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Abstract. Transition paths are rare events occurring when a system, thanks to the effect of
fluctuations, crosses successfully from one stable state to another by surmounting an energy
barrier. Even though they are of great significance in many mesoscale processes, their direct
determination is often challenging due to their short duration as compared to other relevant
time-scales. Here, we measure the local average velocity along transition paths of a colloidal
bead embedded in a glycerol/water mixture that hops over a barrier separating two optical
potential wells. Owing to the slow dynamics of the bead in this viscous medium, we can
spatially resolve the mean velocity profiles of the transition paths for distinct potentials, which
agree with theoretical predictions of a model for the motion of a Brownian particle traversing
a parabolic barrier. This allows us to experimentally verify various expressions linking the
behavior of such mean velocities with equilibrium and transition path position distributions,
mean transition-path times and mean escape times from the wells. We also show that artifacts
in the mean velocity profiles arise when reducing the experimental time resolution, thus
highlighting the importance of the sampling rate in the characterization of the transition path
dynamics. Our results confirm that mean transition path velocity establishes a fundamental
relationship between mean transition path times and equilibrium rates in thermally activated
processes of small-scaled systems.

Keywords: thermally activated transitions, transition paths, Brownian motion, barrier crossing
dynamics

1. Introduction

Thermally activated transitions take place in diverse mesoscopic systems that exhibit
multistability, such as in biomolecular folding reactions [1, 2], protein association [3, 4],
adatom diffusion [5, 6], nanomagnetic information storage [7, 8], particle hopping in dense
colloidal suspensions [9, 10], self-feedback in cavity optomechanical systems [11], etc. In
such processes, thermal fluctuations boost the escape of the system from a particular stable
state by providing it with the necessary energy to surmount the corresponding barrier, thus
allowing it to explore other local minima in its energy landscape. In general, they involve
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two characteristic time-scales that depend on the coupling of the system with its environment,
thus encoding different pieces of information on the microscopic mechanisms underlying the
transition. The first one is the mean escape time, i.e. the time that the system dwells on average
in a state corresponding to a certain potential minimum until it fully escapes, whose inverse
represents the transition rate of the activated process. The second one is the mean duration of
transition paths, which are transient parts of the trajectory of a coordinate characterizing the
dynamics of the system as it spontaneously traverses from a specific location on the barrier
to another on the other side without recrossing the former. Since they actually correspond to
successful crossing events over the barrier, their average duration is significantly shorter than
the mean escape time, the latter being a mean first passage time that encompasses all failed
attempts before a transition path occurs.

Much of our current understanding on thermally activated processes has been gained
thanks to the formulation of Kramers’ escape problem, which models them as the diffusive
dynamics of a particle in contact with a heat bath that starts in a potential well and eventually
hops over a barrier [12]. Since then, numerous theoretical efforts have been devoted to the
determination of mean escape times and transition rates for diverse systems under various
physical conditions [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31].
Many of those predictions have been experimentally validated by direct visualization of
colloidal beads suspended in fluids such as water [32, 33, 34, 35, 36, 37, 38, 39, 40],
gases [41] and viscoelastic liquids [42], hopping across potential wells sculpted by, e.g. optical,
electrophoretic and gravitational methods, which mimic the energy landscape considered in
Kramers’ problem. Along the same lines, a number of theoretical results have been derived
over the past two decades on the statistical properties of transition paths of Brownian systems
surmounting energetic barriers [43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
60], which can shed light on the intricate molecular mechanism responsible for equilibrium
reactions in condensed matter phases. As a matter of fact, in the last few years it has been
possible to experimentally detect transition paths in protein and nucleic acids folding reactions
thanks to recent improvements in single-molecule techniques [61, 62, 63, 64, 65, 66, 67, 68, 69,
70, 71, 72, 73, 74]. The results of such experiments provide clear evidence that the probability
distributions of transition-path times exhibit the typical non-exponential behavior with an
asymmetric peak derived from diffusive models. Nevertheless, to the best of our knowledge
there is only one experimental work that has quantitatively verified the predicted dependence
of the transition-path time distribution for diffusive dynamics on the parameters of a parabolic
barrier by monitoring the motion of a colloidal bead in water through a bistable optical trap
[39]. Measuring other features of transition paths analyzed in theoretical models, e.g. their
average shape and probability distributions of reaction coordinates, is more challenging due to
experimental limitations of the spatio-temporal resolution within the transition region over the
barrier, where multiple reversals of the dynamics occur before reaching the target. Indeed, as
shown by recent numerical studies, artifacts due to an insufficient time resolution can emerge
in the determination of statistical properties of transition paths over a barrier [75], even in
simple instances of free diffusion [76].

It is worth pointing out that an important quantity that statistically describes the barrier-
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crossing process of a system transiting between two stable states is its mean velocity profile,
which is a function of the coordinate characterizing the transition. Indeed, this quantity
provides information on local variations in the speed of the transition paths including the
effect of stochastic reversals opposite to their average direction due thermal fluctuations and
the detailed barrier shape. Remarkably, the mean velocity along transition paths establishes a
link between the mean transition-path time, the probability density of transition-path points,
the equilibrium probability density of the system’s coordinate, and the equilibrium reactive
flux of the transition [43, 52]. Therefore, it is of paramount importance to measure in a
well controlled experiment the mean transition path velocity in order to verify its theoretically
predicted properties as well as its relation with other relevant quantities describing thermally
activated processes.

In this paper, we present an experimental study of the transition path dynamics of a
colloidal bead hopping between two optical potential wells. Our main goal is to directly
measure the mean velocity profile of the transition paths of the particle position in the transition
region over the energy barrier, and to probe its relationship with other quantities characterizing
the dynamics of the system. To this end, unlike most of the previous investigations using
colloidal particles moving in water across bistable potentials, here we perform experiments
in a glycerol/water mixture, whose higher viscosity leads to a slower particle motion, thus
enabling us to spatially resolve the mean transition-path velocity. In turn, this also allows for
the the investigation of the effect of the sampling frequency on the calculation of such mean
velocity, which clearly demonstrates that it can be underestimated if the time resolution is not
at least two orders of magnitude smaller than the mean transition path time. Moreover, our
experimental results confirm that the mean transition path velocity provides a fundamental
link between the mean transition path times and the mean escape times of thermally activated
processes.

2. Experimental description

2.1. Experimental setup

The experiments are conducted using a very dilute dispersion of spherical silica beads
(diameter 2𝑎 = 0.5𝜇m) in a liquid mixture of glycerol and ultrapure water at 52.5% wt (less
than 1 colloidal particle in 1 nl of solution). The colloidal dispersion is confined in a sample
cell composed of a microscope glass slide that is parallelly stuck to a coverslip by double-
sided adhesive tape (separation ∼ 100𝜇m), and sealed with epoxy glue to avoid leakage and
evaporation of the liquid. Two optical tweezers are created inside the sample cell by tightly
focusing two orthogonally polarized laser beams (wavelength 𝜆 = 532 nm, total power of
70 mW) by means of an oil-immersion objective (100×, numerical aperture NA = 1.3). Then,
as sketched in Fig. 1(a), a single bead is trapped by the optical tweezers at ℎ ≈ 10𝜇m away
from the lower wall of the sample cell and very far from any other particle in order to avoid the
effect of hydrodynamic interactions on the particle motion. The experiments are carried out
at room temperature (𝑇 = 22 ± 0.1◦C) at which the dynamic viscosity of the glycerol/water
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Figure 1. (a) Sketch of a spherical bead of radius 𝑎 = 0.25𝜇m moving in a glycerol/water
mixture across a bistable optical potential created by means of two optical tweezers with
separation 𝑑 ≈ 0.5𝜇m, which keep it at a distance ℎ ≈ 10𝜇m from the lower cell wall.
The coordinate system used in the data analysis is also depicted. (b) Color map of the two-
dimensional optical potential 𝑈 (𝑥, 𝑦) acting on the bead motion in the x-y plane perpendicular
to the direction of propagation of the laser beams (z). The solid straight line represents the x-
axis (𝑦 = 0) connecting the minimum of the left potential well (∗), the maximum of the barrier
(×), and the minimum of the right well (⦁). (c) Example of the stochastic time evolution over 1
hour of the coordinates of the bead’s center of mass, 𝑥(𝑡) and 𝑦(𝑡), in the plane x-y. (d) Spatial
profile of the one-dimensional potential 𝑈 (𝑥) determined by means of eqn (2) via the marginal
probability density of 𝑥 (solid line), and by evaluating the two-dimensional potential along the
x-axis, 𝑈 (𝑥, 𝑦 = 0) (dots). The colored dotted lines represent the parabolic fits of 𝑈 (𝑥) given
by eqn (3) in the regions [𝑥± − 𝛿𝑥±, 𝑥± + 𝛿𝑥±] around the minima at 𝑥 = 𝑥± of the two wells,
W±, where 𝛿𝑥± = |𝑥± ∓ 𝑥0|, and the inverted parabolic fit described by eqn (4) of the barrier
inside the transition region [−𝑥0,+𝑥0].

mixture is 𝜂 = 0.0061 ± 0.0017 Pa s ‡, which is six times larger than the viscosity of pure
water at the same temperature. Accordingly, the diffusive dynamics of the bead becomes six
times slower in the glycerol/water mixture than in water. The separation between the two
optical traps is fixed at 𝑑 ≈ 0.5𝜇m, at which we clearly observe that the particle randomly
hops between the two minima of the resulting optical potential. We record independent videos
of 4 distinct individual particles moving in such a bistable energy landscape using a CMOS
camera at a sampling frequency of 𝑓0 = 1500 frames per second during 1 hour, over which each
particle transits alternately between the two potential wells approximately 300 times. From the
recorded videos, we detect the coordinates (𝑥, 𝑦) of the center of mass of the two-dimensional

‡ This value was determined in situ from the mean square displacement of the bead in a single optical trap, which
was achieved by simply blocking the second laser beam.
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projection of the distinct spherical particles perpendicular to the direction of propagation of
the laser beams, z, by means of standard particle-tracking routines with a spatial resolution of
5 nm.

2.2. Potential landscape

We reconstruct the detailed shape of the effective optical potential 𝑈 (𝑥, 𝑦) acting on the two-
dimensional motion of each particle by use the equilibrium Boltzmann distribution

𝜌𝑒𝑞(𝑥, 𝑦) = 𝜌0 exp
[

−
𝑈 (𝑥, 𝑦)
𝑘𝐵𝑇

]

, (1)

where 𝜌0 is a normalization constant and 𝜌𝑒𝑞(𝑥, 𝑦) is simply computed from the two-
dimensional histogram of the tracked coordinates of the particle over one hour. An example of
the profile of 𝑈 (𝑥, 𝑦) is illustrated in Fig. 1(b), which features two neatly defined wells, whose
minima are located at (−0.253𝜇m, 0) and (+0.242𝜇m, 0), respectively, separated by an energy
barrier of height ∼ 5𝑘𝐵𝑇 with a maximum at (0, 0). This potential is symmetric with respect
to the straight line connecting the two minima of the wells and the maximum of the barrier,
which corresponds to the x-axis (𝑦 = 0). An example of the stochastic time evolution of
the position of the bead moving in this biestable optical potential is shown in Fig. 1(c). We
observe that, while the coordinate 𝑥(𝑡) clearly mirrors the thermally activated transitions of the
bead across the bistable potential, the coordinate 𝑦(𝑡) does not exhibit any signature of hopping
dynamics. Therefore, we can restrict the analysis of the barrier crossing process of the bead
to its coordinate 𝑥. From the marginal probability density 𝜌𝑒𝑞(𝑥) = ∫ ∞

−∞ 𝑑𝑦𝜌𝑒𝑞(𝑥, 𝑦), which is
computed from the histogram of 𝑥, we determine the one-dimensional potential

𝑈 (𝑥) = −𝑘𝐵𝑇 ln 𝜌𝑒𝑞(𝑥) + 𝑢0, (2)

where 𝑘𝐵 is the Boltzmann constant and 𝑢0 is an arbitrary constant. In Fig. 1(d) we plot
the profile of 𝑈 (𝑥) that is determined from the same data used for the calculation of the
two-dimensional potential shown in Fig. 1(b), which displays two potential wells, W− and
W+, and a barrier, whose corresponding minima and maximum are located at the same
positions as those of 𝑈 (𝑥, 𝑦) along the x-axis, i.e. at 𝑥 = 𝑥± and 𝑥 = 0, respectively,
where 𝑥− = −0.253𝜇m and 𝑥+ = +0.242𝜇m. Moreover, as verified in Fig. 1(d), the
complete one dimensional profile of 𝑈 (𝑥) coincides with that of 𝑈 (𝑥, 𝑦 = 0) along the x-axis,
which demonstrates that 𝑥(𝑡) is actually decoupled from 𝑦(𝑡), thus being an optimal reaction
coordinate to fully describe the activated transitions of the bead. Furthermore, we notice that
the potential wells are in general asymmetric, whose depths can differ from each other up to
∼ 1𝑘𝐵𝑇 depending on the analyzed particle. Therefore, the escape events of the particle over
the barrier starting from W− must be studied separately from those taking place from W+ in
order to correctly compute their corresponding rates. Accordingly, as depicted in Fig. 1(d), for
the analysis of the Kramers escape process we perform a parabolic fit around each minimum
at 𝑥 = 𝑥± of the potential wells

𝑈 (𝑥) = 𝑈 (𝑥±) +
1
2
𝜅±(𝑥 − 𝑥±)2, (3)
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where 𝜅± > 0 are the corresponding local curvatures of the potential. On the other hand, we
define the boundaries of the transition region at 𝑥 = −𝑥0 and 𝑥 = +𝑥0, i.e. symmetrically
positioned with respect to barrier maximum at 𝑥 = 0, by choosing the largest value of 𝑥0 such
that the potential 𝑈 (𝑥) can be approximated as an inverted parabola within −𝑥0 ≤ 𝑥 ≤ +𝑥0

𝑈 (𝑥) = 𝑈 (0) − 1
2
𝜅0𝑥

2, (4)

with 𝜅0 > 0, as depicted in Fig. 1(d). We check that the value 𝑥0 = 0.18𝜇m allows for the
above-mentioned parabolic fit of the energy barrier for all the particles used in the experiments
even though the values of 𝜅0 slightly vary between distinct particles. It should also be noted
that the symmetry of 𝑈 (𝑥) with respect to 𝑥 = 0 for −𝑥0 ≤ 𝑥 ≤ +𝑥0 permits to study the
duration of transition paths just by paying attention to the direction of the transition regardless
of the initial well from which the particle enters the transition region.

2.3. Characteristic time-scales

Fig. 2 details the calculation of the two main time-scales characterizing the barrier-crossing
process of the bead, namely, the mean escape time, whose inverse is equal to the corresponding
transition rate, and the mean transition path time. First, in Fig. 2(a) we depict an expanded
view over 30 minutes of the hopping dynamics of the bead through its coordinate 𝑥(𝑡),
which displays comparatively long stays of random duration represented in different colors,
corresponding to situations where the particle equilibrates in each potential well. These long-
lived events are interrupted by much shorter excursions of the bead deep inside the transition
region, most of then failing to reach the boundary on the other side of the barrier, and some
of them corresponding to actual transition paths along which the bead fully traverses from
one potential well to the other. To measure the mean transition path time, we determine the
duration 𝑡(𝑖)TP of the 𝑖−th segment of the particle trajectory that enters the transition region at
𝑥 = ±𝑥0 and exits at 𝑥 = ∓𝑥0 without crossing back into the entrance point, i.e. by definition
a transition path, as exemplified by the portion {𝑥(𝑡); 𝑡𝑖 ≤ 𝑡 ≤ 𝑡𝑖 + 𝑡(𝑖)TP} represented as a solid
thick black line in Fig. 2(b). This provides the particular value 𝑡(𝑖)TP taken by the transition path
time, 𝑡TP, which is a stochastic variable due to the effect of thermal fluctuations on the particle
motion. This definition excludes events starting at 𝑥 = ±𝑥0 and returning to the same point
before reaching the opposite boundary at 𝑥 = ∓𝑥0, like the part of the trajectory depicted
as a solid thin green line in Fig. 2(b). Once all the transition paths performed by the bead
within the transition region have been identified and the their corresponding duration has been
determined, we calculate their arithmetic mean

⟨𝑡TP⟩ =
1
𝑁0

𝑁0
∑

𝑖=1
𝑡(𝑖)TP, (5)

where 𝑁0 is the total number of transitions paths detected along the complete trajectory over
1 hour, typically 𝑁0 ∼ 300. On the other hand, to compute the mean escape times, we
must find the particular values taken during the experiment by the escape times 𝑡+K and 𝑡−K,
which are also stochastic variables, where the signs + and − represent the well from which
the particle escapes, i.e. W+ or W−, respectively, whereas K stands for “Kramers’ escape
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Figure 2. (a) Example of the time evolution of the coordinate 𝑥(𝑡) reflecting the stochastic
hopping of the bead during 30 minutes between the potential wells W− and W+ with minima
at 𝑥− and 𝑥+. Red and blue segments of the trajectory represent events where the bead resides
in wells W− and W+, respectively, until it fully escapes by thermal activation to the contiguous
well by following a transition path through the transition region [−𝑥0,+𝑥0]. (b) Diagram of
the calculation of the experimental values taken along the bead trajectory by the transition path
time, 𝑡TP, defined inside the transition region [−𝑥0,+𝑥0]. The solid thick black line represents
an actual transition path, whereas the solid thin green line corresponds to a failed attempt that
does not count as such. (c) Diagram of the calculation of the experimental values taken along
the bead trajectory by the escape times, 𝑡+K and 𝑡−K , from the potential wells W+ and W−,
which are determined from the duration of the segments marked in blue and red, respectively.
In Figs. 2(a)-2(c) the dashed lines outline the boundaries of the transition region, and the
dotted-dashed lines mark the location of the minima of the potential wells.

process”. For the sake of brevity, in the following we will use the notation ± to simultaneously
refer to both escape processes and to the signs associated to the parameters characterizing
the particle escape from the corresponding well. For this calculation, we start counting the
cumulative time spent by the particle around the respective minimum at 𝑥 = 𝑥± since it left
the transition region at time 𝑡 = 𝑡±𝑗 from 𝑥 = ±𝑥0, including all failed attempts to reach
the point 𝑥 = ∓𝑥0 on the other side of the barrier, as illustrated in Fig. 2(c) by the ±𝑗−th
segment {𝑥(𝑡); 𝑡±𝑗 ≤ 𝑡 ≤ 𝑡±𝑗 + 𝑡(𝑗)±K} shown in blue (+) and red (−). Once the particle performs
a transition path by successfully traversing from 𝑥 = ±𝑥0 to 𝑥 = ∓𝑥0, we consider that the
±𝑗−th escape event has been completed and then we stop counting the time elapsed since 𝑡±𝑗 ,
thus yielding the corresponding value 𝑡(𝑗)±K of 𝑡±K. By computing the values of 𝑡±K for all the 𝑁±
escape events occurring along the experimental trajectory 𝑥(𝑡), typically 𝑁+ ∼ 150 ∼ 𝑁−, we
simply calculate their arithmetic average, thus leading to the values of the mean escape times
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from the corresponding wells W±, i.e.

⟨𝑡±K⟩ =
1
𝑁±

𝑁±
∑

𝑖=1
𝑡(𝑗)±K. (6)

It should be pointed out that, according to the previous definition, the mean escape time of the
bead from the well W± is equal to its mean first passage time from 𝑥 = ±𝑥0 to 𝑥 = ∓𝑥0 under
the condition that the particle initially exited the transition region through 𝑥 = ±𝑥0 rather than
entering it.

3. Model

We now consider a stochastic model for the hopping dynamics of the bead along the x-axis
across the effective bistable potential 𝑈 (𝑥). Since the particle moves in a highly viscous
medium at constant temperature, the probability density 𝜌(𝑥, 𝑡|𝑥′, 𝑡′) to locate it at position
𝑥 at time 𝑡 given that it was at 𝑥′ at time 𝑡′ < 𝑡 is governed by the Smoluchowski equation

𝜕𝜌(𝑥, 𝑡|𝑥′, 𝑡′)
𝜕𝑡

= 𝐷 𝜕
𝜕𝑥

{

𝑒−
𝑈 (𝑥)
𝑘𝐵𝑇 𝜕

𝜕𝑥

[

𝑒
𝑈 (𝑥)
𝑘𝐵𝑇 𝜌(𝑥, 𝑡|𝑥′, 𝑡′)

]}

. (7)

In eqn (7), 𝐷 = 𝑘𝐵𝑇 ∕𝛾 is the diffusion coefficient of the particle in the viscous medium,
where 𝛾 = 6𝜋𝑎𝜂 is its friction coefficient. From the probability flux associated to eqn (7),
i.e. 𝐽 (𝑥′, 𝑡) = −𝐷𝑒−𝑈 (𝑥)∕(𝑘𝐵𝑇 )𝜕𝑥

[

𝑒𝑈 (𝑥)∕(𝑘𝐵𝑇 )𝜌(𝑥, 𝑡|𝑥′, 𝑡′ = 0)
]

|𝑥=+𝑥0 , originating from a point
𝑥′ > −𝑥0 within the transition region and passing through the boundary 𝑥 = +𝑥0, the well-
known analytic approximation for the mean transition path time can be found by taking the
limit 𝑥′ → −𝑥0 [43, 66]

⟨𝑡TP⟩ = 𝜏0 ln
(

2𝑒𝛾EM 𝛿𝑈
𝑘𝐵𝑇

)

. (8)

In eqn (8), 𝛿𝑈 = 1
2
𝜅0𝑥2

0 is the height of the barrier with respect to the boundaries of the
transition region, 𝛾EM ≈ 0.5772 is the Euler–Mascheroni constant, and 𝜏0 = 𝛾∕𝜅0 is the
characteristic time of the particle when moving in the unstable region on top of the barrier. This
approximation for ⟨𝑡TP⟩ is valid provided that the relative barrier height 𝛿𝑈 is sufficiently large
in comparison with 𝑘𝐵𝑇 . Likewise, from the steady-state solution of eqn (7), the parabolic
approximations of the potential around the minima at 𝑥 = 𝑥± and the top of the barrier at
𝑥 = 0 described by eqns (3) and (4), respectively, lead to Kramers’ formula for the mean
escape times from each potential well [12]

⟨𝑡±K⟩ = 2𝜋
√

𝜏0𝜏± exp
(Δ𝑈±

𝑘𝐵𝑇

)

. (9)

In eqn (9), 𝜏± = 𝛾∕𝜅± are the viscous relaxation times of the particle in the harmonic regions
around the potential minima located at 𝑥 = 𝑥±, whereas Δ𝑈± denotes the heights of the energy
barrier relative to the minima of the wells W±, i.e. Δ𝑈± = 𝑈 (0) − 𝑈 (𝑥±). Eqn (9) is valid
if the barrier is sufficiently high with respect to 𝑘𝐵𝑇 , which guarantees that once the particle
arrives at a certain well after completing a transition path, it has enough time to equilibrate
there before crossing back over the barrier.
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Apart from the previous characteristic time-scales, a quantity that provides more detailed
statistical information on the spatial variations of the speed of an activated transition is the
local mean velocity along transition paths. By counting the total time spent on average by a
single transition path within the spatial range [𝑥 − Δ𝑥∕2, 𝑥 + Δ𝑥∕2] fully contained in the
transition region, ⟨Δ𝑡(𝑥,Δ𝑥)⟩, including the duration of its recrossing into this interval due to
the stochastic reversals opposing the average direction of the transition, its mean velocity at 𝑥
is defined as

𝑣TP(𝑥) = lim
Δ𝑥→0

Δ𝑥
⟨Δ𝑡(𝑥,Δ𝑥)⟩

. (10)

Moreover, from the definition of 𝑣TP(𝑥) it should be noted that the time that a transition path
needs on average to travel from 𝑥 to 𝑥 + 𝑑𝑥 is 𝑑𝑥∕𝑣TP(𝑥), and then the fraction of time
spent there with respect to its total average duration, ⟨𝑡TP⟩, is 𝑑𝑥∕

[

𝑣TP(𝑥)⟨𝑡TP⟩
]

. This must
be equal to the probability that the particles follows a transition path inside that infinitesimal
region during the same time interval, which is simply given by 𝜌(𝑥|TP)𝑑𝑥, where 𝜌(𝑥|TP)
is the probability density function of the position 𝑥 within the transition region conditioned
to belong only to a transition path. Therefore, the mean transition-path velocity must satisfy
the following general relationship with the probability density of the transition path positions
across the entire transition region

𝜌(𝑥|TP) = 1
⟨𝑡TP⟩𝑣TP(𝑥)

. (11)

As demonstrated in [43], for the diffusive dynamics over the barrier of 𝑈 (𝑥) described by
eqn (7), one can find general expressions for ⟨𝑡TP⟩ and 𝜌(𝑥|TP) in terms of the splitting
probabilities Φ±𝑥0(𝑥), defined as the probabilities that a path starting at 𝑥 will reach the
boundaries ±𝑥0, respectively. By definition, such splitting probabilities satisfy the condition
Φ−𝑥0(𝑥) + Φ+𝑥0(𝑥) = 1, and can be fully expressed in terms of the equilibrium Boltzmann
distribution within the transition region −𝑥0 < 𝑥′ < +𝑥0, 𝜌𝑒𝑞(𝑥′) ∝ exp

[

−𝑈 (𝑥′)∕(𝑘𝐵𝑇 )
]

, as

Φ+𝑥0(𝑥) =
∫ 𝑥
−𝑥0

𝑑𝑥′
[

𝜌𝑒𝑞(𝑥′)
]−1

∫ +𝑥0
−𝑥0

𝑑𝑥′
[

𝜌𝑒𝑞(𝑥′)
]−1

. (12)

Then, by use of eqn (11), the local mean velocity of transition paths can be recast as

𝑣TP(𝑥) = 𝐷
[

∫

𝑥0

−𝑥0

𝑑𝑥′

𝜌𝑒𝑞(𝑥′)
Φ+𝑥0(𝑥)Φ−𝑥0(𝑥)𝜌𝑒𝑞(𝑥)

]−1

, (13)

which allows one to find the following analytic expression for its spatial profile in the case
of the inverted parabolic approximation of the barrier inside the transition region, 𝑈 (𝑥) =
𝑈 (0) − 1

2
𝜅0𝑥2

𝑣TP(𝑥) =

√

8𝐷
𝜋𝜏0

erf
(√

𝛿𝑈
𝑘𝐵𝑇

)

exp
(

− 𝜅0𝑥2

2𝑘𝐵𝑇

)

erf 2
(√

𝛿𝑈
𝑘𝐵𝑇

)

− erf 2
(
√

𝜅0
2𝑘𝐵𝑇

𝑥
)
. (14)

Furthermore, as discussed in [43, 52], a remarkable consequence of the properties of
the local mean velocity, or equivalently the conditional probability density of the transition
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path position, is that it establishes direct link between the mean transition-path times and the
transition rates through equilibrium and transition path distributions. Indeed, by use of Bayes’
theorem, the probability density function of the particle position along a transition path going
from −𝑥0 to +𝑥0 can be expressed as

𝜌(𝑥|TP) =
𝑃 (TP|𝑥)𝜌𝑒𝑞(𝑥)

𝑃 (TP)
, (15)

where 𝑃 (TP|𝑥) is the probability that at position 𝑥 in the transition region the particle is on a
transition path from −𝑥0 to +𝑥0, and 𝑃 (TP) is the probability that it has undergone through a
transition path. Since the latter represents the fraction of the total time spent by the particle in a
transition path from−𝑥0 to+𝑥0, it can be expressed as 𝑃 (TP) = 𝐽−⟨𝑡TP⟩, where 𝐽− = 𝑃−∕⟨𝑡−K⟩
is the steady-state flux of the transition and 𝑃− is the probability of finding the particle in the
well W−, i.e. at 𝑥 < −𝑥0. Similar relations hold for the transition paths from +𝑥0 to −𝑥0,
thus yielding the general expression for the ratio of the characteristic time-scales of the barrier
crossing process

⟨𝑡TP⟩
⟨𝑡±K⟩

=
𝑃 (TP|𝑥)𝜌𝑒𝑞(𝑥)
𝑃±𝜌(𝑥|TP)

, (16)

which is independent of 𝑥 even though the functions on the right-hand side depend separately
on 𝑥 in a non-trivial fashion.

4. Results

In this Section, using the experimental trajectories of the bead, we test the validity of the
general expressions given in eqns (11) and (16), both involving the determination of the spatial
profile of its mean transition path velocity. To this end, using eqns (5) and (6) we first compute
the mean transition path time of the bead and its two mean escape times across the bistable
potential landscape at the experimental sampling frequency 𝑓0 = 1500 Hz, and then examine
how these quantities are affected upon decimation of the original data. In Figs. 3(a) and
3(b) we show that at 𝑓0, different experiments corresponding to distinct beads moving in
their respective optical potentials exhibit mean transition path times and mean escape times
from each well that are in quantitative agreement with eqns (8) and (9), respectively. For
the theoretical calculations by means of these equations, we use the values of the parameters
𝜅0, 𝜅±, 𝛿𝑈 , and Δ𝑈± that were determined from the analysis described in Subsection 2.2
of the coordinate 𝑥(𝑡) recorded at the original frequency 𝑓0. We point out that the temporal
resolution given by 1∕𝑓0 = 0.67 ms, at which there is an excellent agreement between the
measured values of ⟨𝑡TP⟩ and ⟨𝑡±K⟩ and those theoretically predicted by eqns (8) and (9), is
two order of magnitude shorter than the predicted values of the mean transition path time
(60ms < ⟨𝑡TP⟩ < 100ms), see Fig. 3(a). Reducing the sampling frequency of the trajectories
by less than one order of magnitude upon decimation of the original data by a factor 𝑛 < 10,
i.e. 𝑓0∕𝑛 > 𝑓0∕10, gives rise to a slight increase in ⟨𝑡TP⟩ of at most ten percent, as can be
seen in Fig. 3(a) for 𝑛 = 2 and 𝑛 = 5. Moreover, a further increase in the decimation factor
𝑛 by more than one order of magnitude, 𝑓0∕𝑛 < 𝑓0∕10, leads to systematic deviations of
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Figure 3. (a) Ratio of the experimentally measured values of the mean transition path time for
distinct colloidal beads using eqn (5), ⟨𝑡TP⟩exp, to the corresponding theoretical prediction,
⟨𝑡TP⟩th, given by eqn (8). (b) Ratio of the experimentally measured values of the mean
escape time for distinct colloidal beads using eqn (6), ⟨𝑡±K⟩exp, to the corresponding theoretical
prediction, ⟨𝑡±K⟩th, according to eqn (9). The distinct symbols in Figs. 3(a) and 3(b) represent
the results of decimating the original data that was experimentally recorded at a sampling
frequency 𝑓0 = 1500 Hz (○) to a reduced frequency 𝑓0∕𝑛, with 𝑛 = 2 (▫), 𝑛 = 5 (♢), 𝑛 = 10
(▿), and 𝑛 = 100 (☆). (c) Example of a transition path identified along the original trajectory
that was recorded at 𝑓0 = 1500 Hz (solid blue line) and those apparently detected when
decimating the original data to 𝑓0∕𝑛, with 𝑛 = 10 (solid orange line) and 𝑛 = 100 (solid green
line). The dotted lines represent the parts of the trajectory that are not considered as transition
paths at the corresponding sampling frequency, which are plotted using the same color code as
that of the transition paths. The dotted-dashed line rectangle encloses an unsuccessful attempt
of the particle inside the transition region to cross the barrier, which is misidentified as part
of a transition path when sampled at 𝑓0∕100. (d) Example of a segment of the trajectory
corresponding to a full residence and escape event of the particle from the well W+ (solid lines)
and those that do not belong to it (dotted lines). Same color code for the sampling frequency
as that in Fig. 3(c). In Figs. 3(c)-3(d) the dashed lines outline the boundaries of the transition
region, and the dotted-dashed lines mark the location of the minima of the potential wells.

the measured values of ⟨𝑡TP⟩ from the theoretical one, as shown in Fig. 3(a) for 𝑛 = 10 and
𝑛 = 100. In such cases, it can be seen that the resulting values upon decimation are up to 60 %
larger than those measured at 𝑓0. On the contrary, the mean escape time is less affected by the
decimation of the original trajectory, as shown in Fig. 3(b), where an increase of at most 20 %
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of the experimental value with respect to the theoretical estimate occurs when reducing the
sampling frequency by 𝑛 = 100. The main reason of the significant increase in the measured
values of ⟨𝑡TP⟩ when reducing the sampling frequency by more than one order of magnitude is
illustrated in Fig. 3(c), where we trace a transition path detected at the original frequency 𝑓0,
as well as the same path apparently recognized after decimating the original data by a factor
𝑛 = 10 and 𝑛 = 100. In particular, for 𝑛 = 100 it becomes clear that unsuccessful attempts
of the particle to surmount the barrier occurring inside the transition region can be incorrectly
identified as part of a transition path due to an excessive decimation of the data points. It should
also be noted that in this case the time resolution (100∕𝑓0 = 67 ms) is of the same order of
magnitude of the actual values of ⟨𝑡TP⟩ either calculated via eqn (8) or measured at 𝑓0, thus
resulting in a number of data points belonging to a single transition path of the order of one.
On the other hand, since the measurement of ⟨𝑡±K⟩ from the experimental trajectories involves
the detection of the residence of the particle in a given well and the subsequent transition
path through which it escapes, it is less prone to artifacts when analyzed at reduced sampling
rate. This is because the overestimate of the duration of the transition path, which occurs
mostly by misidentifying paths recrossing the boundaries of the transition region as previously
discussed, represents only a small fraction of the time that the particle previously stayed in the
well. Indeed, this is exemplified by the dwelling and later escape of the particle from the
well W+ depicted in Fig. 3(d), where it can be observed that the residence time in the well is
barely affected by the decimation even for 𝑛 = 100, whereas the duration of the transition path
that triggers the escape is much shorter than the total time that the particle needs to wait to
fully traverse the barrier. Hence, ⟨𝑡±K⟩ can still be well estimated in practice even at reduced
sampling frequencies provided the resulting time resolution is sufficient for the detection of
transition paths, i.e. at least of the order of ⟨𝑡TP⟩. Therefore, the results of this analysis reveal
that artifacts can easily arise mainly in the measured values of ⟨𝑡TP⟩ if the number of detected
data points per transition path is small, which must also translate into unphysical artifacts in
the reconstructed shape of the mean transition path velocities, as shown below.

In Figs. 4(a)- 4(d) we plot as circles the mean velocity profiles of the transition paths
of the four distinct particles analyzed in the transition region over their respective barriers,
which are determined from their experimental trajectories recorded at the sampling frequency
𝑓0 = 1500 Hz. To calculate 𝑣TP(𝑥) from the particle trajectories by means of eqn. (10), we
use Δ𝑥 = 40 nm, which is selected to be of one order of magnitude larger than the spatial
resolution of the detection of 𝑥 (5 nm) and at the same time one order of magnitude smaller
than the total length of the transition region (2𝑥0 = 0.36𝜇m). In Figs. 4(a)- 4(d) we also
trace as solid lines the theoretical expression of 𝑣TP(𝑥) derived from the diffusive model of the
particle motion that is shown in eqn. (14), where the diffusion coefficient 𝐷 is calculated using
the measured value of the viscosity of the glycerol/water mixture, whereas 𝜅0 is determined
for each specific optical potential, which allows us to compute the corresponding values of
𝜏0. In all cases, we find an excellent agreement between the experimental mean velocity
profiles and their corresponding theoretical expressions, thereby verifying that at a sampling
frequency 𝑓0 that is at least two orders of magnitude larger than ⟨𝑡TP⟩−1, the spatial dependence
of 𝑣TP(𝑥) on the coordinate 𝑥 can be properly resolved. It should be noted that the shape of
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Figure 4. (a)-(d) Mean transition path velocities of the four analyzed particles, 𝑣TP(𝑥),
moving in their respective optical potentials, where the shape of their energy barriers can be
approximated as inverted parabolas with curvatures (a) 𝜅0 = 9.57 ± 0.397 × 10−7Nm−1,
(b) 𝜅0 = 1.127 ± 0.0460 × 10−6Nm−1, (c) 𝜅0 = 9.247 ± 0.282 × 10−7Nm−1, and (d)
𝜅0 = 8.08 ± 0.271 × 10−7Nm−1. The different symbols represent the results from the
experimental data recorded at a sampling frequency 𝑓0 = 1500 Hz (○) and after decimation
by a factor 𝑛 = 2 (▫), 𝑛 = 5 (♢), 𝑛 = 10 (▿), and 𝑛 = 100 (☆). The thick solid line depicts the
analytic expression of 𝑣TP(𝑥) given by eqn (14), whereas the dotted lines are just guides to the
eye. (e)-(h) Probability density functions of the transition path position of the four analyzed
particles, 𝜌(𝑥|TP), which are directly computed from the histogram of experimental data points
belonging only to transition paths (vertical bars), and indirectly by means of eqn (11) using the
measured values of mean transition path times and the mean velocities profiles plotted in Figs
3(a) and 4(a)-4(d), respectively (○), both determined from the experimental data recorded at
𝑓0 = 1500 Hz. The smaller symbols represent the results after decimating the original data
by a factor 𝑛 = 2 (▫), 𝑛 = 5 (♢), 𝑛 = 10 (▿), and 𝑛 = 100 (☆), where the empty symbols
correspond to the direct calculation of the histograms of positions along transition paths, and
the filled symbols depict the results of the indirect calculation using the corresponding mean
velocity profiles and mean transition path times via eqn (11). The thick solid line represents
the analytic expression of 𝜌(𝑥|TP) derived from eqn (11) using eqns (8) and (14), whereas the
dotted and dotted-dashed lines are just guides to the eye.

𝑣TP(𝑥) is intuitively consistent with the expected particle dynamics over a parabolic barrier,
where a transition path must enter the transition region at a very high speed on average, then
becoming slower and slower until it reaches the top of the barrier at 𝑥 = 0, where it attains its
smallest value 𝑣TP(0) ≤ 𝑣TP(𝑥), then becoming increasingly faster when getting away from the
barrier maximum to finally leave the transition region. However, if the transitions paths are
undersampled at a frequency below 𝑓0, artifacts in the mean velocity profile can be observed
even at 𝑓0∕2, at which 𝑣TP(𝑥) is underestimated even when it preserves its convex shape across
the transition region with a minimum at 𝑥 = 0, as displayed by the squares in Figs 4(a)-
4(d). Reducing the experimental sampling frequency leads to a further apparent deformation
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of the mean velocity profile, which becomes much flatter at 𝑓0∕5, see the diamonds in Figs.
4(a)- 4(d). Note that for these decreased sampling frequencies, ⟨𝑡TP⟩ and ⟨𝑡±K⟩ are still in
good agreement with their theoretical predictions and with the values determined at 𝑓0, thus
demonstrating that 𝑣TP(𝑥) is more sensitive to artifacts that prevent a correct reconstruction
of its spatial profile. More distorted profiles of the mean transition path velocity can be
inaccurately retrieved at smaller sampling frequencies 𝑓0∕𝑛, as shown in Figs. 4(a)- 4(d)
for 𝑛 = 10 as triangle symbols, at which 𝑣TP(𝑥) looks uniform across the transition region,
and even concave for 𝑛 = 100, as depicted by the star symbols. We point out that the latter
represents a totally unphysical behavior of the transition path dynamics over a parabolic barrier,
since this represents a situation where the particle would speed up when climbing to the top of
the barrier and slowing down past the maximum. This artifact originates mainly from the lower
time resolution at 𝑓0∕𝑛 with 𝑛 > 1, which gives rise to an apparent rise in the total measured
time ⟨Δ𝑡(𝑥,Δ𝑥)⟩ that a transition path spends on average in the region [𝑥−Δ𝑥∕2, 𝑥+Δ∕2], thus
yielding an underestimate of its corresponding mean velocity according to eqn. (10). Indeed,
with decreasing sampling frequency of the particle motion, longer recrossing events of the
neighboring boundary like the section of the trajectory enclosed in the dotted-dashed rectangle
in Fig.3(c) are falsely detected as part of a nearby transition path, thus seemingly increasing its
duration. Note that this artificial increase in ⟨Δ𝑡(𝑥,Δ𝑥)⟩ at lower temporal resolution becomes
more significant close to the boundaries of the transition region than in the barrier maximum,
which explains why the reduction in the apparent values of 𝑣TP(𝑥) are smaller around 𝑥 = 0. In
turn, this leads to a change of the mean velocity profile from the actual convex profile described
by eqn (14) when transition paths are correctly identified with negligible recrossing segments,
to a concave shape with decreasing sampling rate of the particle trajectories. Therefore, our
results highlight again the need of a sampling frequency of at least two orders of magnitude
larger than the inverse of the mean transition path time in order to correctly reconstruct the
statistical properties of the particle dynamics across the energy barrier.

In Figs. 4(e)- 4(h) we experimentally probe eqn. (11) linking the spatial behavior of
the mean transition path velocity, 𝑣TP(𝑥), with the probability density of the transition path
position, 𝜌(𝑥|TP), with a prefactor given by the mean transition path time, ⟨𝑡TP⟩. First,
we experimentally determine 𝜌(𝑥|TP) by computing the normalized histograms of the bead
position only along transition paths, which are represented as vertical bars in Figs. 4(e)-
4(h). We also employ the measured values of the mean transition path time and the mean
velocity profiles that are plotted in Figs 3(a) and 4(a)-4(d), respectively, in order to determine
the right-hand side of eqn (11), which is represented as circles in Figs. 4(e)- 4(h). We find
that at 𝑓0 = 1500 Hz, the relationship shown in eqn (11) holds across the entire transition
region, thus verifying its validity in all experiments with different beads. We also check that,
at this sampling frequency, the experimental results are quantitatively described by the analytic
expression of 𝜌(𝑥|TP) calculated through eqn (11) using the expressions of ⟨𝑡TP⟩ and 𝑣TP(𝑥)
given in eqns (8) and (14), respectively, which were derived from the diffusive model of eqn
(7) for the particle motion over a parabolic barrier. Nevertheless, we find that artifacts in the
shape of 𝜌(𝑥|TP) arise when reducing the data acquisition frequency to values that are less than
two orders of magnitude larger than ⟨𝑡TP⟩−1. This is exemplified by the empty symbols in Figs.
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4(e)-4(h) representing the results of the experimental data whose frequency was decimated to
𝑓0∕𝑛 with 𝑛 = 2, 5, 10, 100, which demonstrates that the profile of 𝜌(𝑥|TP) obtained by the
direct calculation of the histograms of transition path positions is gradually deformed with
increasing 𝑛, becoming less and less concave for 𝑛 = 2 and 𝑛 = 5, then rather flat for 𝑛 = 10
and convex for 𝑛 = 100. Once again, this artifact stems mainly from the sections of the
particle trajectory inside the transition region that are misidentified as part of a transition path
at low temporal resolution even when they are not, e.g. see the enclosed trajectory segment
recorded at 𝑓0 = 1500 Hz in Fig. 3(c), which is incorrectly detected as part of a transition
path at 𝑓0∕100 = 15 Hz. Such events increase the density of data points mainly close to
the boundaries 𝑥 = ±𝑥0 of the transition region when calculating the histogram of positions
along transition paths, thereby leading to an overestimate of 𝜌(𝑥|TP) in that region and an
ensuing underestimate around the top of the barrier. In addition, it must be noticed that when
using the experimental values of the mean transition path times displayed in Fig. 3(a) and
the experimental mean velocity profiles plotted in Fig. 4(a)-4(d) to calculate the right-hand-
side of eqn (11) at reduced sampling frequencies 𝑓0∕𝑛 < 1500 Hz, the relationship between
𝜌(𝑥|TP) and 𝑣TP(𝑥) with ⟨𝑡TP⟩ as a prefactor is apparently satisfied. This can be checked in
Figs. 4(e)-4(f) for all the studied particles by comparing the small filled symbols representing
the results of the calculation of the right-hand side of eqn (11) with the respective empty
symbols depicting the left-hand side of eqn (11), where both quantities were determined at
frequencies decreased by 𝑛 = 2, 5, 10, 100. However, we point out that this seeming agreement
between both quantities does not guarantee that they portray the actual physical behavior of
𝜌(𝑥|TP), which must exhibit a maximum around the barrier top where the mean transition path
velocity is low, and must significantly diminish close to transition region boundaries, where
the particle enters and exits at high speed on average. This behavior can only be retrieved
from the experimental trajectories when recording the particle dynamics at sufficiently high
frequency, which ensures that segments that recross the boundaries of the transition region
and that could inexorably be misidentified as transition paths, have little effect on the analysis
of their statistical properties. Only under such conditions, eqn (11) provides a physically valid
equivalence between 𝑣TP(𝑥) and 𝜌(𝑥|TP) that quantifies the spatial features of the transition
path dynamics of the bead over the barrier.

Finally, in Fig. 5 we examine the validity of the non-trivial relationship provided by eqn
(16), which links the relative magnitude of the two characteristic time scales of the barrier
crossing process with the ratio of probabilities and probability densities on its right-hand side.
Here, we analyze the experimental data at the original sampling frequency 𝑓0 = 1500 Hz,
at which we have previously checked that no artifacts are induced on the calculation of the
various quantities characterizing the transition path dynamics of the bead. Accordingly, in
Figs. 5(a)-5(d) we trace the experimental profiles inside the transition region of the probability
density function of the particle position along transition paths from −𝑥0 to +𝑥0, 𝜌(𝑥|TP), the
Boltzmann distribution of the particle position, 𝜌𝑒𝑞(𝑥), and the probability that at position 𝑥
the particle is on a transition path from −𝑥0 to +𝑥0, 𝑃 (TP|𝑥). The latter is simply determined
by counting the fraction of points belonging only to transition paths from −𝑥0 to +𝑥0 that lie
within the interval [𝑥−Δ𝑥∕2, 𝑥+Δ∕2] with respect to the total number of points found in that
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Figure 5. (a)-(d) Probability density function of the bead position along transition paths from
−𝑥0 to +𝑥0, 𝜌(𝑥|TP) (vertical bars), equilibrium Boltzmann distribution of the particle position
inside the transition region, 𝜌𝑒𝑞(𝑥) (black solid lines), and probability that at position 𝑥 in
the transition region the particle is on a transition path from −𝑥0 to +𝑥0, 𝑃 (TP|𝑥) (∗), all
determined from the experimental trajectories of the four analyzed particles. The dashed lines
are just guides to the eye. (e)-(h) Ratio on the right-hand side of eqn (16) that is calculated
using the experimental profiles of 𝑃 (TP|𝑥), 𝜌𝑒𝑞(𝑥), and 𝜌(𝑥|TP), as well as the occupancy
probabilities in each well, 𝑃±, for the four analyzed particles undergoing thermally activated
transitions from W− to W+ (⊳) and from W+ to W− (⊲). The shaded areas enclosed by the
dotted and dashed lines represent the experimental values with their respective error bars of
the ratio of time-scales on the left-hand side of eqn (16) for transitions paths of the bead taking
place from −𝑥0 to +𝑥0 and from +𝑥0 to −𝑥0, respectively.

region along a full trajectory, including transition paths from +𝑥0 to −𝑥0 as well as trajectory
segments that enter the transition region but fail to reach the opposite boundary. Interestingly,
we find that 𝜌(𝑥|TP) and 𝑃 (TP|𝑥) are both non-monotonic functions of the coordinate 𝑥 with
a maximum at 𝑥 = 0, where the peak of the latter is much sharper than that of former, and
significantly differ from the shape of 𝜌𝑒𝑞(𝑥), which displays instead a minimum at 𝑥 = 0.
Moreover, we also compute the occupancy probability of the particle in the well W−, 𝑃−,
by counting the fraction of data points along the complete trajectory over 1 hour that fulfill
the condition 𝑥 < −𝑥0. Then, by use the ensuing values of 𝑃− as well as the corresponding
experimental profiles of 𝜌𝑒𝑞(𝑥), 𝜌(𝑥|TP) and 𝑃 (TP|𝑥), we calculate the right-hand side of eqn
(16) at each discrete location inside the transition region for transition paths going from −𝑥0
to +𝑥0. The results are shown in Figs. 5(e)-5(h) as triangles pointing to the right for all the
particles studied in the experiments. A similar analysis of the corresponding probabilities
and probability densities for transition paths taking place from +𝑥0 to −𝑥0 leads to the results
depicted as triangles pointing to the left in Figs. 5(e)-5(h). Notwithstanding the strongly
non-monotonic dependence of 𝜌𝑒𝑞(𝑥), 𝜌(𝑥|TP) and 𝑃 (TP|𝑥) on 𝑥 that is demonstrated in Figs.
5(a)-5(d), we find that the right-hand side of eqn (16) becomes constant across the transition
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region. Moreover, we directly compute the ratio ⟨𝑡TP⟩∕⟨𝑡±K⟩ by using the measured values of
the mean transition path time and the mean escape times from each potential well with their
respective error bars, which are drawn as shaded areas in Figs 5(a)-5(d). Remarkably, we find
that the experimental values of this ratio of time-scales agree quantitatively with the right-hand
side of eqn (16) for transitions paths occurring in both directions and for all analyzed particles,
thereby verifying the underlying relationship between the different pieces of information that
describe their thermally activated transitions across the bistable energy landscapes.

5. Conclusions

In this work, we have experimentally examined the behavior of the average velocity of
the transition paths performed by a submicron-sized bead moving a viscous liquid when
successfully surmounting an energy barrier between two optical potential wells. We have
verified that the measured velocity profiles exhibit quantitative agreement with those predicted
by a diffusive model for the motion of a particle over a parabolic barrier provided that
the transition paths are sampled with a time resolution at least two orders of magnitude
shorter than their mean duration. This guarantees that the false identification of segments
recrossing the boundaries of the transition region as parts of the transitions paths, which
inexorably occurs in experiments, has a negligible effect on the determination of their statistical
properties. Otherwise, artifacts in the behavior of the mean transition path velocity become
evident even when the transition paths followed by the particle over the barrier and their
corresponding mean duration are seemingly well detected. Therefore, our findings underline
the importance of the sampling rate in the determination of the detailed dynamical features
of transition paths in thermally activated processes of small-scaled systems. Furthermore,
thanks to the experimental spatio-temporal resolution, we have been able to quantitatively
verify a theoretical expression for the mean transition path velocity in terms of the probability
density of the particle position along transition paths. In turn, this has also allowed us to
experimentally validate an underlying relationship between the mean escape times from the
potential wells and the mean transition path times that involves equilibrium and transition path
probability distributions in a nontrivial manner.

In recent years there has been a growing interest in probing numerous aspects of Kramers’
escape problem in diverse systems ranging from colloidal particles to biomolecules due to the
advancements of experimental mesoscopic techniques during the last decades. Therefore, the
results presented here provide valuable insights into the spatio-temporal characterization of
barrier crossing processes of diffusive systems beyond the mere determination of transition
rates, which could find applications in the analysis and interpretation of thermally activated
transitions undergone by more complex systems in contact with a heat reservoir. Investigating
the properties of transition paths across barriers of systems that are intrinsically in non-
equilibrium states, e.g. colloidal particles subject to active forces [77, 78], could also be of
interest from a fundamental viewpoint as well as for practical applications and will be the
subject of further research.
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