitive on flchain and
support, but lags behind siginficantly on metabric and
mimic.

5.3 Heart Failure Prediction

We evaluate DyS compared to baseline survival mod-
els for predicting heart failure risk. We gather many
features for a cohort of patients from a large hospi-
tal network (name censored for anonymity). In total,
our dataset has 2410 clinical features, including demo-
graphics, vital signs, lab results, conditions, and drug
exposure, for a total of ∼ 670, 000 patients. Further
details about cohort selection and preprocessing are in
Appendix B.1.

The scale of this dataset (and other similar observa-
tional healthcare datasets) presents distinct challenges.
First, datasets of this magnitude often necessitate fea-
ture selection (see Section 2.2.1). Second, models that
do not scale well are simply too inefficient to be consid-
ered. Specifically, in our experiments, the methods that
do not use deep learning (CoxPH and RSF) are too slow
(they do not finish in 10 hours). Last, interpretable
models that consider all interaction terms are too slow;
as discussed in Section 3.4, interaction screening like
proposed in [27] is too slow.

Table 2. Performance of DyS compared to
baselines on the heart failure dataset. In the
upper panel, all baselines use all available
features (Cox is omitted due to inefficiency),
while DyS does feature selection to select be-
tween 45 and 65 features. In the bottom panel,
DyS and Cox use bisection (Algorithm 3 in
Appendix A.2) to select exactly 10 features,
while other baselines use the features gener-
ated by Cox.

Dataset Number of Features Mean AUC

Cox all —
DeepSurv all 0.536 ± 0.061
DeepHit all 0.829 ± 0.001
DRSA all 0.779 ± 0.008
SA Transformer all 0.812 ± 0.005
DyS (ours) 45-65 0.826 ± 0.004

Cox 10 0.769 ± 0.001
DeepSurv 10 0.784 ± 0.000
DeepHit 10 0.788 ± 0.000
DRSA 10 0.762 ± 0.006
SA Transformer 10 0.798 ± 0.001
DyS (ours) 10 0.799 ± 0.005

5.3.1 Discrimination

We first compare DyS to baselines on the heart failure
dataset in terms of discrimination ability. As aforemen-
tioned, we omit CoxPH and RSF as they are too slow,
and also omit PseudoNAM as computing pseudo-values
is similarly slow. For the remaining baselines (DeepSurv
and DeepHit), we train similarly to Section 5.2. For
DyS, unlike Section 5.2, we use two-stage fitting (Al-
gorithm 2) as well as feature selection via LSS and LE

(Section 3.3). We set the regularization parameter λ in
LSS to a value that yields roughly 50 features, although
we allow the number of features to vary across trials.

The results are shown in the top panel of Table 2.
DeepHit has the best average performance across trials,
but DyS is within one standard deviation, despite using
many less features than DeepHit. This result demon-
strates that the heart failure data can be approximated
well by a small number of features, and DyS is successful
at finding such a subset.

Further, interpretable plots for DyS models from
this experiment are shown in Figure 1. One interest-
ing takeaway from these plots is that some features
have feature impact functions with significantly differ-
ent shapes at different evaluation times. For example,
the feature impact plot for body temperature has a
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positive slope at 1 year, but a negative slope at 3 years.
One possible explanation for this behavior is that high
body temperature corresponds to more immediate risk
of heart failure, while low body temperature is corre-
lated with some condition related to long-term heart
failure risk. The interaction plots also yield interesting
findings; for one, patients with a short QRS duration
(a feature related to electrocardiograms) as well as high
systolic blood pressure seem to be at particularly high
risk of heart failure in the near future. Last, the feature
importance plots confirm common understanding of the
high correlation between age and heart failure risk, but
also highlights the importance of gender and smoking,
which are perhaps less well-known.

5.3.2 Feature Selection

Next, we evaluate DyS as a feature selection method to
select exactly k features. We set k = 10 as the number
of features to select, and use bisection (Algorithm 3
in Appendix A.2) to find a hyperparameter setting
that selects exactly 10 features. For DyS, following
Section 2.2.1, we run bisection together with two-stage
fitting, so that bisection is only done on the training of
main effects. The only baseline we compare to that is
capable of feature selection is Cox, which can do feature
selection via L1 regularization much like lasso regression
[53]. Thus, for all other baselines, we first select a set
of 10 features using bisection on an L1 penalized Cox
model, and then train on the selected features.

The results are shown in the bottom panel of Table
2. While DeepHit and DyS had similar performance in
the previous section, DyS now is clearly the superior
model. This result emphasizes the importance of joint
feature selection and predictive model, which DyS can
do but DeepHit cannot.

6 Conclusion

We present DyS, a new glass-box model for time-to-
event data. DyS is suitable for both small and large
survival analysis datasets, and can be used both for
interpretable prediction as well as for feature selection.
Our empirical results on benchmark survival analysis
datasets demonstrate the utility of DyS as a general
purpose survival analysis model. Further, our results
on a large heart failure survival task illustrate the scal-
ability and effectiveness of DyS for large-scale survival
analysis problems, where other methods are either less
effective or too slow. We hope our work inspires further
research into XAI, and particularly glass-box modeling,
for survival analysis problems.
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A Additional Methodology Details

A.1 Smooth-Step Function

The smooth-step function S(x;µ) was originally pro-
posed in [23] as a neural network activation for training
differentiable decision trees. We follow [27] as use it
for learning sparse additive models. The function is
defined as

S(x;µ) =


0 if t ≤ −µ/2
− 2

µ3x
3 + 3

2µ t+
1
2 if − µ/2 ≤ x ≤ µ/2

1 if x ≥ µ/2

(14)
The function can perform hard-selection by reaching ex-
actly 0 or 1, while also being continuously differentiable.
The µ ∈ R parameter in S is the learnable parameter
that the network can optimize to induce feature-sparsity
during training.

A.2 Bisection

Bisection is an algorithm traditionally used as an
optimization search technique. In this paper, we use
bisection when we want to find a hyperparameter, λ, for
a feature selection procedure that results in exactly k
features. The algorithm is very similar to binary search,
except that an initial upper and lower bound is not
available. Thus, the algorithm starts by searching for
hyperparameter settings λlow and λhigh that result in
too many and too few feature respectively, and then
does a binary search until a feasible λ is found. The
algorithm is described fully in Algorithm 3.

B Additional Experiment Details

Details about our datasets used can be found in
Table 3. We provide further details about each dataset
below:

• flchain: we obtain via scikit-survival [46].

• metabric: we obtain via the GitHub repository for
DeepHit 2. We thus use the same preprocessing as
from the DeepHit paper [34].

• mimic: we gather features from the MIMIC III
dataset using the MIMIC benchmark [21]. We follow

2https://github.com/chl8856/DeepHit/tree/master/sample%20data/METABRIC
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Table 3. Dataset descriptions of the datasets used in our experiments.
Name Domain # Samples # Features % censored

flchain Microbiology 7874 44 72.4%
metabric Genomics 1981 79 55.2%
mimic Healthcare 15241 95 61.9%
support Healthcare 9105 57 31.9%
heart-failure Healthcare 672296 2410 97.5%

Table 4. Heart Failure Cohort Statistics.

Total Features By Type Gender Race Age

Measurements: 1464 Male: 39.5% White: 54.2% 18-29: 13.4%
Conditions: 314 Female: 60.5% Asian: 20.3% 30-44: 25.9%
Drugs: 614 Black: 4.1% 45-59: 27.5%
Demographics: 10 Other: 1.2% 60-74: 24.6%
Observations: 8 Unknown: 20.2% ≥ 75: 8.6%

Algorithm 3 Select k features by bisection.

1: Input
• Feature selection model f , train dataset D.
• Initial regularization parameter λ0.
• Target feature number k.

2: λhigh ← None, λlow ← None.
3: λ← λ0.
4: num feats← −1.
5: while num feats ̸= k
6: num feats← f(D).
7: if num feats < k
8: λhigh ← λ.
9: if λlow is None

10: λ← λ/2.
11: else
12: λ← (λlow + λhigh)/2.

13: else if num feats > k
14: λlow ← λ.
15: if λhigh is None
16: λ← 2 · λ.
17: else
18: λ← (λlow + λhigh)/2.

19: else
20: return f .

the steps for generating features for the mortality lo-
gistic regression task, keeping only the features which
consider the entire historical window. Then, we get
the survival label for each patient following [3], and
join on patient ID. Further details can be found in
our code.

• support: we obtain following the DeepSurv paper
[31].

• heart-failure: see Section B.1.

We use one-hot encoding for all categorical features,
and standard scaling to zero mean and unit variance for
all continuous features. We replace missing values with
the new category “Unknown” for categorical features,
and with 0 (after scaling) for continuous features.

B.1 Heart Failure Study Design

We obtain data from the electronic health records
(EHR) from a large hospital network (name censored
for anonymity). The EHR data is structured in the
OMOP Common Data Model (CDM) [25].

B.1.1 Features

We gather features from the following OMOP CDM
tables:

• Person: source for age, race, and gender.

• Measurements: source for vital sign and lab mea-
surement features.

• Drug Exposure: source for exposure to different
medications.

• Condition Occurrence: source for whether or not
patients have certain medical conditions.
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• Observation Occurrence: source for smoking data.

For each patient, we gather all values available for each
feature across the patient’s historical data, giving us a
time-series for each feature. For each continuous fea-
ture in the measurements table, we generate 6 tabular
features from the feature’s time series: the most re-
cent value, as well as the mean, minimum, maximum,
standard deviation, and count of non-missing values
over the entire time series. For each categorical feature
from the measurements table, as well as for smoking,
we generate 1 tabular feature using the last available
measurement. For each condition or drug exposure
feature, we generate 2 binary features: 1) whether (1)
or not (0) the patient has a record of the condition or
drug in the last year (short term), or any time in their
history (long term).

B.1.2 Index Date

For each patient, we designate their prediction date,
or index date, as their visit interaction with the EHR
after January 1, 2015. Further, we restrict our cohort
to patients older than 18 with at least one year of ob-
servation before and after their index date, and who
have not gotten heart failure before their index date.
For the survival label, we access whether or not a pa-
tient gets heart failure after their index date using a
defined collection of concepts indicative of heart failure
diagnosis. All patients who do get heart failure are left
uncensored, and their time-to-event label is the number
of days between index date and heart failure diagnosis.

B.2 Synthetic Data

We generate synthetic data for the experiment in
Figure 3 using the following procedure. We start by
generating features X ∈ Rp, coefficients β ∈ Rp, and
errors ϵ ∈ Rp from a standard normal distribution (we
use p = 10 features). Next, we calculate a continuous
response Y = XTβ+ ϵ. We pass this response, which is
normally distributed, through the CDF of a normal dis-
tribution with mean and variance given by the empirical
mean and variance of Y . The result of this transform,
call it Y ∗, is uniformly distributed between 0 and 1.
Then, we designate Y ∗ into one of two groups, cutting
at the median of the distribution of Y ∗. In group 1, we
min-max scale Y ∗ into range [2T/8, 6T/8], where T is
the inputted maximum event time. In group 2, we min-
max scale Y ∗ into range [0, 2T/8], and add 6S/8 where
S is a binary random variable S ∼ Bernoulli(0.5). The
resulting random variable is approximately distributed
uniformly in [2T/8, 6T/8] with probability 0.5, and uni-
formly in [0, 2T/8] ∪ [6T/8, 1] with probability 0.5, as

described in Section 5.1.

B.3 Model Implementations

• CoxPH: we fit CoxPH using the implementation
in scikit-survival. We use L2 regularization with
regularization parameter of 10−3 for all experiments
to improve numerical stability.

• RSF: we use the implementation in scikit-survival,
with default hyperparameters.

• DeepSurv: we base our implementation off of https:
//github.com/czifan/DeepSurv.pytorch, a Py-
Torch implementation of the original DeepSurv repos-
itory which is writte in Tensorflow. We use a hidden
dimension of 128 and no dropout or L2 regularization
for all experiments except heart failure, for which we
use a dropout of 0.2 and L2 regularization of 10−3 to
combat overfitting.

• DeepHit: we use the implementation in Py-
Cox https://github.com/havakv/pycox, a pack-
age with several deep learning survival models in
PyTorch. We use a hidden dimension of 128, and
dropout of 0.6, following the original paper. Last, we
use 100 evaluation output times.

• DRSA: we write our own implementation based on
the DRSA paper [50]. We use a hidden dimension of
128 and 100 evaluation times.

• SA Transformer: we write our own implementation
based on the Github code accompanying the original
paper [26]. We use the hyperparameters suggested in
the Github.

• PseudoNAM: we generate pseudo-values using the
Kaplan-Meier estimator from scikit-survival. Each
shape function is implemented as an MLP with hid-
den dimension 32. We use 100 evaluation times, i.e.
100 pseudo-value labels.

• DyS: we use a hidden dimension of 32 for all shape
function MLPs, and 100 evaluation times.
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