
Singular algebraic curves and infinite symplectic staircases

Dusa McDuff and Kyler Siegel∗

April 24, 2024

Abstract
We show that the infinite staircases which arise in the ellipsoid embedding

functions of rigid del Pezzo surfaces can be entirely explained in terms of rational
sesquicuspidal symplectic curves. Moreover, we show that these curves can all be
realized algebraically, giving various new families of algebraic curves with one cusp
singularity. Our main techniques are (i) a generalized Orevkov twist, and (ii) the
interplay between algebraic Q-Gorenstein smoothings and symplectic almost toric
fibrations. Along the way we develop various methods for constructing singular
algebraic (and hence symplectic) curves which may be of independent interest.
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1 Introduction

1.1 Brief summary

One starting point for this paper is the observation that the numerics of the following
two mathematical objects coincide:

(a) the family of unicuspidal rational plane curves constructed by Orevkov in [Ore02]
(see also [Kas87; Fer+06])

(b) the outer corners of the steps of the Fibonacci staircase for the symplectic ellipsoid
embedding function cCP2pxq of the complex projective plane (see e.g. [McSch12]).
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A priori these belong to rather distinct subfields: the former pertains to the classical
problem of characterizing algebraic plane curves of given degree and genus with prescribed
singularities (see e.g. [GLS18]), while the latter belongs to the burgeoning area of
quantitative symplectic embeddings (see e.g. [Sch18]). In [McS23] we showed that
symplectic unicuspidal curves give (stable) symplectic embedding obstructions, and in
particular that the family (a) recovers the Fibonacci staircase outer corners (b). In this
paper:

• We show that the infinite staircases for rigid del Pezzo surfaces found in [Cri+20]
can be entirely understood in terms of genus zero sesquicuspidal symplectic curves.
Here the obstructions at outer corners come from index zero curves, while the
embeddings at inner corners come from higher index curves (via a version of
symplectic inflation in §3). As a byproduct, all of these staircases stabilize.

• We show that all of these curves can be realized algebraically. In particular, this
gives new families of unicuspidal algebraic curves whose existence is suggested by
(and has applications to) quantitative symplectic geometry. As an application, we
give a new classification theorem for algebraic unicuspidal rational curves in the
first Hirzebruch surface.

The core of this paper develops new techniques for constructing algebraic (and hence
symplectic) unicuspidal curves. First, in §2 we give a generalization of Orevkov’s twist
from [Ore02] which holds in any rigid del Pezzo surface. We apply this to construct
algebraic curves for each of the relevant outer corners, and later in §7.1 to produce a
new sequence of algebraic plane curves responsible for the stabilized ghost stairs from
[CHM18].

Then, in §4 we give a perspective on Q-Gorenstein smoothings of singular toric
surfaces which closely parallels the theory of symplectic almost toric fibrations. Using
this we establish general constructions of algebraic unicuspidal rational curves in §5
and §6. These take as input tropical curves in a base polygon Q and reflect a rich
combinatorial theory of polygon mutations. This approach naturally produces algebraic
curves for both the inner and outer corners of the rigid del Pezzo infinite staircases, as
well as more general curve families.

The remainder of this extended introduction is structured as follows. In §1.2 we first
provide some context and motivation for the study of unicuspidal algebraic curves, as
well as symplectic ellipsoid embeddings and infinite staircases. Then in §1.3 we give
precise formulations of our main results.

1.2 Context and motivation

1.2a Singular plane curves

To set the stage, let us first recall a few basics about singular algebraic curves. In this paper
all algebraic curves will be defined over the complex numbers. By “plane curve” we mean a
complex algebraic curve in CP2, which concretely is of the form V pF q :“ tF px, y, zq “ 0u

for some homogeneous polynomial F px, y, zq. A point p0 “ rx0 : y0 : z0s P V pF q is
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singular if and only if we have BxF pp0q “ ByF pp0q “ BzF pp0q “ 0. The following local
models, written in affine coordinates with the singular point at the origin, will be relevant
for us:

• tx2 “ y2u is the ordinary double point (a.k.a. the A1 singularity)

• tx3 “ y2u is the ordinary cusp

• more generally, txp “ yqu for p, q P Zě1 coprime is the pp, qq cusp.

Note that topologically the pp, qq cusp is the cone over the pp, qq torus knot, and if p “ 1
or q “ 1 this is just a smooth point.
Example 1.2.1. The plane curve C “ tXp “ Y qZp´qu Ă CP2 has two singularities: a
pp, qq cusp at r0 : 0 : 1s and a pp, p´ qq cusp at r0 : 1 : 0s. Moreover, it is rational since it
admits a parametrization CP1 Ñ C, rs : ts ÞÑ rsqtp´q : sp : tps. ♢

A (reduced and irreducible) algebraic curve1 is called pp, qq-unicuspidal if it has a
single pp, qq cusp (with gcdpp, qq “ 1) and no other singularities. More generally, it is
called pp, qq-sesquicuspidal if in addition it has some ordinary double points.

To anchor the discussion, let us recall the following classification result. We denote
the Fibonacci numbers by Fib1 “ 1,Fib2 “ 1,Fib3 “ 2 and so on.

Theorem 1.2.2 ([Fer+06]). There exists a pp, qq-unicuspidal rational plane curve of
degree d if and only if pd, p, qq is one of the following:

(a) pp, qq “ pd, d´ 1q for d P Zě1

(b) pp, qq “ p2d´ 1, d{2q for d P 2Zě1

(c) pp, qq “ pFib2k,Fib
2
k´2q and d “ Fibk´2Fibk for k P 2Zě2 ` 3

(d) pp, qq “ pFibk`2,Fibk´2q for d “ Fibk for k P 2Zě2 ` 3

(e) pp, qq “ p22, 3q and d “ 8

(f) pp, qq “ p43, 6q for d “ 16.

Family (a) is the specialization of Example 1.2.1 with pp, qq “ pd, d´ 1q, while family
(b) is given by tpzy ´ x2qd{2 “ xyd´1u Ă CP2. See Remark 2.1.3 below for constructions
of (e) and (f). The curves in family (c) are more complicated but are described by
explicit equations in [Fer+06, §5], following [Kas87]. Family (d) corresponds to the
aforementioned Orevkov curves [Ore02].

To make further sense of Theorem 1.2.2, it will be helpful to introduce the following:

Definition 1.2.3. The (real) index of a pp, qq-sesquicuspidal rational curve C in a
complex surface or symplectic four-manifold manifold M is

indRpCq :“ 2c1pAq ´ 2p´ 2q, (1.2.1)

where A P H2pMq denotes the homology class of C and c1pAq is its first Chern number.
1The curves considered in this paper will be rational, that is parametrizable by CP1 (and in particular

irreducible), unless explicit mention is made to the contrary.
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As explained in detail in [McS23], the index corresponds to the expected (real) dimension
of the space of rational curves in homology class A with a pp, qq cusp and satisfying a
maximal order tangency constraint at the cusp. For instance, for an ordinary p3, 2q cusp
there is a well-defined complex tangent line at the singular point, and the constraint
corresponds to specifying both the location of the singularity and its tangent line at
that point. For a general pp, qq cusp the constraint also involves higher jet constraints.
Equivalently, the index is the (real) Fredholm index of the normal crossing resolution
(c.f. [McS23, §4.1] or §3.1 below).

In particular, for a pp, qq-unicuspidal rational plane curve C of degree d we have
indRpCq “ 6d´ 2p´ 2q, and the indices for the curves in Theorem 1.2.2 are as follows:

paq pbq pcq pdq pfq pgq

index 2d` 2 d` 2 2 0 ´2 ´2
. (1.2.2)

For index zero curves such as those in family (d) one expects to get a finite count, and
indeed these are encoded by the Gromov–Witten-type invariants NCP2,drLs<Cpp,qqpt>
defined in [McS23, §3]. The curves in family (c) cannot quite be counted (they occur in
complex 1-parameter families), but they naturally degenerate to those in family (d) (c.f.
[Fer+06, §5], based on [Kas87; MiSu81]). Meanwhile, the sporadic cases (e) and (f) have
negative index, so they should disappear for a generic almost complex structure. In this
article, families (c) and (d) (and their generalizations) will be the most significant, as
they precisely correspond to the inner and outer corners respectively of the Fibonacci
staircase. Incidentally, in §6.5 we exploit this connection with symplectic geometry to
give an alternative proof that the list in (d) above is complete, and we extend to the first
Hirzebruch surface (for which the corresponding list is much more complicated).

1.2b Symplectic embeddings and infinite staircases

Let us now briefly recall some notions surrounding symplectic ellipsoid embeddings
and infinite staircases. Given a four-dimensional symplectic manifold X, its ellipsoid
embedding function is defined by

cXpxq :“ inftλ P Rą0 | Ep 1
λ ,

x
λq

s
ãÑ Xu. (1.2.3)

Here the infimum is over all λ P Rą0 for which there exists a symplectic embedding of
the ellipsoid

Ep 1
λ ,

x
λq :“ tpz1, z2q | π|z1|2λ` π|z2|2λ{x ď 1u Ă C2

(endowed with the restriction of the standard symplectic form) into X. In [McSch12],
the ellipsoid embedding function for the four-ball B4p1q “ Ep1, 1q was explicitly worked
out. In particular, the portion for 1 ď x ď τ4 :“ 3

?
5`7
2 is a piecewise linear function

whose graph is a zigzag, that alternately slopes up and is horizontal, with infinitely
many nonsmooth points that accumulate at τ4 and have coordinates given by ratios of
odd index Fibonacci numbers – see [McSch12, Fig 1.1]. Subsequently, similar infinite
staircases were discovered for other target spaces such as B2p1qˆB2p1q [FM15], Ep1, 3{2q
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[CK20], and more (see e.g. [Ush19]). More recently, the authors in [Cri+20] gave a unified
description of infinite staircases for the six rigid del Pezzo surfaces with their monotone
symplectic forms, namely CP2p3q#ˆkCP

2
p1q for k “ 0, 1, 2, 3, 4 and CP1p2q ˆ CP1p2q.2

Theorem 1.2.4 ([Cri+20]). For each rigid del Pezzo surface M , the ellipsoid embedding
function cM pxq has an infinite staircase with explicitly described accumulation point and
step coordinates.

By elementary scaling and monotonicity considerations, establishing these infinite stair-
cases boils down to (a) obstructing symplectic embeddings at the outer corners and (b)
constructing symplectic embeddings at the inner corners. Embeddings corresponding
to the inner corners were constructed in [Cri+20; CV22] using almost toric fibrations
and their mutations (see e.g. [Sym; Eva23] or §4.2 below), and hence are also related
to generalized Markov equations and exotic Lagrangian tori as in [Via17]. Meanwhile,
obstructions corresponding to outer corners were established in [Cri+20] using embedded
contact homology (ECH) capacities (see e.g. [Hut14]). In this paper our approach to the
inner corners and one of our approaches to the outer corners are also based on almost
toric fibrations, but used in a quite distinctive way through the lens of sesquicuspidal
curves.
Remark 1.2.5. By definition a del Pezzo surface is a smooth complex projective surface
with ample anticanonical bundle. Up to diffeomorphism these are CP2#ˆkCP

2 for
k “ 0, . . . , 8 and CP1 ˆ CP1. Up to biholomorphism there is a unique del Pezzo surface
having smooth type CP2#ˆkCP

2 for k “ 0, . . . , 4 or CP1 ˆ CP1 (these are the rigid ones),
while the remaining cases appear in nontrivial moduli spaces.

Each del Pezzo surface admits a unique monotone symplectic form up to symplec-
tomorphism and scaling (see e.g. [Sal13]), and unless explicit mention is made to the
contrary we work with the monotone symplectic structure normalized to have monotonic-
ity constant 1, i.e. c1pMq “ rωM s P H2pM ;Rq (e.g. CP2p3q). One should keep in mind
that the moduli spaces of complex and symplectic structures on these smooth manifolds
are quite distinct,3 but it should be clear from the context whether we view M in the
complex, symplectic, or smooth category. ♢

Remark 1.2.6. The treatment in [Cri+20] emphasizes the 12 convex toric domains
X1, . . . , X12 pictured in Figure 7 below, which includes B4p1q, B2p1q ˆ B2p1q, and
Ep1, 3{2q as special cases. It is shown in [Cri+20] that the ellipsoid embedding function
for each Xi is equivalent to the ellipsoid embedding function for one of the monotone
rigid del Pezzo surfaces, namely the one with the same negative weight expansion (for
instance we have cB4paqpxq “ cCP2paqpxq). Thus for simplicity of exposition we will mostly
restrict our discussion to the closed target spaces (except when discussing the stable
folding curve in §7.2). ♢

2Here CP2
paq is endowed with the Fubini–Study form normalized so that a line has area a. The

qualifier “rigid” is a slight misnomer since it refers to the complex rather than symplectic structure – see
Remark 1.2.5 below.

3Roughly speaking, in the complex category the locations of blowup points matter, while in the
symplectic category the sizes of blowups matters.
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1.3 Main results

1.3a Singular curves and symplectic embeddings

We first explain how singular symplectic curves both obstruct and construct symplectic
ellipsoid embeddings. For p, q P Zě1 coprime, a pp, qq-sesquicuspidal symplectic
curve in a symplectic four-manifold M4 is a subset C Ă M which has one point x0 P C
locally modeled on a pp, qq cusp point of an algebraic curve in C2, and such that C is
otherwise an immersed symplectic submanifold with only positive double points (see
[McS23, Def. 3.5.1]).

The following explicit link between sesquicuspidal curves and symplectic embedding
obstructions was established in [McS23]:

Theorem 1.3.1 (Theorems A(b), D, and E in [McS23]). Let pM4, ωM q be a four-
dimensional closed symplectic manifold, and suppose there exists an index zero pp, qq-
sesquicuspidal rational symplectic curve in M in homology class A P H2pMq. Then any
symplectic embedding Epcq, cpq

s
ãÑ M must satisfy c ď

rωM s¨A
pq . Moreover, the same is

true for any symplectic embedding Epcq, cpq ˆ CN s
ãÑ M ˆ CN for N P Zě1, provided that

M ˆ CN is semipositive.4

In other words, the existence of C implies cM pp{qq ě
p

rωM s¨rCs
.5 Since any unicuspidal

algebraic curve in a complex projective surface is in particular a unicupisdal symplectic
curve, applying Theorem 1.3.1 to family (d) in Theorem 1.2.2 (with N “ 0) imme-
diately gives the obstructive part (i.e. outer corners) of the Fibonacci staircase in
cCP2pxq. Moreover, the case N ě 1 shows that these obstructions stabilize, i.e. we have
cCP2ˆCN pxq “ cCP2pxq for all 1 ď x ď τ4 (this is the main result of [CH18], originally
proved using embedded contact homology), where we put

cXˆCN paq :“ inftλ P Rą0 | Ep 1
λ ,

a
λq ˆ CN s

ãÑ X ˆ CNu (1.3.1)

for any symplectic four-manifold X4 and N P Zě1.

As for constructing symplectic embeddings, the following theorem is proved in §3 below
via the method of symplectic inflation. Recall that any local branch of a holomorphic curve
near a singularity is homeomorphic to the cone over an iterated torus knot (see [EN85]).
The cabling parameters can be read off from the Puiseux pairs pn1, d1q, . . . , png, dgq, which

can in turn be read off from a Puiseux series parametrization xptq “ tm, yptq “
8
ř

k“m

akt
k

4Here semipositivity is a technical condition which allows one to rule out sphere bubbling using only
classical perturbations. Note that M ˆ CN is automatically semipositive if N “ 1 or if M is monotone.
Using e.g. [McS23, Cor. 2.7.2], we can also quantify the above stable symplectic embedding obstructions
by replacing the domain Ep1, aq ˆ CN with Ep1, a, b1, . . . , bN q for suitable finite b1, . . . , bN P Rą0. A
similar remark applies to all other stable obstructions which follow, although for simplicity we will
formulate results without this quantification.

5The basic reason for the existence of this obstruction is that one can construct an SFT-type curve
in the complement of (a slight perturbation of) the ellipsoid that must have positive symplectic area.
Equivalently, the exceptional divisor given by the normal crossing resolution of the singular curve must
have positive area.
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– see §3.3 for more details. In particular, a pp, qq cusp corresponds to a single Puiseux
pair pn1, d1q “ pp, qq, and our other main examples will be cusps with two Puiseux pairs
pn1, d1q “ pp, qq, pn2, d2q “ pkp` 1, kq for some k P Zě1.

Theorem A. Let pM4, ωM q be a four-dimensional closed symplectic manifold.

(i) Let C be a pp, qq-sesquicuspidal symplectic curve in M whose homology class satisfies
rCs “ cPDrωM s P H2pM ;Rq for some c P Rą0 and rCs ¨ rCs ě pq. Then there
exists a symplectic embedding Ep

q
c1 ,

p
c1 q

s
ãÑ M for any c1 ą c. In particular, if

rCs ¨ rCs “ pq then this is a full filling, i.e the domain and target have arbitrarily
close volume.6

(ii) More generally, let C be a sesquicuspidal symplectic curve in M with Puiseux
pairs pp, qq, pp2, q2q, . . . , ppg, qgq, whose homology class satisfies rCs “ cPDrωM s P

H2pM ;Rq for some c P Rą0 and rCs ¨ rCs ě k2pq with k “ q2 ¨ ¨ ¨ qg. Then there
exists a symplectic embedding Ep

kq
c1 ,

kp
c1 q

s
ãÑ M for any c1 ą c.

In particular the existence of C in (i) implies cM pp{qq ď c
q (assuming p ą q). Note that

the last sentence of (i) follows since we have

volpM,ωM q “ 1
2

ż

M
ωM ^ ωM “ 1

2PDrωM s ¨ PDrωM s “ 1
2c2

rCs ¨ rCs.

The conditions on rCs ¨ rCs imply that the index of the (partial) resolution of C along
which we inflate is positive. Indeed, the expression rCs ¨ rCs ´ pq in (i) corresponds to
the self-intersection number of the normal crossing resolution of C, while, when g “ 2,
the expression rCs ¨ rCs ´ k2pq in (ii) corresponds to the self-intersection number of the
minimal resolution of C (see §3).

Applying Theorem A to family (c) from Theorem 1.2.2 recovers the constructive part
(i.e. inner corners) for cCP2pxq. We will see below that a similar picture holds for all of
the monotone rigid del Pezzo surfaces.

1.3b Outer and inner corner curves

We first construct singular algebraic curves responsible for the obstructions at outer
corners, generalizing family (d) from Theorem 1.2.2.

Theorem B. In each rigid del Pezzo surface M there is a countable family of rational
index zero unicuspidal algebraic7 curves which correspond precisely to the outer corners
of the steps of the infinite staircase in cM pxq. More specifically, if px, yq is an outer
corner point on the graph of cM , then the corresponding pp, qq-unicuspidal curve C in M
satisfies p{q “ x and p

rωM s¨rCs
“ y.

6Note that if M is a symplectic blowup of CP2 (and more generally) this actually implies the existence
of a symplectic embedding of the open ellipsoid E̊p

q
c
, p
c

q
s

ãÑ M that fills the entire volume of M (c.f.
[Cri19, Proof of Prop. 1.5]).

7Note that by Chow’s theorem we may speak interchangeably about “algebraic” and “holomorphic”
curves, although in the body of the paper we work mostly in the holomorphic category.
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Corollary C. Each of the rigid del Pezzo infinite staircases stabilizes, i.e. for each
monotone rigid del Pezzo surface M we have cMˆCN pxq “ cM pxq for all 1 ď x ď aaccpMq,
where aaccpMq denotes the accumulation point of the infinite staircase in cM .

Our first proof of Theorem B in §2 is based on a generalization of Orevkov’s birational
transformation CP2 99K CP2 to a birational transformation ΦM :M 99KM for each rigid
del Pezzo surface M . In brief, we start with two or three “seed curves” in M , and then
we iteratively apply ΦM to produce the rest of the family. The key point is that for seed
curves which are “well-placed” (see Definition 2.2.4), successive applications of ΦM lead
to curves with increasingly singular cusps.
Remark 1.3.2. The number of “strands” of the infinite staircase is determined by the
number of initial seed curves, which is three for CP2p3q#CP

2
p1q and CP2p3q#ˆ2CP

2
p1q

and two in the remaining cases (this corresponds to J in Table 1). This number can also
be seen in terms of the almost toric structures supported by the symplectic manifold M
(i.e. triangles or quadrilaterals, see Figure 4). ♢

We also give a different construction of these outer corner curves in §6 based on
almost toric fibrations and Q-Gorenstein deformations.

Theorem D. Let π : A Ñ Q be an almost toric fibration, where Q Ă R2 is a polygon8 and
A is a (not necessarily monotone) closed symplectic four-manifold which is diffeomorphic
to a rigid del Pezzo surface M . Suppose that Q contains consecutive edges pointing in
the directions p´mr2,mra´ 1q, p0,´1q, p1, 0q for some m, r, a P Zě1 with gcdpr, aq “ 1.9

Then M contains an index zero pr, aq-unicuspidal rational algebraic curve.

The rough idea is first to construct unicuspidal symplectic curves in A which are “visible”
in Q (and lie over a line segment connecting a vertex to a base-node as in Figure 5 right),
and then to compare A with a Q-Gorenstein smoothing of the corresponding singular
toric surface VQ in order to upgrade these to algebraic curves. Theorem D is a corollary
of Theorem 6.1.7, which holds beyond rigid del Pezzo surfaces and which we state using
the purely combinatorial language introduced in §4. A useful consequence of Theorem D
is that we can directly observe “visible” obstructions for ellipsoid embeddings into A
in terms of triangles in the polygon Q (see the shading in Figure 5 right and see §6.1
for more details). Another noteworthy feature of Theorem D is that A need not be
monotone (or equivalently the polygon Q not need be dual Fano in the sense of §4.1b).
This potentially allows us to construct a much larger class of unicuspidal curves than we
could just by looking at monotone ATFs, as we illustrate with Theorem F below.
Remark 1.3.3. One reason for giving two different proofs of Theorem B is that the
underlying techniques naturally extend in different directions. For instance, the general-
ized Orevkov twist is used in §7.1 to construct sesquicuspidal algebraic curves in CP2

(the “ghost stairs” curves) which we do not currently know how to see using almost toric
fibrations. ♢

8All polygons in this paper are assumed to be convex.
9Equivalently, Q has a vertex v with edge directions p1, 0q, p0, 1q and a vertex on the edge in direction

p0, 1q with eigenray in the direction pr,´aq – see Figure 5 or §4 for more details.

9



We now discuss curves responsible for constructing symplectic embeddings, gener-
alizing family (c) in Theorem 1.2.2. We consider the two-stranded and three-stranded
cases separately, as they behave somewhat differently, with the latter requiring more
complicated cusp singularities.

Theorem E.

(a) For M each of the rigid del Pezzo surfaces CP2,CP1 ˆ CP1, and CP2#ˆjCP
2
,

j “ 3, 4, there is a countable family of index two unicuspidal rational algebraic
curves in M which correspond precisely to the inner corners of the infinite staircase
in cM pxq. More specifically, if px, yq is an inner corner point on the graph of cM ,
then the corresponding pp, qq-unicuspidal curve C in M satisfies rCs ¨ rCs “ pq and
rCs “ cPDprωM sq for c “

pq
p`q`1 , with p{q “ x and c{q “ y.

(b) For M each of the rigid del Pezzo surfaces CP2#CP
2 and CP2#ˆ2CP

2, there is a
countable family of weakly10 sesquicuspidal rational algebraic curves in M which
correspond precisely to the inner corners of the infinite staircase in cM pxq. More
specifically, if px “ p{q, yq is an inner corner point on the graph of cM , then the
corresponding curve C in M satisfies rCs “ kqyPDprωM sq and rCs ¨ rCs ě k2pq
for some k P Zě1 and has a cusp with one Puiseux pair pp, qq if k “ 1 and two
Puiseux pairs pp, qq, pkp` 1, kq if k P Zě2.

Our proof of Theorem E is based on an analogue of Theorem D, namely Theo-
rem 5.3.1, which says roughly that every “visible ellipsoid embedding” (in the sense of
§5.1b) corresponds to an algebraic (weakly) sesquicuspidal rational curve. The proof of
Theorem 5.3.1 is similarly based on almost toric fibrations and Q-Gorenstein smoothings,
except that the relevant curves no longer correspond to straight line segments in the
polygon Q but rather to tropical curves which intersect every edge.
Remark 1.3.4. In the above we have observed that we can recover embeddings cor-
responding to inner corners of infinite staircases by inflating along suitable singular
symplectic curves, and moreover these curves can be explicitly constructed with the
aid of almost toric fibrations. However, it should be emphasized that the very same
almost toric fibrations can be used much more directly to construct symplectic ellipsoid
embeddings (c.f. Proposition 5.1.2), which is the approach taken in [Cri+20; CV22]. The
main novelty of Theorem E is the connection with singular algebraic (and in particular
symplectic) curves. ♢

1.3c Unicuspidal curves in the first Hirzebruch surface

Let F1 “ CP2#CP
2 denote the first Hirzebruch surface, and let ℓ, e P H2pF1q denote the

line and exceptional classes. We showed in [McS23, Thm. G] that there exists an index
10The word “weakly” indicates that these curves might have other singularities in addition to the

distinguished cusp and some ordinary double points. In the symplectic category we can always perturb
such a curve to a genuine sesquicuspidal one, but this is not guaranteed in the algebraic category. It
seems plausible that this qualifier here could be removed by a more careful analysis of the curves in the
proof of Proposition 5.2.1.
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zero pp, qq-unicuspidal rational symplectic curve in F1 in homology class A “ dℓ´me if
and only if A P H2pF1q is a pp, qq-perfect exceptional class (see [McS23, Def. 4.4.2]).11

The set

PerfpF1q :“ tpp, q, d,mq | A “ dℓ´me is a pp, qq-perfect exceptional classu

is quite complicated but was recently worked out explicitly in [MM24; MMW22] in
the course of classifying infinite staircases for all (not necessarily monotone) symplectic
forms on F1 (see also §6.5 below for a detailed overview). In §6.5 we associate a polygon
as in Theorem D to each pp, q, d,mq P PerfpF1q, and thereby construct an algebraic
pp, qq-unicuspidal curve:

Theorem F. For any coprime positive integers p ą q and homology class A P H2pF1q,
the following are equivalent:

• there exists an index zero pp, qq-unicuspidal rational symplectic curve C in F1 with
rCs “ A

• there exists an index zero pp, qq-unicuspidal rational algebraic curve C in F1 with
rCs “ A.

Remark 1.3.5. It follows by Theorem F and the results in [MM24; MMW22] that every
rational unicuspidal algebraic curve with one Puiseux pair in F1 corresponds to the outer
corner of a staircase in cHb

pxq for some b P r0, 1q, where Hb :“ CP2p1q#CP
2
pbq denotes

F1 with the symplectic form such that a line has area 1 and the exceptional divisors
has area b (this is unique up to symplectomorphism). Note that Hb is monotone only if
b “ 1{3. ♢

We prove Theorem F by showing that such pp, qq is realized by an almost toric
fibration which satisfies the hypotheses of Theorem D. The analogous statement holds
for CP2 (see Lemma 6.5.1) and is expected for CP1 ˆ CP1 (c.f. [Ush19; Far+22] and
Remark 6.5.4 below). Thus it is natural to ask whether something analogous holds also
for the remaining rigid del Pezzo surfaces:

Conjecture G. Let M be a rigid del Pezzo surface. The following are equivalent:

(a) There exists an index zero pp, qq-unicuspidal rational symplectic curve in M

(b) There exists an almost toric fibration π : A Ñ Q as in Theorem D, where A
is diffeomorphic to M and Q has consecutive edges pointing in the directions
p´mq2,mpq ´ 1q, p0,´1q, p1, 0q for some m P Zě1. In particular, there exists an
index zero pp, qq-unicuspidal rational algebraic curve in M .

Note that (a) is equivalent to the existence of a pp, qq-perfect exceptional homology class
A P H2pMq (again by [McS23, Thm. G]), although the set PerfpMq remains to be worked
out (and presumably becomes more complicated with more blowups).

11Note that this does not depend on the choice of symplectic form on F1, by e.g. Theorem E and
Theorem 3.3.2 in [McS23], along with the fact that all symplectic forms on F1 are deformation equivalent.
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Remark 1.3.6. We do not attempt to construct inner corner curves for staircases in
nonmonotone manifolds such as Hb for b ‰ 1{3. One main issue is that in all known
cases such staircases exist only when the symplectic form has no rational multiple, so
that one cannot construct optimal ellipsoid embeddings by simply inflating along a curve
in a class Poincaré dual to a multiple of the symplectic form. ♢

1.3d Sesquicuspidal curves and obstructions beyond staircases

Another natural question in the spirit of Theorem 1.2.2 is to try to classify index
zero pp, qq-sesquicuspidal rational curves in CP2. Note that for such a curve we have
d “ pp` qq{3, and by the adjunction formula the number of ordinary double points must
be 1

2pd´ 1qpd´ 2q ´ 1
2pp´ 1qpq ´ 1q. This question is known to be closely related to the

study of the stabilized ellipsoid embedding function cCP2ˆCN pxq beyond the Fibonacci
staircase, i.e. for x ą τ4 (see e.g. [McS23, §1] and the references therein). In §7 we
apply the Orevkov twist ΦCP2 to more interesting seed curves to produce a new (to our
knowledge) family of rational algebraic plane curves:

Theorem H. There is an infinite sequence of index zero rational algebraic curves
C1, C2, C3, . . . in CP2 which correspond precisely to the “ghost stairs” obstructions from
[McSch12]. More specifically, for k P Zě1, Ck has degree dk and a ppk, qkq cusp, where
ppk, qkq “ pFib4k`2,Fib4k´2q and dk “ 1

3ppk ` qkq “ Fib4k.

Combined with Theorem 1.3.1, this recovers the main result from [CHM18], namely there
is an infinite sequence x1 ą x2 ą x3 ą ¨ ¨ ¨ of positive real numbers with lim

iÑ8
xi “ τ4

and such that cB4p1qˆCN pxiq “
3xi
xi`1 for all i,N P Zě1. We recall the significance of

the “folding function” 3x
x`1 and discuss its (partly conjectural) analogue for other target

spaces in §7.2. We also note that the same techniques allow for a vast generalization of
Theorem H conditional on the existence of “higher degree seed curves”, which we take up
in the forthcoming work [McS] (see Remark 7.1.3).

Acknowledgements

We would like to thank Jonny Evans, Bob Friedman and Rob Lazarsfeld for helpful
discussions.

2 Unicuspidal curves and the generalized Orevkov twist

Our goal in this section is to introduce the generalized Orevkov twist and use it to prove
Theorem B. We first formalize the twist CP2 in §2.1, with a view towards allowing more
general seed curves (e.g. those considered in §7.2) and also extending the ambient space
to rigid del Pezzo surfaces, which we take up in §2.2. After a brief interlude in §2.3 to
recall some staircase numerics from [Cri+20], we complete the proof by constructing the
relevant seed curves in §2.3.
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2.1 The Orevkov twist in CP2

In this subsection we recall the definition and basic properties of the birational transfor-
mation ΦCP2 : CP2 99K CP2 from [Ore02], which for brevity we refer to as the “Orevkov
twist”. Let N Ă CP2 be a fixed nodal cubic, which for concreteness we can take to be
ty2z “ x2px ` zqu (any other nodal cubic is projectively equivalent to this one). Let
p P N denote the double point, and let B`,B´ denote the two local branches near p.

Construction 2.1.1. The birational transformation ΦCP2 : CP2 99K CP2 is defined as
follows. Let Bl1CP2 denote the blowup12 of CP2 at the point p, with resulting exceptional
divisor F1

1. Let N 1 Ă Bl1CP2 denote the proper transform of N , and let B1
` Ă N 1 denote

the proper transform of the local branch B`. Put p1 :“ B1
` X F1

1 Ă N 1.
Next, let Bl2CP2 denote the blowup of Bl1CP2 at the point p1, with resulting exceptional

divisor F2
2, and with F2

1 Ă Bl2CP2 the proper transform of F1
1. Let N 2 Ă Bl2CP2 denote

the proper transform of N 1, and let B2
` Ă N 2 denote the proper transform of the local

branch B1
`. Put p2 :“ B2

` X F2
2 Ă N 2.

Continuing in this manner, after a total of 7 blowups we arrive at Bl7CP2, which
contains a chain of rational curves N 7,F7

1, . . . ,F
7
7 with intersection graph as in Figure 1.

In terms of the natural identification H2pBl7CP2q – H2pCP2q ‘ Zxe1, . . . , e7y, we have

• rN 7s “ 3ℓ´ 2e1 ´ e2 ´ ¨ ¨ ¨ ´ e7

• rF7
1s “ e1 ´ e2

• rF7
2s “ e2 ´ e3

• rF7
3s “ e3 ´ e4

• rF7
4s “ e4 ´ e5

• rF7
5s “ e5 ´ e6

• rF7
6s “ e6 ´ e7

• rF7
7s “ e7,

where ℓ P H2pCP2q denotes the line class.

Figure 1: The chain of rational curves (decorated by their self-intersection numbers)
which arise in the half part of the Orevkov twist.

Since rN 7s ¨ rN 7s “ ´1, we can blow down Bl7CP2 along N 7 to obtain Bl7;1CP2. Let
F7;1
1 , . . . ,F7;1

7 Ă Bl7;1CP2 denote the proper transforms of F7
1, . . . ,F

7
7 respectively. Then

since rF7;1
1 s ¨ rF7;1

1 s “ ´1, we can blow down Bl7;1CP2 along F7;1
1 to obtain Bl7;2CP2.

Let F7;2
2 , . . . ,F7;2

7 Ă Bl7;2CP2 denote the proper transforms of F7;1
2 , . . . ,F7;1

7 respectively.
Continuing in this manner, after a total of 7 blowdowns (along N 7,F7;1

1 , . . . , F 7;6
6 ), we

arrive at Bl7;7CP2, which contains the nodal rational curve F7;7
7 with rF7;7

7 s ¨ rF7;7
7 s “ 9.

12All blowups in this section are at points and occur in the complex category. In later sections we also
consider symplectic blowups, which depend on a symplectic embedding of a ball.
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Finally, by composing this sequence of 7 blowups and 7 blowdowns with a biholomor-
phism Bl7;7CP2 – CP2 sending F7;7

7 to N , we arrive at the birational transformation
ΦCP2 : CP2 99K CP2.

Given a curve C Ă CP2, we denote its proper transform under the above birational
transformation by ΦCP2pCq Ă CP2. In the following, we say that a curve C satisfies the
constraint <T pmq

B´
p> if C passes through p and has a branch with contact order at least

m (i.e. tangency order at least m ´ 1) to B´. Note that a curve satisfying <T pmq

B´
p>

must have intersection multiplicity at least m ` 1 with N , since it also intersects the
branch B` at p.

Theorem 2.1.2 ([Ore02]). Let L Ă CP2 denote the unique line which satisfies <T p2q

B´
p>,

and put C2k`1 :“ Φk
CP2pLq for k P Zě0. Similarly, let Q Ă CP2 denote the unique

(irreducible) conic13 which satisfies <T p5q

B´
p>, and put C2k`2 :“ Φk

CP2pQq for k P Zě0.
Then for k P Zě1, Ck is a ppk, qkq-unicuspidal rational plane curve of degree dk, where
ppk, qkq “ pFib2k`1,Fib2k´3q and dk “ 1

3ppk ` qkq “ Fib2k´1.

Here Fibk is the kth Fibonacci number, i.e. Fib1 “ Fib2 “ 1 and Fibk`2 “ Fibk `Fibk`1

(it will also be convenient to put Fib´1 :“ 1). Recall that the x-coordinate of the kth
outer corner point of the Fibonacci staircase in [McSch12] is precisely the odd index
Fibonacci ratio Fib2k`1{Fib2k´3.

Theorem 2.1.2 follows from the identity Fib2k`5 “ 7Fib2k`1 ´Fib2k´3, together with
the fact that for a curve C Ă CP2 with a well-placed pp, qq cusp (see Definition 2.2.4
below), its twist ΦCP2pCq has a well-placed p7p´ q, pq cusp. Indeed, let us analyze the
construction of ΦCP2pCq in more detail as follows (see Figure 2). We assume p ą 2q,
and let C Ă CP2 be a curve which has a pp, qq cusp maximally tangent to the branch
B´ of the nodal cubic N at its double point p. The proper transform C1 Ă Bl1CP2 of C
then has a pp´ q, qq cusp maximally tangent to the branch B1

´ of N 1. After 6 further
blowups (which do not affect C1 since it is disjoint from the blowup points), we arrive at
the curve C7 Ă Bl7CP2, which has a pp´ q, qq cusp maximally tangent to the branch B7

´

of N 7. We then blow down to obtain the curve C7;1 Ă Bl7;1CP2, which has a pp, p´ qq

cusp maximally tangent to F7;1
1 . In the next blowdown we obtain C7;2 Ă Bl7;2CP2, which

has a p2p´ q, pq cusp maximally tangent to F7;2
7 . Finally, after 5 further blowdowns we

arrive at ΦCP2pCq “ C7;7 Ă Bl7;7CP2, which has a p7p´ q, pq cusp maximally tangent to
a branch of the nodal curve F7;7

7 at its double point.
Remark 2.1.3. Suppose that C is a degree d plane curve which intersects the nodal
cubic N at some point (necessarily distinct from the double point p) with contact order
3d. Then one can check that the twist ΦCP2pCq has a p21d` 1, 3dq cusp. In particular,
in the case d “ 1, C is a flex line, and ΦCP2pCq has degree 8 by the adjunction formula,
so ΦCP2pLq is a sporadic unicuspidal curve as in Theorem 1.2.2(e). Similarly, in the case

13As an alternative to the conic Q we could take the unique line in CP2 which satisfies <T p2q

B`
p>, as

this transforms into Q under one application of the Orevkov twist ΦCP2 (this is actually the approach
taken in [Ore02]).
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Figure 2: The Orevkov twist in CP2. Notice that C7;1 is tangent to F 7;1
1 because

its blowup C7 intersects F 7
1 . However, because the curve C7;2 intersects F 7;1

1 at its
intersection with F 7;1

7 rather than F 7;1
2 , when F 7;1

1 is blown down C7;2 is tangent to F 7;2
7

rather than to F 7;2
2 , and its blowdowns remain tangent to F 7;k

7 for k ą 2.

d “ 2, ΦCP2pCq has a p43, 6q cusp and degree 16, and hence represents Theorem 1.2.2(f).
♢

2.2 The generalized Orevkov twist

We now generalize the Orevkov twist to any rigid complex del Pezzo surface M , i.e.
either BlkCP2 for k “ 0, 1, 2, 3, 4 or CP1 ˆ CP1. Note that PDpc1pMqq P H2pMq is given
by 3ℓ´ e1 ´ ¨ ¨ ¨ ´ ek if M “ BlkCP2, or by 2ℓ1 ` 2ℓ2 in the case M “ CP1 ˆ CP1 (here
we put ℓ1 :“ rCP1 ˆ tptus and ℓ2 :“ rtptu ˆ CP1s).

In the following we consider N Ă M be a rational nodal curve which is anticanonical
(i.e. rN s “ PDpc1pMqq) and has a unique double point (note that this is consistent with
the adjunction formula). Concretely, in the case M “ BlkCP2 for k “ 0, . . . , 4 we can
assume up to biholomorphism that M is given by blowing up CP2 at k points n1, . . . , nk
on the standard nodal cubic N0 :“ ty2z “ x2px ` zqu, and we could take N to be the
proper transform of N0 in M (note that any tuple of 4 points in CP2, no 3 of which are
collinear, is projectively equivalent to any other such tuple). In the case M “ CP1 ˆ CP1,
we could take N to be

`

CP1 ˆ tq1, q2u
˘

Y
`

tp1, p2u ˆ CP1
˘

for q1, q2, p1, p2 P CP1 with
q1 ‰ q2 and p1 ‰ p2, after smoothing the nodes at pp1, q2q, pp2, q1q, pp2, q2q.

The degree of the del Pezzo surface M is by definition rN s ¨ rN s, and it will also be
convenient to put K :“ rN s ¨ rN s ´ 2 (see Table 1).

Construction 2.2.1. For M a rigid del Pezzo surface as above, the birational transfor-
mation ΦM :M 99KM is defined as follows. Let N Ă M be a rational nodal anticanonical
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curve, with local branches B`,B´ near the unique double point p. Let Bl1M denote the
blowup of M at the point p, with resulting exceptional divisor F1

1. Let N 1 Ă Bl1M denote
the proper transform of N , and let B1

` Ă N 1 denote the proper transform of the local
branch B`. Put p1 :“ B1

` X F1
1 Ă N 1.

Next, let Bl2M denote the blowup of Bl1M at the point p1, with resulting exceptional
divisor F2

2, and with F2
1 Ă Bl2M the proper transform of F1

1. Let N 2 Ă Bl2M denote
the proper transform of N 1, and let B2

` Ă N 2 denote the proper transform of the local
branch B1

`. Put p2 :“ B2
` X F2

2 Ă N 2.
Continuing in this manner, after a total of K blowups we arrive at BlKM , which

contains a chain of rational curves NK ,FK
1 , . . . ,F

K
K . Since rNKs ¨ rNKs “ ´1, we can

blow down BlKM along NK to obtain BlK;1M . Let FK;1
1 , . . . ,FK;1

K Ă BlK;1M denote the
proper transforms of FK

1 , . . . ,F
K
K respectively. Then since rFK;1

1 s ¨ rFK;1
1 s “ ´1, we can

blow down BlK;1M along FK;1
1 to obtain BlK;2M . Let FK;2

2 , . . . ,FK;2
K Ă BlK;2M denote

the proper transforms of FK;1
2 , . . . ,FK;1

K respectively. Continuing in this manner, after
a total of K blowdowns (along NK ,FK;1

1 , . . . , FK;K´1
K´1 ), we arrive at BlK;KM , which

contains the rational nodal curve FK;K
K with rFK;K

K s ¨ rFK;K
K s “ K ` 2.

Finally, by composing this sequence of K blowups and K blowdowns with a biholo-
morphism Ψ : BlK;KM – M (which exists by Lemma 2.2.3 below), we arrive at the
birational transformation ΦM :“ M 99K M , which contains the rational nodal curve
N 1 :“ ΨpFK;K

K q.

We will sometimes denote generalized Orevkov twist ΦM by ΦM ;N when we wish to
emphasize the role of the anticanonical curve N .

We begin with some lemmas to justify Construction 2.2.1.

Lemma 2.2.2. In the setting of Construction 2.2.1, N 1 is also an anticanonical curve
in M , i.e. we have rN 1s “ PDpc1pMqq P H2pMq.

Proof. It suffices to check that FK;K
K is an anticanonical curve in BlK;KM . To see this,

observe that if C is a (reduced but not necessarily irreducible) anticanonical curve in a
smooth complex surface X, and if X 1 denotes the blowup of X at an ordinary double
point of C, then the total transform of C in X 1 is again anticanonical. Conversely, if C
is an anticanonical curve in a smooth complex surface Y 1 with an exceptional component
C0 Ă C such that C0 intersects C ∖ C0 transversely in two points, and if Y denotes the
blowdown of Y 1 along C0, then the image of C under the blowdown map Y 1 Ñ Y is
again anticanonical. Since FK;K

K Ă BlK;KM is obtained from the anticanonical curve
N Ă M by a sequence of blowups and blowdowns of these forms, it follows that FK;K

K is
again anticanonical.

Lemma 2.2.3. In the setting of Construction 2.2.1, there is a biholomorphism BlK;KM –

M .

Proof. We first claim that BlK;KM is Fano. By Lemma 2.2.2, FK;K
K Ă BlK;KM is

anticanonical, so it suffices to check that this is ample, and this follows easily by the
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Nakai–Moishezon criterion, since any curve in BlK;KM disjoint from FK;K
K would imply

a curve in M disjoint from N .
Since BlK;KM has the same integral homology as M , by the classification of del

Pezzo surfaces the only possible ambiguity lies in distinguishing CP1 ˆ CP1 from the
first Hirzebruch surface Bl1CP2. In the case M “ Bl1CP2, let E Ă M be the exceptional
curve, and let E6;6 be its proper transform in Bl6;6M . One can check (e.g. using a
similar analysis to the proof of Lemma 2.2.2) that we have c1prE6;6sq “ 7, and hence
Bl6;6M – Bl1CP2, as all homology classes in CP1 ˆ CP1 have even Chern number.

A similar but slightly more complicated argument shows directly that if M “

CP1 ˆ CP1 then we again must have Bl6;6M – M . However, one can also argue using
symmetry: the inverse of the Orevkov twist is given by exactly the same number of
blowups and blowdowns but with the two branches of N reversed. The above argument
concerning Bl1CP2 shows that any twist on Bl1CP2 gives Bl1CP2. Therefore, if the twist
done to CP1 ˆ CP1 did give Bl1CP2, then the inverse operation done on the other branch
would have also to give Bl1CP2, which is impossible.

The following language will be useful for understanding how cusps transform under
successive applications of the generalized Orevkov twist ΦM .

Definition 2.2.4. A curve C in M is pp, qq-well-placed with respect to N if we have
CXN “ tpu, C is locally irreducible near p, and we have pC ¨B´qp “ p and pC ¨B`qp “ q.

Here N is any rational nodal anticanonical curve as in Construction 2.2.1, and we will
sometimes simply say that C is “well-placed” if N is clear from the context. Note that
this implies that C has a pp, qq cusp at p which is maximally tangent to the branch B´

(in the sense of [McS23, §3.5]). We also allow the case q “ 1, i.e. C is pp, 1q-well-placed
if it has a single branch passing through p which is smooth and strictly satisfies the
tangency condition <T ppq

B´
p>, and C is otherwise disjoint from N . Note that the line

L (resp. conic Q) in Theorem 2.1.2 is p2, 1q-well-placed (resp. p5, 1q-well-placed) with
respect to N .
Remark 2.2.5. For any (rational) curve C Ă M which is pp, q)-well-placed with respect
to N we have c1prCsq “ rCs ¨ rN s “ p ` q, i.e. C must have index zero. Note also
that the singularities of C ∖ p are in bijective correspondence with the singularities of
ΦM pCq ∖ p. In particular, if C is unicuspidal (with p, q ą 1) then so is ΦM pCq. ♢

The singularity analysis given at the end of §2.1 (and depicted in Figure 2) immediately
extends to the generalized Orevkov twist as follows.

Proposition 2.2.6. If a curve C Ă M is pp, qq-well-placed with respect to N , then
ΦM pCq is pKp´ q, pq-well-placed with respect to N 1.

Crucially, since N 1 is itself a rational nodal anticanonical curve by Lemma 2.2.2, we
can subsequently apply the generalized Orevkov twist using N 1 to obtain a curve
ΦM ;N 1pΦM ;N pCqq which is pKrKp´ qs ´ p,Kp´ qq-well-placed with respect to N 2, and
so on.
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Remark 2.2.7. In the case of ΦCP2 there is a biholomorphism taking N 1 to N , but this
is not a priori clear (or needed) in the general case. ♢

2.3 Staircase numerics and seed curves

Before completing the proof of Theorem B, we briefly recall some numerical aspects of
the rational infinite staircases. Our discussion is largely informed by [Cri+20; CV22],
and we refer the reader to these references for more details.

Recall that associated to each rigid del Pezzo surface M is a sequence of nonnegative
integers g1, g2, g3, . . . which determines the locations of the outer and inner corners of
the corresponding infinite staircase. These sequences are explicated in [Cri+20, Table
1.18], which is reproduced in Table 1. Here J denotes the number of “strands”, K ` 2 is
the degree of the corresponding del Pezzo surface, and aacc is the accumulation point, i.e.
the limiting x-value. More explicitly, the sequence g1, g2, g3, . . . determines the locations
of the outer and inner corner points in the graph of cM pxq as follows:

• kth outer corner: x-coordinate gk`J

gk
, y-coordinate gk`J

gk`gk`J

• kth inner corner: x-coordinate gk`J pgk`1`gk`1`J q

gk`1pgk`gk`J q
, y-coordinate gk`J

gk`gk`J
.

In particular, if p{q is the x-coordinate of an outer corner, then pKp ´ qq{p is the
x-coordinate of the outer corner J steps away. This means that the full set of outer
corners is obtained by iteratively applying the recursion p{q ÞÑ pKp´ qq{p to the seeds
g1`J

g1
, . . . , g2JgJ

. Note that the generalized Orevkov twist achieves precisely the recursion
pp, qq ÞÑ pKp´ q, pq by Proposition 2.2.6.
Example 2.3.1. In the case M “ CP2, the sequence g1, g2, g3, . . . corresponds to the
odd index Fibonacci numbers. In the case M “ CP1 ˆ CP1, the even index entries of
g1, g2, g3, . . . correspond to the odd index Pell numbers, while the odd index entries of
g1, g2, g3, . . . correspond to the even index half-companion Pell numbers. ♢

Remark 2.3.2. Note that if M is endowed with its monotone symplectic form ωM ,
and if C is a pp, qq-sesquicuspidal rational symplectic curve in M of index zero, then
by Theorem 1.3.1 we have cM pp{qq ě

p
rωM s¨rCs

“
p

c1prCsq
“

p
p`q . Meanwhile, the outer

corners described above are all of the form px, yq “ p
p
q ,

p
p`q q for p, q P Zě1. ♢

By the discussion in the previous subsection, in order to complete the proof of
Theorem B it remains to construct seed curves. Namely, for M a rigid del Pezzo surface
with corresponding integer sequence g0, g1, g2, . . . , we must construct a well-placed
pgk`J , gkq-unicuspidal rational algebraic curve in M for k “ 0, . . . , J ´ 1. More explicitly,
inspecting Table 1, it suffices to find a well-placed pp, qq-unicuspidal rational algebraic
curve C with pp, qq ranging as follows:

• M “ CP2: pp, qq “ p1, 2q, p2, 1q

• M “ CP1 ˆ CP1 : pp, qq “ p1, 1q, p3, 1q

• M “ Bl1CP2 : pp, qq “ p1, 1q, p2, 1q, p4, 1q
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Table 1: The sequences controlling the rational infinite staircases, reproduced from
[Cri+20, Table 1.18].

rigid del Pezzo negative weight K J recursion seeds acc. pt.
surface expansion gk`2J “ Kgk`J ´ gk g0, . . . , g2J´1 aacc

CP2p3q p3q 7 2 gk`4 “ 7gk`2 ´ gk 2, 1, 1, 2 7`3
?
5

2

CP1p2q ˆ CP1p2q p4; 2, 2q 6 2 gk`4 “ 6gk`2 ´ gk 1, 1, 1, 3 3 ` 2
?
2

CP2p3q#CP
2
p1q p3; 1q 6 3 gk`6 “ 6gk`3 ´ gk 1, 1, 1, 1, 2, 4 3 ` 2

?
2

CP2p3q#ˆ2CP
2
p1q p3; 1, 1q 5 3 gk`6 “ 5gk`3 ´ gk 1, 1, 1, 1, 2, 3 5`

?
21

2

CP2p3q#ˆ3CP
2
p1q p3; 1, 1, 1q 4 2 gk`4 “ 4gk`2 ´ gk 1, 1, 1, 2 2 `

?
3

CP2p3q#ˆ4CP
2
p1q p3; 1, 1, 1, 1q 3 2 gk`4 “ 3gk`2 ´ gk 1, 2, 1, 3 3`

?
5

2

• M “ Bl2CP2: pp, qq “ p1, 1q, p2, 1q, p3, 1q

• M “ Bl3CP2: pp, qq “ p1, 1q, p2, 1q

• M “ Bl4CP2: pp, qq “ p1, 1q, p3, 2q.

As above, for k “ 1, 2, 3, 4 we take BlkCP2 to be the blowup of CP2 at k points
n1, . . . , nk on the standard nodal cubic N0 “ tY 2Z “ X2pX ` Zqu, and we take N to
be the proper transform of N . Meanwhile in the case of CP1 ˆ CP1 we take N to be the
smoothing of pCP1 ˆ tq1, q2uq Y ptp1, p2u ˆ CP1q at the nodes pp1, q2q, pp2, q1q, pp2, q2q.

Case M “ CP2: For pp, qq “ p1, 2q and pp, qq “ p5, 1q (i.e. p7 ¨ 1 ´ 2, 1qq we take the
line L and conic Q respectively mentioned in Theorem 2.1.2.

Case M “ Bl1CP2:
• For pp, qq “ p1, 1q, we take C to be the proper transform of the unique line in

CP2 which passes through n1 and the double point p of N0. Note that we have
rCs “ ℓ´ e P H2pBl1CP2q.

• For pp, qq “ p2, 1q, we take C to be the proper transform of the unique line in CP2

which is tangent to B´ at p. Note that C is necessarily disjoint from n1 so we have
rCs “ ℓ P H2pBl1CP2q.

• For pp, qq “ p4, 1q, we take C to be the unique conic in CP2 which satisfies <T p4q

B´
p>

and also passes through n1 (this is easily constructed using a linear system, or by a
deformation argument similar to the ones given below).

Case M “ CP1 ˆ CP1:
• For pp, qq “ p1, 1q, we take C to be the unique line in class ℓ1 (or alternatively ℓ2)

which passes through the double point p of N .

• For pp, qq “ p3, 1q, we take C to be the unique rational curve of bidegree p1, 1q

which has contact order 3 to a branch of N at p. To construct such a curve, we
can start with a bidegree p1, 1q curve D passing through p and two other nearby
points x1, x2 P B´ (e.g. D can be realized as the graph of a holomorphic map
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CP1 Ñ CP1). As we move the points x1, x2 into p along B´, D correspondingly
deforms into a curve of the desired kind.

Case M “ Bl2CP2:
• For pp, qq “ p1, 1q, we take C to be the proper transform of the unique line in CP2

which passes through p and n1 (or alternatively n2)

• For pp, qq “ p2, 1q, we take C to be the proper transform of the unique line in CP2

which is tangent to B´ at p.

• For pp, qq “ p3, 1q, we take C to be the proper transform of the unique conic in
CP2 which satisfies <T p3q

B´
p> and passes through n1 and n2.

Case M “ Bl3CP2:
• For pp, qq “ p1, 1q, we take C to be the proper transform of the unique line in CP2

which passes through p and n1.

• For pp, qq “ p2, 1q, we take C to be the proper transform of the unique line in CP2

which is tangent to B´ at p.
Case M “ Bl4CP2:
• For pp, qq “ p1, 1q, we take C to be the proper transform of the unique line in CP2

which passes through p and n1.

• For pp, qq “ p3, 2q, we take C to be the proper transform of a rational cubic in CP2

which has a p3, 2q cusp with contact order 3 to B´ at p and which passes through
points n1, n2, n3, n4 on the standard nodal cubic N0, as guaranteed by Lemma 2.3.3
below.

We end this subsection by constructing the above p3, 2q seed curve, which then
completes the proof of Theorem B. Similar to [McS23], we will denote by <Cpp,qqp>
the constraint that a curve has a holomorphic parametrization u : CP1 Ñ M such that
upr0 : 0 : 1sq “ p, and u has contact order at least p with B´ at r0 : 0 : 1s and contact
order at least q with B` at r0 : 0 : 1s.

Lemma 2.3.3. There exists a rational cubic algebraic curve in CP2 which satisfies the
cuspidal constraint <Cp3,2qp> as well as the point constraints <n1, . . . , n4>.

Proof. Let D be a cuspidal cubic in CP2 whose cusp has contact order 3 with B´ at
p (this is a codimension 4 constraint), and let x1, . . . , x4 be distinct points in D ∖ tpu.
Let xt1, . . . , xt4, t P r0, 1s, be an isotopy in CP2 ∖ tpu such that x11, . . . , x14 P N0 and
xt1, . . . , x

t
4, p are in general position for each t P r0, 1s. We consider the parametrized

moduli space

tpt, uq | t P r0, 1s, u P MCP2,3ℓ<Cp3,2qp, xt1, . . . , x
t
4>u,

where, for t P r0, 1s, MCP2,3ℓ<Cp3,2qp, xt1, . . . , x
t
4> denotes the moduli space of holomor-

phic maps14 u : CP1 Ñ CP2 (modulo biholomorphic reparametrization) which satisfy
14Here we formulate the argument in terms of holomorphic maps in order to match the setup of

[McS23], but one could also formulate the argument using only the language of subvarieties.
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the cuspidal constraint <Cp3,2qp> and the point constraints <xt1, . . . , x
t
4>. We seek

to show that MCP2,3ℓ<Cp3,2qp, n1, . . . , n4> is nonempty, and for this it suffices to show
that a sequence of curves in the parametrized moduli space cannot degenerate into a
configuration Dδ having more than one component.

Assume by contradiction that such a Dδ exists, say at t “ tδ P r0, 1s, and suppose first
that some nonconstant component D1

δ of Dδ carries the cuspidal constraint <Cp3,2qp>.
Then D1

δ must be a conic (necessarily a double cover of a line), and the remaining
nonconstant component D2

δ of Dδ must be a line. Since D1
δ ¨N0 “ 6, D1

δ carries at most 1
of the point constraints <xtδ1 , . . . , x

tδ
4 >, since the cuspidal constraint contributes a local

intersection multiplicity of at least 5. Then the line component D2
δ must carry at least

three of the point constraints, which is a contradiction since we assumed they are in
general position.

Now suppose that the cuspidal constraint <Cp3,2qp> is carried by a ghost
component, so that the constraint itself decomposes into several constraints
<Cpp1,q1qp>, . . . ,<Cppk,qkqp> carried by nearby nonconstant components of Dδ. By
[McS23, Prop. 3.2.4] (or [McS23, Ex. 3.2.7]), we must have

řk
i“1ppi ` qiq ě 3` 2` 1 “ 6.

Taking into account the point constraints <xtδ1 , . . . , x
tδ
4 >, this gives Dδ ¨ N ě 6 ` 4 ą 9,

which is a contradiction since Dδ is degree 3.

3 Inflating along sesquicuspidal curves

The main goal of this section is to prove Theorem A, using the following basic outline:

1) construct a (partial) resolution rC of C in a suitable iterated blowup ĂM of M

2) apply the technique of symplectic inflation to rC to modify the symplectic form on
ĂM

3) blow down again to obtain a symplectic manifold M 1 which is symplectomorphic
to M and by construction contains a large symplectic ellipsoid.

The main technicality is that we need to perform the blowdowns in families in the
symplectic category, where blowups and proper transforms are more delicate than in the
complex category. Indeed, recall that whereas complex blowups are performed at a point,
symplectic blowups require the data of a symplectic ball embedding ι : B2npRq

s
ãÑ M for

some R P Rą0.15 The symplectic blowup BlιM is then defined roughly by removing the
interior of ιpB2npRqq and collapsing the boundary along the fibers of the Hopf fibration.
Some precise relations between complex and symplectic blowups are detailed in [McSa17,
§7.1].

In §3.1, we first discuss a model for the resolution ĂM Ñ M in the case of a pp, qq cusp
singularity using toric moment maps, and we use this to prove Theorem A(i) in §3.2. In
§3.3 we extend the discussion to cusps with multiple Puiseux pairs, and finally we prove

15Strictly speaking the construction requires choosing an extension of this embedding to B2n
pR ` εq

for some ε ą 0, but we will suppress this from the discussion.
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Theorem A(ii) in §3.3. Along the way we also discuss some generalities on resolutions of
cusp singularities which will be needed elsewhere in the paper.

3.1 Toric resolution of a pp, qq cusp

Recall that any cusp singularity of a holomorphic curve C Ă C2 can be resolved by a finite
sequence of point blowups (see e.g. [Wal04, §3.3]). We will denote the exceptional divisor
resulting from the ith blowup by Fi

i, and for j ą i we denote its proper transform in the
jth blowup BljC2 by Fj

i . We arrive at the minimal resolution CK after some number
K P Zě1 of blowups, and after L´K further blowups for some L P Zě1 we arrive at the
normal crossing resolution CL, in which the total transform CL Y FL

1 Y ¨ ¨ ¨ Y FL
L Ă BlLC2

of C is a normal crossing divisor. We have rFL
Ls ¨ rFL

Ls “ ´1 and rFL
i s ¨ rFL

i s ď ´2 for
i “ 1, . . . , L´ 1, and the spheres FL

1 , . . . ,F
L
L´1 are disjoint from CL, while FL

L intersects
CL transversely in one point. In the case of a pp, qq cusp, the combinatorics of the normal
crossing resolution are related to the continued fraction expansion of p{q and are neatly
encoded in the so-called box diagram for pp, qq (see [McS23, §4.1]).

Let µC2 : C2 Ñ R2
ě0, µpz1, z2q “ pπ|z1|2, π|z2|2q, denote the moment map for the

standard torus action on C2. Given p ą q coprime positive integers, let ∆pq,pq Ă R2
ě0

denote the triangle with vertices p0, 0q, pq, 0q, p0, pq, let Ωpq,pq Ă R2
ě0 denote the closure

of its complement, and let Xpq,pq denote the corresponding toric symplectic orbifold with
moment map µXpq,pq

: Xpq,pq Ñ Ωpq,pq (this can be viewed as a weighted blowup of C2).
Note that Xpq,pq has two cyclic quotient singularities of types 1

pp1, p´ qq and 1
q p1, q ´ rq,

where r is the remainder when p is divided by q,16 and these can each be resolved
by finitely many toric blowups (c.f. [McS23, Rmk. 4.3.4]). On the level of moment
polygons, a toric blowup at a corner adjacent to edges having primitive inward normals
p1, 0q, pa, bq P Z2 with a ă b amounts to chopping off the corner so as to introduce a
new edge with inward normal p1, 1q (the general case reduces to this one by an integral
affine transformation). We denote by rΩpq,pq Ă R2

ě0 any (noncompact) polygon obtained
from Ωpq,pq after resolving both of the singularities by successive toric blowups. The
corresponding (noncompact) toric symplectic manifold µ

rXpq,pq
: rXpq,pq Ñ rΩpq,pq is also

obtained from C2 by a sequence of L toric blowups.

Example 3.1.1. Figure 3 illustrates the construction of rXp2,3q from C2 by 3 toric
blowups, with corresponding inward normal vectors p1, 1q, p2, 1q, p3, 2q. ♢

Let rDpq,pq :“ FL
1 Y ¨ ¨ ¨ Y FL

L denote the compact components of the toric boundary
divisor in rXpq,pq. Note that, for 1 ď i ă j ď L, FL

i and FL
j are either disjoint or

intersect symplectically orthogonally in one point. For i “ 1, . . . , L, the symplectic area
of FL

i is given by the affine length of the corresponding edge µ
rXpq,pq

pFL
i q Ă BrΩpq,pq, and

evidently in the construction of rXpq,pq we can independently choose arbitrary values
λ1, . . . , λL P Rą0 for these affine lengths.

Given a neighborhood U of µ
rXpq,pq

p rDpq,pqq in rΩpq,pq, there is a corresponding neighbor-

16For more information, see §4.1a.
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Figure 3: The sequence of toric blowups starting at C2 and ending at rXp2,3q. The
green lines represent the visible p3, 2q-cuspidal curve Cp3,2q Ă C2 and its resolution
rCp3,2q Ă rXp2,3q.

hood V “ U Y r∆pq,pq of the origin in R2
ě0, where r∆pq,pq denotes the closure of R2

ě0∖ rΩpq,pq,
so that BU X R2

ą0 “ BV X R2
ą0. Then the corresponding toric domains XV :“ µ´1

C2 pV q

and rXU :“ µ´1
rXpq,pq

pUq coincide away from compact subsets. Our model for the symplectic

resolution ĂM Ñ M of a pp, qq cusp singularity will roughly amount to excising XV and
gluing in rXU . Note that the ellipsoid Epq, pq naturally sits in XV .

Now suppose that C1, . . . , CL is any configuration of symplectically embedded two-
spheres in a symplectic four-manifold W which have the same respective areas as
F1, . . . ,FL and the same intersection graph with symplectically orthogonal intersections.
Then by a version of the symplectic neighborhood theorem (see e.g. [Sym98, Prop.
3.5]), there is a neighborhood W of C1 Y ¨ ¨ ¨ Y CL in W which is symplectomorphic to a
neighborhood of F1 Y ¨ ¨ ¨ Y FL in rXpq,pq of the form rXU for some U Ă rΩpq,pq containing
µ

rXpq,pq
p rDpq,pqq. This means that there is a symplectic surgery of W which excises W

and glues in XV , with V “ U Y r∆pq,pq as above. This gives an explicit model for the
symplectic blowdown of W along CL, . . . , C1, which by construction contains the ellipsoid
Epq, pq.

Observe that is a pp, qq-unicuspidal symplectic curve Cpp,qq in C2 whose image under
µC2 is the ray Rě0 ¨ pp, qq, given explicitly by

Cpp,qq “ tpr
?
pe2πipt, r

?
qe2πiqtq P C2 | r P Rě0, t P r0, 1su (3.1.1)

(this is “visible” in the sense of §5.1a below and can be viewed as the hyperKähler twist
of the Schoen–Wolfson Lagrangian discussed in [Eva23, Ex. 5.11]). Although Cpp,qq is
not equal on the nose to the model pp, qq cusp txp ` yq “ 0u, these two curves have the
same links as transverse torus knots, namely the pp, qq torus knot of maximal self-linking
number, and hence they are essentially interchangeable for the purposes of this section.
Similarly, there is a nonsingular visible symplectic curve rCpp,qq in rXpq,pq whose image
under µ

rXpq,pq
is the intersection of the ray Rě0 ¨ pp, qq with rΩpq,pq. In §3.2 we will take

rCpp,qq as a model for the symplectic proper transform of Cpp,qq in rXpq,pq, noting that
rCpp,qq intersects FL

L positively in one point and is disjoint from FL
i for i “ 1, . . . , L´ 1.
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The moment map images of Cpp,qq and rCpp,qq are illustrated in Figure 3 for the case
pp, qq “ p3, 2q

3.2 Inflating along a curve with a pp, qq cusp

We first prove part (i) of Theorem A.

Proof of Theorem A(i). Let C be a pp, qq-sesquicuspidal symplectic curve in M which
satisfies rCs “ cPDrωM s and rCs ¨ rCs ě pq. After resolving any double points, we will
assume that C is nonsingular away from the pp, qq cusp (but possibly of higher genus).
After further modifying C near the cusp point, we can further assume that

• there is a neighborhood D Ă M of the cusp which is symplectomorphic to ε ¨XV ,
where XV “ µ´1

C2 pV q Ă C2 as in §3.1 with r∆pq,pq Ă V Ă R2
ě0, and ε ¨ XV is the

result after scaling the symplectic form by some ε ą 0 sufficiently small

• C X D is sent to Cpp,qq X XV , with Cpp,qq the visible symplectic curve defined in
(3.1.1).

Let U :“ V ∖ Int r∆pq,pq denote the corresponding neighborhood of the finite edges in
rΩpq,pq, with associated domain rXU “ µ´1

rXpq,pq

pUq Ă rXpq,pq. Let pĂM,ω
ĂM

q denote the result

after excising D from M and gluing in ε ¨ rXU under the natural symplectic identification
OppBDq – OppBpε ¨ rXU qq. Let rC Ă ĂM be the unique symplectic curve which agrees with
C outside of D and agrees with rCpp,qq in ε ¨ rXU . In other words, ĂM is a model for the
L-fold symplectic blowup of M , and rC is a model for the symplectic resolution of C at
its cusp point.

We now symplectically inflate along rC as follows. Note that rC is smoothly embedded,
and by assumption we have r rCs ¨ r rCs “ rCs ¨ rCs ´ pq ě 0. Therefore, using e.g. [McD94,
Lem. 3.7], there exists a closed two-form η on ĂM such that:

• rηs “ PDpr rCsq P H2pĂM ;Rq

• η has support in a small neighborhood of rC which is disjoint from FL
1 , . . . ,F

L
L´1

• rωs :“ ω
ĂM

` sη is a symplectic form for all s P Rą0

• FL
L is a symplectic submanifold of pĂM, rωsq for all s P Rą0.

Note that pĂM, rωsq contains the configuration of symplectic spheres FL
1 , . . . ,F

L
L which still

intersect symplectically orthogonally with the same intersection pattern for all s P Rě0,
and we have

ż

FL
i

rωs “

#
ş

FL
i
ω

ĂM
i “ 1, . . . , L´ 1

ş

FL
L
ω

ĂM
` s i “ L.

Now let pMs, ωsq denote the result after performing the toric model for the symplectic
blowdown along FL

L, . . . ,F
L
1 as described in §3.1. By choosing the relevant symplectic
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neighborhoods smoothly with s and identifying Ms smoothly with M , we view tωsusě0

as a smooth family of symplectic forms on M , such that rωss “ rωM s ` sPDprCsq “

p1 ` scqrωM s, and such that there is a symplectic embedding of pε ` sq ¨ Epq, pq into
pM,ωsq. By the Moser’s stability theorem, the rescaled symplectic form 1

1`sc ¨ ωs is
symplectomorphic to ωM , and it admits a symplectic embedding of ε`s

1`sc ¨ Epq, pq. Since
ε`s
1`sc Ñ 1

c as s Ñ 8, the result now follows by taking s sufficiently large.

3.3 Cusps with multiple Puiseux pairs

In this subsection, we first recall some more generalities about cusp singularities and their
resolutions, in order to relate the blowup sequence for a pp, qq cusp with that of a cusp
with Puiseux pairs pp, qq, pp2, q2q, . . . , ppk, qkq. In particular, we recall the definition of
the Puiseux characteristic, which is a useful alternative to Puiseux pairs when discussing
discussing blowups. We then state a technical lemma relating symplectic and complex
blowups which will be used in the proof of Theorem A(ii) in the next subsection.

According to [Wal04, §2], for C any germ of a holomorphic curve near the origin in
C2 which is not tangent to tx “ 0u we can find a local parametrization of the form

x “ tm, y “ am1t
m1 ` am2t

m2 ` am3t
m3 ` ¨ ¨ ¨ ,

with m ď m1 ă m2 ă ¨ ¨ ¨ and am1 , am2 , am3 , ¨ ¨ ¨ P C˚, and such that
gcdpm,m1,m2, . . . q “ 1. Here m is the multiplicity of C at the origin. We define
β1 to be the smallest mi which is not a multiple of m, we put e1 :“ gcdpm,β1q, and we
put inductively

βk`1 “ mintmi | ek ∤ miu, ek`1 “ gcdpek, βk`1q.

We necessarily arrive at eg “ 1 for some g P Zě1, and the Puiseux characteristic of C is
by definition pm;β1, . . . , βgq. One can show that this is independent of the coordinate
representation of C and is obtained from the Puiseux pairs pn1, d1q, . . . , png, dgq via

m “ d1 ¨ ¨ ¨ dg, βi “ nidi`1 ¨ ¨ ¨ dg.

In the reverse direction, given pm;β1, . . . , βgq we can recover n1, . . . , ng and d1, . . . , dg
via βi

m “
ni

d1¨¨¨di
. In particular, note that if the first Puiseux pair is pn1, d1q “ pp, qq then

the Puiseux characteristic takes the form pkq; kp, β2, . . . , βgq with k “ d2 ¨ ¨ ¨ dg. One can
also show that the Puiseux characteristic determines the multiplicity sequence and vice
versa (see [Wal04, Thm. 3.5.6]).
Remark 3.3.1. Recall that, according to [EN85], any local branch of a singular holo-
morphic curve in C2 is homeomorphic to the cone over an iterated torus knot, where
the cabling parameters pdk, skq can be read off from the Puiseux pairs with dk ‰ 1 via
s1 “ n1 and sk “ nk ´ nk´1dk ` dk´1dksk´1 for k ě 2 (here we follow the conventions
of [Neu17]). ♢

The following example is of primary relevance for Theorem E(b):

25



Example 3.3.2. The Puiseux pairs pp, qq, pkp` 1, kq correspond to the Puiseux charac-
teristic pkq; kp, kp` 1q (and vice versa). ♢

If C has Puiseux characteristic pm;β1, . . . , βgq, then its proper transform after blowing
up has Puiseux characteristic pm1, β1

1, . . . , β
1
g1q given as follows (see [Wal04, Thm. 3.5.5]):

pm1;β1
1, . . . , β

1
g1q “

$

’

&

’

%

pm;β1 ´m, . . . , βg ´mq β1 ą 2m

pβ1 ´m;m,β2 ´ β1 `m, . . . , βg ´ β1 `mq β ă 2m and pβ1 ´mq ∤ m
pβ1 ´m;β2 ´ β1 `m, . . . , βg ´ β1 `mq pβ1 ´mq|m.

(3.3.1)

Using (3.3.1), the following is readily checked:

Lemma 3.3.3. Suppose that the normal crossing resolution of a pp, qq cusp requires L
blowups and results in negative self-intersection spheres FL

1 , . . . ,F
L
L as in §3.1. Let C be

any cusp singularity with Puiseux pairs pn1, d1q, pn1, d2q, . . . , png, dgq with pn1, d1q “ pp, qq.
Then the first L blowups of the resolution sequence for C produce spheres GL

1 , . . . ,G
L
L

having the same intersection pattern (including self-intersection numbers) as FL
1 , . . . ,F

L
L.

The proper transform rC of C intersects GL
L in one point with contact order k :“ d2 ¨ ¨ ¨ dg,

and is disjoint from GL
1 , . . . ,G

L
L´1.

Note that rC may itself have a residual cusp singularity.
Example 3.3.4 (continuation of Example 3.3.2). Let C be a curve with cusp having
Puiseux characteristic of the form pkq; kp, kp` 1q (and hence Puiseux pairs pp, qq, pkp`

1, kq), and let L be as in Lemma 3.3.3. Then the first L blowups in the resolution
sequence achieve the normal crossing resolution for a pp, qq cusp, after which the proper
transform rC is nonsingular but intersects GL

L in a single point of contact order k. Thus
L blowups achieve the minimal resolution for C, and an additional k blowups achieve
the normal crossing resolution for C.

For instance, the minimal resolution sequence for Puiseux characteristic p3; 5q is
p3; 5q Ñ p2; 3q Ñ p1; 2q, while that of p9; 15, 16q is p9; 15, 16q Ñ p6; 9, 10q Ñ p3; 7q Ñ

p3; 4q Ñ p1, 3q (this corresponds to pq, pq “ p3, 5q, k “ 3, and L “ 4). ♢

We record the following for later purposes:

Lemma 3.3.5. Let C be a curve with a cusp having Puiseux characteristic pkq; kp, kp`1q,
and let rC be its minimal resolution. Then we have r rCs ¨ r rCs “ rCs ¨ rCs ´ k2pq. In
particular, rCs ¨ rCs ě k2pq if and only if r rCs ¨ r rCs ě 0.

We now are in a position to complete the proof of Theorem A. In §3.2 we assumed
that C coincides with the visible symplectic curve Cpp,qq Ă C2 from (3.1.1) locally near its
cusp. Since this curve has no direct analogue for a cusp with multiple Puiseux pairs, we
will augment the explicit toric resolution model from §3.1 with a slightly more abstract
argument.

The following technical lemma relating symplectic and complex blowups will suffice
for our purposes.
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Lemma 3.3.6 (see [McSa17, §7.1]). Let pM,ωq be a symplectic manifold equipped with an
ω-tame almost complex structure J which is integrable near a point p P M . Let pBlpM, rJq

denote the complex blowup M at p, with exceptional divisor EBlpM . Then for some δ ą 0

there exists a symplectic embedding ι : pB2npδq, ωstdq
s

ãÑ pM,ωq with ιp0q “ p for which the
corresponding symplectic blowup pBlιM, rωq admits a diffeomorphism Φ : BlιM

–
ÝÑ BlpM

such that Φ˚
rJ is rω-tame and ΦpEBlιM q “ EBlpM .

Furthermore, suppose that D1 and D2 are smooth J-holomorphic local divisors in M
which intersect ω-orthogonally at p, and let rD1, rD2 Ă BlpM denote their rJ-holomorphic
proper transforms. Then we can arrange that Φ´1p rD1q and Φ´1

rD2 each intersect EBlιM

rω-orthogonally.

Note that, in the context of Lemma 3.3.6, if C is (singular) symplectic curve in M
which is preserved by J near p, then we can define its symplectic proper transform to be
Φ´1p rCq, where rC is the rJ-holomorphic proper transform of C in BlpM .

Proof of Theorem A(ii). Let C be a sesquicuspidal symplectic curve in M with Puiseux
pairs pp, qq, pp2, q2q, . . . , ppg, qgq, whose homology class satisfies rCs “ cPDrωM s and
rCs ¨ rCs ě k2pq for k “ q2 ¨ ¨ ¨ qg. As before, after resolving any double points we
can assume that C is embedded away from the cusp point. By assumption there
is a neighborhood U of the cusp point such that pU,C X Uq is symplectomorphic to
pU 1, C 1 XU 1q, where U 1 is a neighborhood of the origin in C2 and C 1 Ă C2 is a holomorphic
curve having a cusp with Puiseux pairs pp1, q1q, . . . , ppg, qgq. By pulling back Jstd|U 1 to
U and extending over M , we can find an ωM -compatible almost complex structure J on
M which preserves C and is integrable near the cusp.

Let pĂMcomp, rJq denote the L-fold complex blowup of pM,Jq which achieves nor-
mal crossing resolution of a pp, qq cusp singularity as in Lemma 3.3.3, with negative
self-intersection rJ-holomorphic spheres GL

1 , . . . ,G
L
L Ă ĂMcomp. Let rC Ă ĂMcomp be the

corresponding proper transform of C (this may be smooth or have a residual cusp). Using
Lemma 3.3.6, there is a corresponding L-fold symplectic blowup pĂMsymp, rωq of pM,ωM q

and a diffeomorphism Φ : ĂMsymp
–
ÝÑ ĂMcomp such that Φ˚

rJ is rω-tame, and the symplectic
spheres Φ´1pG1

Lq, . . . ,Φ´1pGL
Lq intersect symplectically orthogonally. After smoothing

the residual cusp of Φ´1p rCq (if necessary) by replacing it with a perturbation of the corre-
sponding Milnor fiber, we obtain a symplectically embedded curveD Ă ĂMsymp which inter-
sects Φ´1pGL

Lq positively in k points and is disjoint from Φ´1pGL
1 q, . . . ,Φ´1pGL

L´1q. Note
that we have rΦ´1p rCqs has positive self-intersection number by Lemma 3.3.5. The rest of
the proof proceeds as in §3.2 by inflating along D, blowing down Φ´1pGL

L´1q, . . . ,Φ´1pGL
1 q

using the same toric model from §3.1, and finally rescaling the symplectic form and
applying Moser’s stability theorem. Note that after inflating Φ´1pGL

Lq has symplectic
area ε ` ks since rDs ¨ rGL

Ls “ k, and hence the rescaled symplectic manifold pM,ωsq

admits a symplectic embedding of ε`ks
1`scEpq, pq.
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4 Q-Gorenstein smoothings and almost toric fibrations

In this section we collect various facts about (a) Q-Gorenstein smoothings of singular
toric algebraic surfaces (§4.1) and (b) symplectic almost toric fibrations (§4.2). Few if
any of the results in this section are original, but our perspective is somewhat novel in
that we emphasize the central role played by T -polygons (see §4.1c) in both algebraic and
symplectic geometry. Roughly, we associate to a T polygon Q both an algebraic surface
rVQ (defined as a Q-Gorenstein smoothing) and a symplectic four-manifold ApQnodalq

(defined as the total space of an almost toric fibration). Proposition 4.2.6 gives a direct
comparison between these two geometries, which we utilize in §5 and §6 in order to
construct algebraic curves via symplectic techniques.

4.1 Toric surfaces and T -singularities

In this subsection, we begin by briefly reviewing some toric algebraic geometry and
singularity theory and setting up our notation. We then recall the notion of T -singularities
and their Q-Gorenstein smoothings, and define T -polygons. We also discuss (dual) Fano
polygons and their mutations, which play an important role in the mirror symmetry
approach to Fano surfaces (see e.g. [GU10; Akh+16; KNP17; Coa+12]).

4.1a Cyclic quotient singularities and toric surfaces

For κ P Zě1, let

µκ “ te2π
?

´1j{κ | j “ 0, . . . , κ´ 1u

denote the group of κth roots of unity. Given w1, . . . , wn P Zě0, we consider the action
of µκ on Cn with weights w1, . . . , wn, i.e. with µ ¨ pz1, . . . , znq “ pµw1z1, . . . , µ

wnznq for
µ P µκ. Note that the weights w1, . . . , wn are only relevant modulo κ. We denote this
representation of µκ by µw1,...,wn

κ .
Cyclic quotient singularities are by definition quotients of the form

1
κpw1, . . . , wnq :“ Cn{µw1,...,wn

κ

for κ P Zě1 and w1, . . . , wn P Zě1 coprime to κ. Here we have 1
κpw1, . . . , wnq “

1
κpℓw1, . . . , ℓwnq for any ℓ P pZ{κqˆ, so we may assume w1 “ 1. Note that the cyclic
quotient surface singularity 1

κp1, wq is the affine toric variety Uσ :“ SpecmpCrSσsq

corresponding to the cone σ Ă R2 generated by p0, 1q and pκ,´wq. Here σ_ Ă MR is the
dual cone to σ, Sσ is the semigroup of lattice points in σ_, and CrSσs is the associated
semigroup algebra (see e.g. [CLS11; Ful93; Bra04; Da 03] for more background on toric
varieties).

Let N be lattice of rank n P Zě1, with dual lattice M “ HompN,Zq (typically we will
have N “ Zn, but this notation is still helpful in distinguishing the roles of N and M).
We put NR :“ N bZ R and MR :“ M bZ R. We will say that a polytope17 P Ă NR is

17By polytope P Ă NR we mean the convex hull of finitely many points in NR. We call this a
polygon when N has rank two.
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centered if P is n-dimensional and contains the origin in its interior. Given a centered
polytope P Ă NR, the dual polytope P o Ă MR is by definition

P o :“ tu P MR | xu, vy ě ´1 @ v P P u.

Note that (unless P is reflexive) P o is typically not a lattice polytope (i.e. having vertices
in M), even if P is. For a polytope Q Ă MR, the dual polytope Qo Ă NR is defined
similarly.

We associate to P its face fan ΣP in NR, which has a cone στ for each face τ of P ,
where στ is generated by the vertices of τ . Equivalently, this is the normal fan ΣP o

of P o, which has a cone ση for each face η of P o, where ση is generated by the inward
normal vectors of those facets of P o which contain η. We denote by VΣ the (typically
singular) toric variety associated to a fan Σ. In the case Σ “ ΣP “ ΣP o we will also
denote VΣ by VP or VP o when we wish to emphasize the polytope P or its dual P o.18

For a general polygon Q Ă MR, the toric surface VQ has cyclic quotient singularities at
its toric fixed points, which correspond to the vertices of Q (or equivalently the maximal
cones of the normal fan ΣQ). Explicitly, for each vertex v P Q there is an integral affine
transformation19 of MR sending v to the origin, so that the edge directions become p0, 1q

and pn,´qq for some coprime n, q P Zě1, in which case the singularity has type 1
np1, qq.

In the case n “ 1, this corresponds to a smooth point of VQ and we refer to v as a
Delzant vertex vertex of Q. If Q has only Delzant vertices then it is Delzant polygon.

We end this subsection with a remark about the homology of a smooth toric surface.
Let Q Ă MQ be a Delzant polygon with edges e1, . . . , eℓ and corresponding toric divisors
De1 , . . . ,Deℓ Ă VQ. Recall that the homology group H2pVQq of the associated nonsingular
toric variety VQ is generated by the toric divisors De1 , . . . ,Deℓ . More precisely, letting
n⃗1, . . . , n⃗ℓ P N be the primitive inward normal vectors to the edges, we have the short
exact sequence

0 Ñ M Ñ ZxrDe1s, . . . , rDeℓsy Ñ H2pVQq Ñ 0, (4.1.1)

where the first nontrivial map sends u P M to
řℓ

i“1xn⃗i, uyrDeis; see [CLS11, §5.1].

4.1b Fano and dual Fano polygons

A polytope P Ă NR is said to be Fano if it is centered and its vertices are primitive
lattice vectors (see e.g. [Akh+12, §3]). In this case the corresponding toric surface VP
has anticanonical divisor which is Q-Cartier and ample, i.e. VP is a (typically singular)
toric Fano variety. In particular, in the case dimpP q “ 2, VP is a singular toric del Pezzo
surface. We will say that a centered polygon Q Ă MR is dual Fano if the dual polygon
Qo Ă NR is Fano, and hence in particular a lattice polytope. Note that the dual Fano

18It should be clear from the context whether we are taking the face fan or normal fan since P and
P o live in different vector spaces.

19By integral transformation of MR we mean a map MbZ R Ñ MbZ R which is a group isomorphism
M – M on the first factor and the identity on the second factor. By integral affine transformation of
MR we mean the composition of an integral transformation with a translation.
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condition is equivalent to each edge e of Q having height one, where we define the height
of an edge to be the number hpeq such that xn⃗, uy “ ´hpeq for all u P e, where n⃗ P N is
the primitive inward normal vector to e.

For points v, w P MR, recall that the affine length Lenaffprv, wsq of the line segment
rv, ws Ă MR is |c|, where we put v ´ w “ cpv ´ wqprim for c P R and pv ´ wqprim P M a
primitive lattice vector. The following gives another characterization of the dual Fano
condition (c.f. Proposition 5.1.6 for a symplectic counterpart).

Lemma 4.1.1. If a centered Delzant polygon Q Ă MR is dual Fano, then we have
c1prDesq “ Lenaffpeq for each edge e. The converse also holds if Q is a lattice polygon.

Proof. We can assume M “ Z2 and MR “ R2 without loss of generality. Let v1, . . . , vℓ be
the vertices of Q ordered counterclockwise, and let ei be the edge joining vi and vi`1 for
i “ 1, . . . , ℓ (modulo ℓ). Let hpeiq denote the height of the edge ei, and let n⃗i P N denote
the primitive inward normal vector to the edge ei for i “ 1, . . . , ℓ.

After applying an integral transformation of R2, we can further assume that n⃗1 “ p0, 1q

and n⃗ℓ “ p1, 0q, and hence

v1 “ p´hpeℓq,´hpe1qq and v2 “ v1 ` pLenaffpe1q, 0q.

Intersecting (4.1.1) with rDe1s (with u “ v2) gives
ℓ

ř

i“1
xn⃗i, v2y prDeis ¨ rDe1sq “ 0. Further

we have rDeis ¨ rDe1s “ 0 for i R t1, 2, ℓu, and rDe1s ¨ rDe2s “ rDe1s ¨ rDeℓs “ 1 since Q is
Delzant. Thus

0 “ xn⃗1, v2y prDe1s ¨ rDe1sq ` xn⃗2, v2y ` xn⃗ℓ, v2y

“ ´hpe1q prDe1s ¨ rDe1sq ´ hpe2q ´ hpeℓq ` Lenaffpe1q,

so that

rDe1s ¨ rDe1s “
´hpe2q ´ hpeℓq ` Lenaffpe1q

hpe1q
.

Noting that De1 is an embedded two-sphere, by the adjunction formula and symmetry
we have

c1prDeisq “ 2 `
´hpei`1q ´ hpei´1q ` Lenaffpeiq

hpeiq
(4.1.2)

for i “ 1, . . . , ℓ.
If Q is dual Fano, then we have hpeiq “ 1 for i “ 1, . . . , ℓ, so (4.1.2) becomes

c1prDeisq “ Lenaffpeiq. Conversely, if Q is a lattice polygon and if c1prDeisq “ Lenaffpeiq

for i “ 1, . . . , ℓ, then (4.1.2) becomes Lenaffpeiq “ 2 `
´hpei`1q´hpei´1q`Lenaffpeiq

hpeiq
. Since

hpe1q, . . . ,hpeℓq ě 1, this is only possible if hpe1q “ ¨ ¨ ¨ “ hpeℓq “ 1.
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4.1c T -singularities and polygon mutations

A cyclic quotient surface singularity 1
np1, qq is a T -singularity if we have n “ mr2 and

q “ mra ´ 1 for some m, r, a P Zě1 with gcdpr, aq “ 1.20 These were shown in [KS88]
to be precisely those cyclic quotient surface singularities which admit Q-Gorenstein
smoothings. Here a Q-Gorenstein smoothing of a normal surface X with quotient
singularities is a flat family X over a smooth curve germ S such that the central fiber is
X, the general fiber is smooth, and the relative canonical divisor KX {S is Q-Cartier (see
e.g. [HP10, §2.1] or [LP11, §2] and the references therein). Note that this last condition is
equivalent to the total space being Q-Gorenstein, i.e. having Q-Cartier canonical divisor.

Although the local deformation theory of the cyclic quotient surface singularity 1
np1, qq

is quite complicated, the restriction to Q-Gorenstein deformations is well-understood by
[Kol90; KS88] (c.f. [Akh+16, §1]). Specializing to the case of T -singularities, the base of
the miniversal family of Q-Gorenstein deformations of the T -singularity 1

mr2
p1,mra´ 1q

is isomorphic to Cm´1, corresponding to the family of hypersurfaces

txy “ zrm ` Cm´2z
rpm´2q ` ¨ ¨ ¨ ` C1z

r ` C0u Ă C3{µ1,´1,a
r (4.1.3)

for parameters C1, . . . , Cm´2 P C. Note here that the central fiber is indeed isomorphic
to 1

mr2
p1,mra´ 1q by the isomorphism

C2{µ1,mra´1
mr2

–
ÝÑ txy “ zrmu{µ1,´1,a

r , pz1, z2q ÞÑ pzrm1 , zrm2 , z1z2q. (4.1.4)

The general fiber is smooth and is diffeomorphic to

Bm,r,a :“ txy “ pzr ´ ζ1q ¨ ¨ ¨ pzr ´ ζmqu{µ1,´1,a
r , (4.1.5)

for some real 0 ă ζ1 ă ¨ ¨ ¨ ă ζm, i.e. Bm,r,a is the quotient of the Arm´1 Milnor fiber by
µr, and we have H1pBm,r,a;Qq “ 0 and dimH2pBm,r,a;Qq “ m ´ 1. In the special case
m “ 1, B1,r,a is a rational homology ball and plays an important role in constructing
exotic four-manifolds with small homology groups (see e.g. [FS97]).

We will refer to a vertex v P Q of a polygonQ Ă MR as a T -vertex if the corresponding
toric fixed point pv P VQ is a T -singularity, and we will call Q a T -polygon if all of its
vertices are T -singularities (note this includes the case of Delzant vertices).21 Given a
T -vertex v, there is an isomorphism MR – R2 of integral affine manifolds which sends
v to p0, 0q with edge vectors p0, 1q and pmr2,mra ´ 1q, and we will refer to the image
of the direction pr, aq as the22 eigenray emanating from v (this corresponds to the
eigendirection of a suitable affine monodromy in §4.2b).23

Let Q Ă MR be a T -polygon, and as before let VQ denote the corresponding toric
surface with T -singularities. By definition T -singularities admit local Q-Gorenstein

20Notice that the singularity type depends only on a mod r.
21The notions of T -polygon and dual Fano polygon are independent: there are T -polygons whose fan

is not Fano and there are dual Fano polygons that are not T -polygons.
22One can check that this definition is unambiguous, since the integral affine transformation of R2

which swaps p0, 1q and pmr2,mra ´ 1q fixes pr, aq. In particular, this singularity is equivalent to its
reflection in the y-axis with edge vectors , p0,´1q, pmr2, 1 ´ mraq and eigenray pr,´aq.

23This is also often referred to as a nodal ray in the context of almost toric fibrations as in §4.2b.

31



smoothings as in (4.1.3), and according to [HP10, Prop. 3.1]24 there are no local-to-
global obstructions to deformations, so in particular VQ admits a Q-Gorenstein smoothing.
Thus we have:

Lemma 4.1.2. For any T -polygon Q Ă MR, there is a Q-Gorenstein smoothing rVQ of
VQ. If in addition Q is dual Fano, then rVQ is Fano for any sufficiently small smoothing,
and in particular rigid if rkH2p rVQ,Qq ď 5.

Following e.g. [GU10; Akh+12], there is a notion of mutation which inputs a dual Fano
polygon25 Q Ă MR and a choice of vertex v P Q and produces a new dual Fano polygon
MutvpQq Ă MR. Namely, let f P N be a primitive lattice vector such that xf, vy “ 0, let
vprim “ tv P M be primitive for some t P Rą0, and consider the piecewise-linear map

ψ : MR Ñ MR, u ÞÑ u´ minpxf, uy, 0q vprim. (4.1.6)

We put MutvpQq :“ ψpQq Ă MR. In the case MR “ R2, this is equivalent to

ψpuq “

#

Svprimpuq if xf, uy ď 0

u if xf, uy ą 0,
(4.1.7)

where Svprimpuq : R2 Ñ R2 is the primitive shear along vprim, defined by

Svprimpuq “ u` detpvprim, uq ¨ vprim, (4.1.8)

with detpvprim, uq the determinant of the 2 ˆ 2 matrix with columns vprim and u. We
will say that MutvpQq is the (primitive) mutation of the polygon Q at the vertex v.
Remark 4.1.3. Strictly speaking there are two choices for f in the above (i.e. in the
case v “ px, yq P R2 we have f “ ˘py,´xq), although the choice becomes unique if we
choose an orientation on MR and ask for f, vprim to be an oriented basis. At any rate, it
is easy to show using (4.1.7) that the two choices for f give mutations which are related
by an integral affine transformation of MR. ♢

We also define MutvpQq in the case that Q Ă MR is any polygon (not necessarily dual
Fano) and v P Q is a T -vertex. Note that in this case the origin in MR is not necessarily
in distinguished position relative to Q (it may not even be contained in Q). We put

MutvpQq :“ τ´1pMutτpvqpτpQqqq, (4.1.9)

24To apply the hypotheses of [HP10, Prop. 3.1] it suffices to note the anticanonical divisor of a toric
divisor is always big. Indeed, if D1, . . . ,Dk denote the toric boundary divisors, then we can find an
ample divisor of the form

řk
i“1 aiDi for a1, . . . , ak P Zě1. Then for any positive integer m ě a1, . . . , ak

we have that m times the anticanonical divisor is m
řk

i“1 Di “
řk

i“1 aiDi `
řk

i“1pm ´ aiqDi, which is a
sum of an ample divisor and an effective divisor and hence big by [Laz17, Cor 2.2.7].

25One can also describe the mutation in terms of the Fano polygon Qo
Ă NR, although for our purposes

the formula using dual Fano polygons is more succinct and more directly related to mutations of almost
toric fibrations. An extension of mutations to higher dimensional Fano polytopes is also defined in
[Akh+12].
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Figure 4: Dual Fano T -polygons Q such that rVQ is a smooth rigid del Pezzo surface.
Although these are not unique (due to the possibility of mutation), each representative
has a Delzant vertex and the minimal possible number of sides. Note that the polygon
for CP2#ˆ4CP

2 is not a lattice polygon (the top left vertex is p´1, 5{2q.)

where τ : MR Ñ MR is any translation sending a point on the eigenray emanating from v
to the origin (c.f. §4.1c), and MutτpvqpτpQqq is defined as above. One can check that this
coincides with the previous definition when Q is a dual Fano T -polygon (in that case the
eigenray emanating from v passes through the origin).

If v P Q is a T -vertex of type 1
mr2

p1,mra´ 1q with m “ 1, then it is straightforward
to check that the mutated polytope MutvpQq no longer has a vertex at v, but there is
a (possibly new) vertex at the point where the eigenray emanating from vprim meets
a side of Q. On the other hand, if m ą 1 then v is still a vertex of MutvpQq, but
now with parameters pm ´ 1, r, aq. Thus for all 1 ď k ď m the k-fold mutation
MutkvpQq :“ ψkpQq of Q at v is well-defined, and we define the full mutation of Q at v
to be Mutfullv pQq :“ Mutmv pQq. We have:

Lemma 4.1.4. If v is a T -vertex of a polygon Q Ă MR with k sides, then Mutfullv pQq

is a polygon with either k or k ´ 1 sides. In particular, if Q is a triangle then so is
Mutfullv pQq.

It is shown in [Akh+16, Lem. 7] (building on [Ilt12]) that if two dual Fano polygons
Q,Q1 Ă MR are mutation equivalent (i.e. Q1 can be obtained from Q by a sequence
of mutations), then the corresponding singular del Pezzo surfaces VQ and VQ1 are Q-
Gorenstein deformation equivalent (in the sense of [Akh+16, Def. 2]). We discuss an
approach to this in §6.3. In particular, if Q (and hence Q1) is also a T -polygon, the
smoothings rVQ and rVQ1 as in Lemma 4.1.2 are also Q-Gorenstein deformation equivalent.
Conversely, [Akh+16, Conj. A] conjectures that two dual Fano polygons Q,Q1 Ă MR

are mutation equivalent if the corresponding singular toric del Pezzos VQ, VQ1 are Q-
Gorenstein deformation equivalent. The specialization of this conjecture to dual Fano
T -polygons is proved in [KNP17, Thm. 1.2]. By the classification of smooth del Pezzo
surfaces, it follows that there are precisely 10 mutation equivalence classes of dual Fano
T -polygons. Representatives of these equivalence classes (or rather their duals) are shown
in [Akh+16, Fig. 1]. For the 6 equivalence classes corresponding to rigid smooth del
Pezzo surfaces, representatives which are particularly useful for constructing ellipsoid
embeddings are shown in Figure 4 (which is a reproduction of [Cri+20, Fig. 5.12]). The
construction of these representatives is based on almost toric techniques as in [Via17].

If Q is a T -triangle, then by Lemma 4.1.4 it remains so under successive full mutations.
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As explained in [Eva23, §H.2], if the vertices have types 1
mir2i

p1,miriai ´ 1q for i “ 1, 2, 3,
then this data satisfies a generalized Markov equation

m1r
2
1 `m2r

2
2 `m3r

2
3 “ C

?
m1m2m3 r1r2r3, (4.1.10)

where C P Rą0 is invariant under full mutations (one can check that the set tm1,m2,m3u

is also preserved under full mutations). We thus have a bijection between

(a) the set of T -triangles which are full mutation equivalent to Q, and

(b) the set of triples pr1, r2, r3q P Z3
ě1 satisfying (4.1.10).

The specialization r1 “ 1 corresponds to triangles with a Delzant vertex (c.f. Figure 4).
We will see later that these taken together encode all of the relevant unicuspidal curves
for the two-stranded rigid del Pezzo infinite staircases (c.f. Proposition 5.1.3 and
Proposition 6.1.11).
Example 4.1.5. When Q is the first triangle in Figure 4, (4.1.10) becomes the classical
Markov equation r21 ` r22 ` r23 “ 3r1r2r3. The solutions are well-known to form an
infinite trivalent tree, with edges corresponding to Markov mutations pr1, r2, r3q ÞÑ

pr1, r2, 3r1r2 ´ r3q and their permutations (see e.g. [Aig15]). The solutions with r1 “ 1
correspond to pairs of consecutive odd index Fibonacci numbers. ♢

4.2 Almost toric fibrations and polygons

In this section we discuss symplectic almost toric fibrations from the point of view of
T -polygons. After some preliminaries on Lagrangian torus fibrations, we define almost
toric fibrations, discuss their construction from T -polygons, and compare these with the
Q-Gorenstein smoothings from the previous subsection.

4.2a Abstract almost toric fibrations and almost toric bases

By definition a closed symplectic manifold M2n is toric if it carries a Hamiltonian Tn-
action. In this case the image of the corresponding moment map π :M Ñ Rn is a convex
polytope πpMq (see [Ati82; GS82]), such that π is a regular Lagrangian torus fibration
over the interior of πpMq. Meanwhile, π has toric singularities over the boundary of
πpMq, with the fiber over a point in the interior of a k-dimensional face of πpMq being
an isotropic torus T2k of dimension 2k. Almost toric fibrations extend this picture (in
dimension four) by allowing π to have additional focus-focus singularities.

An almost toric fibration (see e.g. [Sym; LS10; Eva23]) is a smooth proper
surjective map π : M4 Ñ B2 with connected fibers, where M4 is a symplectic four-
manifold and B2 is a smooth two-manifold with corners, such that

• at each regular point p P M4 the kernel ker dpπ Ă TpM is a Lagrangian subspace

• for each critical point p P M of π there are Darboux coordinates x1, y1, x2, y2 for
M near p and smooth coordinates b1, b2 for B near πppq such that π has one of the
following local normal forms:
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1. πpx1, y1, x2, y2q “ px1, x
2
2 ` y22q (corank one elliptic)

2. πpx1, y1, x2, y2q “ px21 ` y21, x
2
2 ` y22q (corank two elliptic)

3. πpx1, y1, x2, y2q “ px1y1 ` x2y2, x1y2 ´ x2y1q (focus-focus).

Note that the regular fibers are necessarily two-dimensional tori by the Arnold–
Liouville theorem. The first two types of singularities are modeled on the singularities of
a moment map of a toric symplectic manifold over an edge or vertex respectively of the
moment polytope. The third type of singularity is topologically equivalent to a critical
point of a Lefschetz fibration, but here the fibers are Lagrangian rather than symplectic.
The images of focus-focus singularities are called base-nodes.

Given an almost toric fibration π : M4 Ñ B2, observe that π restricts to a regular
Lagrangian torus fibration over the regular values Breg of π. Thus Breg inherits an
integral affine structure as follows. Given p P M and b “ πppq P Breg, the symplectic
form on M induces a nondegenerate pairing

x´,´y : TbB ˆ T vert
p M Ñ R, xu, vy “ ωpru, vq, (4.2.1)

where ru P TpM is any lift of u P TbB (i.e. π˚ru “ uq and T vert
p M “ Tpπ

´1pbq is the vertical
tangent space at p. In particular, for each covector in T ˚

b B there is a corresponding vector
field along π´1pbq, and taking its time-1 flow gives an action of T ˚

b B on the fiber π´1pbq.
The set of covectors in T ˚

b B which act trivially on π´1pbq defines a lattice Λ˚
b Ă T ˚

b B,
with dual lattice Λb Ă TbB. The corresponding lattice bundle Λ˚ “

Ť

bPBreg

Λ˚
b Ă T ˚Breg

gives a natural symplectomorphism

T ˚Breg{Λ˚ – M reg, (4.2.2)

while the dual lattice bundle Λ “
Ť

bPB

Λb Ă TBreg defines the integral affine structure on

Breg.
This integral affine structure on Breg gives rise to an affine monodromy map

mon : π1pBreg, ˚q Ñ AutpH1pπ´1p˚q;Zqq which measures how the integral affine structure
twists as we go around loops in Breg (here ˚ P Breg is a basepoint). By picking a basis we
can also view this as a map π1pBregq Ñ GL2pZq which is defined up to global conjugation
by an element of GL2pZq.

For a small loop γ in Breg surrounding a base-node b0, the corresponding affine
monodromy monpγq P GL2pZq is conjugate to the matrix

`

1 k
0 1

˘

with eigenvalue 1, where
k is the number of focus-focus critical points in the fiber π´1pb0q. Thus for any b1 ‰ b0
in a small neighborhood of b0 in B there is a well-defined eigenline in Tb1B for the affine
monodromy around b0, and these limit to a line Lb0 Ă Tb0B, which we call the eigenline
at b0.

Recall that there exists a closed smooth toric symplectic manifold with moment
polygon Q Ă Rn if and only if Q is a Delzant polytope ([Del88]). In dimension four we
expect to associate almost toric fibrations π :M4 Ñ B2 to more general polygons with
non-Delzant vertices (even though M is assumed to be smooth). However, some care is
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needed in formulating the almost toric analogue of the moment polygon, since there is
no global torus action and thus no global moment map.

Given an almost toric fibration π : M4 Ñ B2, the set of regular values Breg Ă B
naturally inherits an integral affine structure, and this extends over the toric critical
values to B∖tb1, . . . , bℓu, where b1, . . . , bℓ P B are the base-nodes. Thus we have a nodal
integral affine surface, i.e. a triple pB, tbiu,Aq, where B is a smooth two-dimensional
manifold with corners equipped with a subset tb1, . . . , bℓu Ă B (the base-nodes) and
an integral affine structure A on B ∖ tb1, . . . , bℓu, such that for each i “ 1, . . . , ℓ the
affine monodromy around a small loop γi surrounding bi is conjugate to

`

1 ki
0 1

˘

for some
nonzero ki P Z. Given an almost toric fibration π : M4 Ñ B2, we will refer to the
associated nodal integral affine surface pB, tbiu,Aq as its almost toric base.

We will say that two nodal integral affine surfaces pB, tbiu,Aq and pB1, tb1
iu,A1q are

isomorphic if there is a diffeomorphism B
–
ÝÑ B1 which restricts to a bijection tbiu

–
ÝÑ tb1

iu

and preserves the integral affine structures on the complements of the base-nodes. It
is shown in [Sym, Cor. 5.4] that if two almost toric fibrations π1 : M1 Ñ B1 and
π2 :M2 Ñ B2 have isomorphic almost toric bases with nonempty boundaries then their
total spaces are symplectomorphic.

Moreover, by [Sym, Thm. 5.2], a nodal integral affine surface pB, tbiu,Aq is the base
of an almost toric fibration if and only if each point b P B∖tbiu has a neighborhood which
is integral affine isomorphic to a neighborhood of a point R2

ě0 (with its standard integral
affine structure). In particular, given such a nodal integral affine surface pB, tbiu,Aq

with B compact, there is an associated closed symplectic four-manifold which we denote
by ApB, tbiu,Aq and which is well-defined up to symplectomorphism.

4.2b Nodal integral affine surfaces from T -polygons

We now construct a nodal integral affine surface Qnodal “ pB, tbiu,Aq from a T -polygon
Q Ă MR. Here B is the smooth surface with boundary given by smoothing the corners of
the polygon Q, while A is given roughly by implanting various nodes into the integral
affine structure on Q (i.e. the one induced from MR). Together with the discussion in
§4.2a, this construction associates to any T -polygon Q a closed symplectic four-manifold
ApQnodalq which carries an almost toric fibration

π : ApQnodalq Ñ Qnodal.

Strictly speaking Qnodal depends on some auxiliary parameters giving the locations of the
base-nodes (varying these is called a nodal slide), but using Moser’s stability theorem
ApQnodalq is independent of these choices up to symplectomorphism.

In more detail, we assume M “ Z2 for simplicity, and let Q Ă R2 be a T -polygon
with vertices v1, . . . , vℓ ordered counterclockwise. Since each vertex vi is a T -vertex, the
corresponding toric fixed point has type 1

mir2i
pmir

2
i ,miriai ´ 1q for some mi P Zě1 and

coprime ri, ai P Zě1. For i “ 1, . . . , ℓ, let ´hi P M denote the primitive integral vector
pointing in the direction of the eigenray emanating from vi (as in §4.1c). Note that by
our conventions ´hi points inward towards Q.
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For i “ 1, . . . , ℓ, pick εi ą 0 sufficiently small, and let γi Ă Q be the line segment
tvi ´ thi | t P r0, εisu. Pick ε “ t1i ą ¨ ¨ ¨ ą tmi

i ą 0, and let b1i , . . . , b
mi
i be the correspond-

ing points along γi (ordered towards vi) given by bji :“ vi ´ tjihi. Let Si P GL2pZq be
the primitive shear along ´hi as in §4.1c, i.e. Sipuq “ u ` detp´hi, uq ¨ p´hiq, and let
τi : R2 Ñ R2 be any translation sending a point on the eigenray emanating from vi to
the origin. Let s1i , . . . , s

mi
i be the components of γi ∖ tb1i , . . . , b

mi
i u ordered towards vi.

We now modify the integral affine surface Q∖ tbji u to obtain a new one by cutting Q
along sji and regluing via the tranformation τi ˝ Sj

i ˝ τ´1
i P GL2pZq for i “ 1, . . . , ℓ and

j “ 1, . . . ,mi (here Sj
i denotes the jth power of Si). More precisely, if psji q

´, psji q
` are

the boundary segments of Q ∖
ℓ

Ť

i“1
γi (in counterclockwise order) arising from cutting

along sji , then the gluing identifies u P psji q
` with pτi ˝Sj

i ˝τ´1
i qpuq P psji q

´. Since Sj
i fixes

γi pointwise, the resulting topological space Bnodal is naturally identified with Q∖ tbji u,
but by construction it carries an integral affine structure A which has affine monodromy
around each bji conjugate to

`

1 1
0 1

˘

.

Lemma 4.2.1. The glued integral affine structure A on Q∖ tbji u is locally isomorphic
to R2 near any interior point b P IntQ∖ tbji u, and it is locally isomorphic to a boundary
point of R ˆ Rě0 near any point in BQ. In particular, the smooth structure on Bnodal is
such that there are no corner points.

To complete the construction of Qnodal, we let B be the smooth surface with boundary
given by filling in the punctures of Bnodal. Note that B is diffeomorphic to a two-
dimensional closed disk.

Proof of Lemma 4.2.1. It suffices to analyze the integral affine structure near a vertex
vi. After an integral affine transformation we can assume that vi “ p0, 0q with incoming
edge vector p0,´1q and outgoing edge vector pmir

2
i ,miriai ´ 1q, and ´hi “ pri, aiq.

Let C Ă R2
ě0 be the cone spanned by p0, 1q, pmir

2
i ,miriai ´ 1q, and let C´, C` Ă C

be the subcones spanned by p0, 1q, pri, aiq and pri, aiq, pmir
2
i ,miriai ´ 1q respectively.

Then we have an integral affine isomorphism from a neighborhood of vi in Bnodal to a
neighborhood of p0, 0q in Rě0 ˆ R, given by

u ÞÑ

#

u u P C´

Smi
i puq u P C`.

Indeed, it suffices to check that the vector pmir
2
i ,miriai ´ 1q gets sent to p0,´1q, i.e.

Smi
i pmir

2
i ,miriai ´ 1q “ p0,´1q, and this is the content of the following lemma.

Lemma 4.2.2. If S P GL2pZq is the primitive shear along pr, aq, we have Smpmr2,mra´

1q “ p0,´1q.

Proof. Using (4.1.8) we have Smpx, yq “ px, yq `m detppr, aq, px, yqq ¨ pr, aq, from which
the result directly follows.
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Figure 5: Left: Qnodal, whereQ is the triangle with vertices v “ p3,´1q, v2 “ p´1, 1q, v3 “

p´1,´1q. Middle: a tropical representation of a curve intersecting each toric divisor
once as in Corollary 5.2.3. Right: a visible symplectic unicuspidal curve as in §5.1a. The
outer corner obstruction given by this curve implies that the shaded triangle represents
an optimal ellipsoid embedding.

Remark 4.2.3. Gluing in a node at a Delzant vertex is called a nodal trade and it
does not change the resulting symplectic four-manifold up to symplectomorphism (see e.g.
[Sym, Thm. 6.5] or [Eva23, §8.2]). In the above construction of Qnodal we have chosen
to glue in nodes at all of the Delzant vertices of Q (i.e. those of type 1

mr2
p1,mra ´ 1q

with m “ r “ 1) only for uniformity of exposition, but we can equally well leave the
integral affine structure alone near some or all of the Delzant vertices. When constructing
sesquicuspidal curves it will be beneficial to have one Delzant vertex without a nodal
trade. ♢

Remark 4.2.4. For an almost toric fibration π : ApQnodalq Ñ Qnodal as above, the
polygon Q decorated by its base-nodes tbji u and the eigenrays at its vertices is sometimes
called an almost toric base diagram. Our approach here is to keep track of only the T -
polygon Q Ă MR, since the eigenrays and number of base-nodes are uniquely determined
by Q and the locations of the base-nodes are immaterial up to symplectomorphism of
the total space.

In §6, we construct pp, qq-unicuspidal curves in ApQnodalq in T -polygons that have
one smooth vertex. The types pp, qq of their cusps do not depend simply on the types
1
q2

p1, pq ´ 1q of the T -singularities of the vertices of Q (where p is only well-defined mod
q), but rather on the relation between the eigenrays at the vertices of Q and the smooth
corner at the origin. For a vertex of type 1

q2
p1, pq´ 1q on the y-axis the adjacent edges of

Q have directions p0,´1q, pq2, 1 ´ pqq with eigenray pq,´pq, while in the quadrilaterals
considered in Lemma 6.5.3 a vertex of the same type on the x-axis is taken to have
adjacent edges in directions p´1, 0q, p1 ` rpq, q2q with eigenray prp, qq, where rp :“ p´ 6q.
Recall also from §4.1c that eigenrays are invariant under the reflection that interchanges
its two adjacent edges. ♢

Example 4.2.5. Figure 5 left illustrates Qnodal in the case that Q is a triangle with
vertices v1 “ p3,´1q, v2 “ p´1, 1q, v3 “ p´1,´1q. The vertices are:

• smooth at p3,´1q, with a nodal trade

• type 1
2p1, 1q at p´1, 1q
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• smooth at p´1,´1q, without a nodal trade.

Here we have ´h1 “ p´3, 1q and ´h2 “ p1,´1q. In this example the symplectic
four-manifold ApQnodalq is symplectomorphic to CP1p2q ˆ CP1p2q. ♢

We can equivalently describe ApQnodalq by starting with the symplectic toric orbifold
with moment map Q and performing a cut-and-paste operation near each toric fixed point.
Namely, near the ith toric fixed point we excise a neighborhood which is symplectomorphic
to a neighborhood in 1

mir2i
p1,miriai ´ 1q – txy “ zrimiu{µ1,´1,ai

ri and we glue in a

neighborhood in Bmi,ri,ai “ txy “ pzri ´ ζ1q ¨ ¨ ¨ pzri ´ ζmiqu{µ1,´1,ai
ri (c.f. §4.1c). Since

the group actions above are unitary, these spaces inherit symplectic forms from the
standard one on affine space. Here Bm,r,a carries the Auroux-type almost toric fibration

πAur : Bm,r,a Ñ C, πAurpx, y, zq “
`

|z|2, 12 |x|2 ´ 1
2 |y|2

˘

, (4.2.3)

which has mi focus-focus critical points mapping to distinct base-nodes. Note that πAur

this does indeed descend to the quotient by µp1,´1,aq
r (see [Eva23, §7.4] and §6.2 below).

By comparing the local description of Q-Gorenstein smoothings of T -singularities as
in (4.1.3) with the above cut-and-paste description of ApQnodalq, we have the following.

Proposition 4.2.6. Let Q be a T -polygon. For any sufficiently close Q-Gorenstein
smoothing rVQ of VQ, with integrable almost complex structure rJ , there exists a diffeomor-
phism Φ : rVQ Ñ ApQnodalq such that Φ˚p rJq tames the symplectic form on ApQnodalq.

4.2c Mutations of almost toric fibrations

Let Q Ă MR be a T -polygon. For almost toric fibrations of the form ApQnodalq as in
§4.2b, mutating Q at a vertex v as in §4.1c recovers the familiar notion of mutation for
almost toric fibrations (see e.g. [Eva23, §8.4]). One can check that, up to nodal slides
(i.e. moving the base-nodes), pMutvpQqqnodal and Qnodal are isomorphic nodal integral
affine polygons, differing in only their presentations in terms of polygons with branch
cuts (roughly speaking, a primitive mutation at a vertex v corresponds to rotating the
branch cut at one of the nearby base-nodes by 180 degrees). In particular, we have:

Proposition 4.2.7. If Q,Q1 Ă MR are mutation equivalent T -polygons, then the sym-
plectic four-manifolds ApQnodalq and ApQ1

nodalq are symplectomorphic.

5 Singular algebraic curves in almost toric manifolds I

In this section, we first discuss in §5.1 various geometric features of a symplectic four-
manifold which are “visible” from the base of an almost toric fibration, such as (singular)
symplectic and Lagrangian subspaces and ellipsoid embeddings. Then, in §5.2 we
construct some explicit rational holomorphic curves with prescribed cusp singularities
in (singular) toric surfaces. Finally, in §5.3, we explain how to push these holomorphic
curves into symplectic rigid del Pezzo surfaces in order to construct inner corner curves
and prove Theorem E.
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5.1 Visible geometry in almost toric fibrations

5.1a Visible Lagrangians and symplectic curves

Suppose that π : M4 Ñ B2 is a four-dimensional regular Lagrangian torus fibration,
and let C2 Ă M4 be a compact two-dimensional submanifold which projects to a path
γ Ă B2. Put Cb :“ C X π´1pbq for each b P B. Let x´,´y denote the pairing from
(4.2.1). The following is readily checked using the symplectomorphism (4.2.2):

• C is Lagrangian if and only if xu, vy “ 0 for any p P C, u P Tπppqγ, and v P TpCπppq

• C is symplectic if and only if xu, vy ‰ 0 for any p P C, u P Tπppqγ, and v P TpCπppq.

In these situations we will say that C is a visible Lagrangian or symplectic submanifold
of M . For b P γ, we will say that the fiber Cb is straight if it is an orbit of the action
of T ˚

b B on π´1pbq. For a visible Lagrangian C, it is easy to check that each fiber Cb is
straight, and thus each tangent vector to γ is a multiple of a lattice vector, so γ is also
straight with respect to the integral affine structure on B.

For a visible symplectic curve C the fibers Cb need not be straight, but at each
point b P γ there is a unique (up to sign) primitive covector αb P Λ˚

b such that Cb is
homologous to an orbit of the vector field along π´1pbq corresponding to αb (c.f. the
discussion after (4.2.1).) . Thus for a visible symplectic curve C there is a section α of
the pullback of Λ˚ along γ, such that αbpvq ‰ 0 for every b P γ and 0 ‰ v P Tbγ. We
will refer to the pair pγ, αq as a covector-decorated path. For future reference, we
note that the symplectic area of the visible symplectic curve C is naturally computed by
the integrating the covector field α along γ:

areapCq “

ż

t
αpγ1ptqqdt. (5.1.1)

Example 5.1.1. Suppose that B is R2 with its standard integral affine structure and
coordinates x1, x2, and let γ : pa, bq ÞÑ R2 be the straight line segment t Ñ ppt, qtq
for some primitive lattice vector pp, qq P Z2. Then we can take α to be the constant
covectorfield pdx1 ` qdx2, and the area of the corresponding visible symplectic cylinder
Cpγ,αq Ă T ˚T2 is pb´ aqpp2 ` q2q. ♢

One can extend the above discussion to define visible Lagrangian and symplectic
submanifolds in an almost toric fibration π : M4 Ñ B2. Over Breg the situation is
identical, and with some care we can also allow paths in B which end on toric boundary
points or base-nodes. Roughly, as b1 P Breg approaches an interior point b of an edge e of
a moment polygon, the torus fibers π´1pb1q collapse to circles along a direction determined
by e, and, similarly, as b1 approaches a Delzant vertex v (having no base-nodes) the torus
fibers collapse to a point.26 Meanwhile, as b1 P Breg approaches a base-node b, the torus
fibers π´1pb1q get pinched along a circle which depends on the eigenline Lb P TbB. In
slightly more detail, we have the following building blocks:

26Note that a general corank one or two elliptic value b P B is locally integral affine isomorphic to one
of these situations.
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(i) a smooth Lagrangian disk over any straight line segment γ ending on a base-node
b, provided that γ is tangent to the eigenline Lb at b

(ii) a symplectic disk over any covector-decorated path pγ, αq ending perpendicularly
to an interior point b of an edge e, provided that the covector αb P T ˚

b B vanishes
on the tangent space Tbe to the edge

(iii) a symplectic disk over any covector-decorated path pγ, αq ending on a base-node b
perdendicularly to its eigenline Lb, provided that the covector αb vanishes on Lb

(iv) a pp, qq-unicuspidal symplectic disk over any covector-decorated path pγ, αq that
has one end on a Delzant vertex v, where p and q are obtained by evaluating α on
the primitive tangent vectors to the edges adjacent to v (see also (3.1.1) below).

The symplectic discs in (ii), (iii) are smooth if the paths are straight near their endpoints.
Other local models for visible singular Lagrangians are also discussed e.g. in [ES18, §5.1
and §6.4].

Let us now specialize to the case of an almost toric fibration π : ApQnodalq Ñ Qnodal

associated to a T -polygon Q Ă R2 as in §4.2b. Here we assume that the vertex vi of Q is
of type 1

mir2i
p1,miriai ´ 1q. Note that a path in Qnodal is smooth in the usual sense in

R2, except that whenever it crosses some γi it bends by the appropriate shear. In this
case we have for example:

(a) a visible Lagrangian two-sphere L
rbji ,b

j`1
i s

over the line segment rbji , b
j`1
i s Ă Qnodal

for each i “ 1, . . . , ℓ and j “ 1, . . . ,mi ´ 1 (c.f. [Eva23, Fig. 7.8])

(b) a visible Lagrangian pri, aiq-pinwheel L
rb

mi
i ,vis

(see [Kho13, Def. 3.1]) over the
line segment rbmi

i , vis for each i “ 1, . . . , ℓ (c.f. again [Eva23, Fig. 7.8])

(c) a visible symplectic two-sphere C with c1pCq “ 2 over any straight line segment in
Qnodal ∖ tbji u with both ends ending perpendicularly on interior points of edges
(see the violet path in Figure 6 left)

(d) a visible nonsingular symplectic two-sphere C with c1pCq “ 1 over any straight line
segment γ in Qnodal with one end ending perpendicularly on an interior point of
an edge and the other end ending on a base-node perpendicularly to the associated
eigenline (see the blue path in Figure 6 right)

(e) a visible pp, qq-unicuspidal symplectic two-sphere Cp,q with c1pCq “ p` q over any
straight line segment γ in Qnodal of slope p{q with one end at a Delzant vertex
(having no base-nodes) and the other end ending on a base-node perpendicularly
to the associated eigenray (see the blue path in Figure 5 right).

The above claims about the first Chern class c1pCq are justified by work of Symington,
quoted in Lemma 5.1.7 below. As illustrated in Figure 6 below (see also Figure 3), the
normal crossing resolution rCp,q of the cuspidal curve Cp,q is a curve of type (d) that
is visible in an appropriate blowup of ApQnodalq at its smooth point. Note also that
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a Lagrangian pr, aq-pinwheel is homeomorphic to the closed unit two-disk D
2 with

its boundary quotiented out by the equivalence relation z „ e2πa
?

´1{rz for z P BD
2.

In particular, a Lagrangian p1, 1q-pinwheel is just an embedded Lagrangian disk and
a Lagrangian p2, 1q-pinwheel is an embedded Lagrangian real projective plane RP2.
The visible Lagrangians (a) and (b) will be useful for describing the symplectic form
on ApQnodalq in the sequel, while the visible symplectic curves (c), (d), and (e) give
symplectic analogues of some of the algebraic curves which we construct in §5 and §6
respectively.

(5,-1)

(-1,1/2)

(5,-1)

(-1,1/2)

Figure 6: Some visible symplectic curves in almost toric fibrations. The curve rC1,2 in
the right diagram is the normal crossing resolution of the visible cuspidal curve C1,2

5.1b Visible ellipsoid embeddings

Let Q Ă MR be a T -polygon, and let π : ApQnodalq Ñ Qnodal denote the corresponding
almost toric fibration as in §4.2b. Noting that the base-nodes of Qnodal can be pushed
arbitrarily close to the boundary by nodal slides (and recalling Remark 4.2.3), we have:

Proposition 5.1.2 ([Cri+20, Prop. 2.35]). Let v be a Delzant vertex of Q such that
the adjacent edges have affine lengths a and b. Then for any ε ą 0 we have a symplectic
embedding Ep a

1`ε ,
b

1`εq
s

ãÑ ApQnodalq.

We will refer to an embedding as in Proposition 5.1.2 as a visible ellipsoid embed-
ding. Note that if Q has a smooth corner vsm, that the same is true of its mutations
MutvpQq at vertices v ‰ vsm. Since by Proposition 4.2.7 Q and MutvpQq encode symplec-
tic four-manifolds which are symplectomorphic, this gives a mechanism for constructing
many ellipsoid embeddings into a fixed target space. Indeed, the ellipsoid embeddings
corresponding to the inner corner points of the rigid del Pezzo infinite staircases can all
be described in this way:

Proposition 5.1.3 ([Cri+20, §5]). Let M be a rigid del Pezzo surface, and let Q be the
corresponding dual Fano T -polygon (either a triangle or a quadrilateral) in Figure 4. Then
each inner corner point of the infinite staircase in the ellipsoid embedding function cM pxq

corresponds to a visible ellipsoid embedding after applying a sequence of full mutations to
Q.

If Q is a triangle then the ellipsoidal embedding in Proposition 5.1.3 fills the entire
volume of M and hence is clearly maximal. We will explain in §6.1 (see in particular
Proposition 6.1.11) why this is still the case when Q is a quadrilateral via the notion
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of visible symplectic obstructions. It will follow the numerics of these staircases can
be completely understood in terms of structures that are visible in suitable families of
almost toric bases.

5.1c Cohomology class of the symplectic form

For Q a Delzant polygon with edges e1, . . . , eℓ, recall that the associated toric surface VQ
carries a natural Kähler form ω for which Q is the moment polygon of a Hamiltonian T2-
action (see e.g. [Da 03, §6.6]). Using (4.1.1) together with the fact that the toric divisor
Dei has symplectic area Lenaffpeiq for i “ 1, . . . , ℓ, this characterizes the cohomology
class rωs P H2pVQ;Rq.

We seek to extend this to almost toric fibrations of the type π : ApQnodalq Ñ Qnodal

constructed in §4.2b. Under the homeomorphic identification Q – Qnodal, the vertices
v1, . . . , vℓ of Q now correspond to corank one elliptic values in Qnodal. In particular,
the edge preimages π´1peiq Ă ApQnodalq are symplectic annuli rather than two-spheres,
so they do not a priori represent homology classes. However, note that ri times the
circle π´1pviq bounds the Lagrangian pinwheel L

rb
mi
i ,vis

discussed in §5.1a. Therefore the
rational cycle

rDei :“ π´1peiq ´ 1
ri

¨ L
rb

mi
i ,vis

` 1
ri`1

¨ L
rb

mi`1
i`1 ,vi`1s

(5.1.2)

defines a homology class r rDeis P H2pApQnodalq;Qq.
Using the cut-and-paste discussion in §4.2b, we have:

Lemma 5.1.4. The rational homology group H2pApQnodalq;Qq is generated by r rDeis for
i “ 1, . . . , ℓ and rL

rbji ,b
j`1
i s

s for i “ 1, . . . , ℓ and j “ 1, . . . ,mi ´ 1.

Corollary 5.1.5. A homology class A P H2pApQnodalq;Rq is Poincaré dual to the co-
homology class of the symplectic form if and only if we have A ¨ r rDeis “ Lenaffpeiq for
i “ 1, . . . , ℓ and A ¨ rL

rbji ,b
j`1
i s

s “ 0 for i “ 1, . . . , ℓ and j “ 1, . . . ,mi ´ 1.

By Lemma 4.1.1, if Q is a Delzant polygon the toric symplectic four-manifold VQ is
monotone with monotonicity constant 1 (i.e. rωs “ PDpc1q) if and only if Q is dual Fano.
This extends to almost toric manifolds as follows:

Proposition 5.1.6. If Q is a dual Fano T -polygon, then the symplectic four-manifold
ApQnodalq is monotone with monotonicity constant 1.

Before beginning the proof, we recall the following result.

Lemma 5.1.7 ([Sym, Prop. 8.2]). For a general T -polygon Q with edges e1, . . . , eℓ, the

full boundary preimage π´1pBQnodalq “
ℓ

Ť

i“1
π´1peiq is Poincaré dual to c1pApQnodalqq.

Proof of Proposition 5.1.6. By [KNP17, Thm. 1.2] there are precisely 10 mutation equiv-
alence classes of dual Fano T -polygons, corresponding to the 10 topological types of
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smooth del Pezzo surfaces. Since mutations imply symplectomorphisms (see Propo-
sition 4.2.7), it suffices to check the result for one representative in each of the 10
equivalence classes.

In fact, [Via17] shows that 8 of the 10 mutation equivalence classes of dual Fano T -
polygons have a triangular representative. Moreover, the two exceptions, CP1p3q#CP

2
p1q

and CP1p3q#ˆ2CP
2
p1q, instead have Delzant representatives, for which the result follows

directly by Lemma 4.1.1 since in the smooth case ApQq “ VQ.
Now suppose that Q Ă R2 is a dual Fano T -triangle. Note that the boundary preimage

rπ´1pBQnodalqs together with the visible Lagrangian spheres rL
rbji ,b

j`1
i s

s for i “ 1, . . . , ℓ

and j “ 1, . . . ,mi ´ 1 form a basis for H2pApQnodalq;Qq, and since c1prL
rbji ,b

j`1
i s

sq “

rL
rbji ,b

j`1
i s

s ¨ rπ´1pBQnodalqs “ 0, it follows that ApQnodalq is monotone.
To see that the monotonicity constant is 1, we will define a test homology class in

H2pApQnodalq;Rq and check that its symplectic area agrees with its Chern number. Let
e1, e2, e3 denote the edges of Q, where ei has primitive outward normal vector ppi, qiq P Z2

and affine length ℓi P Rą0, so that we have
3

ř

i“1
ℓi ¨ ppi, qiq “ p0, 0q. Let γi Ă R2 denote

a straight line segment which starts at the origin and ends on the interior of the edge
ei, let αi denote the covector field along γi with constant value pidx1 ` qidx2, and let
Ci :“ Cpγi,αiq

Ă ApQnodalq denote the corresponding visible symplectic disk as in §5.1a.
Using (5.1.1) and the fact that Q is dual Fano, the symplectic area of Ci is 1. Also, note
that BCi is a circle in the Lagrangian torus fiber π´1p⃗0q for i “ 1, 2, 3, and we have

3
ÿ

i“1

ℓirBCis “ 0 P H1pπ´1p⃗0q;Rq.

Thus we can find a Lagrangian R-chain L in π´1p⃗0q such that
3

ř

i“1
ℓiCi ` L is an R-

cycle in ApQnodalq, say representing a class A P H2pApQnodalq;Rq. The symplectic area

of A is
3

ř

i“1
ℓi areapCiq “ ℓ1 ` ℓ2 ` ℓ3, and by Lemma 5.1.7 its Chern number is also

A ¨ rπ´1pBQnodalqs “ ℓ1 ` ℓ2 ` ℓ3.

5.2 Rational curves in toric surfaces

We now turn our attention to the construction of rational algebraic curves in toric
surfaces, typically of strictly positive index. Our approach here is to write down explicit
formulas for rational curves in the dense complex torus pC˚q2 Ă VQ, and then take their
closures to obtain rational curves in VQ. This could be seen as a step in the direction
of a tropical-to-holomorphic correspondence as in [Mik05], but here we focus primarily
on those curves which we will need in §5.3, keeping the discussion as elementary and
explicit as possible.

As before, let M be a rank two lattice with dual lattice N, and put MR “ M bZ R and
NR “ N bZ R. In the following, we will say that a polygon Q Ă MR is rational if all
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of its vertices lie in MQ :“ M bZ Q. Note that any rational polygon becomes a lattice
polygon after scaling by some positive integer.

Proposition 5.2.1. Let Q Ă MR be a rational polygon with edges e1, . . . , eℓ and cor-
responding primitive inward normals n⃗1, . . . , n⃗ℓ P N. Suppose that we are given a set
(possibly empty) of positive integers Jei “ tki1, . . . , k

i
siu for each i “ 1, . . . , ℓ, such that

the following balancing condition holds

ℓ
ÿ

i“1

si
ÿ

j“1

kijn⃗i “ 0⃗, (5.2.1)

and such that the quantities di :“
si
ř

j“1
kij satisfy gcdpd1, . . . , dℓq “ 1. Then there exists

a rational algebraic curve C in VQ such that, for i “ 1, . . . , ℓ, C intersects Dei in its
interior in precisely si local branches, with contact orders ki1, . . . , k

i
si , and C is otherwise

disjoint from Dei .

Example 5.2.2. Figure 5 middle gives a tropical representation of the curve C in
Proposition 5.2.1 in the case that Q is a triangle with vertices p´1,´1q, p´1, 1q, p3,´1q,
with Je1 “ t2u, Je2 “ t1u, Je3 “ t1u. ♢

Let Σ denote the punctured Riemann surface CP1 ∖ tw1, . . . , wκu for some pairwise
distinct w1, . . . , wκ P CP1. Given o⃗ “ po1, . . . , oκq P Zκ, there is a unique (up to choice
of constant A P C˚) holomorphic function fΣ,⃗o : Σ Ñ C˚ with zero of order oi (i.e. pole of
order ´oi) at the puncture zi for i “ 1, . . . ,κ and no other zeros or poles, given explicitly
by

fΣ,⃗opzq “ Apz ´ w1qo1 ¨ ¨ ¨ pz ´ wκqoκ . (5.2.2)

For simplicity we will usually take A “ 1.
By ordered toric degree we will mean a tuple δ “ pv⃗1, . . . , v⃗κq for some κ P Zě2,

with v⃗1, . . . , v⃗κ P N ∖ t⃗0u such that
řκ

i“1 v⃗i “ 0⃗. Let TN Ă VQ denote the complex torus
N bZ C˚, which is identified with pC˚qn after choosing a basis b⃗1, . . . , b⃗n for N. Given an
ordered toric degree δ “ pv⃗1, . . . , v⃗κq, we have the holomorphic function fΣ,δ : Σ Ñ TN

whose jth component with respect to the chosen basis is f
Σ,pvj1,...,v

j
κq

, where we put

v⃗i “
řn

j“1 v
j
i b⃗j for i “ 1, . . . ,κ. More explicitly, in the case NR “ R2 with b⃗1, b⃗2 the

standard basis, we put

fΣ,δpzq “ pfxpzq, fypzqq “

´

pz ´ w1qv
x
1 ¨ ¨ ¨ pz ´ wℓq

vxℓ , pz ´ w1qv
y
1 ¨ ¨ ¨ pz ´ wℓq

vyℓ

¯

,

(5.2.3)

with v⃗i “ pvxi , v
y
i q for i “ 1, . . . ,κ.

Proof of Proposition 5.2.1. Put δ :“ pk11n⃗1, . . . , k
1
s1 n⃗1, . . . , k

ℓ
1n⃗ℓ, . . . , k

ℓ
sℓ
n⃗ℓq, let Σ be CP1

minus
ℓ

ř

i“1

si
ř

j“1
kij punctures, and let C be the closure of the image of fΣ,δ : Σ Ñ pC˚q2 Ă VQ.
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We will show that at the first puncture, w1, C intersects De1 in its interior with contact
order k11, the situation being similar at the other punctures by symmetry. We may
assume that our basis for N is chosen such that n⃗1 “ p0, 1q. Let σ “ Rě0xn⃗1y Ă NR be
the cone generated by n⃗1, with the dual cone σ_ Ă MR generated by p0, 1q, p1, 0q, p´1, 0q.
The corresponding affine toric variety Uσ is identified with tpz1, z2, z3q P C3 | z1z3 “ 1u,
with De1 X Uσ “ tpz1, z2, z3q P Uσ | z2 “ 0u and with the inclusion map ι : pC˚q2 Ñ Uσ

given by px, yq ÞÑ px, y, x´1q. We thus have pι ˝ fΣ,δqpzq “ pfxpzq, fypzq, fxpzq´1q, and
therefore

lim
zÑw1

pι ˝ fΣ,δqpzq “ lim
zÑw1

pApz ´ w1qk
1
1n

x
1 , Bpz ´ w1qk

1
1n

y
1 , A´1pz ´ w1q´k11n

x
1 q

“ lim
zÑw1

pApz ´ w1qk
1
1 ¨0, Bpz ´ w1qk

1
1 ¨1, A´1pz ´ w1q´k11 ¨0q

“ pA, 0, A´1q

for some constants A,B P C˚. The corresponding contact order with De1 is given by the
vanishing order of fypzq as z Ñ w1, which is k11.

Corollary 5.2.3. Assume that Q Ă MR is a lattice polygon such that the edge affine
lengths Lenaffpe1q, . . . ,Lenaffpeℓq P Zě1 are coprime. Then there exists a rational algebraic
curve C in VQ such that C intersects Dei in a single point in its interior with multiplicity
Lenaffpeiq for i “ 1, . . . , ℓ.

Proof. Put Jei “ tLenaffpeiqu for i “ 1, . . . , ℓ. Since Q is a closed polygon, we have
ℓ

ř

i“1
ei “ 0⃗, which implies the balancing condition (5.2.1).

The following is an algebraic counterpart of the visible symplectic curves over straight
lines discussed in §5.1a:

Corollary 5.2.4. Let Q Ă MR be a rational polygon having two parallel edges e`, e´.
Then there exists a nonsingular rational algebraic curve C in VQ which intersects each of
De`

,De´
transversely in one point and is disjoint from the other toric divisors.

We will also need to know that the curves constructed above are suitably robust under
deformations of the complex structure. Let MpJe1 , . . . , Jeℓq denote the (uncompactified)
moduli space of curves C as in Proposition 5.2.1. Here we view curves in MpJe1 , . . . , Jeℓq
as holomorphic maps CP1 Ñ VQ (modulo biholomorphic reparametrization) having
specified intersection pattern with the toric divisors De1 , . . . ,Deℓ .

Lemma 5.2.5. The moduli space MpJe1 , . . . , Jeℓq is regular.

Proof. Let u : CP1 Ñ VQ be a curve in MpJe1 , . . . , Jeℓq. Then u is regular by automatic
transversality (see [Wen10, Thm. 1]) provided that we have indRpCq ą 2Zpduq ´ 2,
where Zpduq is the total (complex) vanishing order of the derivative of u at all of its
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critical points. Note that we have indRpuq “ 2κ ´ 2, where κ “
ℓ

ř

i“1
si is the number of

punctures of Σ. Meanwhile, we have

f 1
xpzq

fxpzq
“ d

dz logpfxpzqq “

κ
ÿ

i“1

vxi
z ´ wi

“
P pzq

pz ´ w1q ¨ ¨ ¨ pz ´ wκq
,

where P pzq is a polynomial of degree at most κ´1 (actually at most κ´2 since
κ
ř

i“1
vxi “ 0),

so we have Zpduq ď κ ´ 1 and thus indRpuq “ 2κ ´ 2 ą 2κ ´ 4 ě 2Zpduq ´ 2.

Remark 5.2.6. In the case κ “ 3, fΣ,δ is in fact an immersion, i.e. Zpduq “ 0. Indeed,
without loss of generality we can take w1 “ 0, w2 “ 1, w3 “ 8, so that (5.2.3) becomes

fΣ,δpzq “

´

zv
x
1 pz ´ 1qv

x
2 , zv

y
1 pz ´ 1qv

y
2 .

¯

.

Observe that we have fΣ,δ “ Φ ˝ g, where g : Σ Ñ pC˚q2, gpzq “ pz, z ´ 1q is a
parametrization of the (nonsingular) pair of pants tx “ y ` 1u Ă pC˚q2 and Φ : pC˚q2 Ñ

pC˚q2, Φpx, yq “ pxv
x
1 yv

x
2 , xv

y
1 yv

y
2 q is a degree |detpv⃗1, v⃗2q| holomorphic covering map (c.f.

[Eva23, §G.2]). ♢

5.3 Inflatable sesquicuspidal curves and the inner corners

The goal of this subsection is to prove the following result, which we then use to
deduce Theorem E. Recall that we associate to a T -polygon Q an almost toric fibration
π : ApQnodalq Ñ Qnodal as in §4.2b.

Theorem 5.3.1. Let Q Ă MR be a dual Fano lattice T -polygon with a Delzant vertex
vsm. Let e, e1 be the edges adjacent to vsm, and put Lenaffpeq “ kp and Lenaffpe1q “ kq,
where k, p, q P Zě1 satisfy gcdpp, qq “ 1 and p ě q. Assume also that the affine lengths
of the edges of Q are coprime. Then there exists a rational Jint-holomorphic curve C in
ApQnodalq, where:

• C has a cusp with Puiseux characteristic pq; pq if k “ 1 and pkq; kp, kp`1q if k ě 2

• C is Poincaré dual to the symplectic form on ApQnodalq

• rCs ¨ rCs ě k2pq

• Jint is a tame integrable almost complex structure on ApQnodalq such that
pApQnodalq, Jintq is biholomorphic to a Q-Gorenstein smoothing rVQ of VQ.

Moreover, when Q is a triangle we can assume that C is unicuspidal.

Note that in the symplectic category we can easily perturb C to make it sesquicuspidal
(i.e. positively immersed away from the cusp), although this is not guaranteed as a Jint-
holomorphic curve. In particular, after such a perturbation C satisfies the hypotheses of
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Theorem A with c “ 1, i.e. inflating along C gives a symplectic embedding Ep
kq
c1 ,

kp
c1 q

s
ãÑ

M for any c1 ą 1. In other words, any visible ellipsoid embedding (in the sense of
Proposition 5.1.2) can be obtained by symplectic inflation along a sesquicuspidal rational
symplectic curve. Theorem E upgrade this to algebraic curves in the case of rigid del
Pezzo surfaces.

Proof of Theorem E. Let M be a rigid del Pezzo surface and let px “ p{q, yq be an inner
corner point on the graph of the corresponding ellipsoid embedding function cM pxq.
According to Proposition 5.1.3, there exists a dual Fano T -polygon Q Ă R2 such that

• ApQnodalq is symplectomorphic to M

• Q has a Delzant vertex vsm with adjacent edges e, e1 satisfying Lenaffpeq “ 1
y and

Lenaffpe1q “
p
qy

• Q is a triangle in the cases M “ CP2,CP1 ˆ CP2,CP2#ˆjCP
2, j “ 3, 4, and Q is

a quadrilateral in the cases M “ CP2#ˆjCP
2, j “ 1, 2.

Let s P Rą0 be minimal scaling factor such that s ¨Q Ă R2 is a lattice polygon. Then s ¨Q
satisfies the hypotheses of Theorem 5.3.1, with Lenaffps ¨ eq “ kq and Lenaffps ¨ e1q “ kp
for k :“ s

qy P Zě1. Let C be the resulting curve in Aps ¨ Qnodalq. Here Aps ¨ Qnodalq is
naturally identified as a symplectic manifold with ApQnodalq after scaling the symplectic
form by s. In particular, C corresponds to a curve C 1 in ApQnodalq which is Poincaré
dual to s times the symplectic form. Note that pApQnodalq, Jintq is a rigid Fano complex
surface and hence is necessarily biholomorphic to M . Also, observe when Q is a triangle
we must have k “ 1, since then evidently s “ qy is minimal such that s ¨Q is a lattice
triangle. Thus the curve C 1 verifies Thereom E.

Our proof of Theorem 5.3.1 will proceed roughly in the following steps:

1) construct a rational curve in a weighted blowup of VQ using the results in §5.2

2) blow down to get a curve with a distinguished cusp in VQ

3) push this curve into a Q-Gorenstein smoothing rVQ of VQ

4) identify rVQ diffeomorphically with ApQnodalq.

We now proceed with the details. Let Q as in Theorem 5.3.1, and let v1, . . . , vℓ
denote the vertices of Q, with corresponding edges ei “ rvi, vi`1s for i “ 1, . . . , ℓ (here i
is taken modulo ℓ). Here we take v1 “ sm to be the Delzant vertex, with adjacent edges
e “ e1 and e1 “ eℓ.

Lemma 5.3.2. With Q as above, there exists a rational algebraic curve C in VQ such
that

• for i “ 2, . . . , ℓ´1, C intersects Dei in a single point in its interior with multiplicity
Lenaffpeiq
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• C X De1 “ C X Deℓ “ De1 X Deℓ

• C has a cusp at the point De1 X Deℓ with Puiseux characteristic pq; pq if k “ 1 and
pkq; kp, kp` 1q if k ě 2

• rCs ¨ rCs ě k2pq.

Moreover, when Q is a triangle (i.e. ℓ “ 3) we can assume that C is unicuspidal.

Proof of Lemma 5.3.2. Let Q1 be the polygon with vertices v1
1, v2, . . . , vℓ, v

2
1, where v1

1 “
1
2v1 ` 1

2v2 and v2
1 “ 1

2vℓ ` 1
2v1 (i.e. Q1 is obtained from Q by “chopping off” the

vertex v1). Denote the corresponding edges of Q1 by e1
1, e2, . . . , eℓ´1, e

1
ℓ, eslant, where

e1
1 “ rv1

1, v2s, e1
ℓ “ rvℓ, v

2
1s, and eslant “ rv2

1, v
1
1s. Let De1

1
,De2 , . . . ,Deℓ´1

,De1
ℓ
,Deslant

denote the corresponding toric boundary divisors of the associated toric surface VQ1 ,
which is a pp, qq-weighted blowup of VQ. By Proposition 5.2.1, we can find a rational
algebraic curve C 1 Ă VQ1 such that

• C 1 intersects Deslant in a single point in its interior with multiplicity k

• for i “ 2, . . . , ℓ´1, C 1 intersects Dei in a single point in its interior with multiplicity
Lenaffpeiq

• C 1 is disjoint from De1
1

and De1
ℓ
.

Note that, in the case ℓ “ 3, C 1 is nonsingular as in Corollary 5.2.4.
We now consider the image of C under the weighted blowdown VQ1 Ñ VQ along

Deslant . More explicitly, we first consider the iterated toric blowup V res of VQ1 which
minimally resolves the singularities of VQ1 at the toric fixed points corresponding to
v1 and v2. Let Cres denote the proper transform of C 1 in V res. These blowups result
in a collection of negative self-intersection spheres F1, . . . ,FL, where FL is the proper
transform of Deslant , such that Cres intersects FL in a single point with multiplicity k
and is disjoint from F1, . . . ,FL´1. In the case k “ 1, the collection F1, . . . ,FL, C

res has
precisely the same intersection pattern as in the normal crossing resolution of a pp, qq

cusp (c.f. §3.1), whence we can blow down along FL, . . . ,F1 to obtain a curve C in VQ
with a pp, qq cusp. Similarly, in the case k ě 2, a comparison with Example 3.3.4 shows
that the blown down curve C has a cusp with Puiseux characteristic pkq; kp, kp` 1q.

To establish rCs ¨ rCs ě k2pq, note that c1prCressq is given by the homological
intersection number of rCress with the toric boundary divisor of V res. This is evidently at
least 2, so using the adjunction formula we have rCress ¨ rCress ě 0, which by Lemma 3.3.5
is equivalent to rCs ¨ rCs ě k2pq.

Finally, the last sentence of the lemma follows by Corollary 5.2.4.

Proof of Theorem 5.3.1. Let C be a rational algebraic curve in VQ as constructed by
Lemma 5.3.2. In particular, C has a distinguished cusp and satisfies rCs ¨ rCs ě k2pq. We
view C as having a J-holomorphic parametrization u : CP1 Ñ VQ with a prescribed cusp
singularity at De1 X Deℓ , where J is the preferred integrable almost complex structure
on VQ. Since C is regular (see Lemma 5.2.5) and disjoint from the singularities of
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VQ, it deforms to a nearby curve rC with the same type of cusp in a sufficiently small
Q-Gorenstein smoothing rVQ of VQ.27 By Proposition 4.2.6, there is a diffeomorphism
Φ : rVQ Ñ ApQnodalq such that Φ˚p rJq tames the symplectic form on ApQnodalq (here rJ

is the integrable almost complex structure on rVQ). Put rC 1 :“ Φp rCq. We can assume
that the smoothing rVQ is such that r rC 1s ¨ r rDeis “ rCs ¨ rDeis for i “ 1, . . . , ℓ (here
r rDe1s, . . . , r rDeℓs P H2pApQnodalq;Qq are the homology classes from §5.1c), and hence rC 1

is Poincaré dual to the symplectic form of ApQnodalq by Corollary 5.1.5. Note also that
we have r rC 1s ¨ r rC 1s “ r rCs ¨ r rCs “ rCs ¨ rCs ě k2pq. Thus rC 1 satisfies all of the conclusions
of Theorem 5.3.1 with Jint :“ Φ˚p rJq.

6 Singular algebraic curves in almost toric manifolds II

In this section we develop techniques to construct index zero unicuspidal rational alge-
braic curves in Q-Gorenstein smoothings of singular toric surfaces. These are closely
parallel to visible symplectic curves in almost toric fibrations which pass through a
focus-focus singularity (as in §5.1a). In particular, we prove Theorem 6.1.7, which
is a (slight strengthening of a) restatement of Theorem D. The main technique is an
explicit construction of Q-Gorenstein pencils associated to polygon mutations as in [Ilt12;
Akh+16].

More specifically, in §6.1 we introduce the notion of visible ellipsoid obstructions,
which are carried by symplectic and in fact algebraic unicuspidal curves, and we observe
that all obstructions for the rigid del Pezzo infinite staircases are of this type. After a
brief interlude on the Auroux model in §6.2, we discuss Q-Gorenstein pencils in §6.3, and
we use these to construct explicit algebraic curves in Q-Gorenstein smoothings in §6.4.
Finally, in §6.5 we discuss the classification of index zero unicuspidal rational algebraic
curves in the first Hirzebruch surface and prove Theorem F.

6.1 Unicuspidal curves from T -polygons and the outer corners

6.1a Visible ellipsoid obstructions and unicuspidal symplectic curves

We begin by discussing ellipsoid embedding obstructions which come from visible unicus-
pidal symplectic curves in the base of an almost toric fibration. Fix m, r, a P Zě1 with
gcdpr, aq “ 1. Note that we do not assume a ă r, but we can uniquely write a “ a1 ` ςr
for some a1 P t1, . . . , r ´ 1u and ς P Zě0. Let Q Ă MR be a T -polygon with a Delzant
vertex v adjacent to vertices u and w, where w has type 1

mr2
p1,mra´ 1q, such that the

eigenray emanating from w intersects the line segment ru, vs in a point p. We will assume
that MR “ R2, v “ p0, 0q, w lies on the positive y-axis, u lies on the positive x-axis, and
the edges emanating from w are p0,´1q and pmr2, 1 ´mraq. In particular, the eigenray
emanating from w points in the direction pr,´aq.

27Strictly speaking Lemma 5.2.5 says that a resolution C 1
Ă VQ1 is regular (without any cusp condition),

which suffices for our purposes since we can readily pass between curves with prescribed cusps and their
resolutions (c.f. [McS23, §4.3]).
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Put ℓ1 :“ Lenaffprv,wsq and ℓ2 :“ Lenaffprv, psq. Note that we have ℓ1
ℓ2

“ a
r , and,

because the nodal ray from w meets the side ru, vs, there is a visible ellipsoid embedding
in the sense of §5.1b (c.f. Figure 5 right28)

Ep ℓ1c1 ,
ℓ2
c1 q

s
ãÑ ApQnodalq (6.1.1)

for any c1 ą 1.

Proposition 6.1.1. Let Q be a T -polygon as above such that the eigenray emanating
from w is in direction pr,´aq. Then there is an index zero rational pr, aq-unicuspidal
symplectic curve C in ApQnodalq with area rℓ1 “ aℓ2.

Proof. We have v “ p0, 0q, w “ p0, ℓ1q and p “ pℓ2, 0q, with the eigenray emanating from
w pointing in the direction pr,´aq. Let pγ, αq be the covector-decorated path where:

• γ is the straight line segment starting on v and ending at a point pta, trq on rw, ps

for some t P Rą0

• α is the lattice covectorfield along γ which vanishes on the eigenray direction
pr,´aq, i.e. α “ adx1 ` rdx2.

After a nodal slide, we can assume that Qnodal has a base-node at pta, trq. Let C be
the corresponding visible pr, aq-unicuspidal symplectic curve in ApQnodalq as in item (e)
in §5.1a. By (5.1.1), the symplectic area of C is given by

ş

γ α “ xpta, trq, pa, rqy “

xw, pa, rqy “ rℓ1.

Remark 6.1.2. Note that the cusp type pr, aq “ pr, a1`ςrq appearing in Proposition 6.1.1
depends not just on the vertex type 1

mr2
p1,mra´ 1q “ 1

mr2
p1,mra1 ´ 1q of w but also on

the parameter ς, which controls how the eigenray of w meets the Delzant vertex v. One
can also relax the assumption that w is adjacent to v, provided that the line segment
joining v perpendicularly to the eigenray of w is contained in Q. ♢

Remark 6.1.3. Using the generators from §5.1c, the homology class rCs P

H2pApQnodalq;Qq in Proposition 6.1.1 is characterized by rCs¨r rDrv,wss “ a, rCs¨r rDru,vss “

r, and rCs ¨ r rDes “ 0 for all other edges e of Q. In particular, we have c1prCsq “ r` a. ♢
Together with the obstruction provided by Theorem 1.3.1, Proposition 6.1.1 immedi-

ately gives:

Corollary 6.1.4. Let Q be a T -polygon as above such that the eigenray emanating from
w meets the edge ru, vs. Then the embedding (6.1.1) is optimal in the sense that there is
no such embedding for c1 ă 1 (even after stabilizing by CNě1).

We will refer to an obstruction as in Corollary 6.1.4 as a visible ellipsoid obstruc-
tion, since it is read off visually from the polygon Q as in Figure 5 right. Note that

28Strictly speaking the roles of the x and y axes are swapped in Figure 5 right compared with our
conventions in this section. There is another (unshaded) ellipsoid obstruction which is visible in this
same figure, which is associated with the eigenray emanating from the other vertex (at p´1, 1q).
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it follows that for any p1 P rp, vs the visible ellipsoid embedding corresponding to the
triangle with vertices v, p1,w is also optimal. In particular, this determines the ellipsoid
embedding function for M “ ApQnodalq on an appropriate closed interval as follows:29

Corollary 6.1.5. Let Q be a T -polygon as above with ApQnodalq symplectomorphic to
M , and put ℓ3 :“ Lenaffprp, usq. We have:

(A) cM pxq “ x{ℓ1 for all x P r ℓ1
ℓ2`ℓ3

, ℓ1ℓ2 s if ℓ1 ą ℓ2 ` ℓ3;

(B) cM pxq “ ℓ1 for all x P r ℓ2ℓ1
, ℓ2`ℓ3

ℓ1
s if ℓ1 ă ℓ2.

Proof. Both of these claims hold by considering the family of embeddings represented
by the visible triangles in Qnodal with vertices w, v, and u1 where u1 lies on the line
between p and u. The fact that the embedding with u1 “ p is optimal (by Corollary 6.1.4)
implies that all the embeddings with u1 on the line rp, us are also optimal. If ℓ1 ă ℓ2
and ℓ1x P rℓ2, ℓ2 ` ℓ3s, these give rise to optimal embeddings of Epℓ1, ℓ1xq into ApQnodalq,
which implies that cM pxq is constant over the corresponding interval as in (B). On the
other hand, if ℓ2 ď z ď ℓ2 ` ℓ3 ă ℓ1 we obtain optimal embeddings of Epz, ℓ1q into
ApQnodalq. Setting x “ ℓ1

z ą 1 this translates to an optimal embedding of Ep ℓ1x , ℓ1q into
ApQnodalq, which implies (A).

We will see in Proposition 6.1.11 below that each of the rigid del Pezzo infinite
staircases may be entirely described in this way, with (A) accounting for the sloped line
preceding an outer corner and (B) accounting for the horizontal line following an outer
corner.
Remark 6.1.6. Let us explain briefly why the obstruction in Corollary 6.1.4 holds
from the perpsective of exceptional homology classes. By Proposition 6.1.1 there is a
visible pp, qq-unicuspidal symplectic curve Cp,q in ApQnodalq. After a sequence of blowups
at the toric fixed point corresponding to the origin, we arrive at the normal crossing
resolution rCp,q, which is an exceptional curve. Recall that an exceptional class in a closed
symplectic four-manifold pM,ωq has a symplectic representative for every symplectic
form ω1 that is deformation equivalent to ω, and must always have positive symplectic
area. Now consider the visible ellipsoid embedding (6.1.1) for c1 ą 1, which corresponds
to the subtriangle T 1 Ă T which is a 1

c1 -scaling of the shaded triangle in Figure 5 right.
The symplectic area of the exceptional class r rCp,qs is a function of the distance between
this slant edge of T 1 and the eigenray emanating from w. Since this tends to zero as
c1 Ñ 1, it follows that the embedding (6.1.1) is optimal. ♢

6.1b Visible unicuspidal algebraic curves and outer corner curves

The primary goal of this section is to show that visible ellipsoid obstructions in fact come
from algebraic curves. We prove the following Theorem in §6.4.

29The slightly awkward phrasing division into cases comes from the fact that cM pxq is defined in terms
of ellipsoids Ep1, xq with x ě 1. The case ℓ2 ď ℓ1 ď ℓ2 ` ℓ3 does not occur in nontrivial cases.
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Theorem 6.1.7. Let Q Ă MR be a T -polygon which contains consecutive edges pointing
in the directions p´mr2,mra ´ 1q, p0,´1q, p1, 0q for m, r, a P Zě1 with gcdpr, aq “ 1.
Then there is an index zero pr, aq-unicuspidal rational symplectic curve C in ApQnodalq

which is Jint-holomorphic, where Jint is a tame integrable almost complex structure on
ApQnodalq such that pApQnodalq, Jintq is biholomorphic to a sufficiently small Q-Gorenstein
smoothing rVQ of VQ. Furthermore, we can assume that C is pr, aq-well-placed with respect
to a Jint-holomorphic rational nodal anticanonical divisor N .

Remark 6.1.8. One can check that the curve C in Theorem 6.1.7 has the same homology
class as that in Remark 6.1.3, and in particular it has symplectic area xw, pa, rqy, where
w is the vertex lying on the positive y-axis. Thus in the case that the eigenray emanating
from w intersects the edge of Q in direction p1, 0q, C carries the same visible ellipsoid
obstruction as in Corollary 6.1.4. ♢

Remark 6.1.9. The utility of the last part of Theorem 6.1.7 is that, at least in the rigid
del Pezzo case, we can apply iteratively the generalized Orevkov twist from §2, i.e. for
each such curve C we get a whole sequence of index zero unicuspidal rational algebraic
curves ΦM pCq,Φ2

M pCq,Φ3
M pCq, . . . .

Recall that the preimage of BQnodal under the almost toric fibration π : ApQnodalq Ñ

Qnodal is an anticanonical nodal symplectic divisor. If we assume thatQnodal is constructed
such that there are base-nodes at every vertex except for the Delzant vertex v (c.f.
Remark 4.2.3), then N :“ π´1pBQnodalq is rational with a single node at v. The visible
symplectic curve C in Proposition 6.1.1 is by construction pr, aq-well-placed with respect
to N , and the last part of Theorem 6.1.7 is an algebraic analogue of this. ♢

Theorem D follows quickly from Theorem 6.1.7, after a preliminary lemma.

Lemma 6.1.10. Let V be a smooth complex projective surface which is diffeomorphic to
a rigid del Pezzo surface M . Then V has an arbitrarily small deformation rV which is
biholomorphic to M .

Proof. Observe that V is necessarily rational (see [FQ95, Cor. 0.2]) and hence by the
Enriques–Kodaira classification it is an iterated blowup of CP2 or a Hirzebruch surface
Fk. Recall that the Hirzebruch surface Fk deforms to CP1 ˆ CP1 or F1 for any k P Zě2.
Combining this with a generic perturbation of the blowup centers, we arrive at a smooth
del Pezzo surface rV which is diffeomorphic and hence (by the classification of del Pezzo
surfaces) biholomorphic to M .

Proof of Theorem D. Let C be the pr, aq-unicuspidal Jint-holomorphic curve in ApQnodalq

guaranteed by Theorem 6.1.7. Here pApQnodalq, Jintq is biholomorphic to a Q-Gorenstein
smoothing rVQ of VQ, and by assumption ApQnodalq is diffeomorphic to a rigid del Pezzo
surface M . If rVQ is Fano then it is necessarily biholomorphic to M . Otherwise, by
Lemma 6.1.10 we can still find an arbitrarily small deformation of rVQ which is Fano and
hence biholomorphic to M , and similar to the proof of Theorem 5.3.1 we can push C
into this del Pezzo surface.
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We end this subsection by showing that the staircases in the rigid del Pezzo surfaces
are entirely visible in terms of triangles in certain almost toric base polygons as detailed
in Corollaries 6.1.4 and 6.1.5. In particular, we use this to give an alternative proof of
Theorem B (recall that our proof in §2 was based on the generalized Orevkov twist).

Proposition 6.1.11. For M be a rigid del Pezzo surface, and let Q be the corresponding
dual Fano T -polygon in Figure 4. Then, each outer corner point pxk, ykq of the infinite
staircase in the ellipsoid embedding function cM pxq corresponds to a visible ellipsoid
obstruction in some polygon Q1 obtained from Q by a sequence of full mutations. Moreover,
as in Corollary 6.1.5, we may choose Q1 so that this polygon Q1 determines the value of
cM pxq for all x P rxk, xk`1s.

Let Q be one of the polygons in Figure 4, and let J denote the number of strands of
the corresponding infinite staircase cM pxq, i.e. J “ 3 for CP2#CP

2 and CP2#ˆ2CP
2 and

J “ 2 in the remaining cases (c.f. §2.3). Let Qk denote the result after k P Zě0 successive
full mutations of Q, each time along eigenray emanating from its top left vertex. It is
shown in [Cri+20] that this eigenray always meets the horizontal edge of Qk, so that
the non-Delzant vertices cyclically permute under successive full mutations of this kind.
Let vk1, . . . , v

k
J`1 denote the vertices of Qk (ordered counterclockwise), where vk1 is the

Delzant vertex with edge vectors p1, 0q, p0, 1q, vk2 lies on the positive x-axis, and vkJ`1 lies
on the positive y-axis. A complete description of the vertices and eigenrays of Qk may be
found in [Cri+20, §5]. In particular, for each J-tuple of successive staircase steps there is
a mutation Qk whose vertices have T -singularities of the corresponding types. Further,
putting K “ rN s ¨ rN s ´ 2, where rN s P H2pApQnodalqq is the anticanonical class (c.f.
Table 1), we find that the vertex types of Qk transform under J-full mutations by the
same recursion as the generalized Orevkov twist:

Lemma 6.1.12. Suppose that vki has type 1
mir2i

p1,miriai ´ 1q for i “ 2, . . . , ℓ. Then

vk`J
i has type 1

m1
ipr

1
iq

2 p1,m1
ir

1
ia

1
i ´ 1q, where pm1

i, r
1
i, a

1
iq “ pmi,Kri ´ ai, riq.

Proof of Proposition 6.1.11. Let pxk, ykq “ p
gk`J

gk
,

gk`J

gk`gk`J
q be the kth outer corner point

on the graph of cM (recall §2.3). By [Cri+20, §5], the eigenray emanating from the top
left vertex vkJ`1 of Qk points in the direction pgk,´gk`Jq and meets the edge between vk1
and vk2. According to Proposition 6.1.1 there is a visible index zero pgk`J , gkq-unicuspidal
rational symplectic curve C in M , and this gives precisely the outer corner obstruction
cM pxkq ě y ` k. Now observe that, because Qk is obtained by mutation along the nodal
ray from the top left vertex vk´1

J`1 of Qk´1, this nodal ray must meet the x-axis at the
vertex vk2 of Qk so that the nodal ray of Qk at vk2 points in the direction p´gk´1, gk´1`Jq.
If we now apply Corollary 6.1.5 to Qk, then because ℓ2 ą ℓ1 ` ℓ3 we can calculate cM on
the interval that ends on the kth outer corner point xk “

gk`J

gk
. Similarly, by applying

this result to the reflection of Qk about the line x “ y, we are in the case ℓ1 ă ℓ2
and hence can deduce that cM is constant on the interval between xk´1 and the corner
point.

Alternative proof of Theorem B. By Proposition 6.1.11, every outer corner in cM pxq

corresponds to a visible ellipsoid obstruction in some polygon Q with ApQnodalq symplec-
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tomorphic to M , and by Theorem D this comes from an index zero rational algebraic
unicuspidal curve.

6.2 Visible curves in the Auroux-type model

As a preliminary to constructing curves in Q-Gorenstein smoothings of singular toric
surfaces, we first discuss the affine case, which is modeled on the Auroux-type system
from [Eva23, §7.3]. Recall from §4.1c that the T -singularity 1

mr2
p1,mra ´ 1q “ txy “

zrmu{µ1,´1,a
r smooths to

Bm,r,a – txy “ pzr ´ ζ1q ¨ ¨ ¨ pzr ´ ζmqu{µ1,´1,a
r

(for any fixed 0 ă ζ1 ă ¨ ¨ ¨ ă ζr), and we have the Auroux-type almost toric fibration

πAur : Bm,r,a Ñ C, πAurpx, y, zq “
`

|z|2, 12 |x|2 ´ 1
2 |y|2

˘

.

The critical values of πAur are pζ
2{r
1 , 0q, . . . , pζ

2{r
m , 0q. By analogy with the visible unicus-

pidal symplectic curves appearing in the proof of Proposition 6.1.1, we seek algebraic
curves in Bm,r,a which project via πAur to vertical rays in Rě0 ˆ R emanating from a
critical value. To this end, putting C̊`

i :“ ty “ 0u Ă Bm,r,a and C̊´
i :“ tx “ 0u Ă Bm,r,a,

note that we have indeed

πAurpC̊
˘
i q “ tpζ

2{r
i , tq | ˘ t P Rě0u.

Now suppose that Q is a polygon with a T -vertex w of type 1
mr2

p1,mra ´ 1q, and
let rVQ be a Q-Gorenstein smoothing of the singular toric surface VQ, along with a
holomorphic embedding ι : Bm,r,a ãÑ rVQ. Roughly speaking, we will show below that the
closure of ιpC̊`

i q in rVQ is a pr, aq-unicuspidal rational algebraic curve, and this underpins
Theorem 6.1.7.

6.3 Pencils from polygon mutations

As we briefly recalled in §4.1c, singular toric surfaces VQ and VQ1 are Q-Gorenstein
deformation equivalent if (and conjecturally only if) the corresponding dual Fano polygons
are mutation equivalent. More precisely, we have:

Theorem 6.3.1 ([Akh+16, Lem. 7], following [Ilt12, Thm. 1.3]). Let Q be a dual
Fano polygon, and let Q1 “ MutwpQq be its mutation at a vertex w. There exists a
Q-Gorenstein pencil30 p : X Ñ CP1 such that p´1p0q – VQ and p´1p8q – VQ1 .

In order to construct unicuspidal algebraic curves, we will describe an explicit model
for (at least a part of) the Q-Gorenstein pencil p in the analogous case that Q is a
T -polygon (not necessarily dual Fano) with a Delzant vertex. We first discuss the case
that Q is a triangle, and then obtain the case of a general polygon by a local birational
modification.

30That is, a flat family whose total space is Q-Gorenstein.
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Let Q Ă MR be a triangle with a Delzant vertex v adjacent to a T -vertex w. After
an integral affine transformation we can assume that MR “ R2 and the vertices are
v :“ p0, 0q,w :“ p0,mra ´ 1q, u :“ pmr2, 0q, for some m, r, a P Zě1 with gcdpr, aq “ 1.
In particular, VQ is isomorphic to the weighted projective space CPp1,mra ´ 1,mr2q.
Similar to Remark 6.1.2, we do not assume a ă r, but we can write a “ a1 ` ςr for
some a1 P t1, . . . , r ´ 1u and ς P Zě1. Then the vertex w has type 1

mr2
p1,mra ´ 1q “

1
mr2

p1,mra1 ´ 1q, and the vertex u has type 1
mra´1p1,mr2q (this is not necessarily a

T -singularity).
With respect to the vertex w, the mutated triangle Q1 :“ Mutfullw pQq has vertices

v1 :“ p0, 0q,w1 :“ p0,mraq, u1 :“ p ra ¨pmra´1q, 0q, and we have VQ1 – CPp1,mra´1,ma2q.
Note that v1 is smooth, w1 has type 1

ma2
p1,mra ´ 1q, and u1 has type 1

mra´1p1,ma2q,
which is the same singularity type as u:

Lemma 6.3.2. For m, r, a P Zě1 with gcdpr, aq “ 1, we have 1
mra´1p1,mr2q “

1
mra´1pr, aq “ 1

mra´1p1,ma2q.

Proof. Modulo mra ´ 1 we have 0 ” pmra ´ 1qpmra ` 1q “ m2r2a2 ´ 1, and hence
mr2 “ 1{pma2q.

Now consider the weighted projective 3-space CPp1,mra´ 1, r, aq with homogeneous
coordinates rx : y : z : ws, and consider the hypersurface

St :“ txy “ 1
1`tw

mr ` t
1`tz

mau Ă CPp1,mra´ 1, r, aq (6.3.1)

for t P CP1.

Proposition 6.3.3. Suppose as above that the triangle Q has a Delzant vertex v adjacent
to a T -vertex w. Then the family tStutPCP1 defines a Q-Gorenstein pencil such that

• we have isomorphisms S0 – CPp1,mra´ 1,mr2q and S8 – CPp1,mra´ 1,ma2q

• for t ‰ 0,8, St has a singularity at the point r0 : 1 : 0 : 0s of type 1
mra´1pr, aq and

is otherwise nonsingular.

Remark 6.3.4. When Q is a T -triangle, the family tStu is an algebraic counterpart of a
family of almost toric fibrations interpolating between the singular toric surfaces VQ and
VQ1 , corresponding to a family of nodal integral affine structures on Q with base-nodes
limiting to the vertex w as t Ñ 0 and limiting to p as t Ñ 8 (here p is the other point
where the eigenray emanating from w intersects BQ). ♢

Proof of Proposition 6.3.3. Let Ux denote the (singular) affine chart tx “ 1u Ă

CPp1,mra, r, aq, with Uy, Uz, Uw Ă CPp1,mra, r, aq defined similarly. We will analyze
the intersection of St with each of the charts Ux, Uy, Uz, Uw. To start, observe that, for
any t P CP1, St X Ux “ ty “ 1

1`tw
mr ` t

1`tz
mau – C2

z,m is smooth. We have also

St X Uy “ tx “ 1
1`tw

mr ` t
1`tz

mau{µ1,r,amra´1 – C2
z,w{µr,amra´1 “ 1

mra´1pr, aq. (6.3.2)
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Next, we have

St X Uz “ txy “ 1
1`tw

mr ` t
1`tu{µ1,´1,a

r .

Comparing with (4.1.3), we see that the family tSt XUzu is a Q-Gorenstein smoothing of
S0 X Uz – 1

mr2
p1,mra´ 1q, and in particular St X Uz – Bm,r,a for t ‰ 0,8. Note that

S8 X Uz “ txy “ 1u{µ1,´1,a
r is smooth.

Finally, we have

St X Uw “ txy “ 1
1`t ` t

1`tz
mau{µ1,´1,r

a ,

i.e. the family tSt XUwu is a Q-Gorenstein smoothing of S8 XUw – 1
ma2

p1,mra´1q, and
we have StXUw – Bm,a,r for t ‰ 0,8, with S0XUw “ txy “ 1u{µ1,´1,r

a smooth. Note that
we have covered the total space of the deformation tStu by Q-Gorenstein neighborhoods
(each is either smooth, equivalent to the miniversal model (4.1.3), or a trivial family of
cyclic quotient singularities), and hence tStu is a Q-Gorenstein deformation.

Let rs : t : us be homogeneous coordinates on CPp1,mra ´ 1,mr2q, and define the
map

ι0 : CPp1,mra´ 1,mr2q Ñ S0, rs : t : us ÞÑ rsmr : tmr : u : sts.

Note that this is well-defined since ι0prλs : λmra´1t : λmr2usq “ rλmrsmr : λmrpmra´1qtmr :
λmr2u : λmrasts “ rsmr : tmr : u : sts, and the restriction CPp1,mra ´ 1,mr2q X Uu Ñ

S0 X Uz agrees with the isomorphism (4.1.4). Similarly, we define the map

ι8 : CPp1,mra´ 1,ma2q Ñ S8, rs : t : us ÞÑ rsma : tma : st : us.

We leave it to the reader to verify that the maps ι0 and ι8 are isomorphisms.

Example 6.3.5. Let pp1, p2, p3q P Z3
ě0 be a triple which satisfies the Markov equation

p21 ` p22 ` p23 “ 3p1p2p3, and let pp1, p2, p
1
3 :“ 3p1p2 ´ p3q be its Markov mutation. Put

M :“ tpm1,m2,m3q P Z3 |
3

ř

i“1
p2imi “ 0u. Then the dual Fano polygon

Q “ tpx1, x2, x3q P R3 |

3
ÿ

i“1

p2ixi “ 0, x1, x2, x3 ě ´1u Ă MR

satisfies VQ – CPpp21, p
2
2, p

2
3q and has T -vertices of types 1

p2i
pp2i`1, p

2
i`2q for i “ 1, 2, 3 (mod

3). Let w denote the vertex of type 1
p23

pp21, p
2
2q and put Q1 :“ Mutfullw pQq, so that we have

VQ1 – CPpp21, p
2
2, pp

1
3q2q. Then the pencil Q-Gorenstein tStutPCP1 is given by

St :“ txy “ 1
1`tw

p3 ` t
1`tz

p1
3u Ă CPpp21, p

2
2, p3, p

1
3q (6.3.3)

satisfies S0 – CPpp21, p
2
2, p

2
3q, S8 – CPpp21, p

2
2, pp

1
3q2q and St – CP2 for t ‰ 0,8. This fits

into the above framework after specializing to the case p1 “ 1, so that Q has a Delzant
vertex v. ♢
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Now let Q Ă MR be any polygon having a Delzant vertex v adjacent to a T -vertex w.
As in the triangle case considered above, we will assume that MR “ R2 with v “ p0, 0q

and w “ p0,mra´ 1q, where the edge vectors at v are p1, 0q, p0, 1q and the edge vectors
at w are p0,´1q, pmr2, 1 ´ mraq, for some m, r, a P Zě1 with gcdpr, aq “ 1. We will
further assume that the eigenray emanating from w hits the edge of Q which lies on
the x-axis.31 Put Q1 :“ Mutfullw pQq. By reducing to the triangular case above, we now
construct a Q-Gorenstein pencil t rStutPCP1 which interpolates between VQ and VQ1 and
smooths the toric fixed point pw in a general fiber. Let Qtri denote the triangle with
vertices v,w, and u “ pmr2, 0q, so that we have Q Ă Qtri.

Let ΣQ,ΣQtri denote the normal fans to Q,Qtri respectively, and note that ΣQ is
a refinement of ΣQtri . We denote by τrv,ws, τrv,us, τru,ws Ă NR the rays of ΣQtri spanned
by the inward normals to the edges rv,ws, rv, us, ru,ws respectively. Let σ Ă NR denote
the two-dimensional cone spanned by τrv,us and τru,ws, with corresponding distinguished
point pσ P Uσ Ă VQtri (c.f. [CLS11, §3.2]). Note that the rays of ΣQ ∖ ΣQtri all lie in the
interior of σ. The induced toric morphism π : VQ Ñ VQtri is a proper birational map
which restricts to an isomorphism VQ ∖ π´1ppσq Ñ VQtri ∖ pσ. We denote by Uσ Ă VQtri

the affine toric variety associated to the cone σ, which we identify with 1
mra´1pr, aq, and

we put rUσ :“ π´1pUσq Ă VQ. Thus VQ is obtained from VQtri by excising Uσ and gluing
in rUσ, which we could view as sequence of generalized blowups at (singular) points.

Let tStutPCP1 denote the Q-Gorenstein pencil associated to Qtri and its mutation
at w as in Proposition 6.3.3. For t P CP1, let ȷt : C2

z,w{µr,amra´1
–
ÝÑ St X Uy denote

the natural isomorphism pz, wq ÞÑ p 1
1`tw

mr ` t
1`tz

ma, 1, z, wq. For each t P CP1, let
rSt Ñ St be the birational modification corresponding to excising the image of Uσ under
ȷt and gluing in rUσ. We have, essentially by construction, the following generalization of
Proposition 6.3.3.

Proposition 6.3.6.

(i) Suppose as above that Q Ă MR is a polygon having a Delzant vertex v “ p0, 0q

adjacent to a T -vertex w “ p0,mra´1q and such that the eigenray pr,´aq emanating
from w hits the edge of Q which lies on the x-axis. Then the family t rStutPCP1

described above defines a Q-Gorenstein pencil such that

• we have isomorphisms rS0 – VQ and S8 – VQ1

• for t ‰ 0,8, the singularities of rSt correspond naturally to the singular toric
fixed points of VQ excluding pw.

(ii) If in the above situation the eigenray pr,´aq emanating from w hits some other
edge of Q then the Q-Gorenstein pencil rSt with rS0 – VQ is defined for t close to 0

and rSt has singularities as described above.
31Without this assumption we will still have rS0 – VQ, which suffices to prove Theorem 6.1.7, but we

will not generally have rS8 – VQ1 . Indeed, since the complex variety VQ depends only on the normal fan
of Q we can always adjust Q so as to achieve this property without changing its normal fan. However,
the mutation Q1 depends on Q itself and not just its normal fan.
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Remark 6.3.7. In [Akh+16] the authors construct a family of hypersurfaces in a toric
3-fold V

rQ
, where rQ is a three-dimensional polytope admitting projections to Q and the

mutated polytope Q1. This polytope has a smooth corner that projects to the smooth
corners of Q and Q1, and the the dually induced toric morphisms VQ, VQ1 ãÑ V

rQ
embed

VQ and VQ1 as hypersurfaces that span a Q-Gorenstein pencil. This construction applies
whether or not the eigenray from w meets the edge of Q on the x-axis, and it follows that
there is a family of surfaces p rStqtPCP 1 with rS0 “ VQ and rS8 “ VQ1 . In this construction,
each additional facet of Q gives rise to an extra facet of rQ, so that the effect of blowing
up Q is to blow up rQ. However this blowup of rQ may not correspond to a family of
blowups of the rSt. As an example, one can consider the effect of a mutation of the
quadrilaterals QT (with vertices vO, vX , vV , vY ) considered in the proof of Lemma 6.5.3.
Here the original quadrilateral is such a large blowup of the triangle Qtri with vertices
vO, vX 1 , vY that the nodal ray hits the edge vV ´ vX . One can check that this has the
effect that the one of the edges of the mutation of Qtri is completely excised from the
mutation of QT , which means the latter mutation is not a blowup of the former mutation.
Nevertheless, in this case one can with some effort give explicit formulas in the spirit of
(6.3.1) for the hypersurface rSt Ă V

rQ
in terms of Cox coordinates on V

rQ
thought of as a

GIT quotient. ♢

6.4 Explicit unicuspidal algebraic curves

Let Q be a polygon as above, with associated Q-Gorenstein pencils t rStutPCP1 . We now
construct a pr, aq-unicuspidal rational algebraic curve C`

t in rSt for all t ‰ 0,8. Since
t rStutPCP1 is given by a fiberwise birational modification of the pencil tStutPCP1 associated
to Qtri, we first consider the case that Q “ Qtri is a triangle. Notice that the smooth
toric fixed point of CPp1,mra´ 1,mr2q maps by ι0 to the point r1 : 0 : 0 : 0s P S0, which
lies in St for all t P CP1. The curve C`

t will be constructed to have a pr, aq cusp at
r1 : 0 : 0 : 0s, and will furthermore be well-placed with respect to an anticanonical divisor
Nt having a node at r1 : 0 : 0 : 0s.

Recall that for t ‰ 0,8 we have St X Uz “ txy “ 1
1`tw

mr ` t
1`tu{µ1,´1,a

r – Bm,r,a.
Following §6.2, we consider the curves C̊`

t “ ty “ 0u Ă St X Uz and C̊´
t “ tx “ 0u Ă

St X Uz and their closures C`
t , C

´
t in St. We will focus on C`

t since C´
t does not pass

through r1 : 0 : 0 : 0s. Strictly speaking C̊`
t has m components (since we have combined

C`
1 , . . . , C

`
m from §6.2 into a single curve), so we take one of the components

C`
t :“ ty “ 0, wr “ ζzau Ă St (6.4.1)

for fixed ζ P C satisfying ζm “ ´t.
For t P CP1, let Nt Ă St denote the anticanonical divisor tz “ 0uYtw “ 0u Ă St. Here

Nt has two components for t ‰ 0,8, while N0 (resp. N8) is the image of the toric divisor
under the map ι0 : CPp1,mra ´ 1,mr2q Ñ S0 (resp. ι8 : CPp1,mra ´ 1,ma2q Ñ S8).
For t ‰ 0,8, the two components of Nt intersect transversally at the nodal point
r1 : 0 : 0 : 0s and also meet at the singular point r0 : 1 : 0 : 0s.
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Lemma 6.4.1. When Q is a triangle, C`
t Ă St is pr, aq-well-placed with respect to Nt

for t ‰ 0,8, and is otherwise nonsingular. In particular, C`
t is pr, aq-unicuspidal.

Proof. Note that C`
t Ă Ux YUz since C`

t XUy “ ∅ and r0 : 0 : 0 : 1s R St, and C`
t XUz

is smooth by construction. In the chart St X Ux – C2
z,w we have C`

t X Ux “ tpz, wq P

C2 | wr “ ζzau, which is pr, aq-well-placed with respect to Nt X Ux “ tpz, wq P C2 | z “

0 or w “ 0u.

In the case of a general quadrilateral Q, let rC`
t Ă rSt denote the proper transform

of C`
t Ă St with respect to the birational map rSt Ñ St, and let rNt Ă rSt be the total

transform of Nt. Since C`
t is disjoint from r0 : 1 : 0 : 0s, we have the following extension

of Lemma 6.4.1

Lemma 6.4.2. For general Q and all t ‰ 0 sufficiently close to 0, the curve rC`
t Ă rSt is

pr, aq-well-placed with respect to rNt and is otherwise nonsingular.

We are now ready to complete the proof of theorem 6.1.7.

Proof of Theorem 6.1.7. Let t rStut«0 be the Q-Gorenstein deformation of VQ constructed
in Proposition 6.3.6. Using Lemma 6.4.2, there is a rational unicuspidal curve rC`

t Ă rSt
which is well-placed with respect to the anticanonical divisor rNt. Let qSt be a further
Q-Gorenstein deformation of rSt which smooths the remaining singular points. As
in the proof of Theorem 5.3.1, for |t| ą 0 sufficiently small we can assume that rNt

deforms to a rational nodal anticanonical divisor qNt Ă qSt and rC`
t deforms to a rational

curve qCt Ă qSt which is pr, aq-well-placed with respect to qNt.32 By Proposition 4.2.6,
there is a diffeomorphism Φ : qSt Ñ ApQnodalq such that Φ˚p qJq tames the symplectic
form on ApQnodalq, with qJ the integrable almost complex structure on qSt. Then the
curve Φp qC`

t q Ă ApQnodalq is Φ˚p qJq-holomorphic and satisfies the requirements of the
theorem.

6.5 Classifying unicuspidal algebraic curves in the first Hirzebruch
surface

Our goal here is to prove Theorem F on unicuspidal algebraic curves in the first Hirzebruch
surface F1. As a warmup, we start by discussing the analogue for CP2, giving a new
proof based on quantitative symplectic geometry that the list in Theorem 1.2.2(d) is
complete:

Lemma 6.5.1. The curves constructed in Theorem 2.1.2 give the complete list of data
pd, p, qq for unicuspidal rational algebraic plane curves with one Puiseux pair.

Proof. Any pp, qq-unicuspidal rational algebraic curve in CP2 of degree d is in particular a
symplectic curve, and hence according to [McS23, Thm. G] the homology class A “ dℓ is
pp, qq-perfect. Then by [McSch12, Cor. 3.1.3], p{q must be a ratio of odd index Fibonacci
numbers.

32See [McS23, Cor.3.5.5] for a discussion of the behavior of cuspidal constraints under deformations of
the (almost) complex structure J .
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The corresponding classification of perfect exceptional classes in F1 was recently
worked out in [MM24; MMW22] and is much more complicated than for CP2. Here we
give a broad self-contained overview of the classification, refering to loc. cit. for the
details.

Let PerfpF1q denote the set of all quadruples pp, q, d,mq P Z4
ě0 with p ą q coprime

such that A “ dℓ´me is a pp, qq-perfect exceptional class in H2pF1q (see e.g. [McS23,
Def. 4.4.2]). Equivalently, by [McS23, Thm. G] this is the set of quadruples pp, q, d,mq

such that there exists an index zero pp, qq-unicuspidal rational symplectic curve C in F1

with rCs “ dℓ´me P H2pF1q.33 Put

PerfpF1q :“ tp{q | pp, q, d,mq P PerfpF1q for some d,mu.

The classes in PerfpF1q divide naturally into two sets: those in Perf`pF1q with m{d ą 1{3
and those in Perf´pF1q with m{d ă 1{3; none have m{d “ 1{3.

One can show that the forgetful map

PerfpF1q Ñ PerfpF1q “ Perf`pF1q \ Perf´pF1q

sending pp, q, d,mq to p{q is injective. Indeed, by definition, for pp, q, d,mq P PerfpF1q

we have d2 ´m2 “ pq ´ 1 and 3d´m “ p` q, and hence

dp,q “ 1
8p3p` 3q ` εtp,qq, mp,q “ 1

8pp` q ` 3εtp,qq (6.5.1)

where tp,q :“
a

p2 ´ 6pq ` q2 ` 8 and there is a unique choice ε P t1,´1u such that dp,q
and mp,q are integers (see [MM24, §2.2]).

We define the “shift” map

S : p1,8q Ñ p5, 6q,
p

q
ÞÑ

6p´ q

p
,

and one can check that the intervals Skpr6,8qq are disjoint for k P Zě0, with union
Ť

kPZě0
Skpr6,8qq “ p3`2

?
2,8q. Note also that S fixes the accumulation point 3`2

?
2

of the monotone staircase, and acts on the x-coordinates gj`3

gj
of its steps (outer corner

points) by gj`3

gj
ÞÑ

gj`6

gj`3
, where g1, g2, g3, . . . is the sequence defined by the recursion

gj`6 “ 6gj`3 ´ gj with initial values 1, 1, 1, 1, 2, 4 as in Table 1.
We also define the “reflection” map

R : p6,8q Ñ p6,8q,
p

q
ÞÑ

6p´ 35q

p´ 6q
,

which is an involution fixing 7 and interchanging p6, 7q with p7,8q. It turns out that
both S and R are symmetries of the set PerfpF1q. Further, both symmetries take the
classes with m{d ą 1{3 to those with m{d ă 1{3, and vice versa. Thus they interchange
the sets Perf`pF1q and Perf´pF1q.

33If such a curve exists then it exists for any symplectic form on F1. However, it gives an interesting
obstruction to embedding ellipsoids into F1 with symplectic form in class PDpℓ ´ beq only if m{d « b.
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The following is a rough summary34 of the set PerfpF1q (see [MMW22, Fig.2.2] for
an illustration).

Theorem 6.5.2 ([MMW22; MM24]). We have:

• PerfpF1q X r1, 3 ` 2
?
2q “ t

gj`3

gj
| j P Zě1u;

• for all k P Zě0 we have Perf`pF1q X r2k ` 6, 2k ` 7s “ t2k ` 6u, and there is a
homeomorphism p2k ` 7, 2k ` 8q – p´1

2 ,
3
2q such that the image of Perf`pF1q X

p2k ` 7, 2k ` 8q is the set of rational numbers in p0, 1q whose ternary expansion is
finite and ends in 1;

• PerfpF1q X p6, 7q “ Perf´pF1q X p6,8q “ tRpp{qq | p{q P PerfpF1q X p7,8qu;

• PerfpF1q X p3 ` 2
?
2, 6q “ tSipp{qq | i P Zě1, p{q P r6,8q X PerfpF1qu.

Proof of Theorem F. We need to show that for every p{q P PerfpF1q there is an index
zero pp, qq-unicuspidal rational algebraic curve in F1. Recall that PerfpF1q X p1, 3` 2

?
2q

corresponds precisely to the x-coordinates of the outer corners of the infinite staircase in
cH1pxq (i.e. the monotone symplectic form), which is covered by Theorem B.

For p{q P PerfpF1q X r6,8q, Lemma 6.5.3 below states that there exists a T -polygon
Q which has a Delzant vertex adjacent to a vertex of type 1

q2
p1, pq ´ 1q, and such that

ApQnodalq is diffeomorphic to F1. Then by Theorem 6.1.7 (together with Lemma 6.1.10
as in the proof of Theorem D), F1 contains an index zero pp, qq-unicuspidal rational
algebraic curve C. This proves the theorem for p{q P r6,8q.

Furthermore, we can assume that C above is pp, qq-well-placed with respect to a
rational irreducible nodal anticanonical divisor N . Then we can iteratively apply the
generalized Orevkov twist ΦF1 from Construction 2.2.1 to C. Using Proposition 2.2.1 we
have that Φi

F1
pCq has a cusp of type Sipp{qq for i P Zě0. Since every p{q P PerfpF1q X

p3` 2
?
2,8q is of the form Sipp{qq for some i P Zě0 and p{q P r6,8q, this completes the

proof.

Lemma 6.5.3. Given p{q P PerfpF1q X r6,8q, there exists a T -quadrilateral Q Ă R2

with a Delzant vertex v that is adjacent to a vertex w of type 1
q2

p1, pq´1q. More precisely,
we can take the edge directions at v to be p1, 0q, p0, 1q and the edge directions at w to be
p0,´1q, pq2, 1 ´ pqq. Moreover, ApQnodalq is diffeomorphic to F1.

Proof. N. Magill proves this lemma for the elements of Perf`pF1q X r6,8q in [Mag22],
and the forthcoming paper [Mag] extends this result to all the elements in PerfpF1qXp3`

2
?
2,8q. Since her argument is computationally intensive and proves much more than we

need here, we now explain a different way to extend the result from Perf`pF1q X r6,8q

to Perf´pF1q X r6,8q.
34The proof in [MMW22] that this list is complete uses ideas that are rather different from those

presented here. Indeed an essential input is the staircase accumulation point theorem in [Cri+20]. It
would be interesting to know if there is another approach to this classification result.
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The key to understanding why the elements of PerfpF1q X p3` 2
?
2,8q correspond to

T -quadrilaterals with a smooth corner is to note that these elements are organized into
so-called generating triples T :“

`

pλ{qλ, pµ{qµ, pρ{qρ
˘

(see [MMW22]) whose entries are in-
creasing and satisfy certain geometrically meaningful arithmetic identities. Moreover there
is a numeric “mutation process” that generates from a given triple T two new triples called
xT “

`

pλ{qλ, pxµ{qxµ, pµ{qµ
˘

(the left mutation) and yT “
`

pµ{qµ, ppyµ{qyµ, pρ{qρ
˘

(the
right mutation); see [MMW22, §2.1]. It is shown in [MMW22, §4.3] that all the elements
in Perf`pF1q X r6,8q appear as the left entry pλ{qλ in some triple that is formed by a
sequence of x- and y-mutations from the set of basic generating triples pT n

˚ qně0 given by

T n
˚ “

`

2n` 6,
4n2 ` 24n` 29

2n` 4
, 2n` 8

˘

, n ě 0. (6.5.2)

One main result in [Mag22] is that each such triple corresponds to a T -quadrilateral QT

with vertices vO, vX , vV , vY , where

(i) vO “ p0, 0q, vX lies on the positive x-axis, and vY lies on the positive y-axis,

(ii) the edge vector vV ´ vY is positively proportional to pq2λ, 1 ´ pλqλq,

(iii) the edge vector vV ´vX is positively proportional to p1` rpρqρ, q
2
ρq for rpρ :“ pρ´6qρ.

(iv) the eigenray at vX meets the side vY ´ vV , and the mutation at vX takes the side
vV ´ vY to p1 ` rpµqµ, q

2
µq.

Note that by Remark 4.2.4, the above conditions imply that the singularities at vY , vV ,
and vX have types 1

q2λ
p1, pλqλ ´ 1q, 1

q2µ
p1, pµqµ ´ 1q and 1

q2ρ
p1, pρqρ ´ 1q respectively. If the

side lengths of QT are such that the eigenray from vY hits the side vV ´ vX , then the
numeric x- and y-mutations mentioned above give new generating triples xT , yT whose
associated quadrilaterals QxT , QyT are obtained from QT by the geometric mutations
from vX and vY . The proof of this result is given in [Mag22, Lem. 6.5] and uses only
the arithmetic identities satisfied by the entries of a generating triple T . It follows
that every element in Perf`pF1q X r6,8q does correspond to the eigenray at vY in some
T -quadrilateral QT as above.

By [MMW22, §2.3], the symmetries R,S preserve the t-coordinate and take gen-
erating triples to generating triples. However note that the triple R7pT q has en-
tries

`

Rppρ{qρq, Rppµ{qµq, Rppλ{qλq
˘

since R reverses orientation, which implies that
R interchanges x-mutations with y-mutations. When considering the symmetry R,
there is also a complication caused by the fact that Rp6q “ 1{0 does not correspond
to a geometric point (though the ratio 1{0 has numerical meaning). However, as
noted in [MM24, Rmk 2.3.4(ii)], R takes the elements of the decreasing sequence
8{1 “ pρ{qρ, 29{4 “ pµ{qµ, 79{11 “ pxµ{qxµ, . . . formed from the middle entry of T 0

˚

by repeated x-mutations to the Fibonacci sequence F2k`7{F2k`3, k ě 0. It follows that
every element in PerfpF1q´ X p6,8q is the smallest entry pλ{qλ in some triple formed by
mutation either from one of the basic generating triples

R7pTnq “

´12n` 13

2n` 2
,
24n2 ` 62n` 34

4n2 ` 10n` 5
,
12n` 1

2n

¯

, n ą 0 (6.5.3)
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or from one of the triples xykR7pT 0q, k ě 0, with entries
`

F2k`7{F2k`3, F
2
2k`7{F 2

2k`5, F2k`9{F2k`5

˘

, k ě 0. (6.5.4)

We now show that each generating triple T in (6.5.3) and (6.5.4) has a corresponding
T -quadrilateral QT that satisfies conditions (i), (ii), (iii) above as well as the following
condition (iv1):

(iv1) the eigenray at vX meets the side vY ´ vV , and the mutation at vX takes the side
vV ´ vY to p1 ` rpµqµ, q

2
µq. Moreover the eigenray at vV is p´1, 5q for the triples in

(6.5.3) and p´1, 0q for those in (6.5.4).

Given T , let Q be any quadrilateral that satisfies conditions (i), (ii), (iii) above and also
is such that the eigenray at vX , which is in the direction prpρ, qρq, meets the edge vY ´ vV .
The mutation matrix A at vX is determined by the requirements that it fix the eigenray
at X and take the vector vV ´ vX to a multiple of p1, 0q, and hence has the formula

An “

ˆ

1 ´ rpρqρ rp2ρ
´q2ρ 1 ` rpρqρ

˙

. (6.5.5)

Thus for the generating triples in (6.5.3) we have

An “

ˆ

1 ´ 2n 1
´4n2 1 ` 2n

˙

, (6.5.6)

and it is now straightforward to check that An takes the vector vV ´ vY “
`

´4pn `

1q2, p6n`5qp4n`5q
˘

to p1`rpµqµ, q
2
µq and the vector p´1, 5q to prpµ, qµq, where rpµ “ 2n`4.

Similarly, the proof for the generating triples in (6.5.4) reduces to calculating some
polynomial identities between Fibonacci numbers. By [McSch12, Lem. 3.2.2, Prop.
3.2.3], it suffices to check these for three values of k, which again we leave to the reader.
Note also that the identity F 2

2k`1 “ F2k`3F2k´1 ´ 1 implies that for these triples we have
rpµ “ rpρqρ ´ 1.

Thus each basic generating triple T in (6.5.3) and (6.5.4) has a corresponding T -
quadrilateral QT that satisfies conditions (i), (ii), (iii) and (iv1). It now follows from
[Mag22, Lem. 6.5] that this correspondence extends to all generating triples obtained
from these by x- and y-mutations. This completes the construction of the quadrilaterals
QT .

It remains to check that the associated symplectic four-manifold ApQT
nodalq is diffeo-

morphic to F1. The classification by Leung–Symington [LS10] of symplectic 4-manifolds
admitting almost toric fibrations implies that the only other possibility is that ApQT

nodalq

is diffeomorphic to CP1ˆCP1. Now, if A “ d1ℓ1`d2ℓ2 P H2pCP1ˆCP1q is a pp, qq-perfect
exceptional class, the identities

c1pAq “ 2d1 ` 2d2 “ p` q, A ¨A “ 2d1d2 “ pq ´ 1 (6.5.7)
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imply that tp,q “
a

p2 ´ 6pq ` q2 ` 8 is an even integer. Thus, if ApQT q were diffeo-
morphic to CP1 ˆ CP1 then all three t-values tpλ,qλ , tpµ,qµ and tpρ,qρ would be even
integers.

On the other hand, all three of the t-values associated to the basic generating triple
T n

˚ , n ě 0, in (6.5.2) are odd, and the symmetries S,R preserve t. By [MMW22, Lem.
2.1.2], for a triple T with t-values ptλ, tµ, tλq, the x-mutated (resp. y-mutated) triple
xT has t-values ptλ, tλtµ ´ tρ, tµq (resp. ptµ, tρtµ ´ tλ, tρq). It is now easy to check by
induction that no triple that is obtained from a triple with all t-coordinates odd by a
sequence of x-mutations, y-mutations and symmetry operations can have all associated
t-values even. It follows that ApQT

nodalq cannot be diffeomorphic to CP1 ˆ CP1.

Remark 6.5.4 (Relation to CP1 ˆ CP1). The analogue of Theorem 6.5.2 has not yet
been fully worked out, but the works [Ush11; Far+22] suggest that a picture similar
to that of F1 should hold, in which case it is likely that our proof of Theorem F also
carries over mutadis mutandis to the case of CP1 ˆ CP1. One can check that the
sequence a1

a0
, a2a1 ,

a3
a2
, . . . defined by a0 “ 1, a1 “ 5, ak`1 “ 6ak ´ak´1 lies in both PerfpF1q

and PerfpCP1 ˆ CP1q (in each case giving the x-coordinates of the outer corners for
one strand of the monotone infinite staircase), and these are likely the only points
in common. An intriguing relation between points in PerfpF1q X p3 ` 2

?
2,8q and

PerfpCP1 ˆ CP1q X p3 ` 2
?
2,8q is suggested in [Far+22, Conj. 1.2.1]. ♢

Remark 6.5.5 (Unicuspidal curves in odd Hirzebruch surfaces). For k P Zě0, let
F2k`1 denote the p2k ` 1qst Hirzebruch surface [Hir51], which we view as a complex
structure on Bl1CP2 having an irreducible rational holomorphic curve in class pk `

1qe ´ kℓ P H2pBl1CP2q with self-intersection number ´2k ´ 1. Note that if A “

dℓ´me P H2pBl1CP2q is represented by a holomorphic curve in F2k`1 then by positivity
of intersection we must have m

d ě k
k`1 . By [MMW22, Lem. B.5(i)], any p{q P PerfpF1q X

p2j ` 6, 2j ` 8q satisfies j`1
j`2 ă

mp,q

dp,q
ă

j`2
j`3 . Thus p{q P PerfpF2k`1q only if p{q ą 2k ` 4.

Therefore we conjecture: for all k P Zě1, there exists an index zero algebraic pp, qq-
unicuspidal rational curve in F2k`1 if and only if p{q P Perf`pF1q X p2k ` 4,8q. ♢

7 Sesquicuspidal curves and stable embeddings beyond the
accumulation point

In this section, we prove first Theorem H on algebraic rational plane curves correspond-
ing to the ghost stairs in §7.1. We then discuss stabilized ellipsoid embeddings and
obstructions beyond the staircase accumulation points in §7.2.

7.1 Degree three seed curves and the ghost stairs

Our proof of Theorem H is based on the generalized Orevkov twist from §2, which boils
it down to finding a single degree three seed curve.

Proof of Theorem H. The identity Fib4k`6 “ 7Fib4k`2 ´ Fib4k´2 shows that the Fi-
bonacci subsequence Fib2,Fib6,Fib10, . . . obeys the same recursive formula which is
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achieved by the Orevkov twist ΦCP2 (c.f. Proposition 2.2.6). Therefore it suffices to
construct a suitable degree 3 seed curve, which is the content of the following proposi-
tion.

Proposition 7.1.1. There exists a degree three rational algebraic curve in CP2 which is
p8, 1q-well-placed with respect to a nodal cubic N .

Remark 7.1.2. It seems plausible that the curve in Proposition 7.1.1 (and hence all
of its twists) is sesquicuspidal, i.e. it has a single ordinary double point away from its
distinguished cusp, but we do not prove this here. ♢

Proof of Proposition 7.1.1. As in §2.1, let N be a fixed nodal cubic in CP2 with local
branches B´,B` near the double point p. If J is an almost complex structure on CP2

which is integrable near p and D is any local J-holomorphic divisor through p, we denote
by MJ

CP2,3ℓ
<T p8q

D p> the moduli space of J-holomorphic degree 3 rational curves which

pass through p with contact order 8 to D. The count #MJ
CP2,3ℓ

<T p8q

D p> for generic J

was computed in [McS21] to be 4. Note that any curve in MJstd
CP2,3ℓ

<T p8q

B´
p> excluding

N itself is by definition p8, 1q-well-placed, although Jstd is not generic.
Let tJtutPr0,1s be a generic family of compatible almost complex structures on CP2

which are integrable near p and fix B´ (but not N ), with J0 “ Jstd. For t P p0, 1s

we have MJt
CP2,3ℓ

<T p8q

B´
p> “ tC1

t , C
2
t , C

3
t , C

4
t u, where Ck

t is a family of curves which
varies smoothly in t P p0, 1s for k “ 1, 2, 3, 4. Then each Ck

t converges to some limiting

configuration Ck
0 P M

Jstd
CP2,3ℓ<T p8q

B´
p> as t Ñ 0. Here M

Jstd
CP2,3ℓ<T p8q

B´
p> denotes the

subset of the standard stable map compactification MJstd
CP2,3ℓ<p> consisting of those

configurations such that if the marked point lies on a ghost component then the nearby
nonconstant components together “remember” the constraint <T p8q

B´
p> (see [McS24, Def.

2.2.1]). In fact, since a line cannot satisfy <T p3q

B´
p> and a conic cannot satisfy <T p6q

B´
p>

(due to the presence of the other branch B`), we can easily rule out configurations

with multiple components, i.e. we have M
Jstd
CP2,3ℓ<T p8q

B´
p> “ MJstd

CP2,3ℓ
<T p8q

B´
p> and hence

C1
0 , C

2
0 , C

3
0 , C

4
0 P MJstd

CP2,3ℓ
<T p8q

B´
p>.

It remains to show that at least one of C1
0 , C

2
0 , C

3
0 , C

4
0 is distinct from N . To see this,

suppose by contradiction that Ck
0 “ Ck1

0 “ N for distinct k, k1 P t1, 2, 3, 4u. Then Ck
t

and Ck1

t both approximate N and in particular the transversely intersecting branches
B´,B` Ă N for t small, and since they also both satisfy the constraint <T p8q

B´
p>, their

intersection multiplicity satisfies

Ck
t ¨ Ck1

t ě 8 ` 1 ` 1 ą 9,

which is a contradiction.

Remark 7.1.3. We sometimes refer to a p3d´ 1, 1q-well-placed rational plane curve as
in Proposition 7.1.1 informally as a “degree d seed curve”. The above argument easily
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extends to show that the number of degree three seed curves is precisely 3, at least if we
replace algebraic curves with J-holomorphic curves where J agrees with Jstd near N and
is otherwise generic. We take up the problem of constructing higher degree seed curves
in the forthcoming work [McS]. In general a sesquicuspidal degree d seed curve and all of
its Orevkov twists have 1

2pd´ 1qpd´ 2q double points by the adjunction formula. Note
that the argument given above does not easily generalize to higher degrees, due to the

possibility of more complicated configurations in M
Jstd
CP2,dℓ<T p3d´1q

B´
p> involving one or

more copies of N and its covers. ♢

7.2 On the stable folding curve

It is shown in [Hin15] that for any a P Rą1 and N P Zě1 there is a folding-type symplectic
embedding

E̊p1, aq ˆ CN s
ãÑ B4p 3a

a`1q ˆ CN (7.2.1)

which strengthens the construction in [Gut08]. As discussed e.g. in [MS23, §1.2], this
embedding is conjectured to be sharp for all a ą τ4, and proving this can be reduced to
an existence problem for pp, qq-sesquicuspidal symplectic curves in CP2. In this subsection
we discuss generalizations of this to rigid del Pezzo surfaces and to the convex toric
domains considered in [Cri+20].

In the following, given a symplectic manifold M , we denote by c ¨M the same smooth
manifold but with symplectic form scaled by c P Rą0. Recall that Ep1, aq denotes a
closed ellipsoid, and we denote its interior by E̊p1, aq.

Proposition 7.2.1. For any a P Rą1, there are symplectic embeddings:

E̊p1, aq ˆ C s
ãÑ a

a`1 ¨M ˆ C (7.2.2)

for M “ CP2p3q#ˆjCP
2
p1q with j “ 0, 1, 2, 3 and M “ CP1p2q ˆ CP1p2q.

The paper [Cri+20] also establishes infinite staircases for the ellipsoid embedding
functions of twelve convex toric domains X1, . . . , X12, whose moment polygons are
pictured in Figure 7. More precisely, for each j “ 1, . . . , 12 we put Xj :“ µ´1

C2 pΩjq Ă C2,
where µC2 : C2 Ñ R2

ě0, pz1, z2q ÞÑ pπ|z1|2, π|z2|2q is the moment map for the standard
T2-action on C2. Note that, in contrast to closed toric symplectic manifolds, these are
compact domains with piecewise smooth boundary in C2. As we recalled in Remark 1.2.6,
for j “ 1, . . . , 12 the (unstabilized) ellipsoid embedding function cXj coincides with cM ,
where M is the rigid del Pezzo surface having the same negative weight expansion as Xj .

Similar to Proposition 7.2.1, we have:

Proposition 7.2.2. For any a P Rą1, there are symplectic embeddings

E̊p1, aq ˆ C s
ãÑ a

a`1 ¨Xk ˆ C (7.2.3)

for k “ 1, 2, 3, 4, 5, 6, 8.
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Remark 7.2.3. In contrast to the four-dimensional (unstabilized) situation, it is not
known whether the stabilized ellipsoid embedding functions of target spaces with the
same negative weight expansions necessarily coincide (e.g. cX3ˆC versus cX4ˆC versus
CCP1p2qˆCP1p2qˆCq. ♢

Remark 7.2.4. The polygons Ω1, . . . ,Ω12 in Figure 7 correspond to twelve of the famous
sixteen reflexive polygons. The remaining four reflexive polygons have the same negative
weight expansion as CP2p3q#ˆ5CP

2
p1q, whose ellipsoid embedding function does not

contain an infinite staircase (see [Cri+20, Rmk. 5.21]).
It is interesting to note that M “ CP2p3q#ˆ5CP

2
p1q admits an almost toric fibration

π : M Ñ Qnodal where Q is a dual Fano T -quadrilateral with a Delzant vertex (see
[Via17, Fig. 18(C1)]). In particular, most of the results in §5 and §6 still apply in this
case. Similarly, M “ CP2p3q#ˆ6CP

2
p1q admits an almost toric fibration π :M Ñ Qnodal

where Q is a dual Fano T -pentagon with a Delzant vertex (see [Via17, Fig. 19(A1)]) ♢

Figure 7: The convex toric domains considered in [Cri+20], along with their negative
weight expansions.

Proofs of Proposition 7.2.1 and Proposition 7.2.2. We apply [CHS22, Prop. 3.1]. Spe-
cializing to the case µ “ a

a`1 , we get λ “ 1 ´
µ
a “ a

a`1 , so µ “ λ. Note that
2µ 2λ´1

λ`µ´1 “ 2µ “ λ ` µ. Then f is the linear function satisfying fp0q “ 2λ “ 2a
a`1

and fp2a{pa ` 1qq “ λ “ a
a`1 . This means that there is a symplectic embedding of

p1 ´ δq ¨ Ep1, aq ˆ C into a
a`1 ¨ XΩH

ˆ C for all δ ą 0, where ΩH Ă R2
ě0 is the quadri-

lateral having vertices p0, 0q, p0, 2q, p2, 1q, p2, 0q, and XΩH
Ă C2 is the corresponding

four-dimensional convex toric domain. Using [PV15, Thm. 4.4], we can upgrade this to
an embedding E̊p1, aq ˆ C s

ãÑ a
a`1 ¨XΩH

ˆ C.
Inspecting Figure 7, we see that ΩH (or its reflection about the diagonal) is a

subset of Ωi for i “ 1, 2, 3, 4, 5, 6, 8. Similarly, the moment polygons corresponding
to M “ CP2p3q,CP2p3q#CP

2
p1q,CP1p2q ˆ CP1p2q,CP2p3q#ˆ2CP

2
p1q are Ω1,Ω2,Ω4,Ω5

respectively, each of which directly contains ΩH as a subset.
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As for CP2p3q#ˆ3CP
2
p1q, the moment polygon is (up to an integral affine transfor-

mation) given by Ω10. This does not contain ΩH as a subset, but there is an almost toric
fibration for CP2p3q#ˆ3CP

2
p1q whose base polygon is precisely ΩH – see [Via17, Fig.

16].

Remark 7.2.5. Note that ΩH has area 3, as do the polygons Ω7,Ω9,Ω10, while the
polygons Ω11,Ω12 have area 5{2. In particular, by volume considerations there cannot
be any four-dimensional embedding X̊ΩH

s
ãÑ Xk for k “ 11, 12. ♢

It is natural to ask what happens in the remaining cases not covered by Propositions
7.2.1 and 7.2.2:

Question 7.2.6. Is there a stabilized symplectic embedding

E̊p1, aq ˆ C s
ãÑ a

a`1 ¨M ˆ C where M “ CP2p3q#ˆ4CP
2
p1q?

What about E̊p1, aq ˆ C s
ãÑ a

a`1 ¨Xk for k “ 7, 9, 10, 11, 12?

Also, extending the aforementioned conjecture for stabilized embeddings of ellipsoids
into the four-ball, we posit:

Conjecture 7.2.7. The symplectic embeddings in Proposition 7.2.1 and Proposition 7.2.2
are all optimal for all a ą aacc, where aacc is the accumulation point of the corresponding
staircase (c.f. Table 1).

As evidence, we observe that the obstruction coming from any index zero sesquicuspidal
curves is consistent with this conjecture:

Proposition 7.2.8. Let pM,ωM q be a closed symplectic manifold with rωM s “ c1 P

H2pM ;Rq, and let C be an index zero pp, qq-sesquicuspidal rational symplectic curve in
M . Then the corresponding obstruction for a symplectic embedding Ep1, p{qq ˆ CN s

ãÑ

λ ¨M ˆ CN coming from Theorem 1.3.1 is λ ě
pp{qq

pp{qq`1 .

Proof. Since C has index zero and c1prCsq “ p` q, the obstruction is

λ ě
p

rωM s¨rCs
“

p
c1prCsq

“
p

p`q “
pp{qq

pp{qq`1 .

Remark 7.2.9. According to [McS23, Thm. G], for any closed symplectic four-manifold
M , the perfect exceptional homology classes in H2pMq are in bijective correspondence
with index zero unicuspidal symplectic curves in M . For example, [MM24; MMW22]
describes all perfect exceptional classes for the first Hirzebruch surface Bl1CP2 (c.f. §6.5),
and by Proposition 7.2.8 these all give obstructions consistent with Conjecture 7.2.7. ♢
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