
Deep neural networks for choice analysis: Enhancing behavioral

regularity with gradient regularization

Siqi Fenga, Rui Yaob, Stephane Hessc, Ricardo A. Dazianoa, Timothy Brathwaited, Joan

Walkerd, and Shenhao Wang∗e

aSchool of Civil and Environmental Engineering, Cornell University
bSchool of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne
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Abstract

Deep neural networks (DNNs) have been increasingly applied to travel demand modeling because of

their automatic feature learning, high predictive performance, and economic interpretability. However,

DNNs frequently present behaviorally irregular patterns, significantly limiting their practical potentials

and theoretical validity in travel behavior modeling. This study proposes strong and weak behavioral

regularities as novel metrics to evaluate the monotonicity of individual demand functions (a.k.a. “law

of demand”), and further designs a constrained optimization framework with six gradient regularizers

to enhance DNNs’ behavioral regularity. The empirical benefits of this framework are illustrated by

applying these regularizers to travel survey data from Chicago and London, which enables us to examine

the trade-off between predictive power and behavioral regularity for large versus small sample scenarios

and in-domain versus out-of-domain generalizations. The results demonstrate that, unlike models with

strong behavioral foundations such as the multinomial logit, the benchmark DNNs cannot guarantee

behavioral regularity. However, after applying gradient regularization, we increase DNNs’ behavioral

regularity by around 6 percentage points while retaining their relatively high predictive power. In the

small sample scenario, gradient regularization is more effective than in the large sample scenario, simulta-

neously improving behavioral regularity by about 20 percentage points and log-likelihood by around 1.7%.

Comparing with the in-domain generalization of DNNs, gradient regularization works more effectively

in out-of-domain generalization: it drastically improves the behavioral regularity of poorly performing

benchmark DNNs by around 65 percentage points, indicating the criticality of behavioral regularization

for enhancing model transferability and application in forecasting. Moreover, the proposed optimization

framework is applicable to other neural network–based choice models such as TasteNets. Future studies

could use behavioral regularity as a metric along with log-likelihood, prediction accuracy, and F1 score in

evaluating travel demand models, and investigate other methods to further enhance behavioral regularity

when adopting complex machine learning models.
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1 Introduction

Deep neural networks (DNNs) have revolutionized fields such as computer vision and natural language

processing, that in turn support technologies such as self-driving cars and large language models (van Dis

et al., 2023; LeCun et al., 2015). DNNs have also been applied to economics (Zheng et al., 2023), including

interpreting and predicting individual choice behavior (Wang et al., 2020a,b). It is in this latter area that

DNNs offer a contrast with the conventionally used discrete choice models (DCMs), which are typically

based on random utility maximization (Ben-Akiva and Lerman, 1985) and the assumption that travelers

choose the alternative with the highest random utility in the choice set. One drawback of this traditional

modeling paradigm is the time-consuming trial-and-error process for an “optimal” specification of the model,

in particular the utility function (van Cranenburgh et al., 2022), which represents economic preferences.

Additionally, the decisions made in this process are often subjective. By contrast, DNNs are capable of

automated feature learning, i.e., the specification of a DNN-based choice model is automatically learned

from the input data, which avoids the aforementioned specification search process, and reduces the level of

subjectivity. The high prediction accuracy of DNNs is a result of their complex model structure, which helps

capture intricate behavioral relationships and can provide new insights beyond those of conventional DCMs.

Traditional choice modelers often see DNNs as “black-box” models, although DNNs actually contain

complete economic information for choice analysis (Wang et al., 2020b). However, existing DNNs often

exhibit behaviorally irregular patterns because the demand functions in DNNs are not guaranteed to decrease

monotonically with generalized costs. The “law of demand” in economics indicates an inverse relationship

between generalized costs and the aggregate demand. While DCMs such as random utility models (RUMs),

do not impose specific directionalities a priori, the specification search conducted by an analyst will not

accept models that lead to counter-intuitive results. With DNNs, the analyst has less control, and non-

monotonic patterns have been detected empirically in DNNs’ predictions, even with model ensembles (Wang

et al., 2020a,b; Xia et al., 2023). This fact might be a drawback of the nonlinear structure of DNNs, making

them flexible to fit data but difficult to restrict the gradient’s direction with limited data samples. The issue

often deteriorates in case of out of sample application, i.e., applying a trained DNN to a testing set with

unseen distributions (Quiñonero-Candela et al., 2008). In fact, the out-of-domain generalizability of DNNs

has attracted rising interests in several computer science fields, including domain adaption (Wang and Deng,

2018) and transfer learning (Pan and Yang, 2009).

To improve the monotonicity of DNNs, we propose to regularize the loss function in training, which has

been shown in computer science to enhance the robustness of DNNs (Lyu et al., 2015; Ross and Doshi-Velez,

2018). However, this approach has rarely been considered in previous DNN-based choice models, or used

for enhancing behavioral regularity (Wang et al., 2020b; Zheng et al., 2021). In this paper, we address

the issue of behavioral irregularity by first defining strong and weak behavioral regularity metrics based on

monotonicity of the demand functions, and further designing and implementing a constrained optimization

framework that regularizes the input gradient in order to explicitly constrain the gradient’s direction. We

then design experiments to examine the performance of behaviorally regularized DNNs in terms of behavioral

regularity and predictive performance, differentiating the in-domain versus out-of-domain generalization. We

also consider factors such as sample size, which is valuable for practical modeling because large samples are

costly for travel surveys. Based on two travel survey datasets from Chicago and London, our experiments

compare across the standard DNN and TasteNet (Han et al., 2022) architectures using five evaluation metrics,

including log-likelihood, prediction accuracy, F1 score, strong behavioral regularity, and weak behavioral

regularity. The multinomial logit (MNL) is chosen as a benchmark model due to its concise expression and

high behavioral regularity. The results show that by using appropriate gradient regularization, both DNNs

and TasteNets can achieve high regularity without sacrificing their predictive power, which makes these

models competitive in real-world applications and demonstrates the generality of our gradient regularization

framework.

The rest of this paper is organized as follows. Section 2 briefly reviews the literature about the behavioral
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irregularity issue of DNNs with possible solutions. Section 3 introduces the theory, formulates the problem,

and develops a solution framework based on gradient regularization. Section 4 sets up the mode choice

experiment, while Section 5 illustrates and analyzes the empirical results. Finally, Section 6 concludes the

study and looks ahead to future research. To facilitate future research, we uploaded this work to the following

GitHub repository: https://github.com/siqi-feng/DNN-behavioral-regularity.

2 Literature review

The economic choice behavior of humans generally follows the “law of demand” in economics, which states the

inverse relationship between price and quantity demanded. This law leads to a monotonic change in market

demand due to the change in consumers’ purchasing power, including price and income changes (Chiappori,

1985; Härdle et al., 1991; Hildenbrand, 1983; Quah, 2000). The transportation field has also observed the

negative influence of travel costs on travel demand (McFadden, 1974; Souche, 2010; Yao and Morikawa,

2005), based on which demand management policies such as road pricing (May, 1992; Yang and Bell, 1997)

were developed. Although such market rationality is widely recognized, individual choice behavior might be

irrational (Becker, 1962; Knez et al., 1985). Lichtenstein and Slovic (1971) studied preference reversal in

decision making, which is a typical counterexample of individual rationality. Studies in bounded rationality

theory (Simon, 1957; Di and Liu, 2016; Watling et al., 2018) and prospect theory (Kahneman and Tversky,

1979; Tversky and Kahneman, 1992) also relax the strict monotonicity assumption in modeling demand.

The aforementioned law is generally followed by the design of random utility models. In the MNL

model, for example, an increase in the travel cost of an alternative would be expected to decrease its

systematic utility, thus decreasing its choice probability by design. If initial model estimation leads to

counter-intuitively signed coefficients, such as positive cost coefficients, then this is easily spotted by an

analyst and serves as an invitation to refine the model specification or deal with data issues. Once all

signs are as expected, the monotonic relationship is guaranteed. By contrast, this is not the case in DNNs

because of the complex nonlinear model structure, especially when the number of hidden layers increases.

For example, Xia et al. (2023) observed non-monotonic demand predictions with increasing generalized costs

in a mode choice experiment with DNNs, which suggests the need to investigate the monotonicity of DNNs

to improve their behavioral regularity. Although shallow neural networks (NNs) might reduce the risk of

non-monotonic behavior of DNNs (Alwosheel et al., 2019; Zhao et al., 2020), this might come at the cost

of reduced modeling flexibility and universal approximation power. Alternatively, Han et al. (2022) and

Sifringer et al. (2020) proposed to use DNNs only for learning latent representation in the utility function,

while resorting to the DCM framework to ensure model monotonicity. For example, TasteNet, the neural-

embedded DCM proposed by Han et al. (2022), assumes linear model specification, while coefficients are

parameterized by neural network. In this paper, the TasteNet is considered as a reference to the standard

DNN architecture. On the other hand, depending on model design, these hybrid DNN models might still

produce irregular predictions (Wang et al., 2021; Wong and Farooq, 2021). Moreover, hybrid DNN models

are a compromise for regularity since they again require the subjective process of model specification. To

fully utilize the capability of DNNs, previous studies have attempted to migrate the non-monotonic issue

through model ensemble. However, irregular patterns might still be observed after averaging over multiple

trainings (Wang et al., 2020a,b; Xia et al., 2023). One promising direction is to directly integrate domain-

specific knowledge into the design and training of DNNs, such as incorporating monotonicity constraints in

model training (Haj-Yahia et al., 2023). However, there is no consensus on how to measure or improve the

model regularity of DNNs within the choice modeling field. This paper contributes to the development of a

behavioral regularity measure and a novel regularization framework.

As discussed in computer science applications, the regularity of DNNs can be improved by employing

either hard or soft constraints. The first category enforces monotonicity by model construction, e.g., con-

straining the positiveness of weights in hidden layers (Daniels and Velikova, 2010; Dugas et al., 2009; Sill,

1997) through non-negativity constraint (Lawson and Hanson, 1995), restricting the derivative to be posi-
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tive (Neumann et al., 2013; Wehenkel and Louppe, 2019), down-weighting samples that violate monotonicity

(Archer and Wang, 1993), and incorporating deep lattice network for learning monotonic functions (You

et al., 2017). The second category achieves monotonicity by regularization, i.e., by augmenting a regular-

ization term in the loss function to jointly improve model monotonicity. Regularization is firmly rooted in

constrained optimization, including the Lagrangian method as an example (Boyd and Vandenberghe, 2004).

It has been widely applied as a local method to penalize constraint violations. For example, Sill and Abu-

Mostafa (1996) penalized squared deviations in monotonicity for virtual pairs of input variables, while Gupta

et al. (2019) proposed a pointwise loss that embeds prior knowledge about monotonicity. Moreover, gradient

regularization has also been used to enhance model robustness against adversarial examples (Lyu et al., 2015;

Ross and Doshi-Velez, 2018), e.g., penalizing the squared L2 norm of the gradient of the loss with respect to

(w.r.t.) inputs (Drucker and Le Cun, 1991; Ororbia II et al., 2017), penalizing the squared Frobenius norm of

the Jacobian matrix of probabilities (Sokolić et al., 2017) and utilities (Jakubovitz and Giryes, 2018) w.r.t.

inputs. Note that regularizing the gradient norms might be less effective to improve monotonicity than reg-

ularizing the gradient’s direction like Haj-Yahia et al. (2023). Inspired by the aforementioned regularization

methods, we will design our own approaches in the demand modeling context.

3 Methodology

3.1 DNNs for choice analysis

The discrete choice problem is cast as a supervised classification problem in DNN-based choice analysis.

Assuming there are in total D explanatory variables (x1, . . . , xD) for all alternatives, the attribute vector

of individual n can be written as xn = [xn1, . . . , xnD]⊤. Then, a DNN model predicts the probability

of n choosing i out of J alternatives, i.e., Pni : RD → (0, 1) and
∑J

i=1 Pni = 1. The observed choice

vector yn ∈ {0, 1}J of n is used for DNN training, where yni = 1 if alternative i is chosen, and yni = 0

otherwise. Similar to conventional RUMs, DNN models aim to find specifications with high predictive power

and behavioral regularity.

However, contrasting to the manual model specifications of RUMs, DNNs automatically learn model speci-

fications with their unique representation learning capability. Specifically, utility vectorVn = [Vn1, . . . , VnJ ]
⊤

is specified through a series of transformations, termed as layers (f1, . . . , fH), where H denote the total num-

ber of layers in a DNN. Each layer fh contains a learnable parameter matrix Wh, a bias vector bh, and an

activation function φ(·) (e.g., the rectified linear unit, ReLU) to transform xn. Specifically, each layer

transformation can be written as

fh(xn) = φ(Whxn + bh) (1)

and the utility vector Vn is computed in a composite form:

Vn = (fH ◦ fH−1 ◦ · · · ◦ f2 ◦ f1) (xn) (2)

Finally, a softmax classification layer (i.e., the logistic function) outputs the choice probability of i as

Pni =
eVni∑J
j=1 e

Vnj

(3)

The DNN structure generalizes the classical linear MNL model. If an NN is specified with a single output

layer (i.e., without any hidden layer) and an identity activation function, the utility function in Eq. (2) would

collapse to

Vn = f(xn) = Wxn + b (4)

where W J×D can be interpreted as coefficients and bJ×1 as alternative-specific constants. Although closely

related to the MNL model, DNNs allow flexible model specification through multi-layer nonlinear transfor-

mations. We illustrate in Fig. 1 a feedforward DNN structure with four hidden layers and one classification

layer for a choice modeling problem with D attributes for J alternatives.
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Figure 1: A feedforward DNN structure with four hidden layers and one classification layer.

3.2 Behavioral regularity metrics

In this study, we propose a novel metric to evaluate behavioral regularity, which measures the monotonicity

of the aggregate choice probability functions. The proposed metric essentially measures the monotonicity

consistency between the model and prior knowledge on the correct signs of parameter estimates, commonly

used in the subjective process for selecting plausible specification of RUMs. We define the behavioral

regularity metric of alternative i w.r.t. a cost variable xd as

Bid =

∫ ∫
1

{
∂Pi(xz)

∂xd
< ε

}
ρ(xd, z)dxddz (5)

where z represent the characteristic factor of a population group, Pi(xz) maps the individual’s attributes xz,

including both individual-specific sociodemographic variables mapped from factor z, and alternative-specific

cost variables, to the individual’s probability of choosing i, and 1{·} is an indicator function that equals 1

if ∂Pi(xz)/∂xd < ε, and 0 otherwise. The ρ(xd, z) term denotes the joint density of attributes xd and the

population factor z. Parameter ε represents the modeler’s prior assumptions on the monotonicity of Pi w.r.t.

xd:

(1) ε = 0, termed as strong regularity, requires Pi to be strictly decreasing w.r.t. xd. The formulation

assumes that all individuals across population groups reduce their choice probability of alternative i

with larger costs in xd.

(2) ε > 0, termed as weak regularity, relaxes the strict monotonicity assumption and allows Pi to be non-

decreasing w.r.t. xd. The formulation assumes that some population groups {z} do not respond (with

zero derivative) to xd, implying that the behavioral regularity constraint becomes weaker.

As an illustration, a classical linear MNL model with a negative parameter w.r.t. x·d yields Bid = 1, which

implies that all individual behaviors are consistent with the demand monotonicity assumption and well-

captured by the model. We also note that Eq. (5) can be interpreted as the cumulative distribution of

behavioral regularity with ε over the whole population and the domain of xd.

The population-based behavioral regularity measure in Eq. (5) can be approximated by the mean behav-

ioral regularity across individuals:

Bid ≈ 1

N

N∑
n=1

1

{
∆Pni

∆xnd
< ε

}
(6)

where N is the sample size, and the partial derivative is computed with finite differences. The proposed

empirical regularity measure in Eq. (6) is the sample analog of the exact metric in Eq. (5). By the Glivenko–

Cantelli theorem, Eq. (6) converges in probability to Eq. (5), the cumulative distribution function for the

mean population behavioral regularity with ε.

Our behavioral regularity metrics can be extended to incorporate taste heterogeneity across population

groups and even individuals within each group by distinguishing ε w.r.t. different groups, that is, ε can be
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further specified as εz to reflect the group-specific thresholds. Meanwhile, our behavioral regularity metrics

Bid only require the aggregate regularity rather than individual one, which is inspired by classical economics

discussions that market rationality is a fundamental law while individual behaviors might present more

diverse and irrational patterns (Becker, 1962).

3.3 Achieving behavioral regularity by constrained optimization

3.3.1 Unconstrained likelihood maximization

DNN-based choice models can be estimated using the likelihood maximization framework. Given a set of

hyperparameters and the softmax activation function, likelihood maximization and cross-entropy minimiza-

tion are mathematically equivalent, i.e., an unconstrained DNN learns parameters W through minimizing

the cross-entropy L:

min
W

L(W ) = min
W

1

N

N∑
n=1

J∑
i=1

−yni logPi(xn;W ) (7)

The unconstrained formulation in Eq. (7) is sufficient for the estimation of conventional DCMs, since

they often satisfy convexity conditions under linear utility specification. In a linear MNL model, for example,

choice probability Pni increases monotonically with utility Vni according to Eq. (3). The linear specification

in Eq. (4) induces monotonicity of utility w.r.t. cost variables. Therefore, if individuals indeed perceive higher

utility with lower costs, the optimization would result in negative parameter estimates, and the behavioral

monotonicity is clearly satisfied by evoking the chain rule. The multi-layer nonlinear transformations in

NNs allow for approximation of arbitrary functions, but these complex transformations might lead to non-

monotonic choice probability functions, especially when the network is deep. In this case, unconstrained

likelihood maximization can no longer guarantee a behaviorally regular model.

3.3.2 Constrained likelihood maximization

To address the irregularity issue of DNNs, we introduce a set of behavioral regularity constraints into the

optimization problem, which yields

min
W

L(W ) (8)

s.t. R(xn;W ) ≤ 0, n = 1, . . . , N (9)

where R constrains the attributes xn of an individual n, defined as R : RJ×D → R, where dimension J is the

number of alternatives and D is the number of attributes. Hence the behavioral regularity constraints are

imposed at the individual level to achieve the aggregate behavioral regularity in Bid. The specific behavioral

regularity constraints will be designed in the next subsection.

Training DNNs with constraints is challenging. We tackle this problem by treating the hard constraints

in Eq. (9) as soft constraints, motivated by the Lagrangian relaxation method. Given a hyperparameter λ,

we consider the following optimization problem:

min
W

L(W ) + λ

N∑
n=1

R(xn;W ) (10)

where λ controls the strength of the behavioral regularity constraint and can be interpreted as a Lagrangian

multiplier for constrained optimization. We note that the relaxation formulation in Eq. (10) is similar to

the regularization methods that are commonly applied in machine learning for model sparsity, while our

motivation is to improve the behavioral regularity of the DNN choice models.

Compared to the hard constraint formulation, soft regularization can flexibly accommodate the various

degrees of validity in our behavioral regularity assumptions. Similar to the motivation for the weak regularity
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metric, our approach allows each individual n to somewhat violate the preset constraint R(xn), thus accom-

modating the potentially irregular behavior of certain individuals. As a result, hyperparameter λ provides

insight into the consistency between behavioral regularity assumptions and the actual behavior of studied

individuals. If a larger λ is required to achieve higher predictive performance, it might imply that the actual

behavior is inconsistent with prior assumptions, thus providing extra insight into the validity of behavioral

regularity constraints.

3.4 Gradient regularization

We design gradient regularizers to improve the behavioral regularity of DNN-based choice models. Specif-

ically, we constrain the demand feedback on generalized costs by the gradient’s direction (i.e., signs of the

parameter estimates) and magnitude.

For individual n, the Jacobian matrix (gradient) of demand vector P = [P1, . . . , PJ ]
⊤ w.r.t. cost variables

{x1, . . . , xD} can be written as

∇P(xn) =


∂P1

∂x1
(xn) · · · ∂P1

∂xD
(xn)

...
. . .

...
∂PJ

∂x1
(xn) · · · ∂PJ

∂xD
(xn)

 (11)

which includes three types of partial derivatives:

(1) Direct derivatives: e.g., the probability of driving w.r.t. driving cost.

(2) Cross derivatives: e.g., the probability of driving w.r.t. train time.

(3) Sociodemographic derivatives: e.g., the probability of driving w.r.t. the age of traveler.

The constrained likelihood maximization framework in Eq. (10) allows us to impose gradient constraints

to the three types of partial derivatives in the Jacobian matrix. Since behavioral regularity is reflected by

the gradient’s direction, we introduce a mask matrix for individual n:

Ψ(xn) =


1
{

∂P1

∂x1
(xn) /∈ S11

}
· · · 1

{
∂P1

∂xD
(xn) /∈ S1D

}
...

. . .
...

1
{

∂PJ

∂x1
(xn) /∈ SJ1

}
· · · 1

{
∂PJ

∂xD
(xn) /∈ SJD

}
 (12)

where 1{·} is an indicator function that equals 1 if ∂Pi(xn)/∂xd /∈ Sid, and 0 otherwise; and set Sid defines

the expected sign of the partial derivative. Combing the mask matrix Ψ(xn) and the Jacobian matrix

∇P(xn), we define the sum-based gradient regularization using the Frobenius inner product1:

Rσ(xn) = ⟨Ψ(xn),∇P(xn)⟩F (13)

This sum-based gradient regularization flexibly accommodates different prior assumptions on the signs of

the derivatives. Set Sid can take negative values (Sid = R−), positive values (Sid = R+), or any real values

(Sid = R), depending on the prior assumption on attribute xd’s effect on demand Pi(xn). For example, by

imposing S = R− on the direct derivatives, they are expected to be negative and penalized if non-negative.

On the other hand, when there is no prior assumption regarding a derivative, we allow all possible signs

by taking S = R. Despite such flexibility, we only impose negative constraints on the direct derivatives

throughout our empirical experiments, which is the least controversial among all possibilities.

Alternative to the sum-based approach, we could also regularize the gradient’s magnitude, implying that

demands are not expected to change drastically with small cost perturbations. Using the same notations,

we define the norm-based regularization as

Rν(xn) = ∥∇P(xn)∥2F = ⟨∇P(xn),∇P(xn)⟩F (14)

1For real matrices, we have ⟨A,B⟩F =
∑

i,j AijBij .
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This norm-based regularization is relatively common in the computer science literature (Drucker and

Le Cun, 1991; Jakubovitz and Giryes, 2018), thus serving as a benchmark regularization method for our

empirical experiments. Although smoothness is a relatively common assumption from a pure mathematical

perspective, it is not founded on strong behavioral regularity beliefs due to possible threshold effects of

pricing.

The regularization terms proposed above are termed as probability gradient regularizers (PGRs) because

they exploit the analytical relationship between demand monotonicity and probability gradients ∇P(xn).

Due to the computational chain among utilities, choice probabilities, and log-likelihoods, it is also possible

to replace the probability gradients by utility and log-likelihood gradients. The two alternative regularizers

are defined as:

(1) Utility gradient regularizers (UGRs): According to the softmax function in Eq. (3), choice probabil-

ity Pi(xn) increases monotonically with utility Vi(xn). Consequently, demand monotonicity can be

retained by regularizing the utility monotonicity w.r.t. generalized costs and evoking the chain rule.

Therefore, we construct UGRs by replacing P(xn) with V(xn) in derivation.

(2) Log-likelihood gradient regularizers (LGRs): We define the individual- and alternative-specific log-

likelihood as li(xn) = −yni logPi(xn). Since logarithmic transformation is monotonic, demand mono-

tonicity can be retained by regularizing the log-likelihood monotonicity w.r.t. generalized costs. Thus

we construct LGRs by replacing P(xn) with l(xn) in derivation.

In brief, by combining sum- and norm-based regularization with probability, utility, and log-likelihood

gradients, we have designed six gradient regularizers. They are hereafter referred to as the sum-PGR, sum-

UGR, sum-LGR, norm-PGR, norm-UGR, and norm-LGR, all of which will be tested thoroughly in our

empirical experiments.

When hidden layers are not present, the norm-UGR reduces to L2 regularization because the gradient of

the utility is simply the DNN parameters W . On the other hand, the proposed gradient regularizers differ

from commonly used sparsity regularizers (e.g., L1 and L2 norms) if any hidden layer is present. This is

because the derivatives of our gradient regularizers become non-separable and non-linear in DNN parameters

W , as opposed to L2 norms whose derivatives would be separable and linear inW . This difference also implies

that our gradient regularizers would still be effective under various averaging scheme employed in algorithms

like Adam, making the proposed approaches more robust to the choice of algorithms.

4 Setup of experiments

4.1 Datasets

Our experiments use two datasets from Chicago and London, with distinguished car- and transit-dependent

travel patterns, to examine the gradient regularizers and the behavioral regularity metrics. The first dataset

was collected by the Chicago Metropolitan Agency for Planning in the My Daily Travel Survey in 2018–2019.2

After preliminary cleaning, the full dataset retains 26,099 trips with 4 travel modes: driving, walking, train,

and cycling. Around 70% of the trips use automobile, while the proportion of cycling trips is negligible.

Hence the walking and cycling modes were merged into a single active mode to create a more balanced

dataset. Based on the spatial information of each trip in terms of origin and destination, we compiled level

of service data by utilizing Google Directions API to collect the travel time of each mode, where active

times were calculated by averaging walking and cycling times. Train costs were provided by the dataset,

while driving costs were computed by summing the money paid to toll plazas en route and parking lots. The

K-nearest neighbors algorithm was applied to impute the missing data, especially for driving and train costs.

This study uses in total 10 attributes: 2 continuous alternative attributes (travel time of each mode, and

travel costs of driving and train), 3 discrete sociodemographics (age, household size, and number of cars in

the household), and 5 sociodemographic indicators (for higher education, males, one-person households, one-

2See https://www.cmap.illinois.gov/data/transportation/travel-survey.
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car households, and high-income households, respectively). The basic statistics of the full Chicago dataset

are summarized in Table A.1.

The second dataset is the London Travel Demand Survey, (Hillel et al., 2018; Wang et al., 2020b) which

includes 81,086 trips from 4 travel modes: walking, cycling, public transit, and driving. The proportion

of cycling trips is again negligible, hence an active mode is created with travel time defined as the average

between walking and cycling times. Meanwhile, the transit time is defined as the sum of access time, in-

vehicle time, and transfer time. We use in total 9 attributes: 2 continuous alternative attributes (travel time

of each mode, and travel costs of driving and transit), 2 discrete individual-specific variables (number of cars

in the household, and number of transfers in transit), and 5 sociodemographic indicators (for the youth, the

elderly, males, driving license, and one-car households, respectively). The basic statistics of the full London

dataset are summarized in Table A.2.

The two dataset are further reprocessed to create three sub-datasets for each to examine the effects of large

versus small sample sizes, and in-domain versus out-of-domain generalizations. The first sub-dataset, named

as 10K-Random, incorporates 10,000 trips with 70% randomly sampled for training, 10% for validation,

and 20% for testing. This sub-dataset is considered as the benchmark for the ideal modeling scenario with

sufficiently large sample size. The second sub-dataset, named as 1K-Random, includes 1,000 trips with 80%

randomly sampled for training and 20% for validation. To avoid random variation due to small sample sizes,

another 500 trips were randomly sampled for testing. The 1K-Random sub-dataset aims to simulate the

classic choice modeling scenario where limited samples are available. By comparing the results between these

two sub-datasets, we could evaluate how predictive performance and behavioral regularity vary with sample

sizes. The third sub-dataset, named as 10K-Sorted, employs a different strategy for data splitting, where

the 10,000 trips are sorted by driving cost, while the upper 20% were used for testing, and the lower 80%

were further randomly sampled for training (70%) and validation (10%). As shown in Tables A.3 and A.4,

the distributions of variables are quite different between the training and testing sets, with significantly

higher mean and standard deviations in the testing set. This training-testing split scheme simulates the

testing carried out on more expensive trips. Such out-of-domain generalizability is not only of theoretical

interests, but also highly relevant in practice because it investigates model transferability, i.e., how the models

perform in a target context distinct from their source context. One rationale of the sampling scheme for

10K-Sorted sub-datasets is that it resembles cross-city policy learning. Local governments regularly seek to

implement transportation policies (e.g., congestion charging) that origin from other cities. The out-of-domain

generalization can simulate the data and modeling challenges in such cross-city policy learning.

4.2 Experimental design

Our experiments use the training set for model training, the validation set for hyperparameter searching, and

the test set for model evaluation and comparison. Using the training set of 10K-Random (Chicago), we show

that both Adam (Kingma and Ba, 2014) and AdamW (Loshchilov and Hutter, 2017) are empirically suitable

for our experiments, while standard stochastic gradient descent (SGD) converges much slower and results in

unreasonable individual demand functions (see detailed comparisons in Appendix B). The difference between

Adam and AdamW lies in the implementation of weight decay as another type of regularization, which is not

included in the experiments, thus teasing out the effects of gradient regularization from others. The training

set was divided into 10 batches for model training, with a learning rate at 10−3. To ensure convergence, we

train each model until the validation loss in consecutive iterations reaches an optimum.

Using the validation sets, we selected the optimal regularization strength λ for each of the gradient

regularizers by overall model performance, thus balancing predictive power and behavioral regularity. The

DNN architecture was chosen with four hidden layers and 100 neurons per layer after random search. As the

range of λ depends on the dataset, model class, and gradient regularizer, we only show an example of the

hyperparameter space in Table 1, where we took λ values from 10−4 to 100 in a logarithmic scale to fully

demonstrate the effects of λ and select the optimum. It is expected that the DNNs with extremely small

λ’s approximate the benchmark DNN, while those with large λ’s sacrifice predictive power for behavioral
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regularity.

Table 1: Hyperparameter space for DNNs with sum-XGR (10K-Random, Chicago).

Hyperparameter Values

Depth (number of hidden layers) 3, 4, 5, 6

Width (number of neurons per layer) 50, 100, 150

Regularization strength 10−4, 10−3, 0.01, 0.1, 1, 10, 100

Lastly, the models are evaluated by their performance in the test sets. Particularly, to mitigate model

randomness, we analyze the ensemble performance by averaging the results of 10 model replications. Section 5

will focus on comparing the model performance in the test sets, while their performance in the training and

validation sets is reported in Appendix C . The models are evaluated by five metrics: log-likelihood, prediction

accuracy, F1 score, strong behavioral regularity, and weak behavioral regularity. The first three metrics focus

on predictive power, measuring how well a model fits the observed outputs. Among the three metrics, log-

likelihood is the most important one because of its probabilistic nature, its wide adoption in the field of

discrete choice analysis, and its solid theoretical foundation for model convergence. Prediction accuracy and

F1 score are also adopted because the former is the most common metric in machine learning and the latter

tackles the potential evaluation problem in imbalanced datasets. In addition to these predictive metrics,

we also evaluate the models using strong and weak behavioral regularities based on Eq. (6). To empirically

compute the two behavioral metrics, we set parameter ε to a small negative number for strong regularity and

a small positive number for weak regularity. Despite the theoretical threshold ε = 0 for strong regularity, we

set the value slightly lower than zero to enhance numerical stability and distinguish the difference between

the two metrics.3 Section 5 will fully demonstrate the trade-off between predictive and behavioral metrics

by adjusting the regularization strength.

4.3 Models

Three models are compared, including MNL models from the DCM family, standard DNNs, and a DCM-

DNN hybrid model – TasteNets (Han et al., 2022). The proposed gradient regularizers are implemented

on both DNNs and TasteNets. The MNL models are estimated with PyLogit, and DNNs and TasteNets

are implemented with PyTorch. The following linear-in-parameter utility function is specified for the MNL

models:

Driving: Vn1 = βt1tn1 + βc1cn1 (15)

Train/Transit: Vn2 = α2 + γ2zn + βt2tn2 + βc2cn2 (16)

Active mode: Vn3 = α3 + γ3zn + βt3tn3 (17)

where tni is the travel time of individual n by alternative i = {1, 2, 3}, cni is the travel cost of n by i = {1, 2},
zn is a set of variables specific to n, and w = {α,β,γ} is the set of parameters to be estimated. Our

experiments focus on evaluating the effectiveness of the proposed gradient regularization in improving DNNs’

behavioral regularity and prediction power, while the MNL models are only benchmarks to demonstrate their

inherent behavioral regularity.

In terms of TasteNet, we follow the model specification as in Han et al. (2022), where all taste parame-

ters are modeled by a DNN. Specifically, our TasteNet implementation maps individual characteristics into

individual-specific time and cost parameters via a feedforward NN with one hidden layer:

Vni = τ(zn;W )
⊤
xni (18)

3As a result, the empirical strong regularity of MNL presented in Section 5 could be slightly lower than 1.
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where τ represents the NN and W is a set of weights. It is noteworthy that, in general, TasteNets do not

guarantee behavioral regularity. In practice, however, relatively higher behavioral regularity in TasteNets

could be achieved by shallower NN architecture, in conjunction with its linear and separable structure in

xni. We will show that our sum-based gradient regularizers work on both DNNs and TasteNets.

5 Results

In this section, we present the results of our empirical work in three stages. Section 5.1 compares the

behaviorally regularized DNNs and TasteNets with benchmark models, including their counterparts without

regularization and MNL models, regarding predictive power and behavioral regularity metrics. Specifically,

we design the large sample (10K-Random), small sample (1K-Random), and out-of-domain generalization

(10K-Sorted) scenarios. We note that although sharing certain similarity, out-of-sample generalization (i.e.,

testing on new samples, like the 10K- and 1K-Random sub-datasets) and out-of-domain generalization (i.e.,

testing on new distributions, like the 10K-Sorted sub-datasets) are two different concepts. In particular,

the former assumes that the training and test sets follow the same statistical pattern, whereas the latter

refers to unforeseen distribution shift such as cross-city policy transfer (Liu et al., 2021). Section 5.2 further

investigates how the regularization strength influences the trade-off between predictive power and behavioral

regularity in each scenario. Finally, our empirical findings are summarized in Section 5.3.

5.1 Enhancing model performance with gradient regularization

5.1.1 Large sample scenario

Using two 10K-Random sub-datasets from Chicago and London, we evaluate the regularized DNNs by five

metrics in the test sets: log-likelihood, accuracy, and F1 score that capture the models’ predictive power,

as well as strong and weak regularities that describe their behavioral regularity. Table 2 summarizes the

performance of six DNNs and three TasteNets with optimal regularization strengths, alongside the DNN,

TasteNet, and MNL benchmarks. The model performance in the training and validation sets are also

summarized in Tables C.1 and C.2, respectively. The optimal metrics across all models are marked in bold,

while the model-wise optimal metrics are underlined. For DNNs and TasteNets, each metric is averaged

across ten trained model replications, with standard deviations shown in parentheses. To illustrate demand

monotonicity, we plot the individual demand functions of the three alternatives for selected models in Fig. 2,

where light and dark curves represent the results of training replications and ensembles, respectively. Fig. 2

uses an “average individual” as the market representative, and varies the driving cost while keeping all other

variables constant. By examining the large sample and in-domain scenarios (10K-Random), we have three

major empirical findings.

Firstly, the benchmark DNNs without gradient regularization outperforms the MNL models in predic-

tive power but underperforms the MNL in behavioral regularity, especially with the Chicago data. The

benchmark DNN improves the MNL’s log-likelihood by 5.2% of its absolute value with the Chicago data and

5.5% with the London data. The empirical results show that log-likelihood is more sensitive to predictive

performance than accuracy and F1 score due to its probabilistic nature. Meanwhile, the difference between

accuracy and F1 score reflects whether the dataset is balanced: the two metrics are similar for the London

data but remain a gap for the car-dominated Chicago data, indicating the London data is more balanced.

Moreover, the benchmark DNNs present significant behavioral irregularity, e.g., as suggested by the relatively

lower strong regularity (88.8%) and weak regularity (92.2%) with the Chicago data. This is consistent with

finding illustrated in Fig. 2a: the average market share of driving is non-monotonic w.r.t. driving cost, which

is consistently presented in all local DNN models. This suggests that DNNs typically have high predictive

performance but low behavioral regularity, aligning with the findings from many previous studies (Wang

et al., 2020a,b; Wong and Farooq, 2021; Xia et al., 2023). By contrast, the benchmark TasteNet has higher
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Table 2: Model performance in the test sets of 10K-Random.

Panel 1: Chicago dataset, sum-XGR

Metric: DNN TasteNet RUM

mean (std.) No GR PGR UGR LGR No GR PGR UGR LGR MNL

Log-likelihood −1351.9 −1344.3 −1350.2 −1347.4 −1438.3 −1438.4 −1439.0 −1438.4 −1426.3

(4.697) (5.521) (5.803) (5.110) (5.834) (6.027) (5.992) (6.099) (0)

Accuracy 0.729 0.730 0.729 0.729 0.713 0.713 0.713 0.713 0.718

(0.003) (0.002) (0.002) (0.002) (0.003) (0.002) (0.003) (0.002) (0)

F1 score 0.691 0.698 0.694 0.696 0.654 0.654 0.654 0.654 0.669

(0.005) (0.004) (0.004) (0.004) (0.006) (0.005) (0.005) (0.005) (0)

Strong regularity 0.888 0.990 0.982 0.991 0.998 0.999 0.999 0.999 0.998

(0.066) (0.003) (0.012) (0.003) (0.002) (0.001) (0.001) (0.001) (0)

Weak regularity 0.922 0.999 0.996 0.999 0.999 1.000 1.000 1.000 1.000

(0.061) (0.001) (0.006) (0.001) (0.002) (0.001) (0.001) (0.001) (0)

Panel 2: Chicago dataset, norm-XGR

Log-likelihood −1351.9 −1353.9 −1362.0 −1354.0 −1438.3 −1439.1 −1469.5 −1440.8 −1426.3

(4.697) (5.018) (3.110) (4.451) (5.834) (5.836) (6.287) (5.804) (0)

Accuracy 0.729 0.729 0.725 0.727 0.713 0.713 0.710 0.712 0.718

(0.003) (0.004) (0.004) (0.003) (0.003) (0.003) (0.003) (0.003) (0)

F1 score 0.691 0.688 0.677 0.683 0.654 0.653 0.643 0.652 0.669

(0.005) (0.007) (0.009) (0.007) (0.006) (0.005) (0.005) (0.005) (0)

Strong regularity 0.888 0.857 0.706 0.815 0.998 0.998 0.929 0.997 0.998

(0.066) (0.069) (0.051) (0.068) (0.002) (0.002) (0.03) (0.004) (0)

Weak regularity 0.922 0.893 0.756 0.851 0.999 0.999 0.941 0.998 1.000

(0.061) (0.067) (0.051) (0.069) (0.002) (0.002) (0.026) (0.003) (0)

Panel 3: London dataset, sum-XGR

Log-likelihood −1292.0 −1288.6 −1288.6 −1305.0 −1305.8 −1308.6 −1317.6 −1308.3 −1366.9

(7.894) (9.668) (3.765) (7.316) (2.226) (2.795) (4.280) (2.670) (0)

Accuracy 0.729 0.729 0.727 0.724 0.732 0.730 0.728 0.730 0.730

(0.005) (0.004) (0.002) (0.004) (0.003) (0.002) (0.004) (0.002) (0)

F1 score 0.727 0.728 0.725 0.721 0.728 0.726 0.723 0.726 0.726

(0.004) (0.004) (0.002) (0.006) (0.003) (0.002) (0.004) (0.002) (0)

Strong regularity 0.950 0.994 0.994 0.997 0.942 0.964 0.987 0.972 0.993

(0.034) (0.004) (0.009) (0.003) (0.021) (0.013) (0.008) (0.012) (0)

Weak regularity 0.969 0.999 0.998 1.000 0.966 1.000 1.000 1.000 1.000

(0.027) (0.001) (0.004) (0.000) (0.019) (0.000) (0.000) (0.000) (0)

behavioral regularity but lower predictive power, possibly because it has a simpler NN architecture and is

linear in taste parameters.

Secondly, sum-based gradient regularization can improve the behavioral regularity of DNNs and TasteNets

without sacrificing their predictive power. The demand functions of the regularized DNNs become highly

monotonic, as indicated by strong and weak regularities both approaching 1. Meanwhile, sum-based gradient

regularization is able to enhance DNNs’ predictive power in both datasets. Table 2 demonstrates that

sum-PGR, which directly regularizes the demand functions, is slightly more effective than sum-UGR and

sum-LGR, which exploit demand monotonicity through the chain rule. This finding is further elaborated by

Fig. 2b, where the regularized DNN has individual demand functions more consistent with the MNL: driving

is less favored due to increased costs, while train and active mobility see higher demand. The regularized

demand functions are more monotonic not only in the ensemble model, but also in training replications. We

note that similar behavioral regularization effect of sum-based gradient regularization is also observed for
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(a) DNN (b) DNN, sum-PGR (c) DNN, norm-PGR

(d) TasteNet (e) MNL

Figure 2: Individual demands as functions of driving cost (10K-Random, Chicago).

TasteNets on the London dataset.

On the other hand, norm-based gradient regularization fails to enhance behavioral regularity or predictive

power. For example, norm-UGR with a small λ can preserve accuracy and behavioral regularity for DNNs

and TasteNets, but it would eventually lead to low predictive power and strong regularity as we increase

λ. These results hold for all three norm-based approaches, potentially because they tend to flatten and

smooth the demand curves. Therefore, the optimal DNNs and TasteNets in Table 2 have small λ’s and

look similar to the corresponding benchmarks (see Fig. 2c for example). With strong norm-based gradient

regularization, as shown in Fig. D.1e, individual demand curves become almost flat and could not reflect the

decision mechanism: travelers might not respond to cost changes at certain points, but are highly unlikely

to be insensitive to all cost changes. Since smaller λ’s lead to better performance, we might conclude that

the datasets or models do not change abruptly due to cost perturbations. In brief, although regularizing the

gradient norm is a common practice in computer science (Drucker and Le Cun, 1991; Jakubovitz and Giryes,

2018; Sokolić et al., 2017), it is not founded on prior beliefs in behavioral regularity and thus not effective

for our purposes. For conciseness, we will not analyze norm-based gradient regularization in the next two

scenarios.

5.1.2 Small sample scenario

In this subsection, we focus on exemplifying the effectiveness of the proposed gradient regularizers in a

typical choice modeling scenario where the number of available samples is limited due to resource limitations

or privacy concerns. The same analysis is applied to the 1K-Random Chicago and London datasets. Table 3

illustrates the performance of DNNs, TasteNets, and benchmark models, while Fig. 3 elaborates on the

individual demand functions. Further, the model performances in the training and validation sets are

summarized in Tables C.3 and C.4, respectively.

We find that our gradient regularizers are even more effective than in the large sample scenario. Firstly,

without GR, behaviorally regular become much worse in benchmark DNNs with small sample, e.g., the strong
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regularity dropped by 22.4 percentage points and the weak regularity dropped by 19.4 percentage points

with the Chicago data. Similarly, shallower NNs like the benchmark TasteNets also have worse behavioral

regularity in the small sample scenario. Meanwhile, the benchmark models fail to outperform MNL in

predictive power, especially for the Chicago data. As shown in Fig. 3a, the benchmark DNN’s individual

demand curves are non-monotonic and contradictory to the law of demand. Secondly, sum-based gradient

regularization succeeds in enhancing all metrics of DNNs and most metrics of TasteNets, as shown in Table 3

and Fig. 3. In other words, the regularized DNNs and TasteNets outperform their corresponding benchmark

models in both predictive power and behavioral regularity. With the Chicago data, for example, sum-PGR

improves the benchmark DNN’s log-likelihood by 1.9% of its absolute value and its strong regularity by 32.1

percentage points. In addition, ensembles of regularized models have comparable overall performance to the

MNL when using such a small sample size.

Table 3: Model performance in the test sets of 1K-Random.

Panel 1: Chicago dataset, sum-XGR

Metric: DNN TasteNet RUM

mean (std.) No GR PGR UGR LGR No GR PGR UGR LGR MNL

Log-likelihood −375.1 −367.9 −374.2 −369.7 −389.3 −385.2 −383.1 −386.6 −380.2

(3.096) (4.181) (3.298) (3.304) (2.838) (3.351) (3.139) (3.447) (0)

Accuracy 0.705 0.703 0.676 0.696 0.700 0.679 0.686 0.677 0.718

(0.002) (0.007) (0.01) (0.011) (0.005) (0.012) (0.010) (0.012) (0)

F1 score 0.648 0.645 0.559 0.619 0.619 0.563 0.580 0.559 0.665

(0.004) (0.018) (0.027) (0.030) (0.012) (0.028) (0.023) (0.028) (0)

Strong regularity 0.664 0.985 0.985 0.985 0.659 0.979 0.983 0.979 0.996

(0.173) (0.009) (0.011) (0.011) (0.129) (0.015) (0.013) (0.013) (0)

Weak regularity 0.728 0.999 0.997 0.999 0.685 0.997 0.995 0.992 1.000

(0.162) (0.001) (0.005) (0.002) (0.128) (0.004) (0.006) (0.009) (0)

Panel 2: London dataset, sum-XGR

Log-likelihood −322.6 −328.8 −317.8 −335.2 −345.1 −339.7 −343.5 −340.1 −331.2

(3.455) (8.146) (3.44) (11.304) (2.337) (2.023) (3.035) (1.974) (0)

Accuracy 0.737 0.720 0.740 0.717 0.725 0.734 0.724 0.733 0.746

(0.007) (0.013) (0.007) (0.021) (0.004) (0.006) (0.009) (0.006) (0)

F1 score 0.732 0.703 0.734 0.694 0.711 0.720 0.705 0.718 0.740

(0.007) (0.020) (0.008) (0.038) (0.005) (0.006) (0.013) (0.005) (0)

Strong regularity 0.904 0.999 0.992 0.997 0.939 0.964 0.999 0.965 0.998

(0.069) (0.002) (0.014) (0.008) (0.023) (0.013) (0.002) (0.01) (0)

Weak regularity 0.913 1.000 0.993 0.998 0.943 0.984 0.999 0.981 1.000

(0.067) (0.001) (0.014) (0.006) (0.024) (0.012) (0.002) (0.013) (0)
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(a) DNN (b) DNN, sum-PGR

(c) TasteNet (d) TasteNet, sum-PGR (e) MNL

Figure 3: Individual demands as functions of driving cost (1K-Random, Chicago).

5.1.3 Out-of-domain generalization

The large and small sample scenarios above assist in examining only in-domain generalization for the random

split of training and test data. Although random split is the most common practice, we are also interested in

the out-of-domain generalizability of DNNs. Out-of-domain generalization is highly relevant to transporta-

tion engineering, system design, and urban planning, such as the cross-city policy transfer: when assessing

whether a city should build a subway, transportation planners sometimes cite the ridership of subway sys-

tems in other cities. Our data split scheme in the 10K-Sorted sub-datasets can be interpreted as using the

patterns of individual choice behavior in one city (as in the training set) to extrapolate those in another city

(as in the test set). Here we emulate such policy setting by testing the DNNs’ out-of-domain generalizability

using predictive power and behavioral regularity metrics.

The results suggest that gradient regularization could drastically improve the out-of-domain generaliz-

ability of DNNs, even more effectively than improving their in-domain generalizability. Table 4 summarizes

the performance of DNNs, TasteNets, and benchmark models in the test sets, while their training and vali-

dation performance are summarized in Tables C.5 and C.6. Under this setting, DNNs and TasteNets exhibit

great flexibility with higher log-likelihood than the MNL model. However, behavioral regularity could be

relatively low for these NN models, as reflected in their regularity metrics. Fig. 4 visualizes the individual

demand functions as functions of transit cost with the London data, in which the benchmark DNN performs

unreasonably in the test set shown to the right of the data split threshold (dashed gray line). Secondly,

sum-based gradient regularization has the potential to simultaneously improve the predictive power and be-

havioral regularity of benchmark DNNs and TasteNets. For an extreme case, the benchmark DNN with the

London data, sum-UGR dramatically raises its strong regularity from 0.185 to 0.979. However, sum-based

gradient regularization is unable to further improve the benchmark TasteNet with the Chicago data, whose

base behavioral regularity is high.
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Table 4: Model performance in the test sets of 10K-Sorted.

Panel 1: Chicago dataset, sum-XGR

Metric: DNN TasteNet RUM

mean (std.) No GR PGR UGR LGR No GR PGR UGR LGR MNL

Log-likelihood −1356.1 −1243.5 −1167.9 −1232.4 −1485.9 −1873.7 −1901.4 −2003.9 −2025.7

(134.1) (55.1) (27.6) (54.9) (47.9) (45.5) (36.6) (50.2) (0)

Accuracy 0.783 0.788 0.789 0.788 0.750 0.726 0.725 0.705 0.722

(0.011) (0.002) (0.003) (0.002) (0.014) (0.008) (0.006) (0.008) (0)

F1 score 0.722 0.726 0.727 0.724 0.707 0.721 0.720 0.708 0.721

(0.010) (0.006) (0.003) (0.005) (0.006) (0.005) (0.004) (0.006) (0)

Strong regularity 0.317 0.857 0.923 0.865 1.000 0.980 0.978 0.981 0.984

(0.240) (0.099) (0.087) (0.071) (0.000) (0.004) (0.004) (0.004) (0)

Weak regularity 0.487 0.974 0.983 0.977 1.000 1.000 1.000 1.000 1.000

(0.230) (0.037) (0.040) (0.023) (0.000) (0.000) (0.000) (0.001) (0)

Panel 2: London dataset, sum-XGR (transit cost)

Log-likelihood −1137.9 −1110.4 −1108.4 −1112.1 −1221.1 −1170.2 −1171.1 −1175.0 −1301.6

(34.3) (23.9) (21.1) (26.7) (33.1) (27.0) (28.5) (30.3) (0)

Accuracy 0.777 0.784 0.794 0.782 0.776 0.786 0.785 0.783 0.780

(0.010) (0.007) (0.007) (0.006) (0.009) (0.008) (0.008) (0.007) (0)

F1 score 0.768 0.776 0.778 0.776 0.765 0.772 0.772 0.772 0.770

(0.011) (0.006) (0.008) (0.006) (0.008) (0.008) (0.008) (0.007) (0)

Strong regularity 0.185 0.968 0.979 0.907 0.313 0.878 0.872 0.720 0.980

(0.075) (0.032) (0.029) (0.062) (0.007) (0.095) (0.095) (0.083) (0)

Weak regularity 0.207 0.977 0.984 0.925 0.343 0.993 0.988 0.900 1.000

(0.080) (0.026) (0.025) (0.055) (0.008) (0.010) (0.012) (0.045) (0)

(a) DNN (b) DNN, sum-UGR

(c) TasteNet (d) TasteNet, sum-PGR (e) MNL

Figure 4: Individual demands as functions of transit cost (10K-Sorted, London).
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5.2 Trade-off between predictive power and behavioral regularity

Section 5.1 demonstrates the potentials of sum-based gradient regularization in enhancing the behavioral

regularity and predictive power of benchmark DNNs and TasteNets under three settings. This subsection

will further investigate the trade-off between predictive power and behavioral regularity in these scenarios.

Although the optimization objective in Eq. (10) demonstrates a clear substitution effect between predictive

power and behavioral regularity in the training set, it remains an open question whether this effect persists

in the test set. As detailed below, we find the same substitution effect in the test sets of 10K-Random,

indicating that predictive power decreases and behavioral regularity increases with stronger sum-based gra-

dient regularization. On the other hand, interestingly, complementary effects between predictive power and

behavioral regularity are observed for in-domain generalization with 1K-Random and out-of-domain gener-

alization with 10K-Sorted. This suggests that adequate sum-based gradient regularization can enhance both

predictive power and behavioral regularity, especially in the typical choice modeling setting with limited

sample sizes, and for the purpose of policy evaluations.

5.2.1 Large sample scenario: substitution effects

In a large sample scenario, higher behavioral regularity often has a trade-off with lower predictive power.

The effects of regularization strength λ on the five metrics are illustrated in Fig. 5 for both 10K-Random

Chicago and London datasets, where the horizontal axis uses logarithmic scale lg(λ). As shown in Fig. 5,

DNNs’ model fit declines with increasing λ, especially in terms of log-likelihood, which is more sensitive to λ

than accuracy and F1 score. The decline in predictive power is particularly noticeable after a critical point,

such as λ = 10 for DNNs with sum-PGR. In other words, although regularization would generally reduce

predictive power, there exists a range of λ that almost preserves predictive power while enhancing behavioral

regularity, such as λ ≤ 0.1 for DNNs with sum-PGR, consistent with our findings in Section 5.1.1.

(a) DNN, sum-PGR (Chicago) (b) DNN, norm-PGR (Chicago) (c) DNN, sum-PGR (London)

(d) TasteNet, sum-PGR (Chicago) (e) TasteNet, norm-PGR (Chicago) (f) TasteNet, sum-PGR (London)

Figure 5: Effects of regularization strength (10K-Random).
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Fig. 5 also presents two important differences between log-likelihood and accuracy or F1 score, as well

as between sum- and norm-based gradient regularization. Firstly, log-likelihood is much more sensitive than

accuracy or F1 score in measuring predictive power, which is theoretically valid and empirically expected.

Moreover, presenting accuracy and F1 score together might be a good idea for imbalanced data. Therefore,

we recommend that future studies use different metrics when comparing the performance of DCMs. Secondly,

our behavioral regularity metrics can demonstrate the flattening effects of norm-based gradient regularization

on individual demand curves, as indicated by weak regularity approaching 1 and strong regularity approach-

ing 0 for very large λ’s (see Fig. 5b). In brief, strong regularity might be more appropriate than the weak

one, at least for describing the global declining trend of demand curves, although weak behavioral regularity

metric could still be important for describing local insensitivity to cost changes.

5.2.2 Small sample scenario: complementary effects

Interestingly, under a setting with relatively small sample, stronger sum-based gradient regularization can

simultaneously improve predictive power and behavioral regularity, thereby advancing the Pareto frontier of

different performance metrics. Fig. 6 illustrates the effects of λ for the 1K-Random sub-datasets, where we

can find a range for each gradient regularizer such that predictive power and behavioral regularity increase

together. For example, with the Chicago data, when λ increases from 10−4 to 0.1, sum-PGR improves

the DNN’s log-likelihood by 1.9% of its absolute value and strong regularity by 29.4 percentage points.

This phenomenon suggests the presence of Pareto efficiency in NN models, despite the substitution effects

observed in Fig. 5.

(a) DNN, sum-PGR (Chicago) (b) DNN, sum-PGR (London) (c) TasteNet, sum-PGR (Chicago)

Figure 6: Effects of regularization strength (1K-Random).

On the other hand, when λ exceeds a certain critical point, we still observe substitution effects between

predictive power and behavioral regularity for both DNNs and TasteNets. For example, with the Chicago

data, when λ increases from 0.1 to 100, the sum-UGR reduces the DNN’s log-likelihood by 4.8% of its absolute

value, but still improves the DNN’s strong regularity by 2.0 percentage points. This also demonstrates the

flexibility of soft constraints by identifying the optimal λ, which reflects the alignment between the data and

our behavioral assumptions.

5.2.3 Out-of-domain generalization

To explore the out-of-domain generalizability of DNNs with sum-based gradient regularization, we visualize

the effects of λ for the 10K-Sorted sub-datasets in Fig. 7. Interestingly, the trend of each metric combines the

characteristics of the first two scenarios: we observe both complementary and substitution effects for DNNs,

whereas substitution effects are more significant for TasteNets. In addition, the log-likelihood patterns for

DNNs with the Chicago and London data are slightly different (see Fig. 7a and b), suggesting the data-

dependency nature of NN training. On the other hand, consistent with findings from previous sections,
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complementary effects and Pareto efficiency are observed for the sum-based gradient regularizers. These

results imply the usefulness of gradient regularization in improving behavioral regularity, as well as predictive

power simultaneously for the neural network choice models.

(a) DNN, sum-UGR (Chicago) (b) DNN, sum-UGR (London) (c) TasteNet, sum-PGR (London)

Figure 7: Effects of regularization strength (10K-Sorted).

5.3 Summary of empirical findings

As a summary, our findings demonstrate the conditions under which our sum-based gradient regularizers and

behavioral regularity metrics are most effective. When the sample size is large, DNN models tend to have a

high behavioral regularity. In this case, even a benchmark DNN architecture could be used for behavioral

prediction and mobility policy analysis, so our behavioral regularity metrics and regularization methods

might not be necessary. However, since it is always costly to collect travel survey data, the sample size in

travel demand modeling is typically small (e.g., less than 10,000 samples). Under this context, sum-based

gradient regularization should be broadly applied since it enables DNNs to generate reliable prediction and

intuitive behavioral interpretation. Gradient regularization is also effective when the models are applied

to future forecasting or cross-city transfer of mobility policies, which is emulated by the out-of-domain

generalization scenario in our experiments.

6 Conclusions

DNNs often present behaviorally irregular patterns that greatly limit their practical use and theoretical

appeal in travel behavior analysis, especially in applications and forecasting. However, there is no consensus

on how to measure or improve the model regularity of DNNs within the field of discrete choice modeling.

This paper makes contributions by developing the behavioral regularity metrics and a gradient regulariza-

tion framework. Specifically, we propose the “law of demand” in economics as a novel measure of DNNs’

behavioral regularity w.r.t. generalized costs. Using a constrained optimization framework, we design six

gradient regularizers to enhance the strong and weak behavioral regularities of DNNs. Empirically, these

gradient regularizers are applied to two travel survey datasets collected from Chicago and London, through

which we examine the trade-off between predictive power and behavioral regularity in the small versus large

sample scenarios, and in-domain versus out-of-domain generalizations. Using five evaluation metrics, we

demonstrate the effectiveness of our gradient regularizers on both DNNs and TasteNets.

We find that sum-based gradient regularization can significantly improve the behavioral regularity of

DNNs without sacrificing their predictive power in all the scenarios. There exists a substitution effect between

predictive power and behavioral regularity in the large sample scenario, but a complementary effect in the

small sample scenario. This is consistent with general understanding that, within the overparameterized

regime, regularization can reduce variance (e.g., Alpaydin, 2014). Utilizing the 10K-Sorted sub-datasets, we

further find that gradient regularization is also effective for out-of-domain generalization, which is critical for
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transferring knowledge across contexts. Our results also demonstrate how and why the gradient regularizers

enhance predictive power and behavioral regularity, particularly for the small sample scenario and out-of-

domain generalization. Besides the constrained optimization interpretation, the findings could be further

understood by an analogy between gradient regularization and informative Bayesian prior. Specifically,

gradient regularization can be seen as a deterministic prior imposed on the parameters estimates, that

allows incorporating the modeler’s prior belief on the “proper sign” of parameter estimates. Such prior belief

can be critical especially when the sample size is limited.

This study pioneers in proposing new behavioral metrics and designing a practical regularization frame-

work for DNNs. To address behavioral irregularity as shown in past studies (Wang et al., 2020a,b; Wong and

Farooq, 2021; Xia et al., 2023), we incorporate domain-knowledge into DNNs by regularizing the gradients’

direction, in contrast to the norm-based (magnitude) regularization as in the computer science literature

(Drucker and Le Cun, 1991; Jakubovitz and Giryes, 2018; Sokolić et al., 2017). With this research, strong

and weak behavioral regularities could be incorporated into future behavioral analysis using deep learning,

thus evaluating the consistency of models with theories in behavioral science and microeconomics. Gradient

regularization is a general framework, which can impose any prior belief of the input–output relationship to

model training. With more behaviorally regular models, future researchers can integrate the computational

power of deep learning and the theoretical rigor in behavioral science, thus developing reliable deep learn-

ing models for transportation policy analysis. For example, researchers can use our approach to facilitate

cross-city transfer of mobility policies when local governments seek to learn certain policies (e.g., congestion

charging) from other areas. Our study demonstrates that deep learning with behavioral regularity could

generate reliable insights for such policy transfer even when the source and the target cities have different

data distributions in sociodemographics and pricing strategies.

Limitations still exist in this study. This work only regularizes direct partial derivatives, but not cross

partial derivatives. Regularization on cross partial derivatives, on the other hand, could impose a stronger

prior assumption, controlling the substitution and complementary patterns across alternatives. In addition,

this research assumes exogenous penalty weight for gradient regularization, future research could combine

hyperparameter tuning to automatically learn these penalty weights. Lastly, as in typical deep learning

models, parameter identification has been discussed (Hwang and Ding, 1997) but largely remains an open

question. In traditional DCMs, parameter identification is the foundation for statistical analysis (McFadden,

1980). However, without further research into DNNs’ parameter identification, it could be challenging to

quantify model uncertainty or design statistical tests, thus limiting the practicality of deep learning for

discrete choice analysis. Future studies should investigate the necessary and sufficient conditions for model

identification and statistical tests, especially in the over-parameterized deep learning models.
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A Summary statistics of datasets

A.1 Full datasets

Table A.1: Summary statistics of the full Chicago dataset.

Mean Std. Min. 25% 50% 75% Max.

Age (year) 38.95 13.30 6 29 37 47 84

Household size 2.50 1.36 1 1 2 3 12

Number of cars in the household 1.42 0.99 0 1 1 2 8

Time by car (h) 0.22 0.16 0.00 0.11 0.17 0.29 1.66

Cost by car ($) 8.77 4.11 1.18 5.84 6.57 11.06 48.24

Time by train (h) 0.82 0.67 0.05 0.38 0.64 0.99 4.95

Cost by train ($) 2.55 0.39 0.00 2.33 2.48 2.61 10.00

Time by active mobility (h) 1.14 1.34 0.03 0.33 0.64 1.33 21.82

Gender 11,821 (1: male); 14,278 (0: female)

Bachelor’s degree or above 18,853 (1: yes); 7,246 (0: no)

One-person household 6,697 (1: yes); 19,402 (0: no)

One-car household 10,004 (1: yes); 16,095 (0: no)

Annual household income 15,520 (1: ≥ $75K); 10,579 (0: < $75K)

Table A.2: Summary statistics of the full London dataset.

Mean Std. Min. 25% 50% 75% Max.

Number of cars in the household 0.98 0.75 0 0 1 2 2

Number of transfers in public transit 0.37 0.62 0 0 0 1 4

Time by car (h) 0.28 0.25 0.00 0.11 0.19 0.37 2.06

Cost by car (£) 1.90 3.49 0.00 0.29 0.57 1.29 17.16

Time by public transit (h) 0.47 0.31 0.01 0.23 0.39 0.64 2.73

Cost by public transit (£) 1.56 1.54 0.00 0.00 1.50 2.40 13.49

Time by active mobility (h) 0.75 0.73 0.02 0.23 0.48 1.00 5.98

Age (year) 18,917 (1: < 25); 44,957 (0: 25–55); 17,212 (2: > 55)

Gender 38,396 (1: male); 42,690 (0: female)

Driving license 50,035 (1: yes); 31,051 (0: no)

21



A.2 10K-Sorted sub-datasets

Table A.3: Summary statistics of 10K-Sorted (Chicago).

Training set (7K samples)

Mean Std. Min. 25% 50% 75% Max.

Age (year) 38.44 13.26 13 28 36 46 83

Household size 2.49 1.36 1 1 2 3 8

Number of cars in the household 1.37 1.01 0 1 1 2 8

Time by car (h) 0.16 0.08 0.01 0.10 0.15 0.21 0.76

Cost by car ($) 6.98 1.86 1.33 5.73 6.57 7.76 11.41

Time by train (h) 0.60 0.37 0.05 0.34 0.52 0.78 4.62

Cost by train ($) 2.41 0.23 0.00 2.31 2.41 2.52 10.00

Time by active mobility (h) 0.60 0.40 0.04 0.28 0.51 0.84 5.93

Gender 3,104 (1: male); 3,896 (0: female)

Bachelor’s degree or above 5,087 (1: yes); 1,913 (0: no)

One-person household 1,830 (1: yes); 5,170 (0: no)

One-car household 2,678 (1: yes); 4,322 (0: no)

Annual household income 4,079 (1: ≥ $75K); 2,921 (0: < $75K)

Test set (2K samples)

Age (year) 41.30 13.62 6 31 39 50 84

Household size 2.61 1.35 1 2 2 4 8

Number of cars in the household 1.67 0.96 0 1 2 2 7

Time by car (h) 0.46 0.15 0.09 0.34 0.44 0.55 1.51

Cost by car ($) 15.95 2.33 11.41 14.44 16.54 17.44 48.24

Time by train (h) 1.77 0.81 0.22 1.16 1.59 2.18 4.94

Cost by train ($) 3.10 0.41 2.00 2.83 3.15 3.33 6.65

Time by active mobility (h) 3.22 1.58 0.16 2.03 2.76 4.03 18.37

Gender 963 (1: male); 1,037 (0: female)

Bachelor’s degree or above 1,439 (1: yes); 561 (0: no)

One-person household 436 (1: yes); 1,564 (0: no)

One-car household 669 (1: yes); 1,331 (0: no)

Annual household income 1,309 (1: ≥ $75K); 691 (0: < $75K)
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Table A.4: Summary statistics of 10K-Sorted (London).

Training set (7K samples)

Mean Std. Min. 25% 50% 75% Max.

Number of cars in the household 0.98 0.75 0 0 1 2 2

Number of transfers in public transit 0.16 0.43 0 0 0 0 3

Time by car (h) 0.21 0.18 0.01 0.09 0.15 0.27 1.45

Cost by car (£) 1.44 3.00 0.03 0.25 0.44 0.87 16.11

Time by public transit (h) 0.38 0.25 0.02 0.20 0.32 0.50 2.00

Cost by public transit (£) 0.98 0.85 0.00 0.00 1.50 1.50 2.90

Time by active mobility 0.54 0.52 0.02 0.20 0.36 0.69 5.67

Age (year) 1,746 (1: < 25); 3,525 (0: 25–55); 1,729 (2: > 55)

Gender 3,296 (1: male); 3,704 (0: female)

Driving license 4,140 (1: yes); 2,860 (0: no)

Test set (2K samples)

Number of cars in the household 1.04 0.72 0 1 1 2 2

Number of transfers in public transit 1.20 0.57 0 1 1 1 4

Time by car (h) 0.55 0.30 0.07 0.31 0.49 0.75 1.58

Cost by car (£) 3.89 4.64 0.21 0.97 1.63 3.47 16.28

Time by public transit (h) 0.82 0.29 0.22 0.61 0.78 0.98 2.73

Cost by public transit (£) 3.97 1.28 2.90 3.00 3.40 4.50 11.60

Time by active mobility 1.55 0.86 0.22 0.87 1.36 2.05 4.87

Age (year) 212 (1: < 25); 1,636 (0: 25–55); 152 (2: > 55)

Gender 1,028 (1: male); 972 (0: female)

Driving license 1,561 (1: yes); 439 (0: no)

B Impacts of optimization algorithms

Using the 10K-Random Chicago dataset, we visualize the training and validation losses (Fig. B.1) as well

as the corresponding individual demand functions (Fig. B.2) for the Adam, AdamW, and SGD algorithms.

Based on default settings of all three algorithms, both Adam and AdamW lead to fast convergence and

reasonable demand functions, whereas SGD does not converge within 100 epochs and leads to less reasonable

demand functions. It is worth noting that weight decay of AdamW is set as zero to avoid further complexity

in regularization, thus identifying the direct impacts of our gradient regularization on behavioral regularity.

(a) Adam (b) AdamW (c) SGD

Figure B.1: Training loss (blue) and validation loss (orange) per epoch for different algorithms.
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(a) Adam (b) AdamW (c) SGD

Figure B.2: Individual demands as functions of driving cost for different algorithms.

C Training and validation performance

C.1 Large sample scenario

Table C.1: Model performance in the training sets (10K-Random).

Panel 1: Chicago dataset, sum-XGR

Metric: DNN TasteNet RUM

mean (std.) No GR PGR UGR LGR No GR PGR UGR LGR MNL

Log-likelihood −4272.7 −4216.5 −4240.1 −4221.9 −4677.8 −4675.8 −4676.0 −4675.7 −4710.2

(12.97) (11.74) (15.40) (17.58) (19.89) (19.38) (19.57) (19.24) (0)

Accuracy 0.751 0.753 0.752 0.753 0.732 0.732 0.733 0.732 0.731

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0)

F1 score 0.717 0.726 0.721 0.724 0.675 0.675 0.675 0.675 0.681

(0.004) (0.004) (0.003) (0.004) (0.004) (0.004) (0.004) (0.004) (0)

Strong regularity 0.889 0.987 0.980 0.988 0.997 0.998 0.998 0.998 0.998

(0.061) (0.003) (0.011) (0.003) (0.003) (0.002) (0.002) (0.002) (0)

Weak regularity 0.927 0.999 0.997 0.999 0.999 0.999 0.999 0.999 1.000

(0.058) (0.001) (0.004) (0.001) (0.002) (0.001) (0.002) (0.001) (0)

Panel 2: Chicago dataset, norm-XGR

Log-likelihood −4272.7 −4282.9 −4333.2 −4303.7 −4677.8 −4679.7 −4763.8 −4684.8 −4710.2

(13.22) (12.23) (14.33) (11.96) (19.89) (19.88) (17.51) (19.68) (0)

Accuracy 0.751 0.750 0.745 0.748 0.732 0.732 0.729 0.732 0.731

(0.002) (0.002) (0.002) (0.001) (0.002) (0.002) (0.002) (0.002) (0)

F1 score 0.717 0.713 0.700 0.706 0.675 0.674 0.665 0.673 0.681

(0.004) (0.004) (0.005) (0.005) (0.004) (0.004) (0.004) (0.004) (0)

Strong regularity 0.889 0.856 0.704 0.813 0.997 0.997 0.922 0.996 0.998

(0.061) (0.063) (0.044) (0.063) (0.003) (0.003) (0.032) (0.005) (0)

Weak regularity 0.927 0.898 0.761 0.855 0.999 0.999 0.935 0.998 1.000

(0.058) (0.062) (0.046) (0.065) (0.002) (0.002) (0.028) (0.003) (0)
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Table C.1 (continued).

Panel 3: London dataset, sum-XGR

Metric: DNN TasteNet RUM

mean (std.) No GR PGR UGR LGR No GR PGR UGR LGR MNL

Log-likelihood −4427.9 −4416.1 −4434.8 −4499.3 −4500.2 −4517.9 −4567.1 −4518.7 −4834.7

(20.61) (39.09) (24.41) (16.00) (10.52) (12.03) (24.14) (11.93) (0)

Accuracy 0.732 0.729 0.731 0.729 0.736 0.734 0.728 0.734 0.718

(0.003) (0.004) (0.005) (0.004) (0.001) (0.002) (0.004) (0.002) (0)

F1 score 0.731 0.728 0.730 0.726 0.732 0.730 0.723 0.730 0.714

(0.002) (0.003) (0.004) (0.004) (0.001) (0.002) (0.004) (0.002) (0)

Strong regularity 0.947 0.993 0.994 0.997 0.936 0.964 0.988 0.975 0.996

(0.032) (0.004) (0.009) (0.003) (0.023) (0.012) (0.009) (0.011) (0)

Weak regularity 0.968 0.999 0.998 1.000 0.960 1.000 1.000 1.000 1.000

(0.025) (0.001) (0.005) (0.000) (0.019) (0.000) (0.000) (0.000) (0)

Table C.2: Model performance in the validation sets (10K-Random).

Panel 1: Chicago dataset, sum-XGR

Metric: DNN TasteNet RUM

mean (std.) No GR PGR UGR LGR No GR PGR UGR LGR MNL

Log-likelihood −633.6 −633.0 −634.1 −634.2 −683.0 −683.1 −683.1 −683.1 -693.8

(2.507) (2.474) (3.594) (2.794) (2.442) (2.470) (2.482) (2.467) (0)

Accuracy 0.739 0.739 0.739 0.739 0.726 0.727 0.727 0.727 0.737

(0.004) (0.004) (0.003) (0.003) (0.004) (0.003) (0.003) (0.003) (0)

F1 score 0.702 0.710 0.705 0.708 0.668 0.669 0.670 0.669 0.690

(0.005) (0.004) (0.005) (0.003) (0.007) (0.006) (0.006) (0.006) (0)

Strong regularity 0.879 0.981 0.973 0.982 0.997 0.999 0.998 0.998 1.000

(0.058) (0.005) (0.014) (0.005) (0.005) (0.002) (0.003) (0.002) (0)

Weak regularity 0.928 0.999 0.997 0.999 0.998 0.999 0.999 0.999 1.000

(0.057) (0.001) (0.004) (0.001) (0.003) (0.002) (0.002) (0.002) (0)

Panel 2: Chicago dataset, norm-XGR

Log-likelihood −633.6 −633.3 −635.9 −633.3 −683.0 −683.0 −687.4 −682.9 −693.8

(2.507) (2.414) (2.676) (2.989) (2.442) (2.421) (2.236) (2.366) (0)

Accuracy 0.739 0.741 0.741 0.741 0.726 0.725 0.720 0.725 0.737

(0.004) (0.004) (0.003) (0.003) (0.004) (0.004) (0.001) (0.004) (0)

F1 score 0.702 0.702 0.696 0.699 0.668 0.666 0.655 0.665 0.690

(0.005) (0.005) (0.006) (0.005) (0.007) (0.007) (0.003) (0.006) (0)

Strong regularity 0.879 0.846 0.701 0.803 0.997 0.996 0.924 0.995 1.000

(0.058) (0.058) (0.044) (0.061) (0.005) (0.005) (0.03) (0.007) (0)

Weak regularity 0.928 0.900 0.766 0.858 0.998 0.998 0.935 0.997 1.000

(0.057) (0.057) (0.046) (0.062) (0.003) (0.003) (0.026) (0.006) (0)
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Table C.2 (continued).

Panel 3: London dataset, sum-XGR

Metric: DNN TasteNet RUM

mean (std.) No GR PGR UGR LGR No GR PGR UGR LGR MNL

Log-likelihood −645.5 −642.8 −644.2 −647.8 −638.8 −639.9 −645.3 −639.9 −670.0

(4.399) (5.709) (4.345) (3.915) (1.949) (2.182) (3.254) (1.985) (0)

Accuracy 0.721 0.722 0.725 0.723 0.729 0.726 0.726 0.726 0.735

(0.002) (0.003) (0.002) (0.005) (0.003) (0.002) (0.002) (0.002) (0)

F1 score 0.719 0.721 0.722 0.718 0.723 0.720 0.719 0.720 0.730

(0.003) (0.003) (0.002) (0.004) (0.003) (0.002) (0.003) (0.002) (0)

Strong regularity 0.947 0.992 0.991 0.996 0.924 0.953 0.982 0.964 0.991

(0.032) (0.005) (0.012) (0.004) (0.026) (0.014) (0.011) (0.014) (0)

Weak regularity 0.971 0.999 0.997 1.000 0.957 1.000 1.000 1.000 1.000

(0.025) (0.001) (0.007) (0.001) (0.023) (0.001) (0.000) (0.001) (0)

C.2 Small sample scenario

Table C.3: Model performance in the training sets (1K-Random).

Panel 1: Chicago dataset, sum-XGR

Metric: DNN TasteNet RUM

mean (std.) No GR PGR UGR LGR No GR PGR UGR LGR MNL

Log-likelihood −494.8 −511.0 −546.4 −526.2 −555.6 −580.2 −570.9 −583.1 −548.1

(6.074) (8.266) (9.391) (8.871) (4.071) (6.789) (5.316) (9.196) (0)

Accuracy 0.740 0.732 0.691 0.718 0.711 0.691 0.696 0.690 0.715

(0.005) (0.011) (0.008) (0.01) (0.006) (0.007) (0.008) (0.007) (0)

F1 score 0.690 0.682 0.578 0.648 0.634 0.575 0.588 0.573 0.663

(0.005) (0.019) (0.024) (0.029) (0.013) (0.018) (0.020) (0.018) (0)

Strong regularity 0.649 0.983 0.986 0.984 0.624 0.981 0.981 0.984 0.999

(0.175) (0.006) (0.013) (0.008) (0.12) (0.015) (0.013) (0.011) (0)

Weak regularity 0.718 0.999 0.995 0.998 0.657 0.999 0.997 0.996 1.000

(0.165) (0.002) (0.007) (0.003) (0.125) (0.001) (0.003) (0.004) (0)

Panel 2: London dataset, sum-XGR

Log-likelihood −506.5 −542.9 −517.8 −560.6 −548.0 −553.0 −565.9 −553.5 −570.2

(4.002) (11.91) (6.636) (13.342) (3.359) (3.389) (5.310) (3.395) (0)

Accuracy 0.732 0.707 0.726 0.693 0.705 0.703 0.691 0.702 0.709

(0.005) (0.01) (0.006) (0.02) (0.005) (0.006) (0.007) (0.005) (0)

F1 score 0.727 0.694 0.720 0.673 0.691 0.689 0.672 0.688 0.701

(0.005) (0.014) (0.007) (0.032) (0.006) (0.007) (0.008) (0.006) (0)

Strong regularity 0.898 0.999 0.991 0.999 0.946 0.968 0.998 0.970 1.000

(0.072) (0.002) (0.015) (0.003) (0.023) (0.013) (0.002) (0.009) (0)

Weak regularity 0.906 1.000 0.994 0.999 0.950 0.988 0.999 0.986 1.000

(0.072) (0.001) (0.012) (0.003) (0.021) (0.011) (0.001) (0.01) (0)
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Table C.4: Model performance in the validation sets (1K-Random).

Panel 1: Chicago dataset, sum-XGR

Metric: DNN TasteNet RUM

mean (std.) No GR PGR UGR LGR No GR PGR UGR LGR MNL

Log-likelihood −151.9 −147.1 −149.2 −147.6 −159.2 −155.3 −155.5 −155.6 −163.0

(1.033) (1.993) (1.876) (2.548) (1.725) (2.055) (1.920) (2.188) (0)

Accuracy 0.680 0.692 0.677 0.686 0.680 0.686 0.682 0.684 0.700

(0.006) (0.008) (0.008) (0.008) (0.011) (0.012) (0.012) (0.014) (0)

F1 score 0.628 0.638 0.561 0.610 0.599 0.574 0.579 0.571 0.654

(0.006) (0.018) (0.016) (0.024) (0.019) (0.027) (0.026) (0.030) (0)

Strong regularity 0.671 0.984 0.990 0.988 0.692 0.982 0.980 0.985 0.995

(0.169) (0.009) (0.015) (0.015) (0.119) (0.018) (0.010) (0.012) (0)

Weak regularity 0.746 1.000 0.996 0.999 0.721 0.997 0.996 0.996 1.000

(0.154) (0.002) (0.007) (0.003) (0.119) (0.003) (0.005) (0.004) (0)

Panel 2: London dataset, sum-XGR

Log-likelihood −143.3 −138.9 −139.2 −140.5 −144.5 −141.7 −143.4 −141.9 −138.7

(2.016) (1.676) (1.338) (3.175) (0.741) (0.958) (1.105) (1.085) (0)

Accuracy 0.688 0.681 0.693 0.680 0.697 0.705 0.698 0.705 0.700

(0.008) (0.015) (0.015) (0.019) (0.009) (0.009) (0.01) (0.009) (0)

F1 score 0.683 0.663 0.685 0.653 0.676 0.684 0.676 0.684 0.689

(0.009) (0.019) (0.015) (0.031) (0.009) (0.01) (0.011) (0.01) (0)

Strong regularity 0.890 0.998 0.988 0.997 0.949 0.970 0.998 0.972 1.000

(0.073) (0.003) (0.021) (0.007) (0.027) (0.015) (0.003) (0.007) (0)

Weak regularity 0.896 0.999 0.992 0.997 0.951 0.984 0.998 0.982 1.000

(0.073) (0.002) (0.016) (0.006) (0.025) (0.012) (0.003) (0.012) (0)

C.3 Out-of-domain generalization

Table C.5: Model performance in the training sets (10K-Sorted).

Panel 1: Chicago dataset, sum-XGR

Metric: DNN TasteNet RUM

mean (std.) No GR PGR UGR LGR No GR PGR UGR LGR MNL

Log-likelihood −4292.7 −4325.0 −4398.3 −4350.1 −4847.9 −4600.0 −4595.5 −4590.9 −4720.0

(21.52) (17.68) (13.50) (20.77) (28.64) (9.302) (9.634) (11.26) (0)

Accuracy 0.745 0.742 0.738 0.741 0.715 0.726 0.727 0.727 0.726

(0.002) (0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001) (0)

F1 score 0.717 0.714 0.707 0.713 0.661 0.691 0.692 0.692 0.693

(0.003) (0.003) (0.002) (0.003) (0.002) (0.002) (0.002) (0.001) (0)

Strong regularity 0.881 0.998 0.998 0.998 1.000 1.000 0.999 0.999 1.000

(0.045) (0.001) (0.001) (0.001) (0.000) (0.001) (0.001) (0.001) (0)

Weak regularity 0.898 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000

(0.042) (0.000) (0.000) (0.000) (0.000) (0.001) (0.001) (0.001) (0)
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Table C.5 (continued).

Panel 2: London dataset, sum-XGR

Metric: DNN TasteNet RUM

mean (std.) No GR PGR UGR LGR No GR PGR UGR LGR MNL

Log-likelihood −4554.5 −4589.4 −4806.0 −4530.7 −4661.6 −4785.8 −4724.6 −4676.5 −4919.2

(11.10) (25.82) (71.16) (6.477) (7.997) (41.15) (21.08) (8.192) (0)

Accuracy 0.725 0.722 0.710 0.725 0.724 0.712 0.717 0.721 0.712

(0.002) (0.002) (0.005) (0.002) (0.001) (0.005) (0.003) (0.001) (0)

F1 score 0.722 0.719 0.706 0.722 0.720 0.706 0.713 0.717 0.708

(0.002) (0.002) (0.006) (0.002) (0.001) (0.006) (0.003) (0.001) (0)

Strong regularity 0.736 0.999 0.991 0.991 0.645 0.991 0.991 0.968 0.997

(0.06) (0.001) (0.019) (0.005) (0.07) (0.008) (0.006) (0.023) (0)

Weak regularity 0.751 0.999 0.993 0.994 0.676 1.000 0.999 0.989 1.000

(0.054) (0.0) (0.016) (0.002) (0.067) (0.000) (0.001) (0.005) (0)

Table C.6: Model performance in the validation sets (10K-Sorted).

Panel 1: Chicago dataset, sum-XGR

Metric: DNN TasteNet RUM

mean (std.) No GR PGR UGR LGR No GR PGR UGR LGR MNL

Log-likelihood −656.6 −647.9 −648.5 −646.9 −683.0 −660.1 −660.0 −660.2 −673.2

(4.636) (3.430) (2.176) (2.397) (3.344) (1.171) (1.316) (1.320) (0)

Accuracy 0.737 0.739 0.737 0.739 0.729 0.745 0.746 0.745 0.745

(0.003) (0.002) (0.004) (0.003) (0.004) (0.003) (0.002) (0.002) (0)

F1 score 0.703 0.707 0.704 0.707 0.675 0.709 0.710 0.709 0.711

(0.004) (0.002) (0.005) (0.005) (0.005) (0.004) (0.003) (0.003) (0)

Strong regularity 0.883 0.998 0.998 0.998 1.000 1.000 1.000 1.000 1.000

(0.045) (0.001) (0.001) (0.001) (0.000) (0.001) (0.001) (0.001) (0)

Weak regularity 0.898 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(0.042) (0.001) (0.000) (0.000) (0.000) (0.001) (0.001) (0.001) (0)

Panel 2: London dataset, sum-XGR

Log-likelihood −698.5 −699.7 −713.6 −696.3 −720.3 −726.6 −722.7 −720.4 −730.2

(2.201) (2.208) (4.791) (2.877) (2.160) (4.988) (3.051) (2.274) (0)

Accuracy 0.691 0.693 0.691 0.694 0.701 0.686 0.694 0.699 0.687

(0.004) (0.005) (0.004) (0.004) (0.003) (0.008) (0.005) (0.003) (0)

F1 score 0.688 0.690 0.688 0.692 0.697 0.680 0.689 0.695 0.683

(0.004) (0.005) (0.004) (0.004) (0.003) (0.009) (0.005) (0.003) (0)

Strong regularity 0.724 0.998 0.991 0.990 0.637 0.992 0.992 0.967 0.996

(0.062) (0.001) (0.020) (0.004) (0.070) (0.009) (0.006) (0.026) (0)

Weak regularity 0.739 0.999 0.992 0.992 0.668 1.000 0.999 0.988 1.000

(0.054) (0.001) (0.018) (0.003) (0.066) (0.001) (0.001) (0.007) (0)
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D Individual demands as functions of regularization strength

(a) λ = 100, sum-PGR (b) λ = 1, sum-PGR (c) λ = 10−2, sum-PGR (d) λ = 10−4, sum-PGR

(e) λ = 100, norm-PGR (f) λ = 1, norm-PGR (g) λ = 10−2, norm-PGR (h) λ = 10−4, norm-PGR

Figure D.1: Individual demands as functions of driving cost (10K-Random, Chicago).
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Sokolić, J., Giryes, R., Sapiro, G., Rodrigues, M.R., 2017. Robust large margin deep neural networks. IEEE

Transactions on Signal Processing 65, 4265–4280.

Souche, S., 2010. Measuring the structural determinants of urban travel demand. Transport Policy 17, 127–134.

Tversky, A., Kahneman, D., 1992. Advances in prospect theory: Cumulative representation of uncertainty. Journal

of Risk and uncertainty 5, 297–323.

Wang, M., Deng, W., 2018. Deep visual domain adaptation: A survey. Neurocomputing 312, 135–153.

Wang, S., Mo, B., Zhao, J., 2020a. Deep neural networks for choice analysis: Architecture design with alternative-

specific utility functions. Transportation Research Part C: Emerging Technologies 112, 234–251.

30



Wang, S., Mo, B., Zhao, J., 2021. Theory-based residual neural networks: A synergy of discrete choice models and

deep neural networks. Transportation Research Part B: Methodological 146, 333–358.

Wang, S., Wang, Q., Zhao, J., 2020b. Deep neural networks for choice analysis: Extracting complete economic

information for interpretation. Transportation Research Part C: Emerging Technologies 118, 102701.

Watling, D.P., Rasmussen, T.K., Prato, C.G., Nielsen, O.A., 2018. Stochastic user equilibrium with a bounded choice

model. Transportation Research Part B: Methodological 114, 254–280.

Wehenkel, A., Louppe, G., 2019. Unconstrained monotonic neural networks. Advances in Neural Information Pro-

cessing Systems 32, 1545–1555.

Wong, M., Farooq, B., 2021. Reslogit: A residual neural network logit model for data-driven choice modelling.

Transportation Research Part C: Emerging Technologies 126, 103050.

Xia, Y., Chen, H., Zimmermann, R., 2023. A random effect bayesian neural network (re-bnn) for travel mode choice

analysis across multiple regions. Travel Behaviour and Society 30, 118–134.

Yang, H., Bell, M.G., 1997. Traffic restraint, road pricing and network equilibrium. Transportation Research Part B:

Methodological 31, 303–314.

Yao, E., Morikawa, T., 2005. A study of on integrated intercity travel demand model. Transportation Research Part

A: Policy and Practice 39, 367–381.

You, S., Ding, D., Canini, K., Pfeifer, J., Gupta, M., 2017. Deep lattice networks and partial monotonic functions.

Advances in Neural Information Processing Systems 30.

Zhao, X., Yan, X., Yu, A., Van Hentenryck, P., 2020. Prediction and behavioral analysis of travel mode choice: A

comparison of machine learning and logit models. Travel Behaviour and Society 20, 22–35.

Zheng, Y., Wang, S., Zhao, J., 2021. Equality of opportunity in travel behavior prediction with deep neural networks

and discrete choice models. Transportation Research Part C: Emerging Technologies 132, 103410.

Zheng, Y., Xu, Z., Xiao, A., 2023. Deep learning in economics: a systematic and critical review. Artificial Intelligence

Review 56, 9497–9539.

31


	Introduction
	Literature review
	Methodology
	DNNs for choice analysis
	Behavioral regularity metrics
	Achieving behavioral regularity by constrained optimization
	Unconstrained likelihood maximization
	Constrained likelihood maximization

	Gradient regularization

	Setup of experiments
	Datasets
	Experimental design
	Models

	Results
	Enhancing model performance with gradient regularization
	Large sample scenario
	Small sample scenario
	Out-of-domain generalization

	Trade-off between predictive power and behavioral regularity
	Large sample scenario: substitution effects
	Small sample scenario: complementary effects
	Out-of-domain generalization

	Summary of empirical findings

	Conclusions
	Summary statistics of datasets
	Full datasets
	10K-Sorted sub-datasets

	Impacts of optimization algorithms
	Training and validation performance
	Large sample scenario
	Small sample scenario
	Out-of-domain generalization

	Individual demands as functions of regularization strength

