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Abstract

We show that the infinite staircases which arise in the ellipsoid embedding
functions of rigid del Pezzo surfaces can be entirely explained in terms of rational
sesquicuspidal symplectic curves. Moreover, we show that these curves can all be
realized algebraically, giving various new families of algebraic curves with one cusp
singularity. Our main techniques are (i) a generalized Orevkov twist, and (ii) the
interplay between algebraic Q-Gorenstein smoothings and symplectic almost toric
fibrations. Along the way we develop various methods for constructing singular
algebraic (and hence symplectic) curves which may be of independent interest.
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Introduction

1.1 Brief summary

One starting point for this paper is the observation that the numerics of the following
two mathematical objects coincide:

(a) the family of unicuspidal rational plane curves constructed by Orevkov in [Ore02]

(see also [Kas87; Fer+06])

(b) the outer corners of the steps of the Fibonacci staircase for the symplectic ellipsoid

embedding function cqp2(x) of the complex projective plane (see e.g. [McSch12]).



A priori these belong to rather distinct subfields: the former pertains to the classical
problem of characterizing algebraic plane curves of given degree and genus with prescribed
singularities (see e.g. [GLS18|), while the latter belongs to the burgeoning area of
quantitative symplectic embeddings (see e.g. [Schl8]). In [McS23] we showed that
symplectic unicuspidal curves give (stable) symplectic embedding obstructions, and in
particular that the family (a) recovers the Fibonacci staircase outer corners (b). In this

paper:

e We show that the infinite staircases for rigid del Pezzo surfaces found in [Cri+20]
can be entirely understood in terms of genus zero sesquicuspidal symplectic curves.
Here the obstructions at outer corners come from index zero curves, while the
embeddings at inner corners come from higher index curves (via a version of
symplectic inflation in §3). As a byproduct, all of these staircases stabilize.

e We show that all of these curves can be realized algebraically. In particular, this
gives new families of unicuspidal algebraic curves whose existence is suggested by
(and has applications to) quantitative symplectic geometry. As an application, we
give a new classification theorem for algebraic unicuspidal rational curves in the
first Hirzebruch surface.

The core of this paper develops new techniques for constructing algebraic (and hence
symplectic) unicuspidal curves. First, in §2 we give a generalization of Orevkov’s twist
from [Ore02| which holds in any rigid del Pezzo surface. We apply this to construct
algebraic curves for each of the relevant outer corners, and later in §7.1 to produce a
new sequence of algebraic plane curves responsible for the stabilized ghost stairs from
[CHM18.

Then, in §4 we give a perspective on Q-Gorenstein smoothings of singular toric
surfaces which closely parallels the theory of symplectic almost toric fibrations. Using
this we establish general constructions of algebraic unicuspidal rational curves in §5
and §6. These take as input tropical curves in a base polygon @) and reflect a rich
combinatorial theory of polygon mutations. This approach naturally produces algebraic
curves for both the inner and outer corners of the rigid del Pezzo infinite staircases, as
well as more general curve families.

The remainder of this extended introduction is structured as follows. In §1.2 we first
provide some context and motivation for the study of unicuspidal algebraic curves, as
well as symplectic ellipsoid embeddings and infinite staircases. Then in §1.3 we give
precise formulations of our main results.

1.2 Context and motivation

1.2a Singular plane curves

To set the stage, let us first recall a few basics about singular algebraic curves. In this paper
all algebraic curves will be defined over the complex numbers. By “plane curve” we mean a
complex algebraic curve in CP?, which concretely is of the form V(F) := {F(z,y,z) = 0}
for some homogeneous polynomial F(z,y,z). A point pg = [z : yo : 20] € V(F) is



singular if and only if we have 0,F(po) = 0yF (po) = 0-F (po) = 0. The following local
models, written in affine coordinates with the singular point at the origin, will be relevant
for us:

e {22 = y?} is the ordinary double point (a.k.a. the A; singularity)
e {2® = y?} is the ordinary cusp
e more generally, {aP = y?} for p,q € Z>; coprime is the (p, g) cusp.

Note that topologically the (p,q) cusp is the cone over the (p,q) torus knot, and if p =1
or ¢ = 1 this is just a smooth point.

Example 1.2.1. The plane curve C = {X? = Y9ZP~9} = CP? has two singularities: a
(p,q) cusp at [0:0: 1] and a (p,p— q) cusp at [0: 1:0]. Moreover, it is rational since it
admits a parametrization CP! — C, [s: t] > [s9tP79 : sP : tP]. O
A (reduced and irreducible) algebraic curve! is called (p, g)-unicuspidal if it has a
single (p,q) cusp (with ged(p,q) = 1) and no other singularities. More generally, it is
called (p, q)-sesquicuspidal if in addition it has some ordinary double points.
To anchor the discussion, let us recall the following classification result. We denote

the Fibonacci numbers by Fib; = 1, Fiby = 1, Fibg = 2 and so on.

Theorem 1.2.2 (|Fer+06|). There exists a (p,q)-unicuspidal rational plane curve of
degree d if and only if (d,p,q) is one of the following:

(a) (p.q) = (d,d—1) forde Zs,

(b) (p,q) = (2d — 1,d/2) for d € 2Z>,

(c) (p,q) = (Fib3,Fib?_,) and d = Fiby_oFiby, for k € 2Z=5 + 3
(d) (p,q) = (Fiby o, Fiby_y) for d = Fiby for k€ 2Zs + 3

(e) (p,q) = (22,3) and d = 8

(f) (p,q) = (43,6) for d = 16.

Family (a) is the specialization of Example 1.2.1 with (p,q) = (d,d — 1), while family
(b) is given by {(zy — #2)%? = zy*'} = CP2. See Remark 2.1.3 below for constructions
of (e) and (f). The curves in family (c) are more complicated but are described by
explicit equations in [Fer+06, §5], following [Kas87]. Family (d) corresponds to the
aforementioned Orevkov curves [Ore02].

To make further sense of Theorem 1.2.2, it will be helpful to introduce the following;:

Definition 1.2.3. The (real) index of a (p,q)-sesquicuspidal rational curve C' in a
complex surface or symplectic four-manifold manifold M is

indr(C) :=2¢1(A) — 2p — 2q, (1.2.1)
where A € Ho(M) denotes the homology class of C' and c¢1(A) is its first Chern number.

!The curves considered in this paper will be rational, that is parametrizable by CP? (and in particular
irreducible), unless explicit mention is made to the contrary.



As explained in detail in [McS23], the index corresponds to the expected (real) dimension
of the space of rational curves in homology class A with a (p, ¢) cusp and satisfying a
maximal order tangency constraint at the cusp. For instance, for an ordinary (3,2) cusp
there is a well-defined complex tangent line at the singular point, and the constraint
corresponds to specifying both the location of the singularity and its tangent line at
that point. For a general (p,q) cusp the constraint also involves higher jet constraints.
Equivalently, the index is the (real) Fredholm index of the normal crossing resolution
(c.f. [McS23, §4.1] or §3.1 below).

In particular, for a (p,¢)-unicuspidal rational plane curve C of degree d we have
indr(C') = 6d — 2p — 2q, and the indices for the curves in Theorem 1.2.2 are as follows:

(a) () | (| @] (f)](9)
mdex [2d+2|d+2| 2] 0 | —2 -2 (1.2.2)

For index zero curves such as those in family (d) one expects to get a finite count, and
indeed these are encoded by the Gromov—Witten-type invariants Nep2 4r71<C (P.a) pt>
defined in [McS23, §3|. The curves in family (c¢) cannot quite be counted (they occur in
complex 1-parameter families), but they naturally degenerate to those in family (d) (c.f.
[Fer-06, §5], based on [Kas87; MiSu81]). Meanwhile, the sporadic cases (e) and (f) have
negative index, so they should disappear for a generic almost complex structure. In this
article, families (c) and (d) (and their generalizations) will be the most significant, as
they precisely correspond to the inner and outer corners respectively of the Fibonacci
staircase. Incidentally, in §6.5 we exploit this connection with symplectic geometry to
give an alternative proof that the list in (d) above is complete, and we extend to the first
Hirzebruch surface (for which the corresponding list is much more complicated).

1.2b Symplectic embeddings and infinite staircases

Let us now briefly recall some notions surrounding symplectic ellipsoid embeddings
and infinite staircases. Given a four-dimensional symplectic manifold X, its ellipsoid
embedding function is defined by

cx(z) :=inf{A € Rog | E(3, %) < X} (1.2.3)

Here the infimum is over all A € R-( for which there exists a symplectic embedding of
the ellipsoid
E(%, %) = {(21,22) ‘ 7T|2’1’2)\ + 7T’22|2)\/.T < 1} - C2

(endowed with the restriction of the standard symplectic form) into X. In [McSch12],
the ellipsoid embedding function for the four-ball B4(1) = E(1,1) was explicitly worked
out. In particular, the portion for 1 < z < 7% := @ is a piecewise linear function
whose graph is a zigzag, that alternately slopes up and is horizontal, with infinitely
many nonsmooth points that accumulate at 7 and have coordinates given by ratios of
odd index Fibonacci numbers — see [McSch12, Fig 1.1]. Subsequently, similar infinite

staircases were discovered for other target spaces such as B?(1) x B%(1) [FM15], E(1,3/2)



[CK20], and more (see e.g. [Ush19]). More recently, the authors in [Cri+20] gave a unified
description of infinite staircases for the six rigid del Pezzo surfaces with their monotone
symplectic forms, namely CP2(3)#X1‘3@2(1) for k = 0,1,2,3,4 and CP(2) x CP(2).2

Theorem 1.2.4 ([Cri20]). For each rigid del Pezzo surface M, the ellipsoid embedding
function cpr(x) has an infinite staircase with explicitly described accumulation point and
step coordinates.

By elementary scaling and monotonicity considerations, establishing these infinite stair-
cases boils down to (a) obstructing symplectic embeddings at the outer corners and (b)
constructing symplectic embeddings at the inner corners. Embeddings corresponding
to the inner corners were constructed in [Cri+20; CV22] using almost toric fibrations
and their mutations (see e.g. [Sym; Eva23] or §4.2 below), and hence are also related
to generalized Markov equations and exotic Lagrangian tori as in [Vial7]. Meanwhile,
obstructions corresponding to outer corners were established in [Cri+20] using embedded
contact homology (ECH) capacities (see e.g. [Hut14]). In this paper our approach to the
inner corners and one of our approaches to the outer corners are also based on almost
toric fibrations, but used in a quite distinctive way through the lens of sesquicuspidal
curves.

Remark 1.2.5. By definition a del Pezzo surface is a smooth complex projective surface
with ample anticanonical bundle. Up to diffeomorphism these are CPQ#X]“@2 for
k=0,...,8 and CP! x CP!. Up to biholomorphism there is a unique del Pezzo surface
having smooth type CP%#EX]‘:@2 for k= 0,...,4 or CP! x CP! (these are the rigid ones),
while the remaining cases appear in nontrivial moduli spaces.

Each del Pezzo surface admits a unique monotone symplectic form up to symplec-
tomorphism and scaling (see e.g. [Sall3]), and unless explicit mention is made to the
contrary we work with the monotone symplectic structure normalized to have monotonic-
ity constant 1, i.e. ¢;(M) = [wa] € H?>(M;R) (e.g. CP?(3)). One should keep in mind
that the moduli spaces of complex and symplectic structures on these smooth manifolds
are quite distinct,? but it should be clear from the context whether we view M in the
complex, symplectic, or smooth category. O
Remark 1.2.6. The treatment in [Cri+20] emphasizes the 12 convex toric domains
X1,...,X12 pictured in Figure 7 below, which includes B*(1), B%(1) x B2(1), and
E(1,3/2) as special cases. It is shown in [Cri+20] that the ellipsoid embedding function
for each Xj; is equivalent to the ellipsoid embedding function for one of the monotone
rigid del Pezzo surfaces, namely the one with the same negative weight expansion (for
instance we have cga(q)(2) = ccp2(q)(2)). Thus for simplicity of exposition we will mostly
restrict our discussion to the closed target spaces (except when discussing the stable
folding curve in §7.2). O

*Here CP?(a) is endowed with the Fubini-Study form normalized so that a line has area a. The
qualifier “rigid” is a slight misnomer since it refers to the complex rather than symplectic structure — see
Remark 1.2.5 below.

3Roughly speaking, in the complex category the locations of blowup points matter, while in the
symplectic category the sizes of blowups matters.



1.3 Main results

1.3a Singular curves and symplectic embeddings

We first explain how singular symplectic curves both obstruct and construct symplectic
ellipsoid embeddings. For p,q € Z>; coprime, a (p, q)-sesquicuspidal symplectic
curve in a symplectic four-manifold M* is a subset C' = M which has one point zy € C
locally modeled on a (p,q) cusp point of an algebraic curve in C2, and such that C is
otherwise an immersed symplectic submanifold with only positive double points (see
[McS23, Def. 3.5.1]).

The following explicit link between sesquicuspidal curves and symplectic embedding
obstructions was established in [McS23]:

Theorem 1.3.1 (Theorems A(b), D, and E in [McS23]). Let (M* wyr) be a four-
dimensional closed symplectic manifold, and suppose there exists an index zero (p,q)-
sesquicuspidal rational symplectic curve in M in homology class A € Hy(M). Then any

[war]-A
q

symplectic embedding E(cq, cp) <> M must satisfy ¢ < . Moreover, the same is

true for any symplectic embedding E(cq, cp) x CN <& M x CN for N € Z=1, provided that
M x CN s semipositive.*

In other words, the existence of C' implies cpr(p/q) = m.g’ Since any unicuspidal
algebraic curve in a complex projective surface is in particufar a unicupisdal symplectic
curve, applying Theorem 1.3.1 to family (d) in Theorem 1.2.2 (with N = 0) imme-
diately gives the obstructive part (i.e. outer corners) of the Fibonacci staircase in
ccp2 (7). Moreover, the case N > 1 shows that these obstructions stabilize, i.e. we have
cep2en (T) = cep2(z) for all 1 < o < 7% (this is the main result of [CH18|, originally
proved using embedded contact homology), where we put

cxxen(a) :=1inf{A e Rxg | E(+,%) x CNV <& X x CN} (1.3.1)
for any symplectic four-manifold X* and N € Z.

As for constructing symplectic embeddings, the following theorem is proved in §3 below
via the method of symplectic inflation. Recall that any local branch of a holomorphic curve
near a singularity is homeomorphic to the cone over an iterated torus knot (see [EN85]).

The cabling parameters can be read off from the Puiseux pairs (n1,dy), ..., (ng, dg), which
0
can in turn be read off from a Puiseux series parametrization z(t) = t™, y(t) = . axt®
k=m

“Here semipositivity is a technical condition which allows one to rule out sphere bubbling using only
classical perturbations. Note that M x CV is automatically semipositive if N = 1 or if M is monotone.
Using e.g. [McS23, Cor. 2.7.2], we can also quantify the above stable symplectic embedding obstructions
by replacing the domain E(1,a) x CV with E(1,a,bi,...,by) for suitable finite b1,...,by € Rsg. A
similar remark applies to all other stable obstructions which follow, although for simplicity we will
formulate results without this quantification.

5The basic reason for the existence of this obstruction is that one can construct an SFT-type curve
in the complement of (a slight perturbation of) the ellipsoid that must have positive symplectic area.
Equivalently, the exceptional divisor given by the normal crossing resolution of the singular curve must
have positive area.



— see §3.3 for more details. In particular, a (p,q) cusp corresponds to a single Puiseux
pair (n1,d1) = (p,q), and our other main examples will be cusps with two Puiseux pairs
(n1,d1) = (p,q), (n2,d2) = (kp+ 1,k) for some k € Z>;.

Theorem A. Let (M*,wyr) be a four-dimensional closed symplectic manifold.

(i) Let C be a (p, q)-sesquicuspidal symplectic curve in M whose homology class satisfies
[C] = ¢PD[wy] € H2(M;R) for some ¢ € Rwg and [C] - [C] = pg. Then there
exists a symplectic embedding E(Z, 5) < M for any ¢ > ¢. In particular, if
[C] - [C] = pq then this is a full filling, i.e the domain and target have arbitrarily
close volume.5

(1) More generally, let C' be a sesquicuspidal symplectic curve in M with Puiseux
pairs (p,q), (p2,q2), - ., (Pg:qq), whose homology class satisfies [C] = cPD[wys] €
H%(M;R) for some c¢ € Rsq and [C] - [C] = k*pq with k = g2+ --q,. Then there

kq kp

exists a symplectic embedding E(, Z) < M for any ¢ > c.

c

. (assuming p > ¢). Note that

In particular the existence of C' in (i) implies car(p/q) <
the last sentence of (i) follows since we have

vol(M,wyy) = %JM wyr A wyr = 3PD[way] - PD[wa] = %[C] -[C].

The conditions on [C] - [C] imply that the index of the (partial) resolution of C' along
which we inflate is positive. Indeed, the expression [C] - [C] — pq in (i) corresponds to
the self-intersection number of the normal crossing resolution of C, while, when g = 2,
the expression [C] - [C] — k%pg in (ii) corresponds to the self-intersection number of the
minimal resolution of C' (see §3).

Applying Theorem A to family (c¢) from Theorem 1.2.2 recovers the constructive part
(i.e. inner corners) for cqp2(x). We will see below that a similar picture holds for all of
the monotone rigid del Pezzo surfaces.

1.3b Outer and inner corner curves

We first construct singular algebraic curves responsible for the obstructions at outer
corners, generalizing family (d) from Theorem 1.2.2.

Theorem B. In each rigid del Pezzo surface M there is a countable family of rational
index zero unicuspidal algebraic” curves which correspond precisely to the outer corners
of the steps of the infinite staircase in cpr(x). More specifically, if (x,y) is an outer
corner point on the graph of cpr, then the corresponding (p, q)-unicuspidal curve C in M
satisfies p/q = x and m = 1.

5Note that if M is a symplectic blowup of CP? (and more generally) this actually implies the existence
of a symplectic embedding of the open ellipsoid Eo'(%, 2) <% M that fills the entire volume of M (c.f.
[Cri19, Proof of Prop. 1.5]).

"Note that by Chow’s theorem we may speak interchangeably about “algebraic” and “holomorphic”
curves, although in the body of the paper we work mostly in the holomorphic category.




Corollary C. Fach of the rigid del Pezzo infinite staircases stabilizes, i.e. for each
monotone rigid del Pezzo surface M we have cy;yon (z) = car(x) for all 1 < @ < aaec(M),
where aaee(M) denotes the accumulation point of the infinite staircase in cpy.

Our first proof of Theorem B in §2 is based on a generalization of Orevkov’s birational
transformation CP? --» CP? to a birational transformation ®y; : M --» M for each rigid
del Pezzo surface M. In brief, we start with two or three “seed curves” in M, and then
we iteratively apply ®,s to produce the rest of the family. The key point is that for seed
curves which are “well-placed” (see Definition 2.2.4), successive applications of ®,; lead
to curves with increasingly singular cusps.

Remark 1.3.2. The number of “strands” of the infinite staircase is determined by the
number of initial seed curves, which is three for CP2(3)#@2(1) and CP2(3)#X2@2(1)
and two in the remaining cases (this corresponds to J in Table 1). This number can also
be seen in terms of the almost toric structures supported by the symplectic manifold M
(i.e. triangles or quadrilaterals, see Figure 4). O

We also give a different construction of these outer corner curves in §6 based on
almost toric fibrations and Q-Gorenstein deformations.

Theorem D. Let 7 : A — Q be an almost toric fibration, where Q < R? is a polygon® and
A is a (not necessarily monotone) closed symplectic four-manifold which is diffeomorphic
to a rigid del Pezzo surface M. Suppose that Q contains consecutive edges pointing in
the directions (—mr?, mra — 1), (0,—1), (1,0) for some m,r,a € Z=1 with ged(r,a) = 1.
Then M contains an index zero (r,a)-unicuspidal rational algebraic curve.

The rough idea is first to construct unicuspidal symplectic curves in A which are “visible”

in @ (and lie over a line segment connecting a vertex to a base-node as in Figure 5 right),
and then to compare A with a Q-Gorenstein smoothing of the corresponding singular
toric surface Vg in order to upgrade these to algebraic curves. Theorem D is a corollary
of Theorem 6.1.7, which holds beyond rigid del Pezzo surfaces and which we state using
the purely combinatorial language introduced in §4. A useful consequence of Theorem D
is that we can directly observe “visible” obstructions for ellipsoid embeddings into A
in terms of triangles in the polygon @ (see the shading in Figure 5 right and see §6.1
for more details). Another noteworthy feature of Theorem D is that A need not be
monotone (or equivalently the polygon @ not need be dual Fano in the sense of §4.1b).
This potentially allows us to construct a much larger class of unicuspidal curves than we
could just by looking at monotone ATFs, as we illustrate with Theorem F below.

Remark 1.3.3. One reason for giving two different proofs of Theorem B is that the
underlying techniques naturally extend in different directions. For instance, the general-
ized Orevkov twist is used in §7.1 to construct sesquicuspidal algebraic curves in CP?
(the “ghost stairs” curves) which we do not currently know how to see using almost toric
fibrations. O

8All polygons in this paper are assumed to be convex.
9Equivalently, @ has a vertex v with edge directions (1,0), (0,1) and a vertex on the edge in direction
(0,1) with eigenray in the direction (r, —a) — see Figure 5 or §4 for more details.



We now discuss curves responsible for constructing symplectic embeddings, gener-
alizing family (c) in Theorem 1.2.2. We consider the two-stranded and three-stranded
cases separately, as they behave somewhat differently, with the latter requiring more
complicated cusp singularities.

Theorem E.

(a) For M each of the rigid del Pezzo surfaces CP?,CP! x CP!, and CPQ#Xj@Q,
j = 3,4, there is a countable family of index two unicuspidal rational algebraic
curves in M which correspond precisely to the inner corners of the infinite staircase
in car(x). More specifically, if (x,y) is an inner corner point on the graph of cyr,

then the corresponding (p, q)-unicuspidal curve C in M satisfies [C] - [C] = pq and

[C] = ¢PD([wpr]) for e = pf;qﬂ, with p/q = x and ¢/q = y.

(b) For M each of the rigid del Pezzo surfaces CPQ#@2 and CPQ#“@z, there is a
countable family of weakly'® sesquicuspidal rational algebraic curves in M which
correspond precisely to the inner corners of the infinite staircase in cpr(z). More
specifically, if (x = p/q,y) is an inner corner point on the graph of cyr, then the
corresponding curve C in M satisfies [C] = kqyPD([wn]) and [C] - [C] = k?pq
for some k € Z=1 and has a cusp with one Puiseuz pair (p,q) if k = 1 and two
Puiseuz pairs (p,q), (kp + 1,k) if k € Z>o.

Our proof of Theorem E is based on an analogue of Theorem D, namely Theo-
rem 5.3.1, which says roughly that every “visible ellipsoid embedding” (in the sense of
§5.1b) corresponds to an algebraic (weakly) sesquicuspidal rational curve. The proof of
Theorem 5.3.1 is similarly based on almost toric fibrations and Q-Gorenstein smoothings,
except that the relevant curves no longer correspond to straight line segments in the
polygon () but rather to tropical curves which intersect every edge.

Remark 1.3.4. In the above we have observed that we can recover embeddings cor-
responding to inner corners of infinite staircases by inflating along suitable singular
symplectic curves, and moreover these curves can be explicitly constructed with the
aid of almost toric fibrations. However, it should be emphasized that the very same
almost toric fibrations can be used much more directly to construct symplectic ellipsoid
embeddings (c.f. Proposition 5.1.2), which is the approach taken in [Cri{20; CV22]. The
main novelty of Theorem E is the connection with singular algebraic (and in particular
symplectic) curves. O

1.3c Unicuspidal curves in the first Hirzebruch surface

Let Fy = CPQ#@2 denote the first Hirzebruch surface, and let ¢, e € Hy(F;) denote the
line and exceptional classes. We showed in [McS23, Thm. G| that there exists an index

0The word “weakly” indicates that these curves might have other singularities in addition to the
distinguished cusp and some ordinary double points. In the symplectic category we can always perturb
such a curve to a genuine sesquicuspidal one, but this is not guaranteed in the algebraic category. It
seems plausible that this qualifier here could be removed by a more careful analysis of the curves in the
proof of Proposition 5.2.1.
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zero (p, q)-unicuspidal rational symplectic curve in F} in homology class A = d¢ — me if
and only if A e Ho(F}) is a (p, q)-perfect exceptional class (see [McS23, Def. 4.4.2]).11
The set

Perf(F1) := {(p,q,d,m) | A =dl —me is a (p, q)-perfect exceptional class}

is quite complicated but was recently worked out explicitly in [MM24; MMW?22| in
the course of classifying infinite staircases for all (not necessarily monotone) symplectic
forms on F (see also §6.5 below for a detailed overview). In §6.5 we associate a polygon
as in Theorem D to each (p,q,d,m) € Perf(F}), and thereby construct an algebraic
(p, @)-unicuspidal curve:

Theorem F. For any coprime positive integers p > q and homology class A € Hy(F),
the following are equivalent:

e there exists an index zero (p,q)-unicuspidal rational symplectic curve C' in Fy with

[C]=A

e there exists an index zero (p,q)-unicuspidal rational algebraic curve C' in Fy with

[C] = A.

Remark 1.3.5. It follows by Theorem F and the results in [MM24; MMW22| that every
rational unicuspidal algebraic curve with one Puiseux pair in Fj corresponds to the outer
corner of a staircase in ¢y, (x) for some b € [0, 1), where H,;, := CP2(1)#@2(6) denotes
Fy with the symplectic form such that a line has area 1 and the exceptional divisors
has area b (this is unique up to symplectomorphism). Note that #; is monotone only if
b=1/3. O

We prove Theorem F by showing that such (p,q) is realized by an almost toric
fibration which satisfies the hypotheses of Theorem D. The analogous statement holds
for CP? (see Lemma 6.5.1) and is expected for CP! x CP! (c.f. [Ush19; Far{22] and
Remark 6.5.4 below). Thus it is natural to ask whether something analogous holds also
for the remaining rigid del Pezzo surfaces:

Conjecture G. Let M be a rigid del Pezzo surface. The following are equivalent:
(a) There exists an index zero (p,q)-unicuspidal rational symplectic curve in M

(b) There ezists an almost toric fibration m : A — @Q as in Theorem D, where A
1s diffeomorphic to M and Q) has consecutive edges pointing in the directions
(—=mq?, mpq — 1), (0, —1), (1,0) for some m € Z=1. In particular, there exists an
index zero (p, q)-unicuspidal rational algebraic curve in M.

Note that (a) is equivalent to the existence of a (p, q)-perfect exceptional homology class
A € Ha(M) (again by [McS23, Thm. GJ), although the set Perf(M) remains to be worked
out (and presumably becomes more complicated with more blowups).

"'Note that this does not depend on the choice of symplectic form on Fi, by e.g. Theorem E and
Theorem 3.3.2 in [McS23], along with the fact that all symplectic forms on F; are deformation equivalent.
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Remark 1.3.6. We do not attempt to construct inner corner curves for staircases in
nonmonotone manifolds such as H; for b # 1/3. One main issue is that in all known
cases such staircases exist only when the symplectic form has no rational multiple, so
that one cannot construct optimal ellipsoid embeddings by simply inflating along a curve
in a class Poincaré dual to a multiple of the symplectic form. O

1.3d Sesquicuspidal curves and obstructions beyond staircases

Another natural question in the spirit of Theorem 1.2.2 is to try to classify index
zero (p, q)-sesquicuspidal rational curves in CP?. Note that for such a curve we have
d = (p+ q)/3, and by the adjunction formula the number of ordinary double points must
be %(d —1)(d—2) — %(p —1)(¢ — 1). This question is known to be closely related to the
study of the stabilized ellipsoid embedding function ccp2,cn () beyond the Fibonacci
staircase, i.e. for z > 7% (see e.g. [McS23, §1] and the references therein). In §7 we
apply the Orevkov twist ®p2 to more interesting seed curves to produce a new (to our
knowledge) family of rational algebraic plane curves:

Theorem H. There is an infinite sequence of index zero rational algebraic curves
C1,C5,Cs, ... in CP? which correspond precisely to the “ghost stairs” obstructions from
[McSchi12]. More specifically, for k € Zs1, Ck has degree dy, and a (pk, qx) cusp, where
(pk> ar) = (Fibagso, Fibyr_s) and dp = 5(pi, + qi) = Fibyy.

Combined with Theorem 1.3.1, this recovers the main result from [CHM18|, namely there

is an infinite sequence x1 > xy > x3 > --- of positive real numbers with lim z; = 7%
1—00
and such that cga(yyuen (i) = ;’?1 for all i, N € Z>1. We recall the significance of

the “folding function” xgﬁ and discuss its (partly conjectural) analogue for other target

spaces in §7.2. We also note that the same techniques allow for a vast generalization of
Theorem H conditional on the existence of “higher degree seed curves”’, which we take up
in the forthcoming work [McS] (see Remark 7.1.3).

Acknowledgements

We would like to thank Jonny Evans, Bob Friedman and Rob Lazarsfeld for helpful
discussions.

2 Unicuspidal curves and the generalized Orevkov twist

Our goal in this section is to introduce the generalized Orevkov twist and use it to prove
Theorem B. We first formalize the twist CP? in §2.1, with a view towards allowing more
general seed curves (e.g. those considered in §7.2) and also extending the ambient space
to rigid del Pezzo surfaces, which we take up in §2.2. After a brief interlude in §2.3 to
recall some staircase numerics from [Cri+20], we complete the proof by constructing the
relevant seed curves in §2.3.
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2.1 The Orevkov twist in CP?

In this subsection we recall the definition and basic properties of the birational transfor-
mation ®p2 : CP? --» CP? from [Ore02], which for brevity we refer to as the “Orevkov
twist”. Let A/ < CP? be a fixed nodal cubic, which for concreteness we can take to be
{y?2 = 2?(z + 2)} (any other nodal cubic is projectively equivalent to this one). Let
p € N denote the double point, and let B, B_ denote the two local branches near p.

Construction 2.1.1. The birational transformation ®cpe : CP? > CP? is defined as
follows. Let BI'CP? denote the blowup'? of CP? at the point p, with resulting exceptional
divisor F1. Let N'' < BI'CP? denote the proper transform of N, and let Bi c N1 denote
the proper transform of the local branch B,.. Put p' := B}r NnFlcNL

Neat, let BI’CP? denote the blowup of BILCP? at the point p', with resulting exceptional
divisor F3, and with F3 = BI*CP? the proper transform of F}. Let N2 < BI*CP? denote
the proper transform of N'', and let Bi c N? denote the proper transform of the local
branch BL. Put p? := B2 nF} c N2

Continuing in this manner, after a total of 7 blowups we arrive at BI'CP?, which
contains a chain of rational curves N7,F7 ..., F? with intersection graph as in Figure 1.
In terms of the natural identification Hy(Bl'CP?) = Ho(CP?) @ Z{ey, ..., e7), we have

o [NT]=30—2¢; —eq— - —er o [Fil=ci—es
o [F]]=e1—e2 o [Fil=e5—es
o [FI]=es—e3 4 [Fg‘] = €6 — €7
o [Fll=e3—es o [Fil=er,

where £ € Hy(CP?) denotes the line class.

Figure 1: The chain of rational curves (decorated by their self-intersection numbers)
which arise in the half part of the Orevkov twist.

Since [NT]-[NT] = =1, we can blow down BI"CP? along N7 to obtain BI''CP?. Let
F?l, e FZ;I  BIICP? denote the proper transforms of Fi,..., F; respectively. Then
since [FIJ] : [F?l] = —1, we can blow down BI"'CP? along FI;l to obtain BIT2CP2.
Let F;Q, e F;;z c BI"2CP? denote the proper transforms of F;;l, e F;;l respectively.
Continuing in this manner, after a total of 7 blowdowns (along N7, Fz;l, ces ,Fgﬁ), we
arrive at BITTCP?, which contains the nodal rational curve F;ﬁ with [F;ﬂ] : [F;ﬁ] =9.

12A11 blowups in this section are at points and occur in the complex category. In later sections we also
consider symplectic blowups, which depend on a symplectic embedding of a ball.
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Finally, by composing this sequence of 7 blowups and 7 blowdowns with a biholomor-
phism BI7CP? =~ CP? sending Fzﬁ to N, we arrive at the birational transformation
dep2 : CP? —-5 CP2.

Given a curve C' © CP?, we denote its proper transform under the above birational
transformation by ®p2(C) = CP2. In the following, we say that a curve C satisfies the

constraint <7}§in)p> if C passes through p and has a branch with contact order at least

m (i.e. tangency order at least m — 1) to B_. Note that a curve satisfying <’723(in)p>
must have intersection multiplicity at least m + 1 with A/, since it also intersects the
branch B at p.

Theorem 2.1.2 ([Ore02]). Let L = CP? denote the unique line which satisfies <7;3(%)p>,
and put Copy1 := CIDélﬂ(L) for k € Z=g. Similarly, let Q < CP? denote the unique

(irreducible) conic'® which satisfies <’7'B(f)p>, and put Copyo 1= @éPQ(Q) for ke Zsg.

Then for k € Z>1, Cy is a (pg, qr)-unicuspidal rational plane curve of degree dy, where
(pi> ar) = (Fibojs1, Fibog_3) and di = §(pr, + qx) = Fibgp_1.

Here Fiby, is the kth Fibonacci number, i.e. Fib; = Fibg = 1 and Fibg,9 = Fibg + Fibg 4
(it will also be convenient to put Fib_; := 1). Recall that the z-coordinate of the kth
outer corner point of the Fibonacci staircase in [McSch12] is precisely the odd index
Fibonacci ratio Fibgg1/Fibog_3.

Theorem 2.1.2 follows from the identity Fibog,5 = TFibori1 — Fibog_3, together with
the fact that for a curve C' = CP? with a well-placed (p, q) cusp (see Definition 2.2.4
below), its twist ®p2(C) has a well-placed (7p — ¢,p) cusp. Indeed, let us analyze the
construction of ®-p2(C) in more detail as follows (see Figure 2). We assume p > 2¢,
and let C' = CP? be a curve which has a (p, ¢) cusp maximally tangent to the branch
B_ of the nodal cubic A/ at its double point p. The proper transform C' < BI'CP? of C
then has a (p — ¢, q) cusp maximally tangent to the branch B! of N''. After 6 further
blowups (which do not affect C! since it is disjoint from the blowup points), we arrive at
the curve C7 < BI"CP?, which has a (p — ¢, ¢) cusp maximally tangent to the branch B”
of N7. We then blow down to obtain the curve C7' < BI“'CP?2, which has a (p,p — q)
cusp maximally tangent to Fz;l. In the next blowdown we obtain C"? < BI"2CP?, which
has a (2p — ¢, p) cusp maximally tangent to F;;Q. Finally, after 5 further blowdowns we
arrive at ®p2(C) = CT7 < BI“CP?, which has a (7p — ¢, p) cusp maximally tangent to
a branch of the nodal curve Fgﬁ at its double point.

Remark 2.1.3. Suppose that C is a degree d plane curve which intersects the nodal
cubic NV at some point (necessarily distinct from the double point p) with contact order
3d. Then one can check that the twist ®p2(C) has a (21d + 1,3d) cusp. In particular,
in the case d = 1, C' is a flex line, and ®¢p2(C) has degree 8 by the adjunction formula,
so ®ep2(L) is a sporadic unicuspidal curve as in Theorem 1.2.2(e). Similarly, in the case

13As an alternative to the conic Q we could take the unique line in CP? which satisfies <7’éi>p>, as

this transforms into @ under one application of the Orevkov twist ®cp2 (this is actually the approach
taken in [Ore02]).
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Figure 2: The Orevkov twist in CP?. Notice that C™! is tangent to F17;1 because
its blowup C7 intersects Ff . However, because the curve C7? intersects F17 1at its
intersection with F'' rather than F'', when F[" is blown down C72 is tangent to F. "
rather than to F27 2 and its blowdowns remain tangent to F77 * for k> 2.

R F? F7 F} F; F! F} F?

77
]F7

d =2, ®cp2(C) has a (43,6) cusp and degree 16, and hence represents Theorem 1.2.2(f).
O

2.2 The generalized Orevkov twist

We now generalize the Orevkov twist to any rigid complex del Pezzo surface M, i.e.
either BI*CP? for k = 0,1,2,3,4 or CP' x CP!. Note that PD(c;(M)) € Hy(M) is given
by 3¢ —e; — --- — ey, if M = BI*CP2, or by 21 + 2(5 in the case M = CP! x CP! (here
we put £1 := [CP! x {pt}] and £ := [{pt} x CP!]).

In the following we consider ' © M be a rational nodal curve which is anticanonical
(i.e. [N] =PD(c1(M))) and has a unique double point (note that this is consistent with
the adjunction formula). Concretely, in the case M = BI*CP? for k = 0,...,4 we can
assume up to biholomorphism that M is given by blowing up CP? at k points ny,...,ny
on the standard nodal cubic N := {y?z = 2?(x + 2)}, and we could take A to be the
proper transform of Ny in M (note that any tuple of 4 points in CP?, no 3 of which are
collinear, is projectively equivalent to any other such tuple). In the case M = CP! x CP!,
we could take N to be (CP* x {q1,¢2}) U ({p1,p2} x CP!) for q1, 2, p1,p2 € CP! with
q1 # g2 and p; # po, after smoothing the nodes at (p1,q2), (p2,q1), (P2, q2).

The degree of the del Pezzo surface M is by definition [N] - [N], and it will also be
convenient to put K := [N]-[N]— 2 (see Table 1).

Construction 2.2.1. For M a rigid del Pezzo surface as above, the birational transfor-
mation @y 2 M --» M is defined as follows. Let N < M be a rational nodal anticanonical
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curve, with local branches B, B near the unique double point p. Let BI'M denote the
blowup of M at the point p, with resulting exceptional divisor F%. Let Nt < BI'M denote
the proper transform of N, and let 13_1F c N1 denote the proper transform of the local
branch By. Put p':= B nF} <« N1

Neat, let BI>M denote the blowup of BI*M at the point p*, with resulting exceptional
divisor F2, and with F% c BI2M the proper transform of F%. Let N? < BI’M denote
the proper transform of N'', and let Bi c N? denote the proper transform of the local
branch BL. Put p? := B% nF} c N2

Continuing in this manner, after a total of K blowups we arrive at BI M, which
contains a chain of rational curves NE FE .. FE. Since [NE]-[NE] = —1, we can
blow down BI M along N5 to obtain BIS M. Let FI5', ... FIST < BISSIM denote the
proper transforms of FX, ... FK respectively. Then since [F{(;l] . [F{(;l] = —1, we can
blow down BIS'M along FI* to obtain BIK?M. Let FY? ... FK? < BIS2M denote
the proper transforms of Ff;l, ey F?l respectively. Continuing in this manner, after
a total of K blowdowns (along N'K, F{{;l, ce F{?_If*l), we arrive at BISYEM | which
contains the rational nodal curve Fie™ with [Fio™] - [Fi™] = K + 2.

Finally, by composing this sequence of K blowups and K blowdowns with a biholo-
morphism U : BISEM ~ M (which exists by Lemma 2.2.3 below), we arrive at the
birational transformation @y := M --+ M, which contains the rational nodal curve

N = W(FR).

We will sometimes denote generalized Orevkov twist ®,; by ®ps.n7 when we wish to
emphasize the role of the anticanonical curve N.
We begin with some lemmas to justify Construction 2.2.1.

Lemma 2.2.2. In the setting of Construction 2.2.1, N’ is also an anticanonical curve

in M, i.e. we have [N'] = PD(c1(M)) € Hao(M).

Proof. It suffices to check that F?K is an anticanonical curve in BI**% M. To see this,
observe that if C' is a (reduced but not necessarily irreducible) anticanonical curve in a
smooth complex surface X, and if X’ denotes the blowup of X at an ordinary double
point of C, then the total transform of C' in X’ is again anticanonical. Conversely, if C
is an anticanonical curve in a smooth complex surface Y’ with an exceptional component
Cy < C such that Cp intersects C' . Cp transversely in two points, and if Y denotes the
blowdown of Y’ along Cj, then the image of C' under the blowdown map Y’ — Y is
again anticanonical. Since F?K c BIfF M is obtained from the anticanonical curve
N c M by a sequence of blowups and blowdowns of these forms, it follows that F?K is
again anticanonical. O

Lemma 2.2.3. In the setting of Construction 2.2.1, there is a biholomorphism BIE M ~
M.

Proof. We first claim that BI®® M is Fano. By Lemma 2.2.2, F?K c BISEN s
anticanonical, so it suffices to check that this is ample, and this follows easily by the
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Nakai-Moishezon criterion, since any curve in BI**® M disjoint from F?K would imply
a curve in M disjoint from N

Since BIfK M has the same integral homology as M, by the classification of del
Pezzo surfaces the only possible ambiguity lies in distinguishing CP! x CP! from the
first Hirzebruch surface BI'CP2. In the case M = BI'CP?, let E = M be the exceptional
curve, and let E%% be its proper transform in BI%SA/. One can check (e.g. using a
similar analysis to the proof of Lemma 2.2.2) that we have ¢ ([E%]) = 7, and hence
BI%6\f ~ BI'CP?, as all homology classes in CP! x CP! have even Chern number.

A similar but slightly more complicated argument shows directly that if M =
CP! x CP! then we again must have BI®SAM ~ M. However, one can also argue using
symmetry: the inverse of the Orevkov twist is given by exactly the same number of
blowups and blowdowns but with the two branches of A/ reversed. The above argument
concerning BI'CP? shows that any twist on BI!CP? gives BI'CP2. Therefore, if the twist
done to CP! x CP! did give BI'CP?, then the inverse operation done on the other branch
would have also to give BI'CP?, which is impossible. O

The following language will be useful for understanding how cusps transform under
successive applications of the generalized Orevkov twist ®jy.

Definition 2.2.4. A curve C in M is (p, q)-well-placed with respect to N if we have
CnN = {p}, C is locally irreducible near p, and we have (C-B_), = p and (C-By), = q.

Here N is any rational nodal anticanonical curve as in Construction 2.2.1, and we will
sometimes simply say that C' is “well-placed” if A is clear from the context. Note that
this implies that C has a (p,q) cusp at p which is maximally tangent to the branch B_
(in the sense of [McS23, §3.5]). We also allow the case ¢ = 1, i.e. C'is (p, 1)-well-placed
if it has a single branch passing through p which is smooth and strictly satisfies the
tangency condition <7;3(€ )p>, and C' is otherwise disjoint from A. Note that the line
L (resp. conic @) in Theorem 2.1.2 is (2, 1)-well-placed (resp. (5,1)-well-placed) with
respect to .
Remark 2.2.5. For any (rational) curve C' < M which is (p, ¢)-well-placed with respect
to N we have ¢1([C]) = [C] - [N] = p + ¢, i.e. C must have index zero. Note also
that the singularities of C' \ p are in bijective correspondence with the singularities of
@,/ (C) N p. In particular, if C' is unicuspidal (with p,q > 1) then so is ®/(C). O
The singularity analysis given at the end of §2.1 (and depicted in Figure 2) immediately
extends to the generalized Orevkov twist as follows.

Proposition 2.2.6. If a curve C < M is (p,q)-well-placed with respect to N, then
D,/ (C) is (Kp — q,p)-well-placed with respect to N.

Crucially, since N is itself a rational nodal anticanonical curve by Lemma 2.2.2, we
can subsequently apply the generalized Orevkov twist using N’ to obtain a curve
@ rra7 (Para(C)) which is (K[Kp — ¢] — p, Kp — q)-well-placed with respect to N, and
SO on.
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Remark 2.2.7. In the case of ®cp2 there is a biholomorphism taking N’ to A/, but this
is not a priori clear (or needed) in the general case. O

2.3 Staircase numerics and seed curves

Before completing the proof of Theorem B, we briefly recall some numerical aspects of
the rational infinite staircases. Our discussion is largely informed by [Cri-+20; CV22],
and we refer the reader to these references for more details.

Recall that associated to each rigid del Pezzo surface M is a sequence of nonnegative
integers g1, g2, g3, . . . which determines the locations of the outer and inner corners of
the corresponding infinite staircase. These sequences are explicated in [Cri+20, Table
1.18], which is reproduced in Table 1. Here J denotes the number of “strands”, K + 2 is
the degree of the corresponding del Pezzo surface, and ac. is the accumulation point, i.e.
the limiting z-value. More explicitly, the sequence g1, g2, g3, ... determines the locations
of the outer and inner corner points in the graph of cjs(x) as follows:

e kth outer corner: z-coordinate g’“” , y-coordinate kg_f;ki y
. . T .
e kth inner corner: z-coordinate %+2(9k+1 gk“”), y-coordinate —Z+I
Ik+1(gk+9r+7) Gkt Gkt

In particular, if p/q is the z-coordinate of an outer corner, then (Kp — q)/p is the
x-coordinate of the outer corner J steps away. This means that the full set of outer
corners is obtained by iteratively applying the recursion p/q — (Kp — q)/p to the seeds
g?{‘] Yoy g . Note that the generalized Orevkov twist achieves precisely the recursion
(p,q) — (Kp q,p) by Proposition 2.2.6.

Example 2.3.1. In the case M = CP?, the sequence g1, g2, g3, . .. corresponds to the
odd index Fibonacci numbers. In the case M = CP! x CP!, the even index entries of
g1, 92,93, - .. correspond to the odd index Pell numbers, while the odd index entries of
g1, 92,93, - - . correspond to the even index half-companion Pell numbers. O
Remark 2.3.2. Note that if M is endowed with its monotone symplectic form wyy,
and if C' is a (p, ¢)-sesquicuspidal rational symplectic curve in M of index zero, then
by Theorem 1.3.1 we have cps(p/q) = [W]ij[ o] = ]) = Meanwhile, the outer

([ p+q
corners described above are all of the form (z,y) = (% ;) forp,geZzy. O

By the discussion in the previous subsection, in order to complete the proof of
Theorem B it remains to construct seed curves. Namely, for M a rigid del Pezzo surface
with corresponding integer sequence go, g1, 9g2,..., we must construct a well-placed
(9k+7, g )-unicuspidal rational algebraic curve in M for k = 0,...,J — 1. More explicitly,
inspecting Table 1, it suffices to find a well-placed (p, ¢)-unicuspidal rational algebraic
curve C with (p, q) ranging as follows:

e M =CP?% (p,q) = (1,2),(2,1)
e M =CP! xCP!: (p,q) = (1,1),(3,1)
e M =BICP?: (p,q) = (1,1),(2,1),(4,1)
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Table 1: The sequences controlling the rational infinite staircases, reproduced from
[Cri+20, Table 1.18].

rigid del Pezzo negative weight | K | J recursion seeds acc. pt.
surface expansion Jev20 = Kgrig — gk | 90,---,920-1 | Gacc
CP(3) (3) 712 gua=Tgr—ge | 21,12 | TS
CP!(2) x CP(2) (4;2,2) 6 | 2| grida =692 — gr 1,1,1,3 3+2v2
CP2(3)#CP (1) (3:1) 6 | 3| gere=6gkis—gr | 1,1,1,1,2,4 | 3+2v2
==3
CP(3)#°CP (1) (3:1,1) 5 13| gno=Sges—ge | 1,1,1,1,2,3 | My
CP2(3)#X3CP (1) (3717171) 4 2 Jk+4 = 4gk‘+2_gk 1717152 2+\/§
==3
CP2(3)#X4CP (1) (3’171a1’1) 3 2 Jk+4 = 39k+2 — gk 1,2,1,3 3—&-27\/5

M = BI*CP?: (p,q) = (1,1),(2,1),(3,1)
M = BI*CP?%: (p,q) = (1,1),(2,1)

M = BI'CP%: (p,q) = (1,1),(3,2).

As above, for k = 1,2,3,4 we take BI*CP? to be the blowup of CP? at k points

ny,..

., M on the standard nodal cubic Ny = {Y?Z = X?(X + Z)}, and we take N to

be the proper transform of A'. Meanwhile in the case of CP! x CP! we take A to be the
smoothing of (CP! x {q1,¢2}) U ({p1,p2} x CP1) at the nodes (p1,q2), (P2, q1), (P2, o).
Case M = CP2: For (p,q) = (1,2) and (p,q) = (5,1) (i.e. (7-1—2,1)) we take the

line L and conic @) respectively mentioned in Theorem 2.1.2.

Case M = BI'CP?:

For (p,q) = (1,1), we take C to be the proper transform of the unique line in
CP? which passes through n; and the double point p of Ny. Note that we have
[C] = ¢ — e € Hy(BI'CP?).

For (p,q) = (2,1), we take C' to be the proper transform of the unique line in CP?
which is tangent to B_ at p. Note that C' is necessarily disjoint from n; so we have

[C] = ¢ e Hy(BI'CP?).

For (p,q) = (4,1), we take C' to be the unique conic in CP? which satisfies <7;3(f)p>
and also passes through n; (this is easily constructed using a linear system, or by a
deformation argument similar to the ones given below).

Case M = CP! x CP!:

For (p,q) = (1,1), we take C' to be the unique line in class ¢; (or alternatively ¢3)
which passes through the double point p of N.

For (p,q) = (3,1), we take C' to be the unique rational curve of bidegree (1,1)
which has contact order 3 to a branch of N at p. To construct such a curve, we
can start with a bidegree (1,1) curve D passing through p and two other nearby
points x1,x2 € B_ (e.g. D can be realized as the graph of a holomorphic map
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CP! — CP!). As we move the points z1, s into p along B_, D correspondingly
deforms into a curve of the desired kind.

Case M = BI’CP?%:

e For (p,q) = (1,1), we take C to be the proper transform of the unique line in CP?
which passes through p and n; (or alternatively ns)

e For (p,q) = (2,1), we take C to be the proper transform of the unique line in CP?
which is tangent to B_ at p.

e For (p,q) = (3,1), we take C to be the proper transform of the unique conic in
CP? which satisfies <T£)p> and passes through n; and ns.

Case M = BI’CP?:

e For (p,q) = (1,1), we take C to be the proper transform of the unique line in CP?
which passes through p and n;.

e For (p,q) = (2,1), we take C to be the proper transform of the unique line in CP?
which is tangent to B_ at p.

Case M = BI*CP%

e For (p,q) = (1,1), we take C to be the proper transform of the unique line in CP?
which passes through p and n;.

e For (p,q) = (3,2), we take C to be the proper transform of a rational cubic in CP?
which has a (3,2) cusp with contact order 3 to B_ at p and which passes through
points ny, ng, ng, ng on the standard nodal cubic Ny, as guaranteed by Lemma 2.3.3
below.

We end this subsection by constructing the above (3,2) seed curve, which then
completes the proof of Theorem B. Similar to [McS23], we will denote by <CPDp>
the constraint that a curve has a holomorphic parametrization u : CP' — M such that
u([0:0:1]) = p, and u has contact order at least p with B_ at [0:0: 1] and contact
order at least ¢ with By at [0:0: 1].

Lemma 2.3.3. There exists a rational cubic algebraic curve in CP? which satisfies the

cuspidal constraint <C(3’2)p> as well as the point constraints <ng,...,ny=>.

Proof. Let D be a cuspidal cubic in CP? whose cusp has contact order 3 with B_ at
p (this is a codimension 4 constraint), and let z1, ..., x4 be distinct points in D ~ {p}.
Let o%,...,2%, t € [0,1], be an isotopy in CP? . {p} such that z{,..., 2} € Ay and
zt,..., 2}, p are in general position for each t € [0,1]. We consider the parametrized
moduli space

{(t,u) |t [0,1],ue Mcp2 5 <C®Pp, 2l ... al>},

where, for ¢ € [0, 1], MCP2’3£<C(3’2)p, 2y, ..., 24> denotes the moduli space of holomor-
phic maps'® u : CP! — CP? (modulo biholomorphic reparametrization) which satisfy

“Here we formulate the argument in terms of holomorphic maps in order to match the setup of
[McS23], but one could also formulate the argument using only the language of subvarieties.
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the cuspidal constraint <C2)p> and the point constraints <zt ... zf>. We seek

to show that MCP273£<C(3’2)p, niy,...,n4> is nonempty, and for this it suffices to show
that a sequence of curves in the parametrized moduli space cannot degenerate into a
configuration Ds having more than one component.

Assume by contradiction that such a Dy exists, say at t = t5 € [0, 1], and suppose first
that some nonconstant component D% of Dy carries the cuspidal constraint <C®2)p>.
Then D} must be a conic (necessarily a double cover of a line), and the remaining
nonconstant component Dg of Dy must be a line. Since D; Ny =6, D} carries at most 1
of the point constraints <azi‘5, . ,xff>, since the cuspidal constraint contributes a local
intersection multiplicity of at least 5. Then the line component Dg must carry at least
three of the point constraints, which is a contradiction since we assumed they are in
general position.

Now suppose that the cuspidal constraint <C®2)p> is carried by a ghost
component, so that the constraint itself decomposes into several constraints
<CPra)p> . <CPra)p> carried by nearby nonconstant components of Ds. By
[McS23, Prop. 3.2.4] (or [McS23, Ex. 3.2.7]), we must have Zle(pi +qi) =3+2+1=6.
Taking into account the point constraints <x§5, . ,xff>, this gives Ds - N =6 +4 > 9,
which is a contradiction since Dy is degree 3. O

3 Inflating along sesquicuspidal curves

The main goal of this section is to prove Theorem A, using the following basic outline:
1) construct a (partial) resolution €' of C' in a suitable iterated blowup M of M

2) apply the technique of symplectic inflation to C to modify the symplectic form on
M

3) blow down again to obtain a symplectic manifold M’ which is symplectomorphic
to M and by construction contains a large symplectic ellipsoid.

The main technicality is that we need to perform the blowdowns in families in the
symplectic category, where blowups and proper transforms are more delicate than in the
complex category. Indeed, recall that whereas complex blowups are performed at a point,
symplectic blowups require the data of a symplectic ball embedding ¢ : B>*(R) <> M for
some R € R-g.'® The symplectic blowup Bl, M is then defined roughly by removing the
interior of ¢(B?*(R)) and collapsing the boundary along the fibers of the Hopf fibration.
Some precise relations between complex and symplectic blowups are detailed in [McSal7,
§7.1].

In §3.1, we first discuss a model for the resolution M — M in the case of a (p,q) cusp
singularity using toric moment maps, and we use this to prove Theorem A(i) in §3.2. In
§3.3 we extend the discussion to cusps with multiple Puiseux pairs, and finally we prove

153trictly speaking the construction requires choosing an extension of this embedding to B*"(R + ¢)
for some € > 0, but we will suppress this from the discussion.
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Theorem A(ii) in §3.3. Along the way we also discuss some generalities on resolutions of
cusp singularities which will be needed elsewhere in the paper.

3.1 Toric resolution of a (p,q) cusp

Recall that any cusp singularity of a holomorphic curve C' = C? can be resolved by a finite
sequence of point blowups (see e.g. [Wal04, §3.3]). We will denote the exceptional divisor
resulting from the ith blowup by Fé, and for j > ¢ we denote its proper transform in the
jth blowup BIC? by Fg . We arrive at the minimal resolution C¥ after some number
K € Z-; of blowups, and after L — K further blowups for some L € Z>; we arrive at the
normal crossing resolution C'*, in which the total transform C* U Ff U .- U Ff < BIFC?
of C is a normal crossing divisor. We have [FE] - [FL] = —1 and [FL] - [FE] < -2 for
1=1,...,L —1, and the spheres Ff, cee F£—1 are disjoint from C*, while F% intersects
C transversely in one point. In the case of a (p, ¢) cusp, the combinatorics of the normal
crossing resolution are related to the continued fraction expansion of p/q and are neatly
encoded in the so-called box diagram for (p,q) (see [McS23, §4.1]).

Let pcz : C* — R, p(z1,22) = (m|z1]%,7|22/?), denote the moment map for the
standard torus action on C2. Given p > ¢ coprime positive integers, let Agp © R2>0
denote the triangle with vertices (0,0), (¢,0), (0,p), let Q) < Rio denote the closure
of its complement, and let X, ) denote the corresponding toric symplectic orbifold with
moment map fix, » : X(gp) = Q(gp) (this can be viewed as a weighted blowup of C?).
Note that X(, ) has two cyclic quotient singularities of types %(1, p — q) and %(17 q—r),
where r is the remainder when p is divided by ¢,'® and these can each be resolved
by finitely many toric blowups (c.f. [McS23, Rmk. 4.3.4]). On the level of moment
polygons, a toric blowup at a corner adjacent to edges having primitive inward normals
(1,0), (a,b) € Z? with a < b amounts to chopping off the corner so as to introduce a
new edge with inward normal (1,1) (the general case reduces to this one by an integral
affine transformation). We denote by ﬁ(q,p) c Rzzo any (noncompact) polygon obtained
from €, ) after resolving both of the singularities by successive toric blowups. The
corresponding (noncompact) toric symplectic manifold p R )Nf( ) — ﬁ(q,p) is also

) a.p

obtained from C? by a sequence of L toric blowups.

Example 3.1.1. Figure 3 illustrates the construction of )?(273) from C? by 3 toric
blowups, with corresponding inward normal vectors (1,1), (2,1), (3, 2). O

Let ﬁ(qm) = FlL U U F% denote the compact components of the toric boundary

divisor in )NC(W). Note that, for 1 < i < j < L, FZ»L and F]L are either disjoint or
intersect symplectically orthogonally in one point. For i = 1, ..., L, the symplectic area
of FZ-L is given by the affine length of the corresponding edge N}?(M)(FiL) < Q(q,p)» and

evidently in the construction of X(q,p) we can independently choose arbitrary values
Al, ..., AL € Ry for these affine lengths.

Given a neighborhood U of % )(D(q’p)) in Q(qyp), there is a corresponding neighbor-
q9,p

6For more information, see §4.1a.
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Figure 3: The sequence of toric blowups starting at C? and ending at X (2,3)- The
green lines represent the visible (3,2)-cuspidal curve Cia) < C? and its resolution

~
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hood V =Uwuy A( p) of the origin in R2>0, where ﬁ( p) denotes the closure of R2>0 ~ Q(q’p),
so that oU n R2 20 =0V nR%,. Then the corresponding toric domains Xy := ugzl(V)

and XU = u -~ (U) coincide away from compact subsets. Our model for the symplectic
X(g.p)

resolution M — M of a (p, q) cusp singularity will roughly amount to excising Xy and
gluing in Xy. Note that the ellipsoid E(q,p) naturally sits in Xy .

Now suppose that C1,...,Cy is any configuration of symplectically embedded two-
spheres in a symplectic four-manifold W which have the same respective areas as
F1i,...,Fr and the same intersection graph with symplectically orthogonal intersections.
Then by a version of the symplectic neighborhood theorem (see e.g. [Sym98, Prop.
3.5]), there is a neighborhood W of  Cru---uCp in W which is symplectomorphic to a
neighborhood of F; U --- U Fp in X( ) of the form XU for some U < Q(q p) containing

59 )(]S(qyp)). This means that there is a symplectic surgery of W which excises W
9P

and glues in Xy, with V =U v A(q,p) as above. This gives an explicit model for the
symplectic blowdown of W along C, ..., 1, which by construction contains the ellipsoid

E(q.p).

Observe that is a (p, ¢)-unicuspidal symplectic curve Clp,q) In C? whose image under
pc2 is the ray R=g - (p, q), given explicitly by

C(pﬂ) ={(r pe%ipt,r\/ae%iqt) e C? | € Rso,t €[0,1]} (3.1.1)

(this is “visible” in the sense of §5.1a below and can be viewed as the hyperKéhler twist
of the Schoen-Wolfson Lagrangian discussed in [Fva23, Ex. 5.11]). Although C(, ) is
not equal on the nose to the model (p, q) cusp {zP + y? = 0}, these two curves have the
same links as transverse torus knots, namely the (p, ¢) torus knot of maximal self-linking
number, and hence they are essentially interchangeable for the purposes of this section.
Similarly, there is a nonsingular visible symplectic curve 5(p7q) in X (¢,p) Whose image

under HZ o is the intersection of the ray Rx¢ - (p,q) with ﬁ(q,p). In §3.2 we will take

C(p q) as a model for the symplectic proper transform of C(,q) in )Af( p)» noting that
C(p q) Intersects F positively in one point and is disjoint from FL fori=1,...,L—1.
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The moment map images of C, . and CN'(pyq) are illustrated in Figure 3 for the case
(P, q) = (3,2)

3.2 Inflating along a curve with a (p,q) cusp
We first prove part (i) of Theorem A.

Proof of Theorem A(i). Let C be a (p, q)-sesquicuspidal symplectic curve in M which
satisfies [C] = ¢cPD[wys] and [C] - [C] = pq. After resolving any double points, we will
assume that C' is nonsingular away from the (p, q) cusp (but possibly of higher genus).
After further modifying C near the cusp point, we can further assume that

e there is a neighborhood D < M of the cusp which is symplectomorphic to € - Xy,
where Xy = MEQI(V) c C? as in §3.1 with Agp €V < R;O, and ¢ - Xy is the
result after scaling the symplectic form by some € > 0 sufficiently small

e C'nDissent to C,q N Xy, with C, o) the visible symplectic curve defined in
(3.1.1).

Let U :=V \ Int A(qp) denote the corresponding neighborhood of the finite edges in

(NZ( with associated domain Xy = ,u)_zzq . (U) c )N((q’p). Let (]\7, wyy) denote the result

after excising D flrom~ M and gluing in € - )Z'U under the natural symplectic identification
Op(0D) = Op(d(e - Xy7)). Let C = M be the unique symplectic curve which agrees with
C outside of D and agrees with C(, o) in € - Xy. In other words, M is a model for the

q,p)’

L-fold symplectic blowup of M, and C is a model for the symplectic resolution of C' at
its cusp point.
We now symplectically inflate along C' as follows. Note that C' is smoothly embedded,

and by assumption we have [C] - [C] = [C] - [C] — pg = 0. Therefore, using e.g. [McD94,
Lem. 3.7|, there exists a closed two-form 7 on M such that:

[n] = PD(C]) € HX(M;R)

e 1) has support in a small neighborhood of C which is disjoint from Ff e F£—1

® s 1= wgy + sn is a symplectic form for all s € R>g
e FL is a symplectic submanifold of (]\7 ,ws) for all s € Rup.

Note that (]\7 ,@s) contains the configuration of symplectic spheres F¥, ... Ff which still
intersect symplectically orthogonally with the same intersection pattern for all s € R,

and we have
N Ser wiy i=1,...,L—1
J Ws = ¢ .
FL SF%WM+S i=1L.

Now let (Ms,ws) denote the result after performing the toric model for the symplectic
blowdown along F%, ..., FlL as described in §3.1. By choosing the relevant symplectic

24



neighborhoods smoothly with s and identifying M smoothly with M, we view {ws}s>0
as a smooth family of symplectic forms on M, such that [ws] = [wa] + sPD([C]) =
(1 4 sc)[war], and such that there is a symplectic embedding of (e + s) - E(q,p) into

(M,ws). By the Moser’s stability theorem, the rescaled symplectic form

ets
1+sc

as s — o0, the result now follows by taking s sufficiently large. O

—ljsc - Wy I8
- E(q,p). Since

symplectomorphic to wys, and it admits a symplectic embedding of

ets _ 1

1+sc c

3.3 Cusps with multiple Puiseux pairs

In this subsection, we first recall some more generalities about cusp singularities and their
resolutions, in order to relate the blowup sequence for a (p,q) cusp with that of a cusp
with Puiseux pairs (p, q), (p2,q2),- -, (Pk, qr). In particular, we recall the definition of
the Puiseux characteristic, which is a useful alternative to Puiseux pairs when discussing
discussing blowups. We then state a technical lemma relating symplectic and complex
blowups which will be used in the proof of Theorem A(ii) in the next subsection.

According to [Wal04, §2], for C' any germ of a holomorphic curve near the origin in
C? which is not tangent to { = 0} we can find a local parametrization of the form

x=1t" Y= am " F am "+ apt"

with m < m; < me < -+ and am,,amy, ams,--- € C*, and such that
ged(m,my,ma,...) = 1. Here m is the multiplicity of C at the origin. We define
B1 to be the smallest m; which is not a multiple of m, we put e; := ged(m, 1), and we
put inductively

Br+1 = min{m; | ex f mi},  epy1 = ged(ex, Brg1)-

We necessarily arrive at e, = 1 for some g € Z>1, and the Puiseux characteristic of C'is
by definition (m;f1,. .., B). One can show that this is independent of the coordinate
representation of C' and is obtained from the Puiseux pairs (n1,d1),. .., (ng,dy) via

m=dy---dg, i =nidit1---dg.

In the reverse direction, given (m;f1,...,4) we can recover ni,...,ng and di,...,dg
via % = dl’fL'Z:di. In particular, note that if the first Puiseux pair is (n1,d1) = (p, q¢) then

the Puiseux characteristic takes the form (kg; kp, B2, ..., By) with k = dy---d4. One can
also show that the Puiseux characteristic determines the multiplicity sequence and vice
versa (see [Wal04, Thm. 3.5.6]).

Remark 3.3.1. Recall that, according to [EN85], any local branch of a singular holo-
morphic curve in C? is homeomorphic to the cone over an iterated torus knot, where
the cabling parameters (dy, s;) can be read off from the Puiseux pairs with dj # 1 via
s1 =mnq and S = ng — ng_1dg + dg_1disg—1 for k = 2 (here we follow the conventions
of [Neul7]). O

The following example is of primary relevance for Theorem E(b):
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Example 3.3.2. The Puiseux pairs (p, q), (kp + 1, k) correspond to the Puiseux charac-
teristic (kq; kp, kp + 1) (and vice versa). O

If C has Puiseux characteristic (m; 81, ..., 34), then its proper transform after blowing
up has Puiseux characteristic (m/, 1, ..., ﬂ;,) given as follows (see [Wal04, Thm. 3.5.5]):

(m; 1 —m,...,[Bg —m) B1 > 2m
(m'; B1, - By) = S (Br—mym, Bo— Br+m,..., By — B +m) B<2mand (B —m)fm
(B1—m;Ba—B1+m,..., 0, — B1+m) (B1 —m)|m.
(3.3.1)

Using (3.3.1), the following is readily checked:

Lemma 3.3.3. Suppose that the normal crossing resolution of a (p,q) cusp requires L
blowups and results in negative self-intersection spheres FI ... Ff as in §3.1. Let C be
any cusp singularity with Puiseuz pairs (n1,dy), (n1,dz), . .., (ng, dg) with (n1,d1) = (p,q).
Then the first L blowups of the resolution sequence for C produce spheres G, ..., G%
having the same intersection pattern (including self-intersection numbers) as Ff, ey F%.
The proper transform, C of C intersects Gf in one point with contact order k := da - - - dg,
and is disjoint from GF ... ,G%_l.

Note that C may itself have a residual cusp singularity.

Example 3.3.4 (continuation of Example 3.3.2). Let C be a curve with cusp having
Puiseux characteristic of the form (kgq; kp, kp + 1) (and hence Puiseux pairs (p, q), (kp +
1,k)), and let L be as in Lemma 3.3.3. Then the first L blowups in the resolution
sequence achieve the normal crossing resolution for a (p,q) cusp, after which the proper
transform C is nonsingular but intersects G in a single point of contact order k. Thus
L blowups achieve the minimal resolution for C, and an additional k& blowups achieve
the normal crossing resolution for C.

For instance, the minimal resolution sequence for Puiseux characteristic (3;5) is
(3;5) — (2;3) — (1;2), while that of (9;15,16) is (9;15,16) — (6;9,10) — (3;7) —
(3;4) — (1,3) (this corresponds to (q,p) = (3,5), k = 3, and L = 4). O

We record the following for later purposes:

Lemma 3.3.5. Let C be a curve with a cusp having Puzse~ux characteristic (kq; kp, kp+1),
and let C be its minimal resolution. Then we have [C] - [C] = [C]-[C] — k2pq. In
particular, [C] - [C] = k2pq if and only if [C] - [C] = 0.

We now are in a position to complete the proof of Theorem A. In §3.2 we assumed
that C' coincides with the visible symplectic curve Cj;, o) < C? from (3.1.1) locally near its
cusp. Since this curve has no direct analogue for a cusp with multiple Puiseux pairs, we
will augment the explicit toric resolution model from §3.1 with a slightly more abstract
argument.

The following technical lemma relating symplectic and complex blowups will suffice
for our purposes.
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Lemma 3.3.6 (see [McSal7, §7.1]). Let (M,w) be a symplectic manifold equipped with an
w-tame almost complex structure J which is integrable near a point p € M. Let (Bl, M, j)
denote the complex blowup M at p, with exceptional divisor Egy,nr. Then for some § > 0
there exists a symplectic embedding ¢ : (B*(8),wstq) <> (M,w) with t(0) = p for which the
corresponding symplectic blowup (Bl,M,®) admits a diffeomorphism ® : Bl, M = Bl, M
such that ®*.J is &-tame and ®(Epi,m) = EBl,is

Furthermore, suppose that D1 and Do are smooth J-holomorphic local divisors in M
which intersect w-orthogonally at p, and let ]51, ]52 < BlyM denote their j—holomorphic
proper transforms. Then we can arrange that <I>_1(]~)1) and <I>_1]~)2 each intersect Egy, pr
w-orthogonally.

Note that, in the context of Lemma 3.3.6, if C' is (singular) symplectic curve in M
which is preserved by J near p, then we can define its symplectic proper transform to be
®~1(C), where C is the J-holomorphic proper transform of C in Bl, M.

Proof of Theorem A(ii). Let C be a sesquicuspidal symplectic curve in M with Puiseux
pairs (p,q), (p2,q2),---,(Pg,qq), whose homology class satisfies [C'] = ¢PD[wy/] and
[C]-[C] = k?pq for k = go---qy. As before, after resolving any double points we
can assume that C is embedded away from the cusp point. By assumption there
is a neighborhood U of the cusp point such that (U,C n U) is symplectomorphic to
(U, C’'nU"), where U’ is a neighborhood of the origin in C? and ¢’ = C? is a holomorphic
curve having a cusp with Puiseux pairs (p1,q1), ..., (pg,q9). By pulling back Jgql|pr to
U and extending over M, we can find an wys-compatible almost complex structure J on
M which _preserves C' and is integrable near the cusp.

Let (Mcomp, J ) denote the L-fold complex blowup of (M,.J) which achieves nor-
mal crossing resolution of a (p,q) cusp singularity as in Lemma 3.3.3, with negative
self-intersection j—holomorphic spheres Gf . .,Gf c Mcomp. Let O < Mcomp be the
corresponding proper transform of C' (this may be smooth or have a residual cusp). Using
Lemma 3.3.6, there is a corresponding L-fold symplectic blowup (Msymp, @) of (M,wyy)
and a diffeomorphism ® : Msymp = Ncomp such that ®*.J is w-tame, and the symplectic
spheres ®~1(G1),..., ®71(GE) intersect symplectically orthogonally. After smoothing
the residual cusp of &1 (C~' ) (if necessary) by replacing it with a perturbation of the corre-
sponding Milnor fiber, we obtain a symplectically embedded curve D < Msymp which inter-
sects ®~1(GE) positively in k points and is disjoint from ®~(GL),..., ®~1(GE ). Note
that we have [®~1(C')] has positive self-intersection number by Lemma 3.3.5. The rest of
the proof proceeds as in §3.2 by inflating along D, blowing down ®~1(Gf_,),..., &~ 1(Gl)
using the same toric model from §3.1, and finally rescaling the symplectic form and
applying Moser’s stability theorem. Note that after inflating ‘Ifl(G%) has symplectic
area € + ks since [D] - [GL] = k, and hence the rescaled symplectic manifold (M, w;)

. . . k
admits a symplectic embedding of iisiE (q,p). O
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4 Q-Gorenstein smoothings and almost toric fibrations

In this section we collect various facts about (a) Q-Gorenstein smoothings of singular
toric algebraic surfaces (§4.1) and (b) symplectic almost toric fibrations (§4.2). Few if
any of the results in this section are original, but our perspective is somewhat novel in
that we emphasize the central role played by T-polygons (see §4.1c) in both algebraic and
symplectic geometry. Roughly, we associate to a T" polygon () both an algebraic surface
17@ (defined as a Q-Gorenstein smoothing) and a symplectic four-manifold A(Qnodal)
(defined as the total space of an almost toric fibration). Proposition 4.2.6 gives a direct
comparison between these two geometries, which we utilize in §5 and §6 in order to
construct algebraic curves via symplectic techniques.

4.1 Toric surfaces and T-singularities

In this subsection, we begin by briefly reviewing some toric algebraic geometry and
singularity theory and setting up our notation. We then recall the notion of T-singularities
and their Q-Gorenstein smoothings, and define T-polygons. We also discuss (dual) Fano
polygons and their mutations, which play an important role in the mirror symmetry
approach to Fano surfaces (see e.g. [GU10; Akh+16; KNP17; Coa+12]).

4.1a Cyclic quotient singularities and toric surfaces
For k € Z>1, let

p = {2V G =0, k- 1)

denote the group of xth roots of unity. Given wy,...,w, € Z>q, we consider the action
of p,, on C™ with weights wy, ..., wy, i.e. with p- (21,...,2,) = (W 21,..., 1" 2zy,) for
i € py. Note that the weights wy, ..., w, are only relevant modulo x. We denote this

representation of ji, by g 7",

Cyclic quotient singularities are by definition quotients of the form

%(wl, cey Wy 1= C e
for k € Z>1 and wy,...,w, € Z>1 coprime to k. Here we have %(wl,...,wn) =
L(twy, ..., tw,) for any £ € (Z/k)*, so we may assume wy; = 1. Note that the cyclic

quotient surface singularity 1(1,w) is the affine toric variety U, := Spec,,(C[Ss])
corresponding to the cone o = R? generated by (0,1) and (k, —w). Here 0¥ < Mg is the
dual cone to o, S, is the semigroup of lattice points in ¢¥, and C[S,] is the associated
semigroup algebra (see e.g. [CLS11; Ful93; Bra04; Da 03| for more background on toric
varieties).

Let N be lattice of rank n € Z>1, with dual lattice M = Hom(N, Z) (typically we will
have N = Z", but this notation is still helpful in distinguishing the roles of N and M).
We put Nr := N®z R and Mg := M®z R. We will say that a polytope!” P — Ng is

"By polytope P c Ngr we mean the convex hull of finitely many points in Ng. We call this a
polygon when N has rank two.
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centered if P is n-dimensional and contains the origin in its interior. Given a centered
polytope P < Npg, the dual polytope P° c Mg is by definition

P°:={ueMg|{u,vy=—-1Vve P}

Note that (unless P is reflexive) P? is typically not a lattice polytope (i.e. having vertices
in M), even if P is. For a polytope @@ < Mg, the dual polytope Q° < Ng is defined
similarly.

We associate to P its face fan X p in Ng, which has a cone o for each face 7 of P,
where o, is generated by the vertices of 7. Equivalently, this is the normal fan X po
of P°, which has a cone o, for each face n of P°, where 0y, is generated by the inward
normal vectors of those facets of P° which contain 7. We denote by V5 the (typically
singular) toric variety associated to a fan . In the case ¥ = ¥p = X po we will also
denote Vs by Vp or Vpo when we wish to emphasize the polytope P or its dual P°.18

For a general polygon ) © Mg, the toric surface Vg has cyclic quotient singularities at
its toric fixed points, which correspond to the vertices of @) (or equivalently the maximal
cones of the normal fan ¥q). Explicitly, for each vertex v € @) there is an integral affine
transformation!? of Mg sending v to the origin, so that the edge directions become (0, 1)
and (n, —q) for some coprime n,q € Z>1, in which case the singularity has type %(1, q).
In the case n = 1, this corresponds to a smooth point of Vg and we refer to v as a
Delzant vertex vertex of (). If Q has only Delzant vertices then it is Delzant polygon.

We end this subsection with a remark about the homology of a smooth toric surface.
Let @ < Mg be a Delzant polygon with edges e1, ..., e, and corresponding toric divisors
D.,,...,D., © Vg. Recall that the homology group Ha(Vy) of the associated nonsingular
toric variety Vg is generated by the toric divisors D, ..., D¢,. More precisely, letting
fi1,...,7¢ € N be the primitive inward normal vectors to the edges, we have the short
exact sequence

0—>M— Z(D],...,[De]) — HQ(VQ) — 0, (4.1.1)

where the first nontrivial map sends u € M to Zf:1<ﬁi, u)[De,]; see [CLS11, §5.1].

4.1b Fano and dual Fano polygons

A polytope P < Ng is said to be Fano if it is centered and its vertices are primitive
lattice vectors (see e.g. [Akh{ 12, §3|). In this case the corresponding toric surface Vp
has anticanonical divisor which is Q-Cartier and ample, i.e. Vp is a (typically singular)
toric Fano variety. In particular, in the case dim(P) = 2, Vp is a singular toric del Pezzo
surface. We will say that a centered polygon ) < Mg is dual Fano if the dual polygon
Q° < NR is Fano, and hence in particular a lattice polytope. Note that the dual Fano

181t should be clear from the context whether we are taking the face fan or normal fan since P and
P° live in different vector spaces.

9By integral transformation of Mg we mean a map M®z R — M®z R which is a group isomorphism
M =~ M on the first factor and the identity on the second factor. By integral affine transformation of
Mr we mean the composition of an integral transformation with a translation.
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condition is equivalent to each edge e of () having height one, where we define the height
of an edge to be the number h(e) such that (7, uy = —h(e) for all u € e, where 77 € N is
the primitive inward normal vector to e.

For points v, w € MR, recall that the affine length Len,g([v,w]) of the line segment
[v,w] € MR is |c|, where we put v — w = ¢(v — W)prim for ¢ € R and (v — w)prim € M a
primitive lattice vector. The following gives another characterization of the dual Fano
condition (c.f. Proposition 5.1.6 for a symplectic counterpart).

Lemma 4.1.1. If a centered Delzant polygon QQ < Mg is dual Fano, then we have
c1([De]) = Lenag(e) for each edge e. The converse also holds if Q is a lattice polygon.

Proof. We can assume M = Z? and Mg = R? without loss of generality. Let vq,..., 0, be
the vertices of () ordered counterclockwise, and let e; be the edge joining v; and v;41 for
i=1,...,¢ (modulo ). Let h(e;) denote the height of the edge e;, and let 7i; € N denote
the primitive inward normal vector to the edge e; for i =1,... /.

After applying an integral transformation of R?, we can further assume that 7i; = (0, 1)
and 7y = (1,0), and hence

v1 = (—h(ep),—h(e1)) and vy =01 + (Lenag(e1),0).

4
Intersecting (4.1.1) with [Dy, | (with u = vg) gives Y, {(7i;, v2) ([De,] - [De,]) = 0. Further
i=1

we have [De,] - [De,] = 0 for i ¢ {1,2,¢}, and [De, ]| - [De,| = [De,] - [De,] = 1 since @ is
Delzant. Thus

0 = {7i1,02) ([De, ] - [De, ]) +<n2702>+<nza02>
= —h(e1) ([De,] - [De,]) — h(e2) — h(eg) + Lenag(e1),
so that

—h(e2) — h(eg) + Lenag(e1)
h(el) '

Noting that D., is an embedded two-sphere, by the adjunction formula and symmetry

[Del] ) [Del] =

we have

—h(ei+1) —h(ei—1) + Lenag(e;)

c1([De]) =2+ h(e;)

(4.1.2)

fori=1,...,4
If @ is dual Fano, then we have h(e;) = 1 for i = 1,...,¢, so (4.1.2) becomes
c1([De,;]) = Lenag(e;). Conversely, if @ is a lattice polygon and if ¢;([De,]) = Lenag(e;)
for i = 1,...,¢, then (4.1.2) becomes Lenyg(e;) = 2 + 7h(e”1thf(i;ﬁHLenaﬁ(ei). Since

h(e1),.. .,h( ¢) = 1, this is only possible if h(e;) =--- = h(ey) = 1. O
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4.1c T-singularities and polygon mutations

A cyclic quotient surface singularity %(1, q) is a T-singularity if we have n = mr? and
q = mra — 1 for some m,r,a € Zs1 with ged(r,a) = 1.2° These were shown in [KS88]
to be precisely those cyclic quotient surface singularities which admit Q-Gorenstein
smoothings. Here a Q-Gorenstein smoothing of a normal surface X with quotient
singularities is a flat family X over a smooth curve germ S such that the central fiber is
X, the general fiber is smooth, and the relative canonical divisor Ky s is Q-Cartier (see
e.g. [HP10, §2.1] or [LP11, §2] and the references therein). Note that this last condition is
equivalent to the total space being Q-Gorenstein, i.e. having Q-Cartier canonical divisor.

Although the local deformation theory of the cyclic quotient surface singularity %(17 q)
is quite complicated, the restriction to Q-Gorenstein deformations is well-understood by
[Kol90; KS88] (c.f. [Akh+16, §1]). Specializing to the case of T-singularities, the base of
the miniversal family of Q-Gorenstein deformations of the T-singularity #(1, mra — 1)
is isomorphic to C"™~!, corresponding to the family of hypersurfaces

{xy = 2™ + Cpoz" ™2 ... 4 C12" + Cp} < C¥/ub—1a (4.1.3)
for parameters C1,...,Cy,—2 € C. Note here that the central fiber is indeed isomorphic
to mlrg (1,mra — 1) by the isomorphism

C2/ubmr et 25 fay = YT (2 z) o (AT, ™ 21z). (414)

The general fiber is smooth and is diffeomorphic to

Bm,r,a = {Il?y = (zr - Cl) Tt (Zr - Cm)}//hln’_l’a, (415)

for some real 0 < (1 < -+ < (m, i.e. By q is the quotient of the A,,,—; Milnor fiber by
pr, and we have Hi(Byy, rq;Q) = 0 and dim Hy (B, r,4; Q) = m — 1. In the special case
m = 1, By, is a rational homology ball and plays an important role in constructing
exotic four-manifolds with small homology groups (see e.g. [FS97]).

We will refer to a vertex v € @ of a polygon () © Mg as a T-vertex if the corresponding
toric fixed point p, € Vi is a T-singularity, and we will call ) a T-polygon if all of its
vertices are T-singularities (note this includes the case of Delzant vertices).?! Given a
T-vertex v, there is an isomorphism Mg 2 R? of integral affine manifolds which sends
b to (0,0) with edge vectors (0,1) and (mr?, mra — 1), and we will refer to the image
of the direction (r,a) as the?? eigenray emanating from v (this corresponds to the
eigendirection of a suitable affine monodromy in §4.2b).23

Let @ < Mg be a T-polygon, and as before let Vg denote the corresponding toric
surface with T-singularities. By definition T-singularities admit local Q-Gorenstein

2ONotice that the singularity type depends only on a mod 7.

21The notions of T-polygon and dual Fano polygon are independent: there are T-polygons whose fan
is not Fano and there are dual Fano polygons that are not T-polygons.

220ne can check that this definition is unambiguous, since the integral affine transformation of R?
which swaps (0,1) and (mr?,mra — 1) fixes (r,a). In particular, this singularity is equivalent to its
reflection in the y-axis with edge vectors , (0, —1), (mr?, 1 — mra) and eigenray (r, —a).

Z3This is also often referred to as a nodal ray in the context of almost toric fibrations as in §4.2b.
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smoothings as in (4.1.3), and according to [HP10, Prop. 3.1]?* there are no local-to-
global obstructions to deformations, so in particular Vy admits a Q-Gorenstein smoothing.
Thus we have:

Lemma 4.1.2. For any T-polygon QQ = MR, there is a Q-Gorenstein smoothing ‘N/Q of
Vo. If in addition Q) is dual Fano, then Vg is Fano for any sufficiently small smoothing,
and in particular rigid if vk H*(Vg, Q) < 5.

Following e.g. [GU10; Akh-+12], there is a notion of mutation which inputs a dual Fano
polygon®® @ = Mg and a choice of vertex v € QQ and produces a new dual Fano polygon
Mut,(Q) < Mg. Namely, let f € N be a primitive lattice vector such that (f,v) = 0, let
Oprim = tv € M be primitive for some t € R>, and consider the piecewise-linear map

P :Mgr = Mg, u— u—min({f,u),0) Oprim. (4.1.6)

We put Mut,(Q) := ¥(Q) = Mg. In the case Mg = R?, this is equivalent to

) Sepum () if (fyuy <0
Ylu) = {u it (> 0, (4.1.7)

where S, . (u) : R* —> R? is the primitive shear along bpim, defined by
SUprim (u) =u-+ det(nprima U) * Oprim, (4.1.8)

with det(vprim, «) the determinant of the 2 x 2 matrix with columns vy and u. We
will say that Mut,(Q) is the (primitive) mutation of the polygon @ at the vertex v.

Remark 4.1.3. Strictly speaking there are two choices for f in the above (i.e. in the
case v = (z,y) € R? we have f = £(y, —7)), although the choice becomes unique if we
choose an orientation on Mg and ask for f, vpim to be an oriented basis. At any rate, it
is easy to show using (4.1.7) that the two choices for f give mutations which are related
by an integral affine transformation of Mg. O

We also define Mut, (@) in the case that ) = Mg is any polygon (not necessarily dual
Fano) and v € @ is a T-vertex. Note that in this case the origin in Mg is not necessarily
in distinguished position relative to @ (it may not even be contained in Q). We put

Muto(Q) := 7! (Mut, () (7(Q))), (4.1.9)

24To apply the hypotheses of [HP10, Prop. 3.1] it suffices to note the anticanonical divisor of a toric
divisor is always big. Indeed, if D,..., D denote the toric boundary divisors, then we can find an
ample divisor of the form Zle a;D; for ai,...,ar € Z=1. Then for any positive integer m > a1, ..., ax
we have that m times the anticanonical divisor is me:I D; = ZLI a;D; + Zle(m —a;)D;, which is a
sum of an ample divisor and an effective divisor and hence big by [Laz17, Cor 2.2.7].

250ne can also describe the mutation in terms of the Fano polygon Q° c Ng, although for our purposes
the formula using dual Fano polygons is more succinct and more directly related to mutations of almost
toric fibrations. An extension of mutations to higher dimensional Fano polytopes is also defined in
[Akh-+12].
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Figure 4: Dual Fano T-polygons @ such that ‘N/Q is a smooth rigid del Pezzo surface.
Although these are not unique (due to the possibility of mutation), each representative
has a Delzant vertex and the minimal possible number of sides. Note that the polygon
for CP24*4CP” is not a lattice polygon (the top left vertex is (—1,5/2).)

where 7 : Mp — Mg is any translation sending a point on the eigenray emanating from v
to the origin (c.f. §4.1c), and Mut,,)(7(Q)) is defined as above. One can check that this
coincides with the previous definition when @ is a dual Fano T-polygon (in that case the
eigenray emanating from v passes through the origin).

If v e Q is a T-vertex of type ﬁ(l, mra — 1) with m = 1, then it is straightforward
to check that the mutated polytope Mut,(Q) no longer has a vertex at v, but there is
a (possibly new) vertex at the point where the eigenray emanating from vy, meets
a side of Q. On the other hand, if m > 1 then v is still a vertex of Mut,(Q), but
now with parameters (m — 1,7,a). Thus for all 1 < k < m the k-fold mutation
Mutf(Q) := ¢¥*(Q) of Q at v is well-defined, and we define the full mutation of Q at v
to be Mut!"(Q) := Mut?(Q). We have:

Lemma 4.1.4. If v is a T-vertex of a polygon Q < Mg with k sides, then Mutf,un(Q)
is a polygon with either k or k — 1 sides. In particular, if Q is a triangle then so is
Mut™(Q).

It is shown in [Akh+16, Lem. 7| (building on [IIt12]) that if two dual Fano polygons
Q, Q" < Mg are mutation equivalent (i.e. @' can be obtained from @ by a sequence
of mutations), then the corresponding singular del Pezzo surfaces Vg and Vi are Q-
Gorenstein deformation equivalent (in the sense of [Akh-+16, Def. 2]). We discuss an
approach to this in §6.3. In particular, if @ (and hence Q') is also a T-polygon, the
smoothings ‘N/Q and XN/QI as in Lemma 4.1.2 are also Q-Gorenstein deformation equivalent.
Conversely, [Akh-+16, Conj. A] conjectures that two dual Fano polygons Q, Q" < Mg
are mutation equivalent if the corresponding singular toric del Pezzos Vg, Vi are Q-
Gorenstein deformation equivalent. The specialization of this conjecture to dual Fano
T-polygons is proved in [KNP17, Thm. 1.2]. By the classification of smooth del Pezzo
surfaces, it follows that there are precisely 10 mutation equivalence classes of dual Fano
T-polygons. Representatives of these equivalence classes (or rather their duals) are shown
in [Akh-+16, Fig. 1]. For the 6 equivalence classes corresponding to rigid smooth del
Pezzo surfaces, representatives which are particularly useful for constructing ellipsoid
embeddings are shown in Figure 4 (which is a reproduction of [Cri+20, Fig. 5.12]). The
construction of these representatives is based on almost toric techniques as in [Vial7|.

If Q is a T-triangle, then by Lemma 4.1.4 it remains so under successive full mutations.
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As explained in [Eva23, §H.2|, if the vertices have types — (1, m;r;a; — 1) for i = 1,2, 3,

mir?
then this data satisfies a generalized Markov equation

mlr% + mgrg + m3r§ = C\/mimaomsz rirars, (4.1.10)

where C' € R~ is invariant under full mutations (one can check that the set {m1, mo, ms}
is also preserved under full mutations). We thus have a bijection between

(a) the set of T-triangles which are full mutation equivalent to @, and
(b) the set of triples (r1,72,73) € Z3, satisfying (4.1.10).

The specialization 71 = 1 corresponds to triangles with a Delzant vertex (c.f. Figure 4).
We will see later that these taken together encode all of the relevant unicuspidal curves
for the two-stranded rigid del Pezzo infinite staircases (c.f. Proposition 5.1.3 and
Proposition 6.1.11).

Example 4.1.5. When @ is the first triangle in Figure 4, (4.1.10) becomes the classical
Markov equation 72 + 73 + 73 = 3ri7rors. The solutions are well-known to form an
infinite trivalent tree, with edges corresponding to Markov mutations (ri,r2,73) —
(ri,72,3r1m9 — r3) and their permutations (see e.g. [Aigl5]). The solutions with r =1
correspond to pairs of consecutive odd index Fibonacci numbers. O

4.2 Almost toric fibrations and polygons

In this section we discuss symplectic almost toric fibrations from the point of view of
T-polygons. After some preliminaries on Lagrangian torus fibrations, we define almost
toric fibrations, discuss their construction from T-polygons, and compare these with the
Q-Gorenstein smoothings from the previous subsection.

4.2a Abstract almost toric fibrations and almost toric bases

By definition a closed symplectic manifold M?" is toric if it carries a Hamiltonian T"-
action. In this case the image of the corresponding moment map 7 : M — R™ is a convex
polytope 7(M) (see [Ati82; GS82]), such that 7 is a regular Lagrangian torus fibration
over the interior of w(M). Meanwhile, 7 has toric singularities over the boundary of
(M), with the fiber over a point in the interior of a k-dimensional face of w(M) being
an isotropic torus T?* of dimension 2k. Almost toric fibrations extend this picture (in
dimension four) by allowing 7 to have additional focus-focus singularities.

An almost toric fibration (see e.g. [Sym; LS10; Eva23]) is a smooth proper
surjective map 7 : M4 — B? with connected fibers, where M* is a symplectic four-
manifold and B? is a smooth two-manifold with corners, such that

e at each regular point p € M* the kernel ker dym < T, M is a Lagrangian subspace

e for each critical point p € M of 7 there are Darboux coordinates x1, y1, x2, y2 for
M near p and smooth coordinates by, by for B near 7(p) such that 7 has one of the
following local normal forms:
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1. (21,91, 22, 92) = (v1,22 + y3) (corank one elliptic)
2. m(x1,y1,72,y2) = (22 + y?, 23 + y3) (corank two elliptic)
3.

m(x1,y1, 22, y2) = (x1y1 + T2y2, 1y2 — x2y1) (focus-focus).

Note that the regular fibers are necessarily two-dimensional tori by the Arnold—
Liouville theorem. The first two types of singularities are modeled on the singularities of
a moment map of a toric symplectic manifold over an edge or vertex respectively of the
moment polytope. The third type of singularity is topologically equivalent to a critical
point of a Lefschetz fibration, but here the fibers are Lagrangian rather than symplectic.
The images of focus-focus singularities are called base-nodes.

Given an almost toric fibration 7 : M* — B2, observe that 7 restricts to a regular
Lagrangian torus fibration over the regular values B™® of m. Thus B™2 inherits an
integral affine structure as follows. Given p € M and b = 7w(p) € B8, the symplectic
form on M induces a nondegenerate pairing

(== TeBx Ty M - R,  {u,v) = w(i,v), (4.2.1)

where @ € T, M is any lift of u € Ty B (i.e. 74l = u) and Ty"*M = T,w~'(b) is the vertical
tangent space at p. In particular, for each covector in T B there is a corresponding vector
field along 7~ !(b), and taking its time-1 flow gives an action of T{* B on the fiber 71(b).
The set of covectors in Ty B which act trivially on 7~1(b) defines a lattice A} < T¥B,

with dual lattice Ay = Ty B. The corresponding lattice bundle A* = | J A} < T*B"9
beBres
gives a natural symplectomorphism

T*B 8 JA* =~ M™%, (4.2.2)

while the dual lattice bundle A = | J Ay < T'B"Y defines the integral affine structure on
beB
Breg.

This integral affine structure on B™® gives rise to an affine monodromy map
mon : 71 (B8, ¥) — Aut(Hp (7~ (); Z)) which measures how the integral affine structure
twists as we go around loops in B™® (here * € B™® is a basepoint). By picking a basis we
can also view this as a map 1 (B"8) — GL2(Z) which is defined up to global conjugation
by an element of GLa(Z).

For a small loop v in B'® surrounding a base-node by, the corresponding affine
monodromy mon(vy) € GL2(Z) is conjugate to the matrix (%) with eigenvalue 1, where
k is the number of focus-focus critical points in the fiber 7=1(bg). Thus for any b’ # bg
in a small neighborhood of by in B there is a well-defined eigenline in Ty B for the affine
monodromy around by, and these limit to a line Ly, < Ty, B, which we call the eigenline
at b().

Recall that there exists a closed smooth toric symplectic manifold with moment
polygon @ < R™ if and only if @ is a Delzant polytope (|Del88]). In dimension four we
expect to associate almost toric fibrations 7 : M* — B? to more general polygons with
non-Delzant vertices (even though M is assumed to be smooth). However, some care is
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needed in formulating the almost toric analogue of the moment polygon, since there is
no global torus action and thus no global moment map.

Given an almost toric fibration 7w : M* — B2, the set of regular values B™¢ — B
naturally inherits an integral affine structure, and this extends over the toric critical
values to BN{b1,..., by}, where by, ..., by € B are the base-nodes. Thus we have a nodal
integral affine surface, i.e. a triple (B, {b;},.A), where B is a smooth two-dimensional
manifold with corners equipped with a subset {bi,...,by} < B (the base-nodes) and
an integral affine structure A on B ~ {by,..., by}, such that for each i = 1,...,¢ the
affine monodromy around a small loop 7; surrounding b; is conjugate to ( [1) "i@) for some
nonzero k; € Z. Given an almost toric fibration 7 : M* — B2, we will refer to the
associated nodal integral affine surface (B, {b;},.A) as its almost toric base.

We will say that two nodal integral affine surfaces (B, {b;},.A) and (B’,{b;}, A’) are
isomorphic if there is a diffeomorphism B => B’ which restricts to a bijection {b;} = {b/}
and preserves the integral affine structures on the complements of the base-nodes. It
is shown in [Sym, Cor. 5.4| that if two almost toric fibrations m : M; — Bj and
o : My — Bs have isomorphic almost toric bases with nonempty boundaries then their
total spaces are symplectomorphic.

Moreover, by [Sym, Thm. 5.2], a nodal integral affine surface (B, {b;},.4) is the base
of an almost toric fibration if and only if each point b € B~ {b;} has a neighborhood which
is integral affine isomorphic to a neighborhood of a point R2>0 (with its standard integral
affine structure). In particular, given such a nodal integral affine surface (B, {b;},.A)
with B compact, there is an associated closed symplectic four-manifold which we denote
by A(B, {b;},.A) and which is well-defined up to symplectomorphism.

4.2b Nodal integral affine surfaces from 7T-polygons

We now construct a nodal integral affine surface Qpnoqa1 = (B, {b;},.A) from a T-polygon
@ € MR. Here B is the smooth surface with boundary given by smoothing the corners of
the polygon @, while A is given roughly by implanting various nodes into the integral
affine structure on @ (i.e. the one induced from Mg). Together with the discussion in
84.2a, this construction associates to any T-polygon @) a closed symplectic four-manifold
A(Qnoda1) Which carries an almost toric fibration

T A(Qnodal) — Qnodal-

Strictly speaking Qo4a1 depends on some auxiliary parameters giving the locations of the
base-nodes (varying these is called a nodal slide), but using Moser’s stability theorem
A(Qnoda1) is independent of these choices up to symplectomorphism.

In more detail, we assume M = Z2 for simplicity, and let Q < R? be a T-polygon
with vertices v1,..., 0, ordered counterclockwise. Since each vertex v; is a T-vertex, the
corresponding toric fixed point has type milﬁ (myr?, myria; — 1) for some m; € Zsq and
coprime 1;,a; € Z>1. For i =1,...,¢, let —ﬁi € M denote the primitive integral vector
pointing in the direction of the eigenray emanating from v; (as in §4.1¢). Note that by
our conventions —h; points inward towards Q.
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For ¢ = 1,...,¢, pick g; > 0 sufficiently small, and let 7; < @ be the line segment
{v; —thi | t€[0,&]}. Picke =t >--- >t >0, and let b},...,b"" be the correspond-
ing points along ; (ordered towards v;) given by bg =0; — tghi. Let S; € GLo(Z) be
the primitive shear along —h; as in §4.1c, i.e. S;(u) = u + det(—h;,u) - (—h;), and let
7; : R2 - R? be any translation sending a point on the eigenray emanating from v; to
the origin. Let s},...,s! be the components of v; \ {b},...,b[""} ordered towards v;.

We now modify the integral affine surface Q {bi } to obtain a new one by cutting @
along sz and regluing via the tranformation 7; o S{ or; e GLy(Z) fori=1,...,¢ and
j=1,...,m; (here Sg denotes the jth power of S;). More precisely, if (sg)_, (sg)Jr are
the boundary segments of ) \ 6 vi (in counterclockwise order) arising from cutting

i=1

along sg, then the gluing identifies u € (s?)" with (7; oS{ or H(u) € (sf)* Since Sg fixes

%

~; pointwise, the resulting topological space Bpoqal is naturally identified with @ ~ {bf 1
but by construction it carries an integral affine structure A which has affine monodromy
around each b} conjugate to ([1) %)

Lemma 4.2.1. The glued integral affine structure A on Q ~ {bg} 15 locally isomorphic
to R? near any interior point b € Int Q ~ {bg}, and it is locally isomorphic to a boundary
point of R x Rsg near any point in 0Q). In particular, the smooth structure on Bpodal 8
such that there are no corner points.

To complete the construction of Qnoga1, we let B be the smooth surface with boundary
given by filling in the punctures of By,qa. Note that B is diffeomorphic to a two-
dimensional closed disk.

Proof of Lemma 4.2.1. It suffices to analyze the integral affine structure near a vertex
v;. After an integral affine transformation we can assume that v; = (0,0) with incoming
edge vector (0,—1) and outgoing edge vector (m;r?,m;r;a; — 1), and —h; = (14, a;).
Let C < R, be the cone spanned by (0, 1), (m;r?, myr;a; — 1), and let C—,C* < C
be the subcones spanned by (0, 1), (r;,a;) and (ri, a;), (mir?, m;r;a; — 1) respectively.
Then we have an integral affine isomorphism from a neighborhood of v; in Bj,o4a1 to a
neighborhood of (0,0) in R>g x R, given by

U ue C™
U +—
S;"(u) uweC™.

Indeed, it suffices to check that the vector (m;r?, m;ria; — 1) gets sent to (0,—1), i.e.
S (mr2, mir;a; — 1) = (0, —1), and this is the content of the following lemma. O
2

Lemma 4.2.2. IfS € GLa(Z) is the primitive shear along (r,a), we have S™(mr?, mra—
1) = (0, -1).

Proof. Using (4.1.8) we have S™(x,y) = (z,y) + mdet((r,a), (z,y)) - (r,a), from which
the result directly follows. O
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Figure 5: Left: Qnodal, where @ is the triangle with vertices v = (3, —1),09 = (—1,1),03 =
(—1,—1). Middle: a tropical representation of a curve intersecting each toric divisor
once as in Corollary 5.2.3. Right: a visible symplectic unicuspidal curve as in §5.1a. The
outer corner obstruction given by this curve implies that the shaded triangle represents
an optimal ellipsoid embedding.

Remark 4.2.3. Gluing in a node at a Delzant vertex is called a nodal trade and it
does not change the resulting symplectic four-manifold up to symplectomorphism (see e.g.
[Sym, Thm. 6.5] or [Eva23, §8.2]). In the above construction of Qyeda1 We have chosen
to glue in nodes at all of the Delzant vertices of @ (i.e. those of type #(1, mra — 1)
with m = r = 1) only for uniformity of exposition, but we can equally well leave the
integral affine structure alone near some or all of the Delzant vertices. When constructing

sesquicuspidal curves it will be beneficial to have one Delzant vertex without a nodal
trade. O

Remark 4.2.4. For an almost toric fibration 7 : A(Qnodal) — Qnodal as above, the
polygon () decorated by its base-nodes {bf } and the eigenrays at its vertices is sometimes
called an almost toric base diagram. Our approach here is to keep track of only the T-
polygon () < Mg, since the eigenrays and number of base-nodes are uniquely determined
by @ and the locations of the base-nodes are immaterial up to symplectomorphism of
the total space.

In §6, we construct (p,¢)-unicuspidal curves in A(Qnodal) in T-polygons that have
one smooth vertex. The types (p,q) of their cusps do not depend simply on the types
q%(l, pq — 1) of the T-singularities of the vertices of @) (where p is only well-defined mod
q), but rather on the relation between the eigenrays at the vertices of @ and the smooth
corner at the origin. For a vertex of type q%(l, pq — 1) on the y-axis the adjacent edges of
Q have directions (0, —1), (¢%,1 — pq) with eigenray (g, —p), while in the quadrilaterals
considered in Lemma 6.5.3 a vertex of the same type on the z-axis is taken to have
adjacent edges in directions (—1,0), (1 + pg, ¢?) with eigenray (P, q), where p := p — 64q.
Recall also from §4.1c that eigenrays are invariant under the reflection that interchanges
its two adjacent edges. O

Example 4.2.5. Figure 5 left illustrates Qnoda1 in the case that @ is a triangle with
vertices vy = (3, —1),02 = (—1,1),v3 = (=1, —1). The vertices are:

e smooth at (3, —1), with a nodal trade

e type 3(1,1) at (—1,1)
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e smooth at (—1,—1), without a nodal trade.

Here we have —hy = (—3,1) and —hg = (1,—1). In this example the symplectic
four-manifold A(Qpodal) is symplectomorphic to CP1(2) x CP1(2). O

We can equivalently describe A(Qnodal) by starting with the symplectic toric orbifold
with moment map @Q and performing a cut-and-paste operation near each toric fixed point.
Namely, near the 7th toric fixed point we excise a neighborhood which is symplectomorphic
to a neighborhood in #ﬂz(l,mimai —1) = {zy = 2"™i} /% and we glue in a

neighborhood in By, r, a0, = {2y = (2" — (1) -+ (2" — Com, )}/ 1% (c.f. §4.1¢). Since
the group actions above are unitary, these spaces inherit symplectic forms from the
standard one on affine space. Here By, ,, carries the Auroux-type almost toric fibration

TAur * Bm,r,a - C, WAur(UC,y;Z) = (|Z 27 %’x‘Q - %|y‘2) ) (423>

which has m; focus-focus critical points mapping to distinct base-nodes. Note that mayy
this does indeed descend to the quotient by Mﬁl"l’“) (see |[Eva23, §7.4] and §6.2 below).
By comparing the local description of Q-Gorenstein smoothings of T-singularities as

in (4.1.3) with the above cut-and-paste description of A(Qnodal), we have the following.

Proposition 4.2.6. Let QQ be a T-polygon. For any sufficiently close Q-Gorenstein
smoothing Vg of Vi, with integrable almost complex structure J, there ewists a diffeomor-

~

phism ® : Vg — A(Qnodal) such that ®.(J) tames the symplectic form on A(Qnodal)-

4.2c Mutations of almost toric fibrations

Let @ < Mg be a T-polygon. For almost toric fibrations of the form A(Qnodal) as in
§4.2b, mutating @) at a vertex v as in §4.1c recovers the familiar notion of mutation for
almost toric fibrations (see e.g. [Eva23, §8.4]). One can check that, up to nodal slides
(i.e. moving the base-nodes), (Muty(Q))nodal and Qnodal are isomorphic nodal integral
affine polygons, differing in only their presentations in terms of polygons with branch
cuts (roughly speaking, a primitive mutation at a vertex v corresponds to rotating the
branch cut at one of the nearby base-nodes by 180 degrees). In particular, we have:

Proposition 4.2.7. If Q,Q" = Mg are mutation equivalent T-polygons, then the sym-
plectic four-manifolds A(Quodal) and A(Q'. ..1) are symplectomorphic.

nodal

5 Singular algebraic curves in almost toric manifolds I

In this section, we first discuss in §5.1 various geometric features of a symplectic four-
manifold which are “visible” from the base of an almost toric fibration, such as (singular)
symplectic and Lagrangian subspaces and ellipsoid embeddings. Then, in §5.2 we
construct some explicit rational holomorphic curves with prescribed cusp singularities
in (singular) toric surfaces. Finally, in §5.3, we explain how to push these holomorphic
curves into symplectic rigid del Pezzo surfaces in order to construct inner corner curves
and prove Theorem E.
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5.1 Visible geometry in almost toric fibrations

5.1a Visible Lagrangians and symplectic curves

Suppose that 7 : M4 — B? is a four-dimensional regular Lagrangian torus fibration,
and let C? c M* be a compact two-dimensional submanifold which projects to a path
v < B2%2. Put Cy := C n 7 1(b) for each b € B. Let (—,—) denote the pairing from
(4.2.1). The following is readily checked using the symplectomorphism (4.2.2):

e C is Lagrangian if and only if (u,v) = 0 for any p € C, u € Ty(,)7y, and v € T,Crp
e (' is symplectic if and only if (u,v) # 0 for any p € C, u € Tr(,)y, and v € T,Cryy)-

In these situations we will say that C is a visible Lagrangian or symplectic submanifold
of M. For b € v, we will say that the fiber Cj is straight if it is an orbit of the action
of T¥B on m~1(b). For a visible Lagrangian C, it is easy to check that each fiber Cy is
straight, and thus each tangent vector to v is a multiple of a lattice vector, so + is also
straight with respect to the integral affine structure on B.

For a visible symplectic curve C' the fibers C, need not be straight, but at each
point b € v there is a unique (up to sign) primitive covector ap € Af such that Cy is
homologous to an orbit of the vector field along 7~!(b) corresponding to oy (c.f. the
discussion after (4.2.1).) . Thus for a visible symplectic curve C there is a section « of
the pullback of A* along ~, such that ap(v) # 0 for every b € v and 0 # v € Tyy. We
will refer to the pair (7, ) as a covector-decorated path. For future reference, we
note that the symplectic area of the visible symplectic curve C' is naturally computed by
the integrating the covector field a along ~:

area(C) = fa(’y’(t))dt. (5.1.1)

t

Example 5.1.1. Suppose that B is R? with its standard integral affine structure and
coordinates z1, s, and let v : (a,b) — R? be the straight line segment t — (pt, qt)
for some primitive lattice vector (p,q) € Z2. Then we can take a to be the constant
covectorfield pdz; + gdxs, and the area of the corresponding visible symplectic cylinder
Cly,a) © T*T? is (b —a)(p® + ¢°). O

One can extend the above discussion to define visible Lagrangian and symplectic
submanifolds in an almost toric fibration 7 : M* — B2. Over B™8 the situation is
identical, and with some care we can also allow paths in B which end on toric boundary
points or base-nodes. Roughly, as b’ € B*& approaches an interior point b of an edge e of
a moment polygon, the torus fibers 7~1(b’) collapse to circles along a direction determined
by e, and, similarly, as b’ approaches a Delzant vertex v (having no base-nodes) the torus
fibers collapse to a point.?8 Meanwhile, as b’ € B™8 approaches a base-node b, the torus
fibers m~!(b’) get pinched along a circle which depends on the eigenline Ly € Ty B. In
slightly more detail, we have the following building blocks:

26Note that a general corank one or two elliptic value b € B is locally integral affine isomorphic to one
of these situations.
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(i) a smooth Lagrangian disk over any straight line segment - ending on a base-node
b, provided that ~ is tangent to the eigenline L, at b

(ii) a symplectic disk over any covector-decorated path (v, a) ending perpendicularly
to an interior point b of an edge e, provided that the covector aj € 17 B vanishes
on the tangent space Tye to the edge

(iii) a symplectic disk over any covector-decorated path (7, «) ending on a base-node b
perdendicularly to its eigenline Ly, provided that the covector ayp vanishes on Ly

(iv) a (p, ¢)-unicuspidal symplectic disk over any covector-decorated path (v, «) that
has one end on a Delzant vertex v, where p and ¢ are obtained by evaluating a on
the primitive tangent vectors to the edges adjacent to v (see also (3.1.1) below).

The symplectic discs in (ii), (iii) are smooth if the paths are straight near their endpoints.
Other local models for visible singular Lagrangians are also discussed e.g. in [ES18, §5.1
and §6.4].

Let us now specialize to the case of an almost toric fibration 7 : A(Qpodal) — @nodal
associated to a T-polygon @ — R? as in §4.2b. Here we assume that the vertex v; of Q is

of type mllT.Q (1,m;r;a; — 1). Note that a path in Qpnoqal is smooth in the usual sense in

R2, except that whenever it crosses some ~; it bends by the appropriate shear. In this
case we have for example:

(a) a visible Lagrangian two-sphere L[bj,bjﬂ] over the line segment [bf , bg +1] C Qnodal

foreachi=1,...,0and j =1,...,m; — 1 (c.f. [Eva23, Fig. 7.8])

(b) a visible Lagrangian (r;, a;)-pinwheel Lym; 1 (see [Khol3, Def. 3.1]) over the
line segment [b)", v;] for each ¢ = 1,...,¢ (c.f. again [Eva23, Fig. 7.8])

(c) a visible symplectic two-sphere C' with ¢;(C) = 2 over any straight line segment in
Qnodal ~ {b]} with both ends ending perpendicularly on interior points of edges
(see the violet path in Figure 6 left)

(d) a visible nonsingular symplectic two-sphere C' with ¢1(C) = 1 over any straight line
segment 7y in Qnoda1 With one end ending perpendicularly on an interior point of
an edge and the other end ending on a base-node perpendicularly to the associated
eigenline (see the blue path in Figure 6 right)

(e) a visible (p, ¢)-unicuspidal symplectic two-sphere C, ; with ¢;(C) = p + g over any
straight line segment ~y in Qnedal of slope p/q with one end at a Delzant vertex
(having no base-nodes) and the other end ending on a base-node perpendicularly
to the associated eigenray (see the blue path in Figure 5 right).

The above claims about the first Chern class ¢ (C') are justified by work of Symington,
quoted in Lemma 5.1.7 below. As illustrated in Figure 6 below (see also Figure 3), the
normal crossing resolution CN’W] of the cuspidal curve Cj, is a curve of type (d) that
is visible in an appropriate blowup of A(Qnoda) at its smooth point. Note also that
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a Lagrangian (r,a)-pinwheel is homeomorphic to the closed unit two-disk D® with
its boundary quotiented out by the equivalence relation z ~ e2maV=1/7 5 for » € D"
In particular, a Lagrangian (1,1)-pinwheel is just an embedded Lagrangian disk and
a Lagrangian (2, 1)-pinwheel is an embedded Lagrangian real projective plane RP?.
The visible Lagrangians (a) and (b) will be useful for describing the symplectic form
on A(Qnodal) in the sequel, while the visible symplectic curves (c), (d), and (e) give
symplectic analogues of some of the algebraic curves which we construct in §5 and §6
respectively.

(-1,1/2) (-1,1/2)

<
~

(5,-1) (5,-1)

Figure 6: Some visible symplectic curves in almost toric fibrations. The curve 5’1,2 in
the right diagram is the normal crossing resolution of the visible cuspidal curve C o

5.1b Visible ellipsoid embeddings

Let @ < Mg be a T-polygon, and let 7 : A(Qnodal) = @nodal denote the corresponding
almost toric fibration as in §4.2b. Noting that the base-nodes of QQyo4a1 can be pushed
arbitrarily close to the boundary by nodal slides (and recalling Remark 4.2.3), we have:

Proposition 5.1.2 (|Cri420, Prop. 2.35]). Let v be a Delzant vertex of Q such that
the adjacent edges have affine lengths a and b. Then for any € > 0 we have a symplectic

embedding E(%ﬁ, %8) < A(@Qnodal) -

We will refer to an embedding as in Proposition 5.1.2 as a visible ellipsoid embed-
ding. Note that if () has a smooth corner vy, that the same is true of its mutations
Mut, (Q) at vertices v # vgy. Since by Proposition 4.2.7 @ and Mut, (Q) encode symplec-
tic four-manifolds which are symplectomorphic, this gives a mechanism for constructing
many ellipsoid embeddings into a fixed target space. Indeed, the ellipsoid embeddings
corresponding to the inner corner points of the rigid del Pezzo infinite staircases can all
be described in this way:

Proposition 5.1.3 ([Cri+20, §5|). Let M be a rigid del Pezzo surface, and let Q be the
corresponding dual Fano T-polygon (either a triangle or a quadrilateral) in Figure 4. Then
each inner corner point of the infinite staircase in the ellipsoid embedding function cpy(x)
corresponds to a visible ellipsoid embedding after applying a sequence of full mutations to

Q.

If @ is a triangle then the ellipsoidal embedding in Proposition 5.1.3 fills the entire
volume of M and hence is clearly maximal. We will explain in §6.1 (see in particular
Proposition 6.1.11) why this is still the case when @ is a quadrilateral via the notion
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of visible symplectic obstructions. It will follow the numerics of these staircases can
be completely understood in terms of structures that are visible in suitable families of
almost toric bases.

5.1c Cohomology class of the symplectic form

For @ a Delzant polygon with edges e, ..., ez, recall that the associated toric surface Vg
carries a natural Kahler form w for which @ is the moment polygon of a Hamiltonian T2-
action (see e.g. [Da 03, §6.6]). Using (4.1.1) together with the fact that the toric divisor
D., has symplectic area Len,g(e;) for i = 1,...,¢, this characterizes the cohomology
class [w] € H?(Vg; R).

We seek to extend this to almost toric fibrations of the type 7 : A(Qnodal) — @nodal
constructed in §4.2b. Under the homeomorphic identification @ =~ Qnoda1, the vertices
v1,...,0p of ) now correspond to corank one elliptic values in Quoqa1- In particular,
the edge preimages 7 1(e;) © A(Qnodal) are symplectic annuli rather than two-spheres,
so they do not a priori represent homology classes. However, note that r; times the
circle 7~!(v;) bounds the Lagrangian pinwheel Lo v,) discussed in §5.1a. Therefore the

i

rational cycle

ﬁei = W_l(ei)—%'L[hmi + 1L

i i) Tit1

(5.1.2)

s
(6,7 vis1]

defines a homology class [De,] € Ha(A(Qnodal); Q)-
Using the cut-and-paste discussion in §4.2b, we have:

Lemma 5.1.4. The rational homology group Ha(A(Qnodal); Q) is generated by [f)el] for
t=1,...,0 and [L[bj_- bﬂf“]] fori=1,....fandj=1,...,m; — 1.

Corollary 5.1.5. A homology class A € Ha(A(Qnoda1); R) is Poincaré dual to the co-
homology class of the symplectic form if and only if we have A - [De,] = Lenag(e;) for
i=1,...,¢ andA-[L[bj bj+1]] =0fori=1,...,0 and j=1,...,m; — 1.

By Lemma 4.1.1, if @ is a Delzant polygon the toric symplectic four-manifold Vj is
monotone with monotonicity constant 1 (i.e. [w] = PD(c;)) if and only if @ is dual Fano.
This extends to almost toric manifolds as follows:

Proposition 5.1.6. If Q is a dual Fano T-polygon, then the symplectic four-manifold
A(Qnodal) s monotone with monotonicity constant 1.

Before beginning the proof, we recall the following result.
Lemma 5.1.7 ([Sym, Prop. 8.2|). For a general T-polygon Q with edges e1, ..., ey, the
)4

full boundary preimage 71 (0Qnoda1) = |J 7 1(e;) is Poincaré dual to c1(A(Qnodal))-
i=1

Proof of Proposition 5.1.6. By [KNP17, Thm. 1.2] there are precisely 10 mutation equiv-
alence classes of dual Fano T-polygons, corresponding to the 10 topological types of
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smooth del Pezzo surfaces. Since mutations imply symplectomorphisms (see Propo-
sition 4.2.7), it suffices to check the result for one representative in each of the 10
equivalence classes.

In fact, [Vial7]| shows that 8 of the 10 mutation equivalence classes of dual Fano T-

polygons have a triangular representative. Moreover, the two exceptions, CPl(S)#@2(1)
and CPl(S)#X2@2(1), instead have Delzant representatives, for which the result follows
directly by Lemma 4.1.1 since in the smooth case A(Q) = Vp.

Now suppose that @) = R? is a dual Fano T-triangle. Note that the boundary preimage
[m71(0Quodal)] together with the visible Lagrangian spheres [L[b’f,bi“]] fori=1,...,¢
and j = 1,...,m; — 1 form a basis for Ha(A(Qnoda1); Q), and since Cl([l‘[b{,b{*l]]) =
[L[b?,b?“]] [ (0Qnoda1)] = 0, it follows that A(Qnodal) is monotone.

To see that the monotonicity constant is 1, we will define a test homology class in
Hy(A(Qnoda1); R) and check that its symplectic area agrees with its Chern number. Let
e1, e2, e3 denote the edges of @, where e; has primitive outward normal vector (p;, ¢;) € Z2

3
and affine length ¢; € R~q, so that we have Y ¢; - (p;,¢;) = (0,0). Let v; = R? denote
i=1

a straight line segment which starts at the (;rigin and ends on the interior of the edge
ei, let a; denote the covector field along ~y; with constant value p;dzri + ¢;dxo, and let
Ci = Cly,a;) © A(Qnodal) denote the corresponding visible symplectic disk as in §5.1a.
Using (5.1.1) and the fact that @ is dual Fano, the symplectic area of C; is 1. Also, note
that 0Cj is a circle in the Lagrangian torus fiber 7T_1(6) for ¢ = 1,2, 3, and we have

3
D14:[0Ci] = 0 e Hy(x~(0);R).

i=1

. 3

Thus we can find a Lagrangian R-chain £ in 7=!(0) such that Y £;C; + £ is an R-
i=1

cycle in A(Qnodal), say representing a class A € Ho(A(Qnodal); R). The symplectic area

3

of Ais ), l;area(C;) = 1 + {9 + (3, and by Lemma 5.1.7 its Chern number is also
i=1

A- [Wﬁl(aQnodal)] =01+ by + /3. ]

5.2 Rational curves in toric surfaces

We now turn our attention to the construction of rational algebraic curves in toric
surfaces, typically of strictly positive index. Our approach here is to write down explicit
formulas for rational curves in the dense complex torus (C*)? = V,, and then take their
closures to obtain rational curves in Vj. This could be seen as a step in the direction
of a tropical-to-holomorphic correspondence as in [Mik05], but here we focus primarily
on those curves which we will need in §5.3, keeping the discussion as elementary and
explicit as possible.

As before, let M be a rank two lattice with dual lattice N, and put MR = M ®z R and
Nr = N®z R. In the following, we will say that a polygon Q < Mg is rational if all
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of its vertices lie in Mg := M®z Q. Note that any rational polygon becomes a lattice
polygon after scaling by some positive integer.

Proposition 5.2.1. Let @ < MR be a rational polygon with edges eq,...,ep; and cor-
responding primitive inward normals 71, ...,7; € N. Suppose that we are given a set
(possibly empty) of positive integers Jo, = {ki, ..., k;} for each i =1,...,¢, such that
the following balancing condition holds

{ s
D1 Kiit; = 0, (5.2.1)

i=1j=1

S; .
and such that the quantities d; 1= », kj satisfy ged(dy,...,de) = 1. Then there exists
j=1

a rational algebraic curve C in Vg such that, for i = 1,..., 4, C intersects D, in its
interior in precisely s; local branches, with contact orders ki, ..., k; , and C is otherwise
disjoint from Dy,

Example 5.2.2. Figure 5 middle gives a tropical representation of the curve C in
Proposition 5.2.1 in the case that @ is a triangle with vertices (—1,—1), (—1,1), (3, —1),

with Je, = {2}, Je, = {1}, Jey = {1}. O
Let ¥ denote the punctured Riemann surface CP! \ {wy,...,w,} for some pairwise
distinct wy, ..., w, € CPY. Given o = (01,...,0,) € Z¥, there is a unique (up to choice
of constant A € C*) holomorphic function fy, 5 : ¥ — C* with zero of order o; (i.e. pole of
order —o;) at the puncture z; for i = 1,..., 5 and no other zeros or poles, given explicitly

by
fre(2) = Az —w1)™ - (2 — w,,)"™. (5.2.2)

For simplicity we will usually take A = 1.

By ordered toric degree we will mean a tuple § = (¥4, ...,0,) for some » € Z>9,
with @, ..., T, € N~ {0} such that D U= 0. Let Ty Vi denote the complex torus
N ®z C*, which is identified with (C*)™ after choosing a basis 51, A b, for N. Given an
ordered toric degree § = (01, ...,7), we have the holomorphic function f55: 3 — Iy
whose jth component with respect to the chosen basis is fz’(vg7'..7vj)7 where we put

U; = Z;”:l vggj for i = 1,...,s. More explicitly, in the case Nr = R? with 51,52 the
standard basis, we put

fa(2) = (£o(2)s £u(2) = (2 = w0)"T o (= w7 2 = o) oo (2 = ) )
(5.2.3)

with ¢; = (vF,v)) fori =1,..., 5.

Proof of Proposition 5.2.1. Put & := (k}iy, ..., k;lﬁl, Y 37 7R ]{deﬁg), let ¥ be CP!
{ s )
minus Y, Y, k} punctures, and let C' be the closure of the image of fx 5 : ¥ — (C*)?% < V.
i=1j=1
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We will show that at the first puncture, wq, C' intersects D¢, in its interior with contact
order ki, the situation being similar at the other punctures by symmetry. We may
assume that our basis for N is chosen such that 7i; = (0,1). Let 0 = R>¢(7i1) = Nr be
the cone generated by i1, with the dual cone 0¥ < Mg generated by (0,1), (1,0),(—1,0).
The corresponding affine toric variety U, is identified with {(z1, 20, 23) € C3 | 2123 = 1},
with D, n U, = {(21, 29, 23) € U, | 22 = 0} and with the inclusion map ¢ : (C*)? — U,
given by (z,y) — (2, g, ). We thus have (10 fi5)(2) = (fo(2), fy(2), fo(2) 1), and
therefore
lim (vo fxs)(z) = lim (A(z — wl)k%”gf,B(z - wl)k%"?, ANz — wl)_k%”%)

z—wi z—wi

= lim (A(z —w)", B(z —w))""!, A7 (2 — wy) 7R 0)

Z—w1

= (4,0,471)

for some constants A, B € C*. The corresponding contact order with Dy, is given by the
vanishing order of f,(z) as 2 — wy, which is k}. O

Corollary 5.2.3. Assume that Q < Mg s a lattice polygon such that the edge affine
lengths Lenyg(e1), . . ., Lenag(ep) € Z=1 are coprime. Then there exists a rational algebraic
curve C in Vi such that C intersects D, in a single point in its interior with multiplicity
Lengg(e;) fori=1,...,¢.

Proof. Put J., = {Lenug(e;)} for i = 1,...,¢. Since @ is a closed polygon, we have
4

> e; = 0, which implies the balancing condition (5.2.1). O
i=1

The following is an algebraic counterpart of the visible symplectic curves over straight
lines discussed in §5.1a:

Corollary 5.2.4. Let Q < Mg be a rational polygon having two parallel edges e, e_.
Then there exists a nonsingular rational algebraic curve C in Vg which intersects each of

D..,D._ transversely in one point and is disjoint from the other toric divisors.

We will also need to know that the curves constructed above are suitably robust under
deformations of the complex structure. Let M(Je,, ..., Je,) denote the (uncompactified)
moduli space of curves C' as in Proposition 5.2.1. Here we view curves in M(Je,, ..., J¢,)
as holomorphic maps CP! — Vo (modulo biholomorphic reparametrization) having
specified intersection pattern with the toric divisors D, , ..., De,.

Lemma 5.2.5. The moduli space M(Je,, ..., Je,) is regular.

Proof. Let u: CP' — Vo be a curve in M(Je,,...,Je,). Then u is regular by automatic
transversality (see [Wenl0O, Thm. 1]) provided that we have indg(C) > 2Z(du) — 2,
where Z(du) is the total (complex) vanishing order of the derivative of u at all of its
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¢
critical points. Note that we have indg(u) = 23¢ — 2, where s = } s; is the number of
i=1
punctures of 3. Meanwhile, we have

fi(2) _ 4 S P(z)
= Zlog(fz(2)) = t— = ,
fo(z)  # g(/2(2)) i;z—wi (z—w1)- (2 —w,)
where P(z) is a polynomial of degree at most »r—1 (actually at most »—2 since ), vf = 0),
i=1
so we have Z(du) < » — 1 and thus indg(u) = 23¢ — 2 > 23 — 4 > 2Z(du) — 2. O

Remark 5.2.6. In the case s = 3, f5 5 is in fact an immersion, i.e. Z(du) = 0. Indeed,
without loss of generality we can take w; = 0, wg = 1, w3 = o0, so that (5.2.3) becomes

fre(z) = (z”%(z — 1) 2 (2 — 1)”5.) )

Observe that we have fss = ® o g, where g : ¥ — (C*)?, g(2) = (2,2 — 1) is a
parametrization of the (nonsingular) pair of pants {z =y + 1} < (C*)? and ® : (C*)? —
(C*)2, ®(x,y) = («¥Ty¥s, 2"y"2) is a degree | det (&, ¥2)| holomorphic covering map (c.f.
[Eva23, §G.2]). O

5.3 Inflatable sesquicuspidal curves and the inner corners

The goal of this subsection is to prove the following result, which we then use to
deduce Theorem E. Recall that we associate to a T-polygon @) an almost toric fibration

™ A(Qnodal) - Qnodal as in §4.2b.

Theorem 5.3.1. Let Q < Mg be a dual Fano lattice T-polygon with a Delzant vertex
Usm-. Let e, e’ be the edges adjacent to vgy,, and put Len,g(e) = kp and Lenyg(e') = kq,
where k,p,q € Z>1 satisfy ged(p,q) = 1 and p = q. Assume also that the affine lengths
of the edges of QQ are coprime. Then there exists a rational Jint-holomorphic curve C' in

A(Qnodal), where:
e C has a cusp with Puiseuz characteristic (q;p) if k = 1 and (kq; kp,kp+1) if k > 2
e C is Poincaré dual to the symplectic form on A(Qnodal)
o [C]-[C] = K?pq

e Jint is a tame integrable almost complex structure on A(Qnodal) such that
(A(Qnodal), Jint) is biholomorphic to a Q-Gorenstein smoothing Vg of Vg.

Moreover, when @ is a triangle we can assume that C' is unicuspidal.

Note that in the symplectic category we can easily perturb C' to make it sesquicuspidal
(i.e. positively immersed away from the cusp), although this is not guaranteed as a Jing-
holomorphic curve. In particular, after such a perturbation C satisfies the hypotheses of
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Theorem A with ¢ = 1, i.e. inflating along C' gives a symplectic embedding E(%, %) <
M for any ¢ > 1. In other words, any visible ellipsoid embedding (in the sense of
Proposition 5.1.2) can be obtained by symplectic inflation along a sesquicuspidal rational
symplectic curve. Theorem E upgrade this to algebraic curves in the case of rigid del

Pezzo surfaces.

Proof of Theorem E. Let M be a rigid del Pezzo surface and let (z = p/q,y) be an inner
corner point on the graph of the corresponding ellipsoid embedding function cps(z).
According to Proposition 5.1.3, there exists a dual Fano T-polygon @ < R? such that

e A(Qnodal) is symplectomorphic to M

e ( has a Delzant vertex vy, with adjacent edges e, ¢’ satisfying Len,g(e) = é and

P

Lenag (') = L

e () is a triangle in the cases M = CP?,CP! x CP?, CPQ#XJ'@{ 7 =3,4,and Q is
a quadrilateral in the cases M = CPQ#Xj@Q, j=12.

Let s € R~ be minimal scaling factor such that s-@Q < R? is a lattice polygon. Then s-Q
satisfies the hypotheses of Theorem 5.3.1, with Len,g (s - €) = kg and Lenyg(s - €’) = kp
for k := % € Z>1. Let C be the resulting curve in A(s - Qnodal). Here A(s - Qnodal) 18
naturally identified as a symplectic manifold with A(Qnoda1) after scaling the symplectic
form by s. In particular, C' corresponds to a curve C’ in A(Qnodal) Which is Poincaré
dual to s times the symplectic form. Note that (A(Qunodal), Jint) is a rigid Fano complex
surface and hence is necessarily biholomorphic to M. Also, observe when () is a triangle
we must have k = 1, since then evidently s = ¢y is minimal such that s - Q is a lattice
triangle. Thus the curve C’ verifies Thereom E. O

Our proof of Theorem 5.3.1 will proceed roughly in the following steps:
1) construct a rational curve in a weighted blowup of Vi using the results in §5.2
2) blow down to get a curve with a distinguished cusp in Vg
3) push this curve into a Q-Gorenstein smoothing VQ of Vo
4) identify ‘N/Q diffeomorphically with A(Qnodal)-

We now proceed with the details. Let @ as in Theorem 5.3.1, and let vy,...,0p
denote the vertices of @), with corresponding edges e; = [v;,0;41] for i = 1,...,¢ (here ¢
is taken modulo ¢). Here we take v; = sm to be the Delzant vertex, with adjacent edges
e=-¢e1 and € = ¢y.

Lemma 5.3.2. With Q) as above, there exists a rational algebraic curve C' in Vg such
that

o fori=2,...,0—1, C intersects D¢, in a single point in its interior with multiplicity
Len,g(e;)
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e CnD, =CnD,, =D, nD,,

e C has a cusp at the point Do, n De, with Puiseux characteristic (¢;p) if k =1 and
(kq;kp,kp+1) if k=2

e [C]-[C] = k?pq.

Moreover, when Q is a triangle (i.e. £ =3) we can assume that C is unicuspidal.

Proof of Lemma 5.3.2. Let Q" be the polygon with vertices v}, va,..., 0,07, where v} =
%01 + %Ug and v] = Juv, + %nl (i.e. @ is obtained from @ by “chopping off” the
vertex v1). Denote the corresponding edges of Q' by €}, ea,...,€e/_1,€), Eslant, Where
ey = [v1,02], € = [0g,07], and egane = [b7,07]. Let Dy, Dey, ..., De, |, Dy, Dey,,

denote the corresponding toric boundary divisors of the associated toric surface Vi,
which is a (p, ¢)-weighted blowup of V. By Proposition 5.2.1, we can find a rational
algebraic curve C’' < Vi such that

e (' intersects D, . in a single point in its interior with multiplicity &

e fori=2,...,0—1, C' intersects D¢, in a single point in its interior with multiplicity
Lenaff (61)

e (" is disjoint from D, and D,;.

Note that, in the case £ = 3, C’ is nonsingular as in Corollary 5.2.4.

We now consider the image of C' under the weighted blowdown Vi — Vg along
De,...- More explicitly, we first consider the iterated toric blowup V** of Vi which
minimally resolves the singularities of Vi at the toric fixed points corresponding to
v’ and v”. Let C* denote the proper transform of C’ in V', These blowups result
in a collection of negative self-intersection spheres Fy,... Fr, where Fy is the proper
transform of D, ., such that C*™ intersects Fy, in a single point with multiplicity &
and is disjoint from Fq,...,F;_1. In the case k = 1, the collection Fq,...,Fr,C™ has
precisely the same intersection pattern as in the normal crossing resolution of a (p, q)
cusp (c.f. §3.1), whence we can blow down along Fr,,...,F; to obtain a curve C' in Vg
with a (p,q) cusp. Similarly, in the case k > 2, a comparison with Example 3.3.4 shows
that the blown down curve C has a cusp with Puiseux characteristic (kq; kp, kp + 1).

To establish [C] - [C] = k?pq, note that ci([C™]) is given by the homological
intersection number of [C™*] with the toric boundary divisor of V™. This is evidently at
least 2, so using the adjunction formula we have [C™]-[C***] = 0, which by Lemma 3.3.5
is equivalent to [C] - [C] = k?pq.

Finally, the last sentence of the lemma follows by Corollary 5.2.4. O

Proof of Theorem 5.5.1. Let C' be a rational algebraic curve in Vg as constructed by
Lemma 5.3.2. In particular, C' has a distinguished cusp and satisfies [C]-[C] = k%*pq. We
view C' as having a J-holomorphic parametrization u : CP1 — Vg with a prescribed cusp
singularity at D., n D,,, where J is the preferred integrable almost complex structure
on Vg. Since C is regular (see Lemma 5.2.5) and disjoint from the singularities of
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Vg, it deforms to a nearby curve C with the same type of cusp in a sufficiently small
Q-Gorenstein smoothing ‘7@ of VQ.27 By Proposition 4.2.6, there is a diffeomorphism
D : XN/Q — A(Qnodal) such that ®,(.J) tames the symplectic form on A(Qnodal) (here J
is the integrable almost complex structure on ‘N/Q) Put ¢’ := <I>(C~') We can assume
that the smoothing XN/Q is such that [("] - [De,] = [C]- [De,] for i = 1,...,¢ (here
[f)el] [f)ez] € Hy(A(Qpodal); Q) are the homology classes from §5.1c), and hence C’
is Pomcare dual to the~ symplectlc form of A(Qnoda1) by Corollary 5.1.5. Note also that
we have [C"] - [C"] = [C]-[C] = [C]-[C] = > k2pq. Thus C” satisfies all of the conclusions
of Theorem 5.3.1 with Jiy 1= @y (J). d

6 Singular algebraic curves in almost toric manifolds II

In this section we develop techniques to construct index zero unicuspidal rational alge-
braic curves in Q-Gorenstein smoothings of singular toric surfaces. These are closely
parallel to visible symplectic curves in almost toric fibrations which pass through a
focus-focus singularity (as in §5.1a). In particular, we prove Theorem 6.1.7, which
is a (slight strengthening of a) restatement of Theorem D. The main technique is an
explicit construction of Q-Gorenstein pencils associated to polygon mutations as in [I1t12;
Akh+16].

More specifically, in §6.1 we introduce the notion of visible ellipsoid obstructions,
which are carried by symplectic and in fact algebraic unicuspidal curves, and we observe
that all obstructions for the rigid del Pezzo infinite staircases are of this type. After a
brief interlude on the Auroux model in §6.2, we discuss Q-Gorenstein pencils in §6.3, and
we use these to construct explicit algebraic curves in Q-Gorenstein smoothings in §6.4.
Finally, in §6.5 we discuss the classification of index zero unicuspidal rational algebraic
curves in the first Hirzebruch surface and prove Theorem F.

6.1 Unicuspidal curves from 7T-polygons and the outer corners
6.1a Visible ellipsoid obstructions and unicuspidal symplectic curves

We begin by discussing ellipsoid embedding obstructions which come from visible unicus-
pidal symplectic curves in the base of an almost toric fibration. Fix m,r,a € Z>1 with
ged(r,a) = 1. Note that we do not assume a < r, but we can uniquely write a = a’ + ¢r
for some a’ € {1,...,7 — 1} and ¢ € Z>¢. Let Q < Mg be a T-polygon with a Delzant
vertex v adjacent to vertices u and to, where to has type #(1, mra — 1), such that the
eigenray emanating from v intersects the line segment [u, v] in a point p. We will assume
that Mg = R?, v = (0,0), tv lies on the positive y-axis, u lies on the positive z-axis, and
the edges emanating from tv are (0, —1) and (mr?,1 — mra). In particular, the eigenray
emanating from t points in the direction (r, —a).

2TStrictly speaking Lemma 5.2.5 says that a resolution C’ Vg is regular (without any cusp condition),
which suffices for our purposes since we can readily pass between curves with prescribed cusps and their
resolutions (c.f. [McS23, §4.3]).
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Put ¢; := Lenug([v,w]) and ¢o := Len,g([v,p]). Note that we have % = 2, and,
because the nodal ray from to meets the side [u, v], there is a visible ellipsoid embedding
in the sense of §5.1b (c.f. Figure 5 right?®)

E(%,%) < A(Qnoda) (6.1.1)

&

for any ¢ > 1.

Proposition 6.1.1. Let Q be a T-polygon as above such that the eigenray emanating
from w is in direction (r,—a). Then there is an index zero rational (r,a)-unicuspidal
symplectic curve C in A(Qnodal) with area rf1 = als.

Proof. We have v = (0,0), o = (0,¢;) and p = (f2,0), with the eigenray emanating from
v pointing in the direction (r, —a). Let (v, «) be the covector-decorated path where:

e v is the straight line segment starting on v and ending at a point (ta, tr) on [to, p]
for some t € Ry

e « is the lattice covectorfield along v which vanishes on the eigenray direction
(r,—a), i.e. @ = adzr) + rdzxs.

After a nodal slide, we can assume that Qnoda1 has a base-node at (ta,tr). Let C be
the corresponding visible (r, a)-unicuspidal symplectic curve in A(Qnodal) as in item (e)
in §5.1a. By (5.1.1), the symplectic area of C' is given by Sya = {(ta,tr), (a,r)) =
(o, (a, 1)) = rl. O

Remark 6.1.2. Note that the cusp type (r,a) = (r,a’+¢r) appearing in Proposition 6.1.1
depends not just on the vertex type #(1, mra—1) = #(1, mra’ —1) of ro but also on
the parameter ¢, which controls how the eigenray of to meets the Delzant vertex v. One
can also relax the assumption that to is adjacent to v, provided that the line segment
joining v perpendicularly to the eigenray of tv is contained in Q. O
Remark 6.1.3. Using the generators from §5.1c, the homology class [C] €
Hy(A(Qnoda1); Q) in Proposition 6.1.1 is characterized by [C]- [f)[n,m]] =a, [C] [f)[u,n]] =

~

r, and [C]-[D.] = 0 for all other edges e of Q. In particular, we have ¢1([C]) =r+a. ¢

Together with the obstruction provided by Theorem 1.3.1, Proposition 6.1.1 immedi-
ately gives:

Corollary 6.1.4. Let Q be a T-polygon as above such that the eigenray emanating from
w meets the edge [u,v]. Then the embedding (6.1.1) is optimal in the sense that there is
no such embedding for ¢ < 1 (even after stabilizing by CV=1).

We will refer to an obstruction as in Corollary 6.1.4 as a visible ellipsoid obstruc-
tion, since it is read off visually from the polygon @ as in Figure 5 right. Note that

28Gtrictly speaking the roles of the z and y axes are swapped in Figure 5 right compared with our
conventions in this section. There is another (unshaded) ellipsoid obstruction which is visible in this
same figure, which is associated with the eigenray emanating from the other vertex (at (—1,1)).
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it follows that for any p’ € [p,v] the visible ellipsoid embedding corresponding to the
triangle with vertices v, p’, v is also optimal. In particular, this determines the ellipsoid
embedding function for M = A(Qpodal) on an appropriate closed interval as follows:2?

Corollary 6.1.5. Let Q be a T-polygon as above with A(Qnodal) symplectomorphic to
M, and put U3 := Len,g([p,u]). We have:

(A) en(x) = w/ly for all w € [y, 3] if 01 > lo + L3

(B) cn(x) = £y for all x € [, 2F8] if 1 < £y,

Proof. Both of these claims hold by considering the family of embeddings represented
by the visible triangles in Qoqa1 With vertices v, v, and ' where 1’ lies on the line
between p and u. The fact that the embedding with u’ = p is optimal (by Corollary 6.1.4)
implies that all the embeddings with u’ on the line [p,u] are also optimal. If /1 < o
and {1z € [l2, 02 + £3], these give rise to optimal embeddings of E(¢1,¢1z) into A(Qnodal)s
which implies that cps(x) is constant over the corresponding interval as in (B). On the
other hand, if 5 < z < l5 + ¢35 < {1 we obtain optimal embeddings of F(z, /1) into
A(Qnodal)- Setting x = %1 > 1 this translates to an optimal embedding of E(%,El) into
A(Qnoda1), which implies (A). O

We will see in Proposition 6.1.11 below that each of the rigid del Pezzo infinite
staircases may be entirely described in this way, with (A) accounting for the sloped line
preceding an outer corner and (B) accounting for the horizontal line following an outer
corner.

Remark 6.1.6. Let us explain briefly why the obstruction in Corollary 6.1.4 holds
from the perpsective of exceptional homology classes. By Proposition 6.1.1 there is a
visible (p, ¢)-unicuspidal symplectic curve Cp 4 in A(@Qnodal). After a sequence of blowups
at the toric fixed point corresponding to the origin, we arrive at the normal crossing
resolution CN’p,q, which is an exceptional curve. Recall that an exceptional class in a closed
symplectic four-manifold (M,w) has a symplectic representative for every symplectic
form w’ that is deformation equivalent to w, and must always have positive symplectic
area. Now consider the visible ellipsoid embedding (6.1.1) for ¢ > 1, which corresponds
to the subtriangle 7" < T which is a %—scaling of the shaded triangle in Figure 5 right.
The symplectic area of the exceptional class [Cw'p,q] is a function of the distance between
this slant edge of 7" and the eigenray emanating from to. Since this tends to zero as

¢ — 1, it follows that the embedding (6.1.1) is optimal. O

6.1b Visible unicuspidal algebraic curves and outer corner curves

The primary goal of this section is to show that visible ellipsoid obstructions in fact come
from algebraic curves. We prove the following Theorem in §6.4.

The slightly awkward phrasing division into cases comes from the fact that cas(x) is defined in terms
of ellipsoids E(1,z) with z > 1. The case 2 < {1 < {2 + {3 does not occur in nontrivial cases.
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Theorem 6.1.7. Let QQ < Mg be a T-polygon which contains consecutive edges pointing
in the directions (—mr?, mra — 1),(0,—1),(1,0) for m,r,a € Zs1 with ged(r,a) = 1.
Then there is an index zero (r,a)-unicuspidal rational symplectic curve C in A(Qnodal)
which s Jipg-holomorphic, where Jiy ts a tame integrable almost complex structure on
A(Qnodal) such that (A(Quodal), Jint) is biholomorphic to a sufficiently small Q-Gorenstein
smoothing YN/Q of Vo. Furthermore, we can assume that C' is (r, a)-well-placed with respect
to a Jing-holomorphic rational nodal anticanonical divisor N .

Remark 6.1.8. One can check that the curve C' in Theorem 6.1.7 has the same homology
class as that in Remark 6.1.3, and in particular it has symplectic area (tv, (a,7)), where
1o is the vertex lying on the positive y-axis. Thus in the case that the eigenray emanating
from ro intersects the edge of @ in direction (1,0), C carries the same visible ellipsoid
obstruction as in Corollary 6.1.4. O

Remark 6.1.9. The utility of the last part of Theorem 6.1.7 is that, at least in the rigid
del Pezzo case, we can apply iteratively the generalized Orevkov twist from §2, i.e. for
each such curve C we get a whole sequence of index zero unicuspidal rational algebraic
curves ®/(C), ®%,(C), ®3,(C),....

Recall that the preimage of 0Qpoda1 under the almost toric fibration 7 : A(Qnodal) —
(nodal 1S an anticanonical nodal symplectic divisor. If we assume that Q,,04.1 is constructed
such that there are base-nodes at every vertex except for the Delzant vertex v (c.f.
Remark 4.2.3), then N := 771 (0Quoda1) is rational with a single node at v. The visible
symplectic curve C' in Proposition 6.1.1 is by construction (r, a)-well-placed with respect
to NV, and the last part of Theorem 6.1.7 is an algebraic analogue of this. O

Theorem D follows quickly from Theorem 6.1.7, after a preliminary lemma.

Lemma 6.1.10. Let V' be a smooth complex projective surface which is diffeomorphic to
a rigid del Pezzo surface M. Then V' has an arbitrarily small deformation V' which is
biholomorphic to M.

Proof. Observe that V' is necessarily rational (see [FQ95, Cor. 0.2]) and hence by the
Enriques-Kodaira classification it is an iterated blowup of CP? or a Hirzebruch surface
Fj,. Recall that the Hirzebruch surface Fj, deforms to CP! x CP! or F} for any k € Z>o.
Combining this with a generic perturbation of the blowup centers, we arrive at a smooth
del Pezzo surface V which is diffeomorphic and hence (by the classification of del Pezzo
surfaces) biholomorphic to M. O

Proof of Theorem D. Let C be the (r, a)-unicuspidal Jip-holomorphic curve in A(Qnodal)
guaranteed by Theorem 6.1.7. Here (A(Qnodal), Jint) 18 biholomorphic to a Q-Gorenstein
smoothing IN/Q of Vi, and by assumption A(Qnoda1) is diffeomorphic to a rigid del Pezzo
surface M. If XN/Q is Fano then it is necessarily biholomorphic to M. Otherwise, by
Lemma 6.1.10 we can still find an arbitrarily small deformation of VQ which is Fano and
hence biholomorphic to M, and similar to the proof of Theorem 5.3.1 we can push C
into this del Pezzo surface. O
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We end this subsection by showing that the staircases in the rigid del Pezzo surfaces
are entirely visible in terms of triangles in certain almost toric base polygons as detailed
in Corollaries 6.1.4 and 6.1.5. In particular, we use this to give an alternative proof of
Theorem B (recall that our proof in §2 was based on the generalized Orevkov twist).

Proposition 6.1.11. For M be a rigid del Pezzo surface, and let Q) be the corresponding
dual Fano T-polygon in Figure 4. Then, each outer corner point (xk,yx) of the infinite
staircase in the ellipsoid embedding function cpr(x) corresponds to a wvisible ellipsoid
obstruction in some polygon Q' obtained from Q by a sequence of full mutations. Moreover,
as in Corollary 6.1.5, we may choose Q' so that this polygon Q' determines the value of

ey (x) for all x € [z, xpiq].

Let @ be one of the polygons in Figure 4, and let J denote the number of strands of
the corresponding infinite staircase cys(x), i.e. J = 3 for CPQ#@2 and sz#wﬁ2 and
J = 2 in the remaining cases (c.f. §2.3). Let Q) denote the result after k € Z( successive
full mutations of @), each time along eigenray emanating from its top left vertex. It is
shown in [Cri+20] that this eigenray always meets the horizontal edge of Q, so that
the non-Delzant vertices cyclically permute under successive full mutations of this kind.
Let ¥, ..., Uf“, +1 denote the vertices of Q. (ordered counterclockwise), where ¥ is the
Delzant vertex with edge vectors (1,0), (0,1), v lies on the positive x-axis, and nf} 4 lies
on the positive y-axis. A complete description of the vertices and eigenrays of @ may be
found in [Cri+20, §5]. In particular, for each J-tuple of successive staircase steps there is
a mutation @ whose vertices have T-singularities of the corresponding types. Further,
putting K = [N] - [N] — 2, where [N] € Ha(A(Qnodal)) is the anticanonical class (c.f.
Table 1), we find that the vertex types of @ transform under J-full mutations by the
same recursion as the generalized Orevkov twist:

Lemma 6.1.12. Suppose that of has type ﬁ(l,miriai —1) fori=2,...,0. Then

k+J 1 i /WA
v "7 has type T (1, mirlal — 1), where (m},r, a}) = (mi, Kri — a;,r;).

Proof of Proposition 6.1.11. Let (xg,yx) = (%, gkgf%) be the kth outer corner point
on the graph of ¢j; (recall §2.3). By [Cri+20, §5], the eigenray emanating from the top
left vertex n’jH of Q points in the direction (gg, —gr+s) and meets the edge between Ulf
and 012“. According to Proposition 6.1.1 there is a visible index zero (gx.+ s, gr)-unicuspidal
rational symplectic curve C' in M, and this gives precisely the outer corner obstruction
ey (xp) =y + k. Now observe that, because @y, is obtained by mutation along the nodal
ray from the top left vertex nﬁjrll of Qr_1, this nodal ray must meet the z-axis at the
vertex v of Qy, so that the nodal ray of Qy at v} points in the direction (—gr_1, gr_14.7)-
If we now apply Corollary 6.1.5 to Qg, then because ¢ > ¢1 + {3 we can calculate cj; on
the interval that ends on the kth outer corner point z; = gk—:". Similarly, by applying
this result to the reflection of () about the line x = y, we are in the case {1 < {5
and hence can deduce that cps is constant on the interval between x;_; and the corner

point. L]

Alternative proof of Theorem B. By Proposition 6.1.11, every outer corner in cps(x)
corresponds to a visible ellipsoid obstruction in some polygon @ with A(Qpodal) symplec-
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tomorphic to M, and by Theorem D this comes from an index zero rational algebraic
unicuspidal curve. ]

6.2 Visible curves in the Auroux-type model

As a preliminary to constructing curves in Q-Gorenstein smoothings of singular toric
surfaces, we first discuss the affine case, which is modeled on the Auroux-type system
from [Eva23, §7.3|. Recall from §4.1c that the T-singularity #(1, mra—1) = {xy =

2"} /™ smooths to

Bm,r,a = {xy = (ZT - C1> K (ZT — Cm)}/u}n’_l’a

(for any fixed 0 < (; < --- < (), and we have the Auroux-type almost toric fibration

TAur - Bm,r,a — C, ﬂAur(:L'aya Z) = (|Z|2, %|5C|2 - %|y|2) .
The critical values of may, are (Cf/r, 0),...,( %T, 0). By analogy with the visible unicus-
pidal symplectic curves appearing in the proof of Proposition 6.1.1, we seek algebraic
curves in By, ,, which project via ma,, to vertical rays in R>o x R emanating from a
critical value. To this end, putting CO’;r :={y =0} € By, q and CZ_ :={x =0} < Bnra,
note that we have indeed

Tauw(CE) = {(¢7,1) | +t€Rs}.

Now suppose that @ is a polygon with a T-vertex to of type #(1, mra — 1), and
let XN/Q be a Q-Gorenstein smoothing of the singular toric surface Vy, along with a
holomorphic embedding ¢ : By, ;o < V. Roughly speaking, we will show below that the

closure of L(C’Z+ ) in T~/Q is a (7, a)-unicuspidal rational algebraic curve, and this underpins
Theorem 6.1.7.

6.3 Pencils from polygon mutations

As we briefly recalled in §4.1c, singular toric surfaces Vg and Vi are Q-Gorenstein
deformation equivalent if (and conjecturally only if) the corresponding dual Fano polygons
are mutation equivalent. More precisely, we have:

Theorem 6.3.1 (J[Akh+16, Lem. 7], following [I1t12, Thm. 1.3]). Let Q be a dual
Fano polygon, and let Q' = Muty(Q) be its mutation at a vertex . There exists a
Q-Gorenstein pencil’® p : X — CP! such that p~1(0) =~ Vi and p~1(0) = V.

In order to construct unicuspidal algebraic curves, we will describe an explicit model
for (at least a part of) the Q-Gorenstein pencil p in the analogous case that @ is a
T-polygon (not necessarily dual Fano) with a Delzant vertex. We first discuss the case
that @ is a triangle, and then obtain the case of a general polygon by a local birational
modification.

30That is, a flat family whose total space is Q-Gorenstein.
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Let @ < Mg be a triangle with a Delzant vertex v adjacent to a T-vertex to. After
an integral affine transformation we can assume that MR = R? and the vertices are
b := (0,0),0 := (0,mra — 1),u := (mr?,0), for some m,r,a € Z>1 with ged(r,a) = 1.
In particular, Vg is isomorphic to the weighted projective space CP(1, mra — 1, mr?).
Similar to Remark 6.1.2, we do not assume a < r, but we can write a = a’ + ¢r for
some d € {1 ,7— 1} and ¢ € Z>1. Then the Vertex o has type #(1,mm —-1) =
mrQ(l mra’ — 1) and the vertex u has type 1,mr?) (this is not necessarily a
T-singularity).

With respect to the vertex tv, the mutated triangle Q' := Muttfll,lu(Q) has vertices

= (0,0), 10" := (0, mra),u" := (L£-(mra—1),0), and we have Vi = CP(l,mra 1, ma?).

mra— 1(

Note that v’ is smooth, w’ has type ﬁ(l,mra — 1), and v’ has type —— 1(1 ma?),
which is the same singularity type as u:

Lemma 6.3.2. For m,r,a € Zs1 with ged(r,a) = 1, we have —L1—(1,mr?) =
m(r’ a) - mra— 1(1 ma2)

Proof. Modulo mra — 1 we have 0 = (mra — 1)(mra + 1) = m?r?a® — 1, and hence
mr? = 1/(ma?). O

Now consider the weighted projective 3-space CP(1, mra — 1,r,a) with homogeneous
coordinates [z : y : z : w], and consider the hypersurface

Sy = {xy = 1— T+ 1+tzm“} c CP(1,mra—1,r,a) (6.3.1)
for t € CP1L.

Proposition 6.3.3. Suppose as above that the triangle Q has a Delzant vertex v adjacent
to a T-vertex vo. Then the family {Si},ccpr defines a Q-Gorenstein pencil such that

e we have isomorphisms Sy = CP(1,mra — 1,mr?) and Sy = CP(1,mra — 1,ma?)

o fort# 0,00, Sy has a singularity at the point [0:1:0: 0] of type —— 1(7’, a) and
1s otherwise nonsingular.

Remark 6.3.4. When @ is a T-triangle, the family {S;} is an algebraic counterpart of a
family of almost toric fibrations interpolating between the singular toric surfaces Vg and
Vi, corresponding to a family of nodal integral affine structures on ) with base-nodes
limiting to the vertex w as ¢t — 0 and limiting to p as ¢ — oo (here p is the other point
where the eigenray emanating from t intersects 0Q). O

Proof of Proposition 6.3.53. Let U, denote the (singular) affine chart {# = 1}

CP(1,mra,r,a), with Uy, U, U, < CP(1,mra,r,a) defined similarly. We will analyze
the intersection of S; with each of the charts Uz, Uy, U, Uy,. To start, observe that, for
any te CPY, S, nU, = {y = 1+t "+ h52M%} = C2, is smooth. We have also

1? ’
St a U - {:E W™+ mzma}/umig—l = /lum'ra 1 ﬁ(r’ (I). (632)
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Next, we have
Si AU, = foy = thw™ + (Ll ube,
Comparing with (4.1.3), we see that the family {S; n U} is a Q-Gorenstein smoothing of
SonU, = #(1, mra — 1), and in particular Sy N U, = By, ;4 for t # 0,00. Note that
Sw AU, = {wy = 1}/ " is smooth.
Finally, we have

Sy N Uy = {zy = 1+t + mzma}/ﬂ}l’_l’r,

i.e. the family {S; Uy} is a Q-Gorenstein smoothing of Soo N Uy = —L3(1,mra—1), and
we have S;NUy = By q,r fort # 0,00, with SonU,, = {zy = 1}//@ o smooth. Note that
we have covered the total space of the deformation {S;} by Q-Gorenstein neighborhoods
(each is either smooth, equivalent to the miniversal model (4.1.3), or a trivial family of
cyclic quotient singularities), and hence {S;} is a Q-Gorenstein deformation.

Let [s : t : u] be homogeneous coordinates on CP(1, mra — 1,mr?), and define the
map

w:CP(1,mra—1,mr?) — Sy, [s:t:u]— [s" :t"™ :u: st].

Note that this is well-defined since to([As : X709~ 1t : AM72q]) = [Amrgmr ;. ymr(mra=1)gmr .
ATy s Nmrag] = [¢7™7 4™ gy st], and the restriction CP(1,mra — 1, mr2) A U, —
So N U, agrees with the isomorphism (4.1.4). Similarly, we define the map

Lo : CP(1,mra —1,ma®) — Sy,  [s:t:u] > [s™:t™: st : ul.
We leave it to the reader to verify that the maps (g and ¢y, are isomorphisms. O

Example 6.3.5. Let (p1,p2,p3) € Z‘;O be a triple which satisfies the Markov equation
p? + p3 + p3 = 3p1paps, and let (p1,pa, Py := 3p1p2 — p3) be its Markov mutation. Put

3
M := {(m1,m2,m3) € Z3| >} p?m; = 0}. Then the dual Fano polygon
i=1

3
Q = {(x1, w2, 23) € R® | Y plw; = 0,21, 72,23 > —1} = Mg
-1

satisfies Vg =~ CP(p?, p3,p3) and has T-vertices of types (pz+1,pz+2) fori =1,2,3 (mod
3). Let w denote the vertex of type - (pl,pZ) and put Q’ .= Mut!™(Q), so that we have
Vo = CP(p%, p3, (p)?). Then the pencﬂ Q-Gorenstein {Si},.cpt is given by

Sy = {xy = mwm + 1 27’3} c CP(pl,pQ,pg,pg) (6.3.3)

satisfies Sy = CP(p?,p3,p2), Se = CP(p?,p3, (p4)?) and S; = CP? for t # 0,00. This fits
into the above framework after specializing to the case p; = 1, so that @) has a Delzant
vertex v. O
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Now let Q = MR be any polygon having a Delzant vertex v adjacent to a T-vertex to.
As in the triangle case considered above, we will assume that Mg = R? with v = (0,0)
and to = (0, mra — 1), where the edge vectors at v are (1,0),(0,1) and the edge vectors
at w are (0,—1),(mr%,1 — mra), for some m,r,a € Z>; with ged(r,a) = 1. We will
further assume that the eigenray emanating from to hits the edge of @) which lies on
the z-axis.3! Put Q' := Mutfn‘,‘n(Q). By reducing to the triangular case above, we now
construct a Q-Gorenstein pencil {S’t}tec,ﬂ which interpolates between Vg and Vi and
smooths the toric fixed point py in a general fiber. Let Qi denote the triangle with
vertices v, 10, and u = (mr2,0), so that we have Q < Qy;.

Let ¥, Xq,, denote the normal fans to @, Qi respectively, and note that ¥g is
a refinement of 3¢, ;. We denote by [y ], Tjou]s Tlu,w] © Nr the rays of Xg, ., spanned
by the inward normals to the edges [v, o], [v, u], [u, 0] respectively. Let o = Nr denote
the two-dimensional cone spanned by 7, and 7, ), With corresponding distinguished
point p, € U, < Vo, (c.f. [CLS11, §3.2]). Note that the rays of ¥g \ Xq,,; all lie in the
interior of 0. The induced toric morphism 7 : Vg — Vp, , is a proper birational map
which restricts to an isomorphism Vg \ 771 (py) — Vi, \ Po. We denote by U, < Vo, ,
the affine toric variety associated to the cone o, which we identify with ﬁ(r, a), and
we put U, = 7~ YU,) = V. Thus Vg is obtained from Vj, , by excising U, and gluing
in U,, which we could view as sequence of generalized blowups at (singular) points.

Let {St},ccpt denote the Q-Gorenstein pencil associated to Qi and its mutation

at 1o as in Proposition 6.3.3. For t € CP!, let j; : C2 o/t = Sy n U, denote

mra—1
tNhe natural isomorphism (z,w) — (l%rtwm’" + l%rtzma, 1,z,w). For each t € CP!, let
St — S; be the birational modification corresponding to excising the image of U, under
7+ and gluing in U,. We have, essentially by construction, the following generalization of

Proposition 6.3.3.

Proposition 6.3.6.

(i) Suppose as above that Q < Mg is a polygon having a Delzant vertex v = (0,0)
adjacent to a T-vertex vo = (0, mra—1) and such that the eigenray (r, —a) emanating
from w hits the edge of QQ which lies on the x-axis. Then the family {gt}teCPl
described above defines a Q-Gorenstein pencil such that

e we have isomorphisms So = Vo and Sy = Viy
e fort # 0,00, the singularities of §t correspond naturally to the singular toric

fized points of Vi excluding py.

(ii) If in the above situation the eigenray (r, —a) emanating from w hits some other
edge of Q) then the Q-Gorenstein pencil Sy with Sy = Vg is defined for t close to 0

and S; has singularities as described above.

31Without this assumption we will still have §0 =~ Vi, which suffices to prove Theorem 6.1.7, but we
will not generally have Sy > V. Indeed, since the complex variety Vi depends only on the normal fan
of Q we can always adjust @ so as to achieve this property without changing its normal fan. However,
the mutation " depends on Q itself and not just its normal fan.
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Remark 6.3.7. In [Akh+ 16| the authors construct a family of hypersurfaces in a toric
3-fold V@, where @ is a three-dimensional polytope admitting projections to ) and the
mutated polytope @’. This polytope has a smooth corner that projects to the smooth
corners of @ and @', and the the dually induced toric morphisms Vg, Vir — V@ embed
Vo and Vi as hypersurfaces that span a Q-Gorenstein pencil. This construction applies
whether or not the eigenray from w meets the edge of @ on the z-axis, and it follows that
there is a family of surfaces (St)teC p1 with Sy = Vo and Soo = V. In this construction,
each additional facet of Q gives rise to an extra facet of Q, so that the effect of blowing
up @ is to blow up Q However this blowup of Q may not correspond to a family of
blowups of the St. As an example, one can consider the effect of a mutation of the
quadrilaterals Q7 (with vertices vo, by, by, by) considered in the proof of Lemma 6.5.3.
Here the original quadrilateral is such a large blowup of the triangle Q;,; with vertices
vo, bxs, by that the nodal ray hits the edge vy — vx. One can check that this has the
effect that the one of the edges of the mutation of Qy,; is completely excised from the
mutation of Q7, which means the latter mutation is not a blowup of the former mutation.
Nevertheless, in this case one can with some effort give explicit formulas in the spirit of
(6.3.1) for the hypersurface Sy Vg in terms of Cox coordinates on Vi thought of as a
GIT quotient. O

6.4 Explicit unicuspidal algebraic curves

Let @ be a polygon as above, with associated Q-Gorenstein pencils {gt}tecpl. We now
construct a (r, a)-unicuspidal rational algebraic curve C;" in S, for all t # 0, 00. Since
{gt}tGCPl is given by a fiberwise birational modification of the pencil {S;},.cp1 associated
to Qtri, we first consider the case that QQ = Q4 is a triangle. Notice that the smooth
toric fixed point of CP(1, mra — 1, mr?) maps by ¢q to the point [1:0: 0 : 0] € Sy, which
lies in Sy for all t € CP!. The curve C;" will be constructed to have a (r,a) cusp at
[1:0:0:0], and will furthermore be well-placed with respect to an anticanonical divisor
N, having a node at [1:0:0:0].

Recall that for ¢ # 0,00 we have S; " U, = {zy = I—me’" + l%t}/ﬂvl” = Bpra-
Following §6.2, we consider the curves C;" = {y = 0} € S; " U, and C; = {z = 0}
S " U, and their closures C;7,C; in S;. We will focus on C;' since C; does not pass
through [1:0: 0 : 0]. Strictly speaking C; has m components (since we have combined
Ci,...,C} from §6.2 into a single curve), so we take one of the components

—1,a

Fi={y=0w" =("} = S (6.4.1)

for fixed ¢ € C satisfying (" = —t.

For t € CP!, let N; = S; denote the anticanonical divisor {z = 0}u{w = 0} = S;. Here
N has two components for ¢ # 0, 00, while N (resp. Ny) is the image of the toric divisor
under the map ¢ : CP(1,mra — 1,mr?) — Sy (resp. too : CP(1,mra — 1,ma?) — Sy).
For t # 0,00, the two components of N; intersect transversally at the nodal point
[1:0:0:0] and also meet at the singular point [0:1:0: 0].
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Lemma 6.4.1. When Q is a triangle, C;" = S; is (r,a)-well-placed with respect to Ny
fort # 0,00, and is otherwise nonsingular. In particular, C;" is (r,a)-unicuspidal.

Proof. Note that C;" < U, u U, since C;f nUy =@ and [0:0:0:1] ¢ S, and C;" n U,
is smooth by construction. In the chart S; n U, = C2, we have Cf n U, = {(z,w) €
C? | w" = (27}, which is (r, a)-well-placed with respect to N; n U, = {(z,w) € C? | z =
0 or w = 0}. O

In the case of a general quadrilateral @, let C c St denote the proper transform
of C’ c Sy with respect to the birational map St — S, and let -Mt c St be the total
transform of NV;. Since C;" is disjoint from [0:1:0 : 0], we have the following extension
of Lemma 6.4.1

Lemma 6.4.2. For general Q and all t # 0 sufficiently close to 0, the curve 5’;’ c §t 18
(r, a)-well-placed with respect to Ny and is otherwise nonsingular.

We are now ready to complete the proof of theorem 6.1.7.

Proof of Theorem 6.1.7. Let {St}t~0 be the Q-Gorenstein deformation of V¢ constructed
in Proposition 6.3.6. Using Lemma 6.4.2, there is a rational unicuspidal curve C’Jr c S
which is well-placed with respect to the anticanonical divisor ./\ft Let St be a further
Q-Gorenstein deformation of S; which smooths the remaining singular points. As
in the proof of Theorem 5.3.1, for [t| > 0 sufficiently small we can assume that N,
deforms to a ratlonal nodal anticanonical divisor M c St and C deforms to a rational
curve Cy < S; which is (r,a)- well-placed with respect to N,. 32 By Proposition 4.2.6,
there is a diffcomorphism ® : S — A(Quodal) such that ®,(J) tames the symplectic
form on A(Qnodal) with J the integrable almost complex structure on St Then the
curve <I>(C+) < A(Qnodal) is @+ (J)-holomorphic and satisfies the requirements of the
theorem. O

6.5 Classifying unicuspidal algebraic curves in the first Hirzebruch
surface

Our goal here is to prove Theorem F on unicuspidal algebraic curves in the first Hirzebruch
surface Fy. As a warmup, we start by discussing the analogue for CP?, giving a new
proof based on quantitative symplectic geometry that the list in Theorem 1.2.2(d) is
complete:

Lemma 6.5.1. The curves constructed in Theorem 2.1.2 give the complete list of data
(d,p,q) for unicuspidal rational algebraic plane curves with one Puiseux pair.

Proof. Any (p, q)-unicuspidal rational algebraic curve in CP? of degree d is in particular a
symplectic curve, and hence according to [McS23, Thm. G| the homology class A = d/ is
(p, q)-perfect. Then by [McSch12, Cor. 3.1.3], p/q must be a ratio of odd index Fibonacci
numbers. O

32Gee [McS23, Cor.3.5.5] for a discussion of the behavior of cuspidal constraints under deformations of
the (almost) complex structure J.
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The corresponding classification of perfect exceptional classes in F} was recently
worked out in [MM24; MMW22| and is much more complicated than for CP?. Here we
give a broad self-contained overview of the classification, refering to loc. cit. for the
details.

Let Perf(F}) denote the set of all quadruples (p,q,d,m) € ZA;O with p > ¢ coprime
such that A = dl — me is a (p, q)-perfect exceptional class in Ha(F}) (see e.g. [McS23,
Def. 4.4.2]). Equivalently, by [McS23, Thm. G] this is the set of quadruples (p, q,d, m)
such that there exists an index zero (p, ¢)-unicuspidal rational symplectic curve C' in Fj
with [C] = df — me € Ho(F}).33 Put

Perf(Fy) := {p/q | (p,q,d, m) € Perf(F}) for some d, m}.

The classes in Perf(F}) divide naturally into two sets: those in Perf™ (F}) with m/d > 1/3
and those in Perf™ (F}) with m/d < 1/3; none have m/d = 1/3.
One can show that the forgetful map

Perf(Fy) — Perf(Fy) = Perf* (F1) u Perf™ (F})

sending (p, q,d, m) to p/q is injective. Indeed, by definition, for (p, q,d, m) € Perf(F})
we have d> — m? = pg — 1 and 3d — m = p + ¢, and hence

dpq = %(Bp +3q+ctpq), Mpg = %(p +q+ 3etpq) (6.5.1)

where ¢, , := 4/p*> — 6pq + ¢ + 8 and there is a unique choice ¢ € {1, —1} such that d,,
and my, , are integers (see [MM24, §2.2]).
We define the “shift” map
S: (o) > (5,6, Lo P21
q p

and one can check that the intervals S*([6,00)) are disjoint for k € Z~g, with union
Urez-o Sk([6,0)) = (3+2+/2,0). Note also that S fixes the accumulation point 3 +2+/2

9i+3
95
, where g1, g2, g3, ... is the sequence defined by the recursion

of the monotone staircase, and acts on the xz-coordinates of its steps (outer corner

gj+6

9j+3

gj+6 = 6943 — g; with initial values 1,1,1,1,2,4 as in Table 1.
We also define the “reflection” map

points) by g;—f:” —
J

p_ 6p—35
R:(6,00) - (6,00), =+ ———,

(0.0) > 6,0, Lo P
which is an involution fixing 7 and interchanging (6,7) with (7,00). It turns out that
both S and R are symmetries of the set Perf(F}). Further, both symmetries take the
classes with m/d > 1/3 to those with m/d < 1/3, and vice versa. Thus they interchange
the sets Perf ™ (F}) and Perf™ (F}).

331f such a curve exists then it exists for any symplectic form on Fi. However, it gives an interesting
obstruction to embedding ellipsoids into Fi with symplectic form in class PD(¢ — be) only if m/d ~ b.
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The following is a rough summary3* of the set Perf(F}) (see [MMW22, Fig.2.2| for
an illustration).

Theorem 6.5.2 ([MMW22; MM24]|). We have:
e Perf(Fy) n[1,3+2V2) = {‘%3 | j€Zs1);

o for all k € Z=o we have Perf*(Fy) n [2k + 6,2k + 7] = {2k + 6}, and there is a
homeomorphism (2k + 7,2k + 8) =~ (—3,2) such that the image of Perf™ (Fy) n
(2k + 7,2k + 8) is the set of rational numbers in (0,1) whose ternary expansion is

finite and ends in 1;
b Per(Fl) N (6’7) = PLI{_(Fl) N (6’ OO) = {R(p/Q) | p/q € Per(Fl) A (77 OO)}¢
o Perf(F1) n (3 +2v?2,6) = {S*(p/q) | i € Z>1,p/q € [6,0) N Perf(F1)}.

Proof of Theorem F. We need to show that for every p/q € Perf(F}) there is an index
zero (p, g)-unicuspidal rational algebraic curve in Fy. Recall that Perf(Fy) n (1,3 +24/2)
corresponds precisely to the z-coordinates of the outer corners of the infinite staircase in
ey, (z) (i.e. the monotone symplectic form), which is covered by Theorem B.

For p/q € Perf(Fy) n [6,00), Lemma 6.5.3 below states that there exists a T-polygon
(@ which has a Delzant vertex adjacent to a vertex of type q%(l, pq — 1), and such that
A(Qnodal) is diffeomorphic to Fy. Then by Theorem 6.1.7 (together with Lemma 6.1.10
as in the proof of Theorem D), F} contains an index zero (p, ¢)-unicuspidal rational
algebraic curve C. This proves the theorem for p/q € [6, ).

Furthermore, we can assume that C above is (p, ¢)-well-placed with respect to a
rational irreducible nodal anticanonical divisor A'. Then we can iteratively apply the
generalized Orevkov twist @ from Construction 2.2.1 to C. Using Proposition 2.2.1 we
have that @}I(C’) has a cusp of type S%(p/q) for i € Z=g. Since every p/q € Perf(Fy) n
(3 +24/2, ) is of the form S?(p/q) for some i € Z=q and p/q € [6,0), this completes the
proof. O

Lemma 6.5.3. Given p/q € Perf(F}) n [6,0), there exists a T-quadrilateral Q < R?
with a Delzant vertex v that is adjacent to a vertex vo of type qig(l,pq— 1). More precisely,
we can take the edge directions at v to be (1,0),(0,1) and the edge directions at w to be
(0,-1),(¢% 1 — pq). Moreover, A(Quodal) is diffeomorphic to F.

Proof. N. Magill proves this lemma for the elements of Perf™ (Fy) n [6,0) in [Mag22],
and the forthcoming paper [Mag| extends this result to all the elements in Perf(F;) n (3 +
24/2, 00). Since her argument is computationally intensive and proves much more than we
need here, we now explain a different way to extend the result from Perf™ (Fy) n [6,0)
to Perf™ (F1) n [6,0).

31The proof in [MMW22] that this list is complete uses ideas that are rather different from those
presented here. Indeed an essential input is the staircase accumulation point theorem in [Cri+20]. It
would be interesting to know if there is another approach to this classification result.
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The key to understanding why the elements of Perf(F}) n (3 +2+1/2, 20) correspond to
T-quadrilaterals with a smooth corner is to note that these elements are organized into
so-called generating triples T := (p)\/qA, P/ s pp/qp) (see [IMMW22]) whose entries are in-
creasing and satisfy certain geometrically meaningful arithmetic identities. Moreover there
is a numeric “mutation process”’ that generates from a given triple 7 two new triples called
&T = (DA/Q\s Pap/ Qs P/ Q) (the left mutation) and yT = (pu/qus (Pyu/Qypu Pp/dp) (the
right mutation); see [MMW22, §2.1|. It is shown in [MMW22, §4.3] that all the elements
in Perf ™ (F}) n [6,00) appear as the left entry py/gy in some triple that is formed by a
sequence of z- and y-mutations from the set of basic generating triples (7."),>0 given by

4n2 + 24n + 29

= (2
T (n+6, 2n +4

,2n+8), n=0. (6.5.2)

One main result in [Mag22] is that each such triple corresponds to a T-quadrilateral Q7
with vertices vp, v x, by, vy, where

(i) vo = (0,0), vx lies on the positive z-axis, and vy lies on the positive y-axis,
(ii

) the edge vector vy — vy is positively proportional to (¢3,1 — pxgy),
(iii) the edge vector vy —vx is positively proportional to (14 p,q,, qg) for p, := p, —6qp.
)

(iv) the eigenray at vx meets the side vy — vy, and the mutation at vx takes the side
oy — 0y t0 (1 + Pudu, @)

Note that by Remark 4.2.4, the above conditions imply that the singularities at vy, vy,
and vx have types é(l,p,\qA —1), é(l,pﬂqu —1) and é(l,ppqp — 1) respectively. If the
side lengths of Q7 are such that the eigenray from vy hits the side by — vy, then the
numeric - and y-mutations mentioned above give new generating triples 7, y7T whose
associated quadrilaterals Q%7 , QY7 are obtained from Q7 by the geometric mutations
from vx and vy. The proof of this result is given in [Mag22, Lem. 6.5] and uses only
the arithmetic identities satisfied by the entries of a generating triple 7. It follows
that every element in Perf® (Fy) n [6,00) does correspond to the eigenray at vy in some
T-quadrilateral Q7 as above.

By [MMW22, §2.3|, the symmetries R, S preserve the t-coordinate and take gen-
erating triples to generating triples. However note that the triple R*(7) has en-
tries (R(pp/qp), R(pp/qu), R(pr/qr)) since R reverses orientation, which implies that
R interchanges z-mutations with y-mutations. When considering the symmetry R,
there is also a complication caused by the fact that R(6) = 1/0 does not correspond
to a geometric point (though the ratio 1/0 has numerical meaning). However, as
noted in [MM24, Rmk 2.3.4(ii)], R takes the elements of the decreasing sequence
8/1 = pp/4,,29/4 = pu/au, 79/11 = pup/dup, - .. formed from the middle entry of 7
by repeated xz-mutations to the Fibonacci sequence Foyy7/Fop13,k = 0. It follows that
every element in Perf(F})™ n (6, 0) is the smallest entry py /gy in some triple formed by
mutation either from one of the basic generating triples

12n +13 24n2 +62n+34 12n+1
m+2 7 4n2+10n+5 "’ on

RY(T) = ( ) n>0 (6.5.3)
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or from one of the triples zy*R¥(7°), k > 0, with entries

(Foks7/Fakss Fopy1/Fop s Forvo/Fares), k= 0. (6.5.4)

We now show that each generating triple 7 in (6.5.3) and (6.5.4) has a corresponding
T-quadrilateral Q7 that satisfies conditions (i), (ii), (iii) above as well as the following
condition (iv'):

(iv') the eigenray at vx meets the side by — vy, and the mutation at vy takes the side
oy — oy to (1 + pug,, qZ) Moreover the eigenray at vy is (—1,5) for the triples in
(6.5.3) and (—1,0) for those in (6.5.4).

Given T, let @ be any quadrilateral that satisfies conditions (i), (ii), (iii) above and also
is such that the eigenray at vy, which is in the direction (p,, ¢,), meets the edge vy —vy .
The mutation matrix A at vy is determined by the requirements that it fix the eigenray
at X and take the vector vy — vx to a multiple of (1,0), and hence has the formula

Anz(l_ﬁgqp Py ) (6.5.5)
-4, 1+Dppg

Thus for the generating triples in (6.5.3) we have

1—2n 1
An = < —4n? 1+ 2n> ’ (6.5.6)

and it is now straightforward to check that A, takes the vector vy — by = (—4(n +
1), (6n+5)(4n+5)) to (1+Puqu, ¢5) and the vector (—1,5) to (P, ), where P, = 2n+4.
Similarly, the proof for the generating triples in (6.5.4) reduces to calculating some
polynomial identities between Fibonacci numbers. By [McSch12, Lem. 3.2.2, Prop.
3.2.3|, it suffices to check these for three values of k, which again we leave to the reader.
Note also that the identity ng +1 = Fopy3For—1 — 1 implies that for these triples we have
Pu = Dpp — 1.

Thus each basic generating triple 7 in (6.5.3) and (6.5.4) has a corresponding 7T-
quadrilateral Q7 that satisfies conditions (i), (ii), (iii) and (iv’). It now follows from
[Mag22, Lem. 6.5 that this correspondence extends to all generating triples obtained
from these by z- and y-mutations. This completes the construction of the quadrilaterals

Q.
It remains to check that the associated symplectic four-manifold A(Q7 ;) is diffeo-

morphic to F;. The classification by Leung—Symington [LS10] of symplectic 4-manifolds
admitting almost toric fibrations implies that the only other possibility is that A(QT )

nodal
is diffeomorphic to CP! x CPt. Now, if A = dyf; +dals € Ho(CP x CP) is a (p, ¢)-perfect
exceptional class, the identities

ci(A)=2d1 +2dy =p+q, A-A=2didy=pg—1 (6.5.7)
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imply that ¢,, = \/p2 — 6pg + q2 + 8 is an even integer. Thus, if A(Q7) were diffeo-
morphic to CP! x CP! then all three t-values tpaians tppge @and tp, o, would be even
integers.

On the other hand, all three of the ¢t-values associated to the basic generating triple
Ton =0, in (6.5.2) are odd, and the symmetries S, R preserve t. By [MMW22, Lem.
2.1.2|, for a triple 7 with t-values (tx,t,,ty), the z-mutated (resp. y-mutated) triple
xT has t-values (tx,tat, —tp,t,) (vesp. (tu,tpty —ta,t,)). It is now easy to check by
induction that no triple that is obtained from a triple with all £-coordinates odd by a
sequence of z-mutations, y-mutations and symmetry operations can have all associated
t-values even. It follows that A(Q7_,.,) cannot be diffeomorphic to CP* x CP?. O

Remark 6.5.4 (Relation to CP! x CP!). The analogue of Theorem 6.5.2 has not yet
been fully worked out, but the works [Ushll; Far 22| suggest that a picture similar
to that of F} should hold, in which case it is likely that our proof of Theorem F also
carries over mutadis mutandis to the case of CP! x CP!. One can check that the
sequence g(l), Z—i Z;, ... defined by ag = 1,a1 = 5, ar+1 = 6ay —ap_1 lies in both Perf(F})
and Perf(CP! x CP!) (in each case giving the z-coordinates of the outer corners for
one strand of the monotone infinite staircase), and these are likely the only points
in common. An intriguing relation between points in Perf(Fy) n (3 + 2v/2,00) and
Perf(CP! x CP!) n (3 + 2v/2, ) is suggested in [Far |22, Conj. 1.2.1]. O
Remark 6.5.5 (Unicuspidal curves in odd Hirzebruch surfaces). For k € Z>g, let
Fyi1 denote the (2k + 1)st Hirzebruch surface [Hir51], which we view as a complex
structure on BI'CP? having an irreducible rational holomorphic curve in class (k +
l)e — k¢ € Hy(BI'CP?) with self-intersection number —2k — 1. Note that if A =
dl —me € HQ(BIICPQ) is represented by a holomorphic curve in Fbgq then by positivity
of intersection we must have 7 > k+1 By [MMW22, Lem. B.5(i)], any p/q € Perf(F;) n

(27 + 6,25 + 8) satisfies J+2 < Zb’” < zig Thus p/q € Perf(For11) only if p/q > 2k + 4.

Therefore we conjecture: for all k € Z>1, there exists an index zero algebraic (p,q)-
unicuspidal rational curve in Fapi1 if and only if p/q € Perft (Fy) n (2k + 4, 0). O

7 Sesquicuspidal curves and stable embeddings beyond the
accumulation point

In this section, we prove first Theorem H on algebraic rational plane curves correspond-
ing to the ghost stairs in §7.1. We then discuss stabilized ellipsoid embeddings and
obstructions beyond the staircase accumulation points in §7.2.

7.1 Degree three seed curves and the ghost stairs

Our proof of Theorem H is based on the generalized Orevkov twist from §2, which boils
it down to finding a single degree three seed curve.

Proof of Theorem H. The identity Fibgg g = TFibyrpio — Fibggr_o shows that the Fi-
bonacci subsequence Fibg, Fibg, Fibig, ... obeys the same recursive formula which is
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achieved by the Orevkov twist ®cp2 (c.f. Proposition 2.2.6). Therefore it suffices to
construct a suitable degree 3 seed curve, which is the content of the following proposi-
tion. ]

Proposition 7.1.1. There exists a degree three rational algebraic curve in CP? which is
(8, 1)-well-placed with respect to a nodal cubic N .

Remark 7.1.2. It seems plausible that the curve in Proposition 7.1.1 (and hence all
of its twists) is sesquicuspidal, i.e. it has a single ordinary double point away from its
distinguished cusp, but we do not prove this here. O

Proof of Proposition 7.1.1. As in §2.1, let A/ be a fixed nodal cubic in CP? with local
branches B_, B, near the double point p. If J is an almost complex structure on CP?
which is integrable near p and D is any local J-holomorphic divisor through p, we denote

by M(‘]:P273Z<T]§8)p> the moduli space of J-holomorphic degree 3 rational curves which

pass through p with contact order 8 to D. The count #Mépg 3£<T]§8)p> for generic J

was computed in [McS21] to be 4. Note that any curve in Méj;% 3 €<7'B(§)p> excluding
N itself is by definition (8, 1)-well-placed, although Jgq is not generic.
Let {Jt}te[o,u be a generic family of compatible almost complex structures on CP?

which are integrable near p and fix B_ (but not N), with Jy = Jxq. For ¢t € (0,1]
we have M7t <7'K§f) p=> = {C},C? C3,C}H, where CF is a family of curves which

CP2,3¢
varies smoothly in ¢t € (0,1] for k = 1,2,3,4. Then each C’f converges to some limiting
:Js :JS
configuration C} e MC;3,3£<7;3(§)P> as t — 0. Here MC;3734<72§)]J> denotes the

subset of the standard stable map compactification M(J;,;% 3p<p> consisting of those

configurations such that if the marked point lies on a ghost component then the nearby
nonconstant components together “remember” the constraint <723(§)p> (see [McS24, Def.

2.2.1]). In fact, since a line cannot satisfy <72§§)p> and a conic cannot satisfy <7;§?)p>
(due to the presence of the other branch B, ), we can easily rule out configurations

:Js
with multiple components, i.e. we have MC,;§73Z<T£)]J> = M <72§§)p> and hence

CP2.3¢
1 2 ~3 4 Jstd (8)
Cy,C5,Cy,Ch € MCP2,3E<7-B— p=>.

It remains to show that at least one of C’é, C’g , Cg, C’é is distinct from N. To see this,
suppose by contradiction that C¥ = C'(’f/ = N for distinct k, k" € {1,2,3,4}. Then Cf
and C’fl both approximate AN and in particular the transversely intersecting branches

B_,B,. < N for t small, and since they also both satisfy the constraint <7gf)p>, their
intersection multiplicity satisfies

Ck.CF >84+1+1>0,
which is a contradiction. O

Remark 7.1.3. We sometimes refer to a (3d — 1, 1)-well-placed rational plane curve as
in Proposition 7.1.1 informally as a “degree d seed curve”. The above argument easily
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extends to show that the number of degree three seed curves is precisely 3, at least if we
replace algebraic curves with J-holomorphic curves where .J agrees with Jgq near N and
is otherwise generic. We take up the problem of constructing higher degree seed curves
in the forthcoming work [McS]. In general a sesquicuspidal degree d seed curve and all of
its Orevkov twists have (d — 1)(d — 2) double points by the adjunction formula. Note

that the argument given above does not easily generalize to higher degrees, due to the

:Js —
possibility of more complicated configurations in MC,;C217 d£<72gd 1)p> involving one or

more copies of ' and its covers. O

7.2 On the stable folding curve

It is shown in [Hin15] that for any a € R~y and N € Z3; there is a folding-type symplectic
embedding
E(1,a) x CN <& BY(24) x N (7.2.1)

which strengthens the construction in [Gut08|. As discussed e.g. in [MS23, §1.2], this
embedding is conjectured to be sharp for all @ > 74, and proving this can be reduced to
an existence problem for (p, ¢)-sesquicuspidal symplectic curves in CP?. In this subsection
we discuss generalizations of this to rigid del Pezzo surfaces and to the convex toric
domains considered in [Cri20].

In the following, given a symplectic manifold M, we denote by ¢- M the same smooth
manifold but with symplectic form scaled by ¢ € R~g. Recall that E(1,a) denotes a
closed ellipsoid, and we denote its interior by E(1,a).

Proposition 7.2.1. For any a € R~1, there are symplectic embeddings:
E(l,a) x C<> -4 - M x C (7.2.2)

for M = CP2(3)#*ICP"(1) with j = 0,1,2,3 and M = CP'(2) x CP(2).

The paper [Cri+20] also establishes infinite staircases for the ellipsoid embedding
functions of twelve convex toric domains Xi,..., X192, whose moment polygons are
pictured in Figure 7. More precisely, for each j = 1,...,12 we put X := u&l (Q;) < C?,
where pce2 : C? — R, (21, 22) — (m|21]%,7|22|?) is the moment map for the standard
T2-action on C?. Note that, in contrast to closed toric symplectic manifolds, these are
compact domains with piecewise smooth boundary in C2. As we recalled in Remark 1.2.6,
for j =1,...,12 the (unstabilized) ellipsoid embedding function cx, coincides with cyy,
where M is the rigid del Pezzo surface having the same negative weight expansion as X;.

Similar to Proposition 7.2.1, we have:

Proposition 7.2.2. For any a € R~1, there are symplectic embeddings
E(1,a) xC<> -4 - X}, x C (7.2.3)

fork=1,2,3,4,5,6,8.
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Remark 7.2.3. In contrast to the four-dimensional (unstabilized) situation, it is not
known whether the stabilized ellipsoid embedding functions of target spaces with the
same negative weight expansions necessarily coincide (e.g. cx,xc versus cx,xc versus
CCP1(2)><CP1(2)><C>' o
Remark 7.2.4. The polygons €21, ..., 2 in Figure 7 correspond to twelve of the famous
sixteen reflexive polygons. The remaining four reflexive polygons have the same negative
weight expansion as CP2(3)#X5@2(1), whose ellipsoid embedding function does not
contain an infinite staircase (see [Cri+20, Rmk. 5.21]).

It is interesting to note that M = CP2(3)#X5@2(1) admits an almost toric fibration
T M — Qnoqal Where @ is a dual Fano T-quadrilateral with a Delzant vertex (see
[Vial7, Fig. 18(C1)]). In particular, most of the results in §5 and §6 still apply in this
case. Similarly, M = CP2(3)#X6@2(1) admits an almost toric fibration m : M — Qpnodal
where @ is a dual Fano T-pentagon with a Delzant vertex (see |Vial7, Fig. 19(A41)]) ¢

Figure 7: The convex toric domains considered in [Cri+20], along with their negative
weight expansions.

Nhk | lg:ggll

Qy
(45252) ) 4y )y Ly
Qy Qg 11 Qo
(3;1,1,1) (3;1,1,1) 3,1,1,1 (3; 1, , (3,1,1,1,1) (3;1,1,1,1)

Proofs of Proposition 7.2.1 and Proposition 7.2.2. We apply [CHS22, Prop. 3.1]. Spe-

cializing to the case p = %5, we get A = 1 - £ = 49, so = A Note that
2452 2= L =24 = A+ p. Then f is the linear function satisfying f(0) = 2\ = G—H

and f(2a/(a +1)) = A = 45 This means that there is a symplectic embedding of
(1=9)-E(1,a) x Cinto ;45 - Xq, x C for all § > 0, where Qp < R%, is the quadri-
lateral having vertices (0,0), (0,2),(2,1),(2,0), and X, < C? is the corresponding
four-dimensional convex toric domain. Using [PV 15, Thm. 4.4], we can upgrade this to
an embedding E(1,a) x C <> - - Xay x C.

Inspecting Figure 7, we see that Qg (or its reflection about the diagonal) is a
subset of Q; for ¢ = 1,2,3,4,5,6,8. Similarly, the moment polygons corresponding
to M = CP2(3),CP2(3)#CP>(1),CP1(2) x CP1(2), CP2(3)#*2CP"(1) are Q1, D, U, U5
respectively, each of which directly contains Q2 as a subset.
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As for CPQ(S)#X?’@Q(U, the moment polygon is (up to an integral affine transfor-
mation) given by Q0. This does not contain Qy as a subset, but there is an almost toric
fibration for CP2(3)#X3@2(1) whose base polygon is precisely Qg — see [Vial7, Fig.
16). 0

Remark 7.2.5. Note that 2y has area 3, as do the polygons 7, Qg, 219, while the
polygons Q11,12 have area 5/2. In particular, by volume considerations there cannot
be any four-dimensional embedding Xgq,, <> X} for k = 11, 12. O

It is natural to ask what happens in the remaining cases not covered by Propositions
7.2.1 and 7.2.2:

Question 7.2.6. Is there a stabilized symplectic embedding

o

E(l,a) x C < M xC where M = CPQ(B)#“@Q(D?

What about E(1,a) x C <> - - Xy for k =7,9,10,11,12°7

Also, extending the aforementioned conjecture for stabilized embeddings of ellipsoids
into the four-ball, we posit:

Conjecture 7.2.7. The symplectic embeddings in Proposition 7.2.1 and Proposition 7.2.2
are all optimal for all a > Gacc, Where aace 18 the accumulation point of the corresponding
staircase (c.f. Table 1).

As evidence, we observe that the obstruction coming from any index zero sesquicuspidal
curves is consistent with this conjecture:

Proposition 7.2.8. Let (M,wyr) be a closed symplectic manifold with [wys] = ¢1 €
H?(M;R), and let C be an index zero (p, q)-sesquicuspidal rational symplectic curve in
M. Then the corresponding obstruction for a symplectic embedding E(1,p/q) x CN <

XM x CN coming from Theorem 1.8.1 is \ > (p(}?q/)q—&)-l'

Proof. Since C has index zero and c¢;([C]) = p + ¢, the obstruction is

p __p _ p _ _ (9

AZ GulTe] = a(cl = prd = Gla+T

O

Remark 7.2.9. According to [McS23, Thm. G, for any closed symplectic four-manifold
M, the perfect exceptional homology classes in Hy(M) are in bijective correspondence
with index zero unicuspidal symplectic curves in M. For example, [MM24; MMW22]
describes all perfect exceptional classes for the first Hirzebruch surface BI'CP? (c.f. §6.5),
and by Proposition 7.2.8 these all give obstructions consistent with Conjecture 7.2.7. ¢
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