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Abstract. We consider the Ginzburg–Landau heat flow without magnetic effect in a
curved thin domain under the Naumann boundary condition. When the curved thin
domain shrinks to a given closed hypersurface as the thickness of the thin domain tends
to zero, we show that the weighted average of a weak solution to the thin-domain problem
converges weakly on the limit surface under the assumption that the initial data is of
class L∞ and satisfies some conditions. Moreover, under the same assumption, we derive
a limit equation by characterizing the limit function as a weak solution, and prove a
difference estimate on the limit surface of an averaged weak solution to the thin-domain
problem and a weak solution to the limit problem explicitly in terms of the thickness of
the thin domain. We also derive a difference estimate in the curved thin domain of weak
solutions to the thin-domain problem and to the limit problem, but without requiring
that the initial data of the thin-domain problem is of class L∞.

1. Introduction

1.1. Motivation. In this paper, we consider the Ginzburg–Landau heat flow without
magnetic effect in a curved thin domain around a given closed hypersurface under the
Neumann boundary condition. The purposes of this paper are to derive a thin-film limit
equation rigorously by convergence of a solution and characterization of the limit, and
to estimate the difference of a solution to the thin-domain problem and a solution to the
limit problem explicitly in terms of the thickness of the thin domain.

Partial differential equations (PDEs) in thin domains arise in many problems of natural
sciences like elasticity, lubrication, and geophysical fluid dynamics (see e.g. [7, 8, 33, 34]).
When a thin domain shrinks to a lower dimensional limit set as the thickness of the thin
domain tends to zero, it is natural to try to derive a limit equation on the limit set from a
PDE in the thin domain and to compare a thin-domain problem and a limit problem. Such
a thin-film limit problem is important in view of reduction of dimension and of modelling
various phenomena in thin domains as PDEs on limit sets. It is also important to analyze
the effects of the thin direction(s) and the geometry of limit sets on PDEs in thin domains,
which often appear as coefficients and differential operators of limit equations obtained by
the thin-film limit.

Our main motivation for considering the Ginzburg–Landau heat flow without magnetic
effect is the study of nematic liquid crystals in thin domains. The motion of nematic liquid
crystals is described by the Ericksen–Leslie equations proposed in their works [15, 22],
which is a system of equations of fluids and the director of molecules. Since the original
system is highly involved, some simplified systems have been proposed for a mathematical
study. One of simplified systems we are interested in is the one introduced by Lin [23] and
studied by Lin and Liu [24]. It is a coupled system of the incompressible Navier–Stokes
equations and the Ginzburg–Landau heat flow. Recently, Nitschke, Reuther, and Voigt
[32] carried out a formal thin-film limit of the simplified Ericksen–Leslie equations in a
curved thin domain around a moving surface in order to model and analyze the motion of
surface nematic liquid crystals. We also refer to [18, 31] for other models of surface liquid
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2 T.-H. MIURA

crystals obtained by the thin-film limit. However, the formal thin-film limit carried out in
[32] has not been mathematically justified. For the fluid part, we rigorously justified the
thin-film limit of the Navier–Stokes equations in a curved thin domain around a stationary
surface in [27] by convergence of a solution and characterization of the limit. Hence, it is
natural for us to study the director part separately. Our aims are to justify the thin-film
limit of the Ginzburg–Landau heat flow in a curved thin domain as well as to develop
analytical methods for a future study of the full system of the (simplified) Ericksen–Leslie
equations in thin domains.

It should be also mentioned that the Ginzburg–Landau equations under magnetic forces
in thin domains have been studied extensively. The thin-film limit of the Ginzburg–Landau
equations with magnetic effect is an important problem for modelling and analysis of
superconductivity of thin films. We refer to [1, 5, 6, 10, 11, 13, 17, 19, 30, 35, 37] and the
references cited therein. It is a possible future work to extend the results of this paper to
the case of the Ginzburg–Landau equations with magnetic effect.

1.2. Problem settings and main results. We fix the settings of our problem and state
main results of this paper. For details of notations, we refer to Section 2.

Let Γ be a C3 closed hypersurface in Rn with n ∈ N, and let ν be the unit outward
normal vector field of Γ. Also, let g0 and g1 be C

1 functions on Γ such that g = g1−g0 ≥ c
on Γ with some constant c > 0. For a small ε > 0, we define a curved thin domain

Ωε = {y + rν(y) | y ∈ Γ, εg0(y) < r < εg1(y)} ⊂ Rn(1.1)

and consider the Neumann problem of the Ginzburg–Landau heat flow
∂tu

ε −∆uε + λ(|uε|2 − 1)uε = 0 in Ωε × (0,∞),

∂νεu
ε = 0 on ∂Ωε × (0,∞),

uε|t=0 = uε0 in Ωε.

(1.2)

Here, the unknown function uε and the given initial data uε0 are RN -valued functions with
N ∈ N. Also, λ > 0 is a constant independent of ε. The symbol ∂νε stands for the outer
normal derivative on the boundary ∂Ωε. It seems that the most physically related case is
n = 2, 3 and N = 1, 2, 3, where (1.2) reduces to the Allen–Cahn equation when N = 1,
but our analysis does not require such a restriction.

For each initial data uε0 ∈ L2(Ωε)
N , it can be shown by the Galerkin and energy methods

that there exists a global-in-time unique weak solution uε to (1.2) (see Theorem 4.5). Our
aims is to analyze the behavior of uε as ε→ 0.

To state the main results, let us fix some notations (see Sections 2 and 5 for details).
Let ∇Γ and divΓ be the tangential gradient and the surface divergence on Γ, respectively.
Also, for a function φ on Ωε, we define the weighted average of φ in the thin direction by

Mεφ(y) =
1

εg(y)

∫ εg1(y)

εg0(y)
φ
(
y + rν(y)

)
J(y, r) dr, y ∈ Γ,

where J(y, r) =
∏n−1

α=1{1 − rκα(y)}. Here, κ1, . . . , κn−1 are the principal curvatures of Γ,
and the function J(y, r) is the Jacobian appearing in the change of variables of an integral
over Ωε (see (2.16)). The weighted average is useful when we take the average in the thin
direction of a weak form of (1.2). It was effectively used in the study of the thin-film limit
of the heat equation in a moving thin domain [26].

Our first result is the weak convergence of the weighted average Mεu
ε of a weak solution

uε to (1.2) as ε→ 0 under the assumption that the initial data uε0 is of class L
∞ and satisfies

some conditions. Moreover, we derive a limit equation on Γ by characterizing the weak
limit of Mεu

ε as a weak solution to the limit equation.

Theorem 1.1. Suppose that uε0 ∈ L∞(Ωε)
N and
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(a) there exist constants c1 ≥ 1, α ∈ (0, 1/3], and ε0 ∈ (0, 1) such that

∥uε0∥L∞(Ωε) ≤ c1ε
−1/3+α for all ε ∈ (0, ε0),

(b) there exists a function v0 ∈ L2(Γ)N such that

lim
ε→0

Mεu
ε
0 = v0 weakly in L2(Γ)N .

Then, there exists a unique global weak solution

uε ∈ C([0,∞);L2(Ωε)
N ) ∩ L2

loc([0, T );H
1(Ωε)

N ) ∩ L4
loc([0,∞);L4(Ωε)

N )

to (1.2) for each ε ∈ (0, ε0). Moreover, there exists a function

v ∈ C([0,∞);L2(S)N ) ∩ L2
loc([0, T );H

1(S)N ) ∩ L4
loc([0,∞);L4(S)N )

such that

lim
ε→0

Mεu
ε = v weakly in L2(0, T ;H1(S)N ) ∩ L4(0, T ;L4(Γ)N )

for each T > 0 and v is a unique global weak solution to the limit problem∂tv −
1

g
divΓ(g∇Γv) + λ(|v|2 − 1)v = 0 on Γ× (0,∞),

v|t=0 = v0 on Γ.
(1.3)

Theorem 1.1 also gives the global existence of a weak solution to (1.3) for a certain class
of initial data. For a general initial data v0 ∈ L2(Γ)N , the global existence and uniqueness
of a weak solution to (1.3) can be shown by the Galerkin and energy methods as in the
case of the thin-domain problem (1.2) (see also Section 4.2).

Next, we get a difference estimate on Γ of the weighted average Mεu
ε of a weak solution

uε to (1.2) and a weak solution v to (1.3) explicitly in terms of ε. This difference estimate
gives the strong convergence of Mεu

ε towards v as ε→ 0.

Theorem 1.2. Suppose that uε0 ∈ L∞(Ωε)
N and the condition (a) of Theorem 1.1 is

satisfied. Let uε be a global weak solution to (1.2). Also, let v0 ∈ L2(Γ)N and v be a global
weak solution to (1.3). Then,

(1.4) ∥Mεu
ε − v∥C([0,T ];L2(Γ)) + ∥∇ΓMεu

ε −∇Γv∥L2(0,T ;L2(Γ))

≤ cec(1+λ)T
{
∥Mεu

ε
0 − v0∥L2(Γ) + ε3α(1 + λ)

}
for all T > 0, where c > 0 is a constant independent of ε, λ, and T . In particular,

lim
ε→0

Mεu
ε = v strongly in C([0, T ];L2(Γ)N ) ∩ L2(0, T ;H1(Γ)N )

provided that Mεu
ε
0 → v0 strongly in L2(Γ)N as ε→ 0.

Note that we assume that the constant λ is independent of ε. If α = 1/3 in the condition
(a) of Theorem 1.1, then ε3α = ε in (1.4) and thus v approximates Mεu

ε of order ε. This
is the case when ∥uε0∥L∞(Ωε) is uniformly bounded in ε (e.g. |uε0| ≤ 1 a.e. in Ωε).

We also estimate the difference of uε and v in Ωε. It seems that the difference estimate
(1.4) on Γ directly gives a difference estimate in Ωε. However, as we explain in Section
1.3, the use of (1.4) requires a higher order regularity of uε. To avoid such a requirement,
we take another and somewhat new approach here. Surprisingly, this approach enables
us to remove the assumption uε0 ∈ L∞(Ωε)

N . For a function η on Γ, we write η̄ for the
constant extension of η in the normal direction of Γ (see Section 2.2 for details).



4 T.-H. MIURA

Theorem 1.3. Let uε0 ∈ L2(Ωε)
N and v0 ∈ L2(Γ)N , let uε and v be global weak solutions

to (1.2) and (1.3), respectively. Then,

(1.5) ε−1/2
(
∥uε − v̄∥C([0,T ];L2(Ωε)) + ∥∇uε −∇v̄∥L2(0,T ;L2(Ωε))

)
≤ cec(1+λ)T

(
ε−1/2∥uε0 − v̄0∥L2(Ωε) + ε∥v0∥L2(Γ)

)
for all T > 0, where c > 0 is a constant independent of ε, λ, and T .

Note that the L2(Ωε)-norm is divided by ε1/2 in (1.5), since it involves the square root
of the thickness of Ωε which is of order ε. Since ∥v0∥L2(Γ) is independent of ε, we can say
by (1.5) that v approximates uε of order ε.

1.3. Idea of proof. We prove Theorems 1.1 and 1.2 in Section 6. A basic idea is similar
to the cases of the heat equation [26] and the Navier–Stokes equations [27]. We start
form a weak form of the thin-domain problem (1.2) and take the constant extension of
a function on Γ as a test function. Then, we take the average in the thin direction of
integrals over Ωε by using a change of variables formula that involves the Jacobian J(y, r)
used in the definition of the weighted average (see (2.16) for the formula), and derive a
weak form on Γ satisfied by the weighted average Mεu

ε of a weak solution uε to (1.2). The
weak form of Mεu

ε is similar to a weak form of the limit problem (1.3), but it contains a
residual term coming from errors in the averages of the Dirichlet form corresponding to the
Laplacian in (1.2) and of the cubic term |uε|2uε. We estimate the residual term properly
to show that it is sufficiently small as ε→ 0. After that, we derive an energy estimate for
Mεu

ε by using the weak form of Mεu
ε, which gives the weak convergence of Mεu

ε (up
to a subsequence) as ε→ 0. We also estimate the time derivative of Mεu

ε and apply the
Aubin–Lions lemma (see Lemma 3.5) to get the strong convergence of Mεu

ε. This strong
convergence result is essential for the weak convergence of the cubic term |Mεu

ε|2Mεu
ε,

which is shown by a weak version of the dominated convergence theorem (see Lemma 3.8).
Using the convergence results of Mεu

ε, we send ε→ 0 in the weak form of Mεu
ε and find

that the limit function v of Mεu
ε is indeed a weak solution to the limit problem (1.3).

We also estimate the difference of Mεu
ε and v by taking the difference of the weak forms

of Mεu
ε and v and by using an energy method. Note that, in calculations of the energy

method, the difference of the cubic terms can be neglected since

(|a|2a− |b|2b) · (a− b) ≥ (|a|3 − |b|3)(|a| − |b|) ≥ 0(1.6)

for all a, b ∈ RN (see (4.3) for details). This is also used in the proof of the uniqueness of
weak solutions to (1.2) and (1.3) (see Lemmas 4.4 and 4.10).

In the above arguments, the main difficulty arises in the estimate for the residual term
appearing in the weak form of Mεu

ε. As mentioned above, the residual term comes from
errors in the averages of the Dirichlet form, i.e. the L2-inner product of the gradients, and
of the cubic term. For the Dirichlet form, we can compute the tangential gradient of Mεu

ε

explicitly in terms of the gradient of uε (see Lemma 5.6), so we can easily estimate the
error in the average of the Dirichlet form (see Lemma 5.8). In fact, the error estimate for
the average of the Dirichlet form in a curved thin domain was already shown in the study
of the heat equation [26], but the proof given there is based on somewhat complicated
calculations under local coordinates of Γ and Ωε. Here, we give a more direct proof
without using local coordinates.

A more careful analysis is required in the error estimate for the average of the cubic
term. In the study of the thin-film limit of the Navier–Stokes eqautions [27], we estimated
the error of the average of a nonlinear term (the convection term) by using the Sobolev
embedding with explicit dependence of constants on ε. This may be a possible approach
for our case, but we consider a weak solution uε to (1.2) which does not have an enough
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regularity. Hence, instead, we use the (weak) maximum principle

∥uε∥L∞(Ωε×(0,∞)) ≤ max{1, ∥uε0∥L∞(Ωε)}

under the assumption uε0 ∈ L∞(Ωε)
N (see Lemma 4.6). With this in mind, we estimate

the error of the average of the cubic term as

|(|uε|2uε, ζ̄)L2(Ωε) − ε(g|Mεu
ε|2Mεu

ε, ζ)L2(Γ)| ≤ cε3/2∥uε∥2L∞(Ωε)
∥uε∥H1(Ωε)∥ζ∥L2(Γ),

where ζ is a test function on Γ and ζ̄ is the constant extension of ζ in the normal direction
of Γ, and show that the right-hand side is sufficiently small as ε → 0 by using an energy
estimate for uε, the maximum principle, and the assumption (a) of Theorem 1.1. The
proof of the above error estimate is based on the change of variables formula (2.16) and
an estimate for the difference of |uε|2 and |Mεu

ε|2. For details, we refer to Section 5.2.
We note that the use of the maximum principle enables us to avoid any restriction on the
dimension of the curved thin domain, which is usually necessary if one uses the Sobolev
embedding. Also, we mention that the maximum principle was used in [28] for the proof
of a difference estimate in the sup-norm of classical solutions to the heat equation in a
moving thin domain and to a limit equation.

Let us also explain the idea of the proof of Theorem 1.3 (see Section 7 for the actual
proof). To derive the difference estimate (1.5) in Ωε, one may naturally consider the use
of the difference estimate (1.4) on Γ, since the difference of a weak solution uε to (1.2)
and its weighted average Mεu

ε is expected to be small as ε→ 0. This idea seems to work
well, but the difference estimate requires a higher regularity of uε like∥∥uε −Mεuε

∥∥
L2(Ωε)

≤ cε∥uε∥H1(Ωε),

where Mεuε is the constant extension of Mεu
ε (see Lemma 5.2 for the above estimate).

In particular, if we would like to derive (1.5) from (1.4) by using the difference estimate
of uε and Mεu

ε, then the H2-regularity of uε is required, which is not the case for a weak
solution. In fact, this idea was successful in the study of the Navier–Stokes equations [27],
since a strong solution to the thin-domain problem was used in that study. To circumvent
the above issue, we instead consider a weak solution v to the limit problem (1.3) as a weak
solution to the thin-domain problem (1.2) with some error. More precisely, we take a test
function ψ defined on Ωε and substitute its weighted average Mεψ for a test function of
(1.3). Then, we “unfold” the weighted average Mε, i.e. compute like

ε

∫
Γ
g(y)v(y) · Mεψ(y) dHn−1(y)

=

∫
Γ

(∫ εg1(y)

εg0(y)
v(y) · ψ

(
y + rν(y)

)
J(y, r) dr

)
dHn−1(y)

=

∫
Ωε

v̄(x) · ψ(x) dx

by the change of variables formula (2.16). Here, Hn−1 is the Hausdorff measure of dimen-
sion n− 1 and v̄ is the constant extension of v in the normal direction of Γ. As a result,
we get a weak form in Ωε satisfied by v̄ that is similar to a weak form of (1.2) but has
a residual term. Now, the residual term consists only of an error in the unfolding of the
Dirichlet form, since all other terms are linear and of zeroth order in ψ. In particular, we
can recover the cubic term of (1.2) from that of (1.3) in a weak form without any error.
This enables us to remove the assumption uε0 ∈ L∞(Ωε)

N in Theorem 1.3. Moreover, the
residual term is estimated in terms of ∥ψ∥H1(Ωε) and ∥v∥H1(Γ) by Lemma 5.8, and the
latter norm is further estimated by an energy estimate for v (when integrated in time).
Hence, we can get the difference estimate (1.5) in Ωε by taking the difference of the weak
forms of uε and v̄ and by applying an energy method with the aid of (1.6).
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The notion of “unfolding” has been used in the study of homogenization (see e.g. [9]),
but the idea of unfolding the (weighted) average in a weak form seems to be somewhat
new in the study of the thin-film limit of PDEs. Also, we point out that the idea explained
here is applicable to the problem

∂tu
ε −∆uε + f(uε) = 0 in Ωε × (0,∞)

under the Neumann boundary condition, where f : RN → RN is any nonlinearity satisfying
the monotonicity {f(a)− f(b)} · (a− b) ≥ 0 for all a, b ∈ RN as in (1.6).

Lastly, we note that we do not rescale the thickness of Ωε in all of the proofs in this
paper. This makes the proofs a quite readable, since the rescaling argument in the case of
a curved thin domain results in highly involved expressions of rescaled equations due to
the nonconstant curvatures of the limit hypersurface Γ.

1.4. Organization of the paper. The rest of this paper is organized as follows. We
fix notations on a closed hypersurface and a curved thin domain in Section 2. Section 3
provides some results of function spaces used in analysis of (1.2) and (1.3). In Section 4, we
define weak solutions to (1.2) and (1.3) and give basic results on weak solutions. Section
5 is devoted to analysis of the weighted average operator. In Section 6, we study the thin-
film limit problem of (1.2) and establish Theorems 1.1 and 1.2. Also, we prove Theorem
1.3 in Section 7. Section 8 gives the outline of the Galerkin method for construction of a
weak solution to (1.2). The proofs of Lemmas 3.2, 3.6, 3.7 are given in Section 9.

2. Preliminaries

We fix notations on a closed hypersurface and a curved thin domain. Throughout this
paper, the symbol c denotes a general positive constant independent of the parameter ε.

2.1. Basic notations. We fix a coordinate system of Rn with n ∈ N and write xi for the
i-th component of a point x ∈ Rn under the fixed coordinate system. A vector a ∈ Rn

and a matrix A ∈ Rn×N are written as

a =

a1...
an

 = (a1, . . . , an)
T , A = (Aij)i,j =

A11 · · · A1N
...

...
An1 · · · AnN

 .

We denote by AT for the transpose of A and by In the n× n identity matrix. Let a · b be
the inner product of a, b ∈ Rn and |a| =

√
a · a be the Euclidean norm of a. We set the

inner product A : B = tr[ATB] of A,B ∈ Rn×N and the Frobenius norm |A| =
√
A : A.

For a scalar-valued function φ on Rn, let

∇φ = (∂1φ, . . . , ∂nφ)
T , ∇2φ = (∂i∂jφ)i,j

be the gradient and the Hessian matrix of f , respectively, where ∂i = ∂/∂xi. Also, when
u = (u1, . . . , uN )T is an RN -valued function on Rn, we write

∇u =
(
∇u1 · · · ∇uN

)
=

∂1u1 · · · ∂1uN
...

...
∂nu1 · · · ∂nuN

 .

Note that ∇(u ◦ Φ) = (∇Φ)∇u for Φ: Rn → Rn under our notation.
We write X ′ and ⟨·, ·⟩X for the dual space of a Banach space X and the duality product

between X ′ and X. For spaces X (S) and Y(S) of scalar-valued functions on a set S, let

(X ∩ Y)(S) = X (S) ∩ Y(S), X (S)N = {u = (u1, . . . , uN )T | u1, . . . , uN ∈ X (S)}.
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When we use the norm and the inner product on X (S)N , we suppress the superscript N
and write ∥ · ∥X (S) and (·, ·)X (S), respectively. Similarly, we denote by ⟨·, ·⟩X (S) the duality

product between [X (S)N ]′ and X (S)N .

2.2. Closed hypersurface. Let Γ be a C3 closed (i.e., compact and without boundary),
connected, and oriented hypersurface in Rn. We assume that Γ is the boundary of a
bounded domain Ω in Rn and write ν for the unit outward normal vector field of Γ which
points from Ω into Rn \Ω. Let d be the signed distance function from Γ increasing in the
direction of ν. Also, let κ1, . . . , κn−1 be the principal curvatures of Γ. Then, ν is of class
C2 and κ1, . . . , κn−1 are of class C1 on Γ by the regularity of Γ, and they are bounded on
Γ since Γ is compact. Hence, there exists a tubular neighborhood Nδ = {x ∈ Rn | −δ <
d(x) < δ} of Γ with radius δ > 0 such that each x ∈ Nδ has a unique π(x) ∈ Γ satisfying

x = π(x) + d(x)ν(π(x)), ∇d(x) = ν(π(x)).(2.1)

Moreover, d and π are of class C2 and C1 on Nδ, respectively (see [16, Section 14.6]).
Taking δ > 0 sufficiently small, we may also assume that

c−1 ≤ 1− rκα(y) ≤ c for all y ∈ Γ, r ∈ [−δ, δ], α = 1, . . . , n− 1(2.2)

with some constant c > 0.
Let P = In − ν ⊗ ν be the orthogonal projection onto the tangent plane of Γ, where

ν⊗ν = (νiνj)i,j is the tensor product of ν with itself. We define the tangential gradient of
η ∈ C1(Γ) by ∇Γη = P∇η̃ on Γ, where η̃ is an extension of η to Nδ. Also, we write Diη for
the i-th component of ∇Γη and call it the i-th tangential derivative of η for i = 1, . . . , n.
Here, the value of ∇Γη is independent of the choice of the extension η̃. Moreover,

P∇Γη = ∇Γη, ν · ∇Γη = 0 on Γ.(2.3)

Let η̄ = η ◦ π be the constant extension of η in the normal direction of Γ. Then,

∇η̄(y) = ∇Γη(y), ∂iη̄(y) = Diη(y), y ∈ Γ,(2.4)

since ∇π(y) = P (y) for y ∈ Γ by (2.1) and d(y) = 0. In what follows, we always write η̄
for the constant extension of a function η on Γ in the normal direction of Γ.

When v = (v1, . . . , vN )T is an RN -valued function on Γ, we write

∇Γv =
(
∇Γv1 · · · ∇ΓvN

)
=

D1v1 · · · D1vN
...

...
Dnv1 · · · DnvN

 .

Some authors define ∇Γv as the transpose of the above matrix. Under our notation, we
have ∇Γv = P∇ṽ on Γ for any extension ṽ of v to Nδ. When N = n, we define the surface
divergence of v = (v1, . . . , vn)

T by divΓv = tr[∇Γv]. Moreover, for

A =
(
A1 · · · AN

)
: Γ → Rn×N , where A1, . . . , AN : Γ → Rn,

we define the RN -valued function divΓA = (divΓA1, . . . ,divΓAN )T on Γ.
Let W = −∇Γν and H = tr[W ] on Γ. We call W and H the Weingarten map (or the

shape operator) and the mean curvature of Γ, respectively. Since Γ is of class C2, the
functions W and H are of class C1 and thus bounded on Γ. Moreover, it follows from
(2.1) and (2.4) that W = −∇ν̄ = −∇2d on Γ. Hence, W is symmetric. We also have

Wν = −∇Γ(|ν|2/2) = 0, PW =WP =W on Γ

by |ν| = 1. The first relation shows that W has the eigenvalue zero. It is also known (see
e.g. [21]) that the other eigenvalues of W are κ1, . . . , κn−1. Hence, taking an orthonormal
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basis of Rn which consists of eigenvectors ofW , and using the boundedness of κ1, . . . , κn−1

on Γ and (2.2), we easily observe that In − rW (y) is invertible and∣∣{In − rW (y)}−1
∣∣ ≤ c,

∣∣In − {In − rW (y)}−1
∣∣ ≤ c|r|(2.5)

for all y ∈ Γ and r ∈ [−δ, δ] with some constant c > 0.

Lemma 2.1. Let π be the mapping given in (2.1). Then,

∇π(x) =
{
In − d(x)W (x)

}−1
P (x), x ∈ Nδ.(2.6)

Let η ∈ C1(Γ) and η̄ = η ◦ π be the constant extension of η. Then,

∇η̄(x) =
{
In − d(x)W (x)

}−1∇Γη(x), x ∈ Nδ.(2.7)

Moreover, there exists a constant c > 0 independent of η such that

|∇η̄(x)| ≤ c
∣∣∇Γη(x)

∣∣, ∣∣∇η̄(x)−∇Γη(x)
∣∣ ≤ c|d(x)|

∣∣∇Γη(x)
∣∣, x ∈ Nδ.(2.8)

Proof. By (2.1), we have π(x) = x− d(x)ν̄(π(x)). We differentiate both sides and use

∇d(x) = ν̄(π(x)) = ν̄(x), ∇ν̄(π(x)) = ∇Γν(π(x)) = −W (π(x)) = −W (x),

which follow from π(x) ∈ Γ, (2.1), and (2.4). Then, we get

∇π(x) = In − ν̄(x)⊗ ν̄(x) + d(x)∇π(x)W (x) = P (x) + d(x)∇π(x)W (x).

By this equality and PW =WP on Γ, we have (2.6). Also, we differentiate η̄(x) = η̄(π(x)),
use (2.6), and apply (2.3) and (2.4) with y = π(x) ∈ Γ to get (2.7). We also have (2.8) by
(2.5) and (2.7) with y = π(x) and r = d(x). □

Lemma 2.2. For a function φ on Nδ, we define

φ♯(y, r) = φ
(
y + rν(y)

)
, y ∈ Γ, r ∈ (−δ, δ).(2.9)

Then, the tangential gradient ∇Γφ
♯(y, r) with respect to the variable y is of the form

∇Γφ
♯(y, r) = {P (y)− rW (y)}(∇φ)♯(y, r).(2.10)

Proof. We extend Γ ∋ y 7→ φ♯(y, r) to N by φ̃♯(x, r) = φ(x+rν̄(x)). Then, we differentiate
both sides with respect to x and set x = y ∈ Γ to get

∇φ̃♯(y, r) = {In + r∇ν̄(y)}(∇φ)
(
y + rν̄(y)

)
= {In − rW (y)}(∇φ)♯(y, r)

by (2.4). By this equality and PW =W on Γ, we obtain (2.10). □

We write
∫
Γ η dH

n−1 for the integral of a function η on Γ, where Hn−1 is the Hausdorff
measure of dimension n− 1. Also, we denote by ∥ · ∥Lp(Γ) and (·, ·)L2(Γ) the L

p-norm and

the L2-inner product on Γ, respectively. For η, ζ ∈ C1(Γ), it is known (see [16, Lemma
16.1] and [14, Theorem 2.10]) that the integration by parts formula∫

Γ
ζDiη dHn−1 = −

∫
Γ
η(Diζ + ζHνi) dHn−1, i = 1, . . . , n(2.11)

holds. Based on this formula, we say that η ∈ L2(Γ) has the i-th weak tangential derivative
if there exists a function Diη ∈ L2(Γ) such that (2.11) holds for all ζ ∈ C1(Γ). Moreover,
we define the Sobolev space H1(Γ) and its inner product by

H1(Γ) = {η ∈ L2(Γ) | ∇Γη = (D1η, . . . , Dnη)
T ∈ L2(Γ)n},

(η, ζ)H1(Γ) = (η, ζ)L2(Γ) + (∇Γη,∇Γζ)L2(Γ).

Note that C1(Γ) is dense in H1(Γ) by localization and mollification arguments.
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2.3. Curved thin domain. Let g0, g1 ∈ C1(Γ) and g = g1 − g0. We assume that there
exists a constant c > 0 such that

c−1 ≤ g(y) ≤ c, y ∈ Γ.(2.12)

For a small ε > 0, we define the curved thin domain Ωε by (1.1). Its boundary is

∂Ωε = Γ0
ε ∪ Γ1

ε, Γi
ε = {y + εgi(y)ν(y) | y ∈ Γ}, i = 0, 1,

so we see that ∂Ωε is of class C1 by the regularity of Γ, g0, and g1.
Since g0 and g1 are bounded on Γ, we can take a constant ε̃ ∈ (0, 1) such that ε|gi| < δ

on Γ for all ε ∈ (0, ε̃) and i = 0, 1, where δ is the radius of the tubular neighborhood Nδ

of Γ given in Section 2.2. Then, Ωε ⊂ Nδ and we can use the results of Section 2.2 in Ωε

for all ε ∈ (0, ε̃). In what follows, we always assume that ε ∈ (0, ε̃). Also, sometimes we
use the relation 0 < ε < 1 without mention.

For y ∈ Γ and r ∈ [−δ, δ], we define

J(y, r) = det[In − rW (y)] =

n−1∏
α=1

{1− rκα(y)}.(2.13)

Since (2.2) holds and κ1, . . . , κn−1 are bounded on Γ, we see that

c−1 ≤ J(y, r) ≤ c, |∂rJ(y, r)| ≤ c y ∈ Γ, r ∈ [−δ, δ].(2.14)

Moreover, since g0 and g1 are bounded on Γ and κ1, . . . , κn−1 ∈ C1(Γ), we have

|J(y, r)− 1| ≤ cε, |∇ΓJ(y, r)| ≤ cε, y ∈ Γ, r ∈ [εg0(y), εg1(y)],(2.15)

where ∇ΓJ is the tangential gradient of J with respect to the variable y ∈ Γ. The function
J appears as the Jacobian of the change of variables formula∫

Ωε

φ(x) dx =

∫
Γ

∫ εg1(y)

εg0(y)
φ♯(y, r)J(y, r) dr dHn−1(y)(2.16)

for a function φ on Ωε, where φ
♯ is given by (2.9) (see [16, Section 14.6]). When p ∈ [1,∞)

and φ ∈ Lp(Ωε), we see by (2.14) and (2.16) that

c−1∥φ∥pLp(Ωε)
≤
∫
Γ

∫ εg1(y)

εg0(y)
|φ♯(y, r)|p dr dHn−1(y) ≤ c∥φ∥pLp(Ωε)

.(2.17)

For η ∈ Lp(Γ), it follows from (2.12), (2.14), and (2.17) that

c−1ε1/p∥η∥Lp(Γ) ≤ ∥η̄∥Lp(Ωε) ≤ cε1/p∥η∥Lp(Γ),(2.18)

where η̄ = η ◦ π is the constant extension of η. Also, when η ∈ H1(Γ), we use (2.8) and
|d| ≤ cε in Ωε, and then apply (2.18) with η replaced by ∇Γη to get

∥∇η̄∥L2(Ωε) ≤ cε1/2∥∇Γη∥L2(Γ),
∥∥∇η̄ −∇Γη

∥∥
L2(Ωε)

≤ cε3/2∥∇Γη∥L2(Γ).(2.19)

3. Results of function spaces

We give some results of function spaces used in analysis of (1.2) and (1.3).
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3.1. Abstract theory. Let X0 and X1 be Banach spaces such that both X0 and X1 are
continuously embedded into a Hausdorff topological vector space V. Then, the intersection
X0 ∩X1 and the sum X0 +X1 = {u0 + u1 | u0 ∈ X0, u1 ∈ X1} equipped with norms

∥u∥X0∩X1 = max{∥u∥X0 , ∥u∥X1},
∥u∥X0+X1 = inf{∥u0∥X0 + ∥u1∥X1 | u = u0 + u1, u0 ∈ X0, u1 ∈ X1}

(3.1)

are Banach spaces (see e.g. [2, Chapter 3, Theorem 1.3]). For i = 0, 1, let X ′
i be the dual

space of Xi. If X0 ∩ X1 is dense in both X0 and X1, then X ′
0 and X ′

1 are continuously
embedded into [X0∩X1]

′, which is a Banach space and thus a Hausdorff topological vector
space. Hence, we can consider X ′

0 +X ′
1 as a Banach space equipped with norm ∥ · ∥X′

0+X′
1

defined as above.

Lemma 3.1. Suppose that X0 ∩X1 is dense in X0 and X1. Then,

[X0 ∩X1]
′ = X ′

0 +X ′
1 = {f = f0 + f1 | f0 ∈ X ′

0, f1 ∈ X ′
1}.

More precisely, f ∈ [X0 ∩X1]
′ if and only if there exist f0 ∈ X0 and f1 ∈ X1 such that

⟨f, u⟩X0∩X1 = ⟨f0, u⟩X0 + ⟨f1, u⟩X1 for all u ∈ X0 ∩X1.

Moreover, ∥f∥[X0∩X1]′ = ∥f∥X′
0+X′

1
for all f ∈ [X0 ∩X1]

′.

Proof. We refer to [3, Theorem 2.7.1] for the proof. □

3.2. Function spaces. For S = Ωε or S = Γ, let

X0 = H1(S)N , X1 = L4(S)N , V = L2(S)N .

Clearly, X0 is continuously embedded into V. Since S is bounded, X1 is also continuously
embedded into V by Hölder’s inequality. Also, X0 ∩X1 is dense in both X0 and X1, since
it contains the dense subspace C1(S)N of X0 and X1. Hence, by Lemma 3.1,

[(H1 ∩ L4)(S)N ]′ = [H1(S)N ]′ + L4/3(S)N (S = Ωε or S = Γ).(3.2)

Moreover, since S is bounded, we can consider

(H1 ∩ L4)(S)N ↪→ L2(S)N ↪→ [(H1 ∩ L4)(S)N ]′ = [H1(S)N ]′ + L4/3(S)N

by setting ⟨u, v⟩(H1∩L4)(S) = (u, v)L2(S) for u ∈ L2(S)N and v ∈ (H1 ∩ L4)(S)N .
Similarly, if we set

ZT (S) = L2(0, T ;H1(S)N ) ∩ L4(0, T ;L4(S)N ),

∥u∥ZT (S) = max{∥u∥L2(0,T ;H1(S)), ∥u∥L4(0,T ;L4(S))}
(3.3)

for S = Ωε or S = Γ, and for each fixed T > 0, then

[ZT (S)]
′ = L2(0, T ; [H1(S)N ]′) + L4/3(0, T ;L4/3(S)N ).(3.4)

In particular,

[ZT (S)]
′ ⊂ L1(0, T ; [H1(S)N ]′ + L4/3(S)N ) = L1(0, T ; [(H1 ∩ L4)(S)N ]′),

and f(t) makes sense in [(H1 ∩ L4)(S)N ]′ for f ∈ [ZT (S)]
′ and a.a. t ∈ (0, T ).

Let u, v ∈ L1(0, T ; [(H1 ∩ L4)(S)N ]′). We write v = ∂tu if∫ T

0
⟨u(t), ∂tψ(t)⟩(H1∩L4)(S) dt = −

∫ T

0
⟨v(t), ψ(t)⟩(H1∩L4)(S) dt

for all ψ ∈ C1
c (0, T ; (H

1 ∩ L4)(S)N ). Moreover, we define

ET (S) = {u ∈ ZT (S) | ∂tu ∈ [ZT (S)]
′},

∥u∥ET (S) = ∥u∥ZT (S) + ∥∂tu∥[ZT (S)]′ .
(3.5)
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Note that ∂tu ∈ [ZT (S)]
′ if and only if there exists a constant c > 0 such that∣∣∣∣∫ T

0
⟨u(t), ∂tψ(t)⟩(H1∩L4)(S) dt

∣∣∣∣ ≤ c∥ψ∥ZT (S) for all ψ ∈ C1
c (0, T ; (H

1 ∩ L4)(S)N ),

since C1
c (0, T ; (H

1 ∩ L4)(S)N ) is dense in ZT (S) by the next lemma. In what follows, we
use this fact without mention.

Lemma 3.2. Let S = Ωε or S = Γ. Then,

(i) C∞
c (0, T ; (H1 ∩ L4)(S)N ) is dense in ZT (S), and

(ii) C∞([0, T ]; (H1 ∩ L4)(S)N ) is dense in ET (S).

The statement (i) can be shown by standard cut-off and mollification arguments, so we
omit the proof. Also, the proof of (ii) is similar to the one of a density result for

{u ∈ Lp(0, T ;X ) | ∂tu ∈ Lq(0, T ;Y)}, X ↪→ Y, p, q ∈ (1,∞)

with Banach spaces X and Y (see e.g. [4, Lemma II.5.10]), but we need to carefully deal
with ∂tu for u ∈ ET (S) in our case because of the structure (3.4) of [ZT (S)]

′. We give the
proof of (ii) in Section 9 for the completeness.

Lemma 3.3. Let S = Ωε or S = Γ. Then, the continuous embedding

ET (S) ↪→ C([0, T ];L2(S)N )

holds. Moreover, for all u1, u2 ∈ ET (S), we have

d

dt

(
u1(t), u2(t)

)
L2(S)

= ⟨∂tu1(t), u2(t)⟩(H1∩L4)(S) + ⟨∂tu2(t), u1(t)⟩(H1∩L4)(S)(3.6)

in D′(0, T ), the space of distributions on (0, T ).

Proof. The proof is the same as in the Hilbertian case shown in [4, Theorems II.5.12 and
II.5.13], if we apply Lemma 3.2, (ii) and the next lemma. We omit details. □

Lemma 3.4. Let S = Ωε or S = Γ. For f ∈ [ZT (S)]
′ and u ∈ ZT (S), let

[Φ(f, u)](t) = ⟨f(t), u(t)⟩(H1∩L4)(S), t ∈ (0, T ).

Then, Φ is a bilinear continuous mapping from [ZT (S)]
′ × ZT (S) into L

1(0, T ).

Note that this lemma is not obvious because of the structure (3.4) of [ZT (S)]
′.

Proof. Clearly, Φ is bilinear. Let us show

∥Φ(f, u)∥L1(0,T ) ≤ ∥f∥[ZT (S)]′∥u∥ZT (S) for all f ∈ [ZT (S)]
′, u ∈ ZT (S).(3.7)

Let f ∈ [ZT (S)]
′. Since [ZT (S)]

′ is of the form (3.4) and the norm ∥ · ∥X0+X1 is given by
(3.1) for Banach spaces X0 and X1, we can take Fk and Gk such that

f = Fk +Gk, Fk ∈ L2(0, T ; [H1(S)N ]′), Gk ∈ L4/3(0, T ;L4/3(S)N ),

lim
k→∞

(
∥Fk∥L2(0,T ;[H1(S)]′) + ∥Gk∥L4/3(0,T ;L4/3(S))

)
= ∥f∥[ZT (S)]′ .

Then, since f(t) = Fk(t) +Gk(t) in [(H1 ∩ L4)(S)N ]′ for a.a. t ∈ (0, T ), we have

|[Φ(f, u)](t)| =
∣∣∣⟨Fk(t), u(t)⟩H1(S) +

(
Gk(t), u(t)

)
L2(S)

∣∣∣
≤ ∥Fk(t)∥[H1(S)]′∥u(t)∥H1(S) + ∥Gk(t)∥L4/3(S)∥u(t)∥L4(S)

for u ∈ ZT (S) and a.a. t ∈ (0, T ). Hence,

∥Φ(f, u)∥L1(0,T ) ≤
(
∥Fk∥L2(0,T ;[H1(S)]′) + ∥Gk∥L4/3(0,T ;L4/3(S))

)
∥u∥ZT (S)

by Hölder’s inequality and (3.3), and we get (3.7) by sending k → ∞. □
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Lemma 3.5. Let S = Ωε or S = Γ. Then, the embedding

ET (S) ↪→ L2(0, T ;L2(S)N )

is compact.

Proof. We see that ET (S) is continuously embedded into

ẼT (S) = {u ∈ L2(0, T ;H1(S)N ) | ∂tu ∈ L1(0, T ; [(H1 ∩ L4)(S)N ]′)}

by the definition of ET (S) and (3.4). Moreover, since the embeddings

H1(S)N ↪→ L2(S)N ↪→ [(H1 ∩ L4)(S)N ]′

are continuous and the first embedding is compact, the embedding

ẼT (S) ↪→ L2(0, T ;L2(S)N )

is compact by the Aubin–Lions lemma (see [4, Theorem II.5.16]). Hence, the embedding

ET (S) ↪→ ẼT (S) ↪→ L2(0, T ;L2(S)N )

is also compact. □

Now, let S = Ωε. For z ∈ R, we define z+ = max{z, 0}.

Lemma 3.6. Let C0 > 0 be a constant. We define a mapping F : RN → RN by

F (a) =
(|a| − C0)+

|a|
a, a ∈ RN .(3.8)

Then, for all u ∈ H1(Ωε)
N , we have F (u) ∈ H1(Ωε)

N and

∂

∂xi

(
Fj(u)

)
=

(|u| − C0)+
|u|

∂uj
∂xi

+

N∑
k=1

χ(C0,∞)(|u|)
C0ujuk
|u|3

∂uk
∂xi

a.e. in Ωε(3.9)

for i = 1, . . . , n and j = 1, . . . , N . Here, Fj is the j-th component of F and χ(C0,∞)(z) is
the characteristic function of the interval (C0,∞).

Lemma 3.7. Let C0 > 0 be a constant and F be given by (3.8). Then, F (u) ∈ ZT (Ωε)
for all u ∈ ZT (Ωε). Moreover, if u ∈ ET (Ωε), then

1

2

d

dt

(
∥(|u(t)| − C0)+∥2L2(Ωε)

)
=
〈
∂tu(t), F

(
u(t)

)〉
(H1∩L4)(Ωε)

in D′(0, T ).(3.10)

Lemmas 3.6 and 3.7 can be shown by approximation of |a| and z+ by C1 functions. We
give the proofs in Section 9 for the completeness.

Lastly, we recall the weak dominated convergence theorem, which is used to show the
weak convergence of the cubic term in (1.2) and (1.3) in approximation of solutions.

Lemma 3.8. Let S = Ωε or S = Γ. Also, let p ∈ (1,∞) and T ∈ (0,∞). Suppose that

ψk, ψ ∈ Lp(0, T ;Lp(S)N ), sup
k∈N

∥ψk∥Lp(0,T ;Lp(S)) <∞,

and ψk → ψ a.e. on S × (0, T ) as k → ∞. Then,

lim
k→∞

ψk = ψ weakly in Lp(0, T ;Lp(S)N ).

Proof. We refer to [36, Lemma 8.3] for the proof. □
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4. Definition and properties of weak solutions

This section provides the definition and some properties of weak solutions to the thin-
domain problem (1.2) and the limit problem (1.3). For S = Ωε or S = Γ, let ZT (S) and
ET (S) be given by (3.3) and (3.5), respectively. We abuse the notation

(φ1, φ2)L2(S) =

∫
S
φ1φ2 dµ, dµ =

{
dx (S = Ωε),

dHn−1 (S = Γ)

for φ1 ∈ Lp(S) and φ2 ∈ Lq(S) with p, q ∈ [1,∞] satisfying 1/p+ 1/q = 1.

4.1. Thin-domain problem. First we consider (1.2). Based on integration by parts and
the Neumann boundary condition, we define a weak solution to (1.2) as follows.

Definition 4.1. For T > 0 and a given uε0 ∈ L2(Ωε)
N , we say that a function uε is a weak

solution to (1.2) on [0, T ) if uε ∈ ET (Ωε) and it satisfies

(4.1)

∫ T

0
⟨∂tuε(t), ψ(t)⟩(H1∩L4)(Ωε) dt+

∫ T

0

(
∇uε(t),∇ψ(t)

)
L2(Ωε)

dt

+ λ

∫ T

0

(
(|uε(t)|2 − 1)uε(t), ψ(t)

)
L2(Ωε)

dt = 0

for all ψ ∈ ZT (Ωε) and u
ε(0) = uε0 in L2(Ωε)

N .

Definition 4.2. For a given uε0 ∈ L2(Ωε)
N , we say that a function uε is a global weak

solution to (1.2) if it is a weak solution to (1.2) on [0, T ) for all T > 0.

Note that the weak formulation (4.1) makes sense, since∣∣∣∣∫ T

0

(
|uε(t)|2uε(t), ψ(t)

)
L2(Ωε)

dt

∣∣∣∣ ≤ ∥uε∥3L4(0,T ;L4(Ωε))
∥ψ∥L4(0,T ;L4(Ωε))

by Hölder’s inequality. The initial condition also makes sense by Lemma 3.3.
Let us give basic results on a weak solution to (1.2).

Lemma 4.3. Let uε be a weak solution to (1.2) on [0, T ) with initial data uε0 ∈ L2(Ωε)
N .

Then, for all t ∈ [0, T ], we have

∥uε(t)∥2L2(Ωε)
+ 2

∫ t

0
∥∇uε(s)∥2L2(Ωε)

ds+ 2λ

∫ t

0
∥uε(s)∥4L4(Ωε)

ds ≤ e2λt∥uε0∥2L2(Ωε)
.(4.2)

Note that the factor e2λt in the right-hand side of (4.2) is independent of ε.

Proof. Let ψ = uε in (4.1) with T replaced by each t ∈ [0, T ]. Then, by (3.6),

1

2
∥uε(t)∥2L2(Ωε)

+

∫ t

0
∥∇uε(s)∥2L2(Ωε)

ds+ λ

∫ t

0
∥uε(s)∥4L4(Ωε)

ds

=
1

2
∥uε0∥2L2(Ωε)

+ λ

∫ t

0
∥uε(s)∥2L2(Ωε)

ds

and thus ∥uε(t)∥2L2(Ωε)
≤ ∥uε0∥2L2(Ωε)

+ 2λ
∫ t
0 ∥u

ε(s)∥2L2(Ωε)
ds by λ > 0. Hence,

∥uε(t)∥2L2(Ωε)
≤ e2λt∥uε0∥2L2(Ωε)

for all t ∈ [0, T ]

by Gronwall’s inequality, and we get (4.2) by the above relations. □

Lemma 4.4. For each T > 0 and uε0 ∈ L2(Ωε)
N , there exists at most one weak solution

to (1.2) on [0, T ).
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Proof. Let uε1 and uε2 be weak solutions to (1.2) on [0, T ) with same initial data uε0, and
let U ε = uε1 − uε2. Then, for each t ∈ [0, T ] and ψ ∈ Zt(Ωε), we take the difference of (4.1)
satisfied by uε1 and uε2 to get

∫ t

0
⟨∂sU ε(s), ψ(s)⟩(H1∩L4)(Ωε) ds+

∫ t

0

(
∇U ε(s),∇ψ(s)

)
L2(Ωε)

ds

+ λ

∫ t

0

(
|uε1(s)|2uε1(s)− |uε2(s)|2uε2(s), ψ(s)

)
L2(Ωε)

ds = λ

∫ t

0

(
U ε(s), ψ(s)

)
L2(Ωε)

ds.

Let ψ = U ε = uε1 − uε2 in this equality. Then, since λ > 0 and

(|a|2a− |b|2b) · (a− b) = |a|4 − (|a|2 + |b|2)(a · b) + |b|4

≥ |a|4 − (|a|2 + |b|2)|a||b|+ |b|4

= (|a|3 − |b|3)(|a| − |b|) ≥ 0

(4.3)

for all a, b ∈ RN , we see by (3.6) and U ε(0) = uε1(0)− uε2(0) = 0 that

1

2
∥U ε(t)∥2L2(Ωε)

≤ λ

∫ t

0
∥U ε(s)∥2L2(Ωε)

ds.

Thus, ∥U ε(t)∥2L2(Ωε)
= 0 for all t ∈ [0, T ] by Gronwall’s inequality, i.e. uε1 = uε2. □

Theorem 4.5. For each uε0 ∈ L2(Ωε)
N , there exists a unique global weak solution to (1.2).

Proof. The uniqueness is due to Lemma 4.4. The existence can be shown by the Galerkin
method as in the scalar-valued case described in [36, Section 8.3]. In our case, however, the
dimension of Ωε is arbitrary and the regularity of ∂Ωε is only C1. Due to this, we cannot
use the eigenfunctions of the Neumann Laplacian in L2(Ωε)

N to approximate test functions
of classH1∩L4, since it requires the Sobolev embedding and the elliptic regularity theorem
(see [36, Section 8.2]). Hence, we need to take basis functions of (H1 ∩ L4)(Ωε)

N directly
and modify some arguments. We give the outline of the Galerkin method in Section 8 for
the completeness. □

We also have the (weak) maximum principle for a weak solution to (1.2).

Lemma 4.6. Let uε be a global weak solution to (1.2) with uε0 ∈ L∞(Ωε)
N . Then,

∥uε∥L∞(Ωε×(0,∞)) ≤ max{1, ∥uε0∥L∞(Ωε)}.(4.4)

Proof. We follow the argument of [12, Lemma 3.7] and [29, Lemma 6], but in the framework
of weak solutions.

Let C0 = max{1, ∥uε0∥L∞(Ωε)} and F be given by (3.8). Since uε ∈ ET (Ωε) for all T > 0,
it follows from Lemma 3.7 that F (uε) ∈ ZT (Ωε) and we can take ψ = F (uε) in (4.1) with
T replaced by each t ≥ 0. Then, we observe by (3.10) that

1

2
∥(|uε(t)| − C0)+∥2L2(Ωε)

+

∫ t

0

(
∇uε(s),∇

[
F
(
uε(s)

)])
L2(Ωε)

ds

+ λ

∫ t

0

(
(|uε(s)|2 − 1)uε(s), F

(
uε(s)

))
L2(Ωε)

ds =
1

2
∥(|uε0| − C0)+∥2L2(Ωε)

.
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In this equality, (|uε0| − C0)+ = 0 a.e. in Ωε since ∥uε0∥L∞(Ωε) ≤ C0. Also,

∇uε : ∇[F (uε)] =
n∑

i=1

N∑
j=1

∂uεj
∂xi

∂

∂xi

(
Fj(u

ε)
)
= J1 + J2,

J1 =
n∑

i=1

N∑
j=1

(|uε| − C0)+
|uε|

∣∣∣∣∂uεj∂xi

∣∣∣∣2 ,
J2 =

n∑
i=1

N∑
j,k=1

χ(C0,∞)(|uε|)
C0u

ε
ju

ε
k

|uε|3
∂uεj
∂xi

∂uεk
∂xi

a.e. in Ωε × (0,∞) by (3.9). Clearly, J1 ≥ 0. Moreover,

J2 =
n∑

i=1

N∑
j,k=1

χ(C0,∞)(|uε|)
C0

|uε|3
· 1
2

∂

∂xi

(
(uεj)

2
)
· 1
2

∂

∂xi

(
(uεk)

2
)

=
C0

4|uε|3
χ(C0,∞)(|uε|)

∣∣∣∇(|uε|2)∣∣∣2 ≥ 0.

Hence, ∇uε : ∇[F (uε)] ≥ 0 a.e. in Ωε × (0,∞). We further observe that

(|uε|2 − 1)uε · F (uε) = |uε|(|uε|2 − 1)(|uε| − C0)+ ≥ 0 a.e. in Ωε × (0,∞),

since |uε|2 ≥ 1 when |uε| ≥ C0 ≥ 1. From the above results, we deduce that

∥(|uε(t)| − C0)+∥2L2(Ωε)
≤ 0, i.e. ∥(|uε(t)| − C0)+∥2L2(Ωε)

= 0 for all t ≥ 0.

Hence, (|uε| − C0)+ = 0, i.e. |uε| ≤ C0 a.e. in Ωε × (0,∞), which gives (4.4). □

4.2. Limit problem. Next we consider (1.3). To give the definition of a weak solution,
we take a test function ζ = (ζ1, . . . , ζN )T and multiply (1.3) by gζ. Then, since

divΓ(g∇Γv) =
(
divΓ(g∇Γv1), . . . ,divΓ(g∇ΓvN )

)T
, divΓ(g∇Γvj) =

n∑
i=1

Di(gDivj)

for v = (v1, . . . , vN )T under our notations given in Section 2.2, we have∫
Γ
divΓ(g∇Γv) · ζ dHn−1 =

N∑
j=1

∫
Γ
{divΓ(g∇Γvj)}ζj dHn−1

= −
N∑
j=1

∫
Γ
g∇Γvj · (∇Γζj + ζjHν) dHn−1

= −
∫
Γ
g∇Γv : ∇Γζ dHn−1

by (2.11) and ∇Γvj · ν = 0 on Γ. Thus, we define a weak solution to (1.3) as follows.

Definition 4.7. For T > 0 and a given v0 ∈ L2(Γ)N , we say that a function v is a weak
solution to (1.3) on [0, T ) if v ∈ ET (Γ) and it satisfies

(4.5)

∫ T

0
⟨∂tv(t), gζ(t)⟩(H1∩L4)(Γ) dt+

∫ T

0

(
g∇Γv(t),∇Γζ(t)

)
L2(Γ)

dt

+ λ

∫ T

0

(
g(|v(t)|2 − 1)v(t), ζ(t)

)
L2(Γ)

dt = 0

for all ζ ∈ ZT (Γ) and v(0) = v0 in L2(Γ)N .
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Definition 4.8. For a given v0 ∈ L2(Γ)N , we say that a function v is a global weak
solution to (1.3) if it is a weak solution to (1.3) on [0, T ) for all T > 0.

For a weak solution to (1.3), we have similar results to the ones in Section 4.1 by the
same proofs. Here, we just give results used later and omit the proofs, but note that g is
independent of time and satisfies (2.12). Also, a suitable basis for the Galerkin method is
an orthonromal basis of L2(Γ)N with respect to the weighted inner product (g·, ·)L2(Γ)

Lemma 4.9. Let v be a weak solution to (1.3) on [0, T ) with initial data v0 ∈ L2(Γ)N .
Then, for all t ∈ [0, T ], we have

∥v(t)∥2L2(Γ) +

∫ t

0
∥∇Γv(s)∥2L2(Γ) ds+ λ

∫ t

0
∥v(s)∥4L4(Γ) ds ≤ cecλt∥v0∥2L2(Γ),(4.6)

where c > 0 is a constant depending only on the constants appearing in (2.12).

Lemma 4.10. For each T > 0 and v0 ∈ L2(Γ)N , there exists at most one weak solution
to (1.3) on [0, T ).

Theorem 4.11. For each v0 ∈ L2(Γ)N , there exists a unique global solution to (1.3).

5. Weighted average operator

In this section, we define and study a weighted average operator. Recall that c denotes
a general positive constant independent of ε. Also, we write η̄ = η ◦ π for the constant
extension of a function η on Γ in the normal direction of Γ.

5.1. Definition and basic properties. Let J(y, r) be the function given by (2.13). For
a function φ on Ωε, we define the weighted average of φ in the thin direction by

Mεφ(y) =
1

εg(y)

∫ εg1(y)

εg0(y)
φ
(
y + rν(y)

)
J(y, r) dr, y ∈ Γ.(5.1)

The main advantage of taking the weighted average is that the formula∫
Ωε

φ(x)η̄(x) dx = ε

∫
Γ
g(y)Mεφ(y)η(y) dHn−1(y)(5.2)

holds by (2.16) for φ : Ωε → R and η : Γ → R, which does not include any residual term.
Let us give some basic properties of Mε. For a function φ on Ωε, we write ∂νφ = ν̄ ·∇φ

for the derivative of φ in the normal direction of Γ. Also, we often use the notation (2.9)
in what follows. Hence, we write the definition of Mεφ as

Mεφ(y) =
1

εg(y)

∫ εg1(y)

εg0(y)
φ♯(y, r)J(y, r) dr.

Note that, under the notation (2.9), we have

∂rφ
♯(y, r) = (∂νφ)

♯(y, r), η̄♯(y, r) = η(y)

for a function φ on Ωε and a function η on Γ.

Lemma 5.1. Let p ∈ [1,∞) and φ ∈ Lp(Ωε). Then, Mεφ ∈ Lp(Γ) and

∥Mεφ∥Lp(Γ) ≤ cε−1/p∥φ∥Lp(Ωε).(5.3)

Proof. By (2.12), (2.14), and Hölder’s inequality, we have

|Mεφ(y)| ≤ cε−1/p

(∫ εg1(y)

εg0(y)
|φ♯(y, r)|p dr

)1/p

, y ∈ Γ.

We integrate the p-th power of both sides over Γ and use (2.17) to get (5.3). □
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Lemma 5.2. Let φ ∈ H1(Ωε). Then,∥∥φ−Mεφ
∥∥
L2(Ωε)

≤ cε
(
∥φ∥L2(Ωε) + ∥∂νφ∥L2(Ωε)

)
.(5.4)

Proof. Let y ∈ Γ and r ∈ (εg0(y), εg1(y)). Then,

φ♯(y, r)−Mεφ(y) = φ♯(y, r)− 1

εg(y)

∫ εg1(y)

εg0(y)
φ♯(y, r1)J(y, r1) dr1 =

K1 +K2

εg(y)
,

where

K1 =

∫ εg1(y)

εg0(y)
{φ♯(y, r)− φ♯(y, r1)} dr, K2 =

∫ εg1(y)

εg0(y)
φ♯(y, r1){1− J(y, r1)} dr1.

For r, r1 ∈ (εg0(y), εg1(y)), we have

|φ♯(y, r)− φ♯(y, r1)| =
∣∣∣∣∫ r

r1

∂rφ
♯(y, r2) dr2

∣∣∣∣ ≤ ∫ εg1(y)

εg0(y)
|∂rφ♯(y, r2)| dr2.

Here, the right-hand side is independent of r and r1. Hence,

|K1| ≤ εg(y)

∫ εg1(y)

εg0(y)
|∂rφ♯(y, r2)| dr2 = εg(y)

∫ εg1(y)

εg0(y)
|(∂νφ)♯(y, r1)| dr1,

where we used ∂rφ
♯ = (∂νφ)

♯ under the notation (2.9) and replaced the variable r2 by r1
in the second equality. Also, it follows from (2.15) that

|K2| ≤ cε

∫ εg1(y)

εg0(y)
|φ♯(y, r1)| dr1.

By these estimates, (2.12), and Hölder’s inequality, we see that

|φ♯(y, r)−Mεφ(y)| ≤ c

∫ εg1(y)

εg0(y)

[
|φ♯|+ |(∂νφ)♯|

]
(y, r1) dr1

≤ cε1/2

(∫ εg1(y)

εg0(y)

[
|φ♯|2 + |(∂νφ)♯|2

]
(y, r1) dr1

)1/2

.

(5.5)

Here, we used the notation[
|φ♯|+ |(∂νφ)♯|

]
(y, r1) = |φ♯(y, r1)|+ |(∂νφ)♯(y, r1)|

and a similar one for |φ♯|2 + |(∂νφ)♯|2. We integrate the square of (5.5) with respect to y
and r. Then, since the right-hand side is independent of r, we have∫

Γ

∫ εg1(y)

εg0(y)
|φ♯(y, r)−Mεφ(y)|2 dr dHn−1(y)

≤ cε2
∫
Γ

∫ εg1(y)

εg0(y)

[
|φ♯|2 + |(∂νφ)♯|2

]
(y, r1) dr1 dHn−1(y),

where we also used (2.12). By this inequality and (2.17), we get (5.4). □

5.2. Weighted average of the square. Let Mε(|φ|2) be the weighted average of |φ|2.
We see that Mε(|φ|2) is close to |Mεφ|2 when ε is small.

Lemma 5.3. Let φ ∈ (H1 ∩ L∞)(Ωε). Then,∥∥Mε(|φ|2)− |Mεφ|2
∥∥
L2(Γ)

≤ cε1/2∥φ∥L∞(Ωε)

(
∥φ∥L2(Ωε) + ∥∂νφ∥L2(Ωε)

)
.(5.6)
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Proof. Let y ∈ Γ. Since

[Mε(|φ|2)](y) =
1

εg(y)

∫ εg1(y)

εg0(y)
φ♯(y, r)φ♯(y, r)J(y, r) dr,

|Mεφ(y)|2 =
1

εg(y)

∫ εg1(y)

εg0(y)
φ♯(y, r)Mεφ(y)J(y, r) dr,

we observe by (2.12), (2.14), and Hölder’s inequality that∣∣[Mε(|φ|2)](y)− |Mεφ(y)|2
∣∣

≤ 1

εg(y)

∫ εg1(y)

εg0(y)
|φ♯(y, r){φ♯(y, r)−Mεφ(y)}|J(y, r) dr

≤ cε−1∥φ∥L∞(Ωε)

∫ εg1(y)

εg0(y)
|φ♯(y, r)−Mεφ(y)| dr

≤ cε−1/2∥φ∥L∞(Ωε)

(∫ εg1(y)

εg0(y)
|φ♯(y, r)−Mεφ(y)|2 dr

)1/2

.

We integrate the square of both sides and use (2.17) to get∥∥Mε(|φ|2)− |Mεφ|2
∥∥
L2(Γ)

≤ cε−1/2∥φ∥L∞(Ωε)

∥∥φ−Mεφ
∥∥
L2(Ωε)

.

Applying (5.4) to the right-hand side, we obtain (5.6). □

Using Lemmas 5.2 and 5.3, we can compare |φ|2 and |Mεφ|2 in L2(Ωε).

Lemma 5.4. Let φ ∈ (H1 ∩ L∞)(Ωε). Then,∥∥∥ |φ|2 − ∣∣Mεφ
∣∣2 ∥∥∥

L2(Ωε)
≤ cε∥φ∥L∞(Ωε)

(
∥φ∥L2(Ωε) + ∥∂νφ∥L2(Ωε)

)
.(5.7)

Proof. Noting that ∂ν(|φ|2) = 2φ∂νφ, we see by (5.4) that∥∥∥ |φ|2 −Mε(|φ|2)
∥∥∥
L2(Ωε)

≤ cε
(∥∥ |φ|2 ∥∥

L2(Ωε)
+ ∥∂ν(|φ|2)∥L2(Ωε)

)
≤ cε∥φ∥L∞(Ωε)

(
∥φ∥L2(Ωε) + ∥∂νφ∥L2(Ω)

)
.

Also, it follows from (2.18) and (5.6) that∥∥∥Mε(|φ|2)−
∣∣Mεφ

∣∣2 ∥∥∥
L2(Ωε)

≤ cε1/2
∥∥Mε(|φ|2)− |Mεφ|2

∥∥
L2(Γ)

≤ cε∥φ∥L∞(Ωε)

(
∥φ∥L2(Ωε) + ∥∂νφ∥L2(Ωε)

)
.

Applying these estimates to

|φ|2 −
∣∣Mεφ

∣∣2 = {|φ|2 −Mε(|φ|2)
}
+
{
Mε(|φ|2)−

∣∣Mεφ
∣∣2},

we obtain (5.7). □

We also observe that the cubic term of (1.2) is approximated by that of (1.3) and the
weighted average in the following weak sense.

Lemma 5.5. Let u ∈ (H1 ∩ L∞)(Ωε)
N and ζ ∈ L2(Γ)N . Then,

(5.8)

∣∣∣∣∫
Ωε

|u|2u · ζ̄ dx− ε

∫
Γ
g|Mεu|2Mεu · ζ dHn−1

∣∣∣∣
≤ cε3/2∥u∥2L∞(Ωε)

(
∥u∥L2(Ωε) + ∥∂νu∥L2(Ωε)

)
∥ζ∥L2(Γ).
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Proof. We split the difference as∫
Ωε

|u|2u · ζ̄ dx− ε

∫
Γ
g|Mεu|2Mεu · ζ dHn−1 = K1 +K2,

K1 =

∫
Ωε

|u|2u · ζ̄ dx−
∫
Ωε

∣∣Mεu
∣∣2u · ζ̄ dx,

K2 =

∫
Ωε

∣∣Mεu
∣∣2u · ζ̄ dx− ε

∫
Γ
g|Mεu|2Mεu · ζ dHn−1.

Since Mεu and ζ are functions on Γ, we have K2 = 0 by (5.2). Also,

|K1| ≤ ∥u∥L∞(Ωε)

∥∥∥ |u|2 − ∣∣Mεu
∣∣2 ∥∥∥

L2(Ωε)
∥ζ̄∥L2(Ωε)

≤ cε3/2∥u∥2L∞(Ωε)

(
∥u∥L2(Ωε) + ∥∂νu∥L2(Ωε)

)
∥ζ∥L2(Γ)

by (2.18) and (5.7). Hence, (5.8) follows. □

5.3. Tangential gradient of the weighted average. Let us give an explicit formula
for the tangential gradient of the weighted average.

Lemma 5.6. Let φ ∈ C(Ωε) ∩ C1(Ωε). Then,

∇ΓMεφ = Mε(B∇φ) +Mε

(
(∂νφ+ φfJ)Ψε

)
+Mε(φΨJ) on Γ.(5.9)

Here, B : Nδ → Rn×n, Ψε : Nδ → Rn, fJ : Nδ → R, ΨJ : Nδ → Rn are given by

B♯(y, r) = P (y)− rW (y),

Ψ♯
ε(y, r) =

1

g(y)
{(r − εg0(y))∇Γg1(y) + (εg1(y)− r)∇Γg0(y)},

f ♯J(y, r) =
∂rJ(y, r)

J(y, r)
, Ψ♯

J(y, r) =
∇ΓJ(y, r)

J(y, r)

for x = y + rν(y) ∈ Nδ with y ∈ Γ and r ∈ (−δ, δ) under the notation (2.9).

Proof. By the definition of Mεφ, we have ∇ΓMεφ =
∑4

i=1Ki, where

K1 = −∇Γg(y)

εg(y)2

∫ εg1(y)

εg0(y)
φ♯(y, r)J(y, r) dr,

K2 =
1

εg(y)
{[φ♯J ](y, εg1(y)) · ε∇Γg1(y)− [φ♯J ](y, εg0(y)) · ε∇Γg0(y)},

K3 =
1

εg(y)

∫ εg1(y)

εg0(y)
∇Γφ

♯(y, r) · J(y, r) dr,

K4 =
1

εg(y)

∫ εg1(y)

εg0(y)
φ♯(y, r)∇ΓJ(y, r) dr.

Here and in what follows, we write [φ♯J ](y, r) = φ♯(y, r)J(y, r). We see that

K3 =
1

εg(y)

∫
εg0(y)

{P (y)− rW (y)}(∇φ)♯(y, r) · J(y, r) dr = Mε(B∇φ),

K4 =
1

εg(y)

∫ εg1(y)

εg0(y)
φ♯(y, r)

∇ΓJ(y, r)

J(y, r)
· J(y, r) dr = Mε(φΨJ)

(5.10)

by (2.10). Since Ψ♯
ε(y, εgi(y)) = ε∇Γgi(y) for i = 0, 1,

K2 =
1

εg(y)

[
[φ♯JΨ♯

ε](y, r)
]εg1(y)
r=εg0(y)

=
1

εg(y)

∫ εg1(y)

εg0(y)

∂

∂r

(
[φ♯JΨ♯

ε](y, r)
)
dr.
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Moreover, since ∂rφ
♯ = (∂νφ)

♯ under the notation (2.9) and

∂rJ(y, r) = f ♯J(y, r)J(y, r), ∂rΨ
♯
ε(y, r) =

∇Γg(y)

g(y)
,

it follows that

K2 =
1

εg(y)

∫ εg1(y)

εg0(y)
[{(∂νφ)♯ + φ♯f ♯J}Ψ

♯
ε](y, r)J(y, r) dr

+
∇Γg(y)

εg(y)2

∫ εg1(y)

εg0(y)
φ♯(y, r)J(y, r) dr

= Mε

(
(∂νφ+ φfJ)Ψε

)
−K1.

This equality and (5.10) show that ∇ΓMεφ =
∑4

i=1Ki is of the form (5.9). □

By the above result, we see that ∇ΓMεφ is close to Mε

(
P∇φ

)
.

Lemma 5.7. Let φ ∈ H1(Ωε). Then, Mεφ ∈ H1(Γ) and

∥∇ΓMεφ∥L2(Γ) ≤ cε−1/2∥φ∥H1(Ωε),(5.11) ∥∥∇ΓMεφ−Mε

(
P∇φ

)∥∥
L2(Γ)

≤ cε1/2∥φ∥H1(Ωε).(5.12)

Proof. For y ∈ Γ and r ∈ (εg0(y), εg1(y)), we have

|B♯(y, r)− P (y)| ≤ cε, |Ψ♯
ε(y, r)|+ |Ψ♯

J(y, r)| ≤ cε, |f ♯J(y, r)| ≤ c

by (2.12), (2.14), (2.15), W ∈ C(Γ)n×n, and g0, g1 ∈ C1(Γ). Also,

|P |2 = tr[P TP ] = tr[P ] = n− 1 on Γ, |∂νφ| = |ν̄ · ∇φ| ≤ |∇φ| in Ωε.

By these inequalities and (5.9), we get |∇ΓMεφ| ≤ cMε(|φ|+ |∇φ|) and∣∣∇ΓMεφ−Mε

(
P∇φ

)∣∣ ≤ cεMε(|φ|+ |∇φ|) on Γ.

These inequalities and (5.3) show that (5.11) and (5.12) are valid. □

Moreover, we can show that the Dirichlet form on Ωε is approximated by the weighted
one on Γ which involves the tangential gradient of the weighted average.

Lemma 5.8. Let φ ∈ H1(Ωε) and η ∈ H1(Γ). Then,∣∣∣∣∫
Ωε

∇φ · ∇η̄ dx− ε

∫
Γ
g∇ΓMεφ · ∇Γη dHn−1

∣∣∣∣ ≤ cε3/2∥φ∥H1(Ωε)∥∇Γη∥L2(Γ).(5.13)

Proof. This result was shown in [26, Lemma 5.6] by calculations under a local coordinate
of Γ and an associated one of Ωε. Here, we give another simple proof.

We split the difference as∫
Ωε

∇φ · ∇η̄ dx− ε

∫
Γ
g∇ΓMεφ · ∇Γη dHn−1 = K1 +K2,

K1 =

∫
Ωε

∇φ · ∇η̄ dx−
∫
Ωε

∇φ · ∇Γη dx,

K2 =

∫
Ωε

∇φ · ∇Γη dx− ε

∫
Γ
g∇ΓMεφ · ∇Γη dHn−1.

It follows from Hölder’s inequality and (2.19) that

|K1| ≤ ∥∇φ∥L2(Ωε)

∥∥∇η̄ −∇Γη
∥∥
L2(Ωε)

≤ cε3/2∥φ∥H1(Ωε)∥∇Γη∥L2(Γ).
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Next, we see by ν · ∇Γη = 0 on Γ and (5.2) that∫
Ωε

∇φ · ∇Γη dx =

∫
Ωε

(
P∇φ) · ∇Γη dx = ε

∫
Γ
gMε

(
P∇φ

)
· ∇Γη dHn−1.

Hence, it follows from (2.12), Hölder’s inequality, and (5.12) that

|K2| ≤ cε
∥∥∇ΓMεφ−Mε

(
P∇φ

)∥∥
L2(Γ)

∥∇Γη∥L2(Γ) ≤ cε3/2∥φ∥H1(Ωε)∥∇Γη∥L2(Γ).

By the above results, we obtain (5.13). □

5.4. Time derivative of the weighted average. We can consider the time derivative
of the weighted average in the following weak sense. Recall that the function spaces ZT (S)
and ET (S) are given by (3.3) and (3.5), respectively, for S = Ωε or S = Γ.

Lemma 5.9. For a fixed T > 0, let u ∈ ET (Ωε). Then, Mεu ∈ ET (Γ) and∫ T

0
⟨∂tu(t), ζ̄(t)⟩(H1∩L4)(Ωε) dt = ε

∫ T

0
⟨∂tMεu(t), gζ(t)⟩(H1∩L4)(Γ) dt(5.14)

for all ζ ∈ ZT (Γ).

Proof. We have Mεu ∈ ZT (Γ) by Lemmas 5.1 and 5.7.
Next, let ζ ∈ C1

c (0, T ; (H
1 ∩ L4)(Γ)N ). Then,

ζ̄ ∈ C1
c (0, T ; (H

1 ∩ L4)(Ωε)
N ), ∥ζ̄∥ZT (Ωε) ≤ cε1/4∥ζ∥ZT (Γ)

by (2.18), (2.19), and ε1/2 ≤ ε1/4 due to ε ∈ (0, 1). Moreover,∫ T

0
⟨∂tu(t), ζ̄(t)⟩(H1∩L4)(Ωε) dt = −

∫ T

0

(
u(t), ∂tζ̄(t)

)
L2(Ωε)

dt

= −ε
∫ T

0

(
gMεu(t), ∂tζ(t)

)
L2(Γ)

= −ε
∫ T

0

(
Mεu(t), [∂t(gζ)](t)

)
L2(Γ)

dt,

(5.15)

since (5.2) holds and g is independent of time. Replacing ζ with g−1ζ and using

∥ḡ−1ζ̄∥ZT (Ωε) ≤ cε1/4∥g−1ζ∥ZT (Γ) ≤ cε1/4∥ζ∥ZT (Γ)

by g ∈ C1(Γ) and (2.12), we find that∣∣∣∣∫ T

0

(
Mεu(t), ∂tζ(t)

)
L2(Γ)

dt

∣∣∣∣ = ε−1

∣∣∣∣∫ T

0
⟨∂tu(t), ḡ−1ζ̄(t)⟩(H1∩L4)(Ωε) dt

∣∣∣∣
≤ cε−3/4∥∂tu∥[ZT (Ωε)]′∥ζ∥ZT (Γ)

for all ζ ∈ C1
c (0, T ; (H

1 ∩ L4)(Γ)N ). Thus, ∂tMεu ∈ [ZT (Γ)]
′ and Mεu ∈ ET (Γ).

The equality (5.14) follows from (5.15) when ζ ∈ C1
c (0, T ; (H

1 ∩ L4)(Γ)N ). This space
is dense in ZT (Γ), so the same equality holds for ζ ∈ ZT (Γ) by a density argument. □

6. Thin-film limit problem

The purpose of this section is to establish Theorems 1.1 and 1.2. Let Mε be the
weighted average operator given in Section 5. We write c for a general positive constant
independent of ε and also of the constant λ appearing in (1.2). Also, for a function η on
Γ, we denote by η̄ = η ◦ π its constant extension in the normal direction of Γ.
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6.1. Average of the weak form of the thin domain problem. First we give explicit
estimates in terms of ε for a weak solution uε to (1.2) and then derive a weak form satisfied
by the weighted average Mεu

ε.

Lemma 6.1. Let c1 ≥ 1, α ∈ (0, 1/3], and ε0 ∈ (0, 1) be constants and let ε ∈ (0, ε0).
Suppose that uε0 ∈ L∞(Ωε)

N and

∥uε0∥L∞(Ωε) ≤ c1ε
−1/3+α,(6.1)

and let uε be the global weak solution to (1.2) given in Theorem 4.5. Then,

∥uε(t)∥2L2(Ωε)
+

∫ t

0
∥∇uε(s)∥2L2(Ωε)

ds+ λ

∫ t

0
∥uε(s)∥4L4(Ωε)

ds ≤ cε1/3+2αe2λt(6.2)

for all t ≥ 0, where c > 0 depends on c1 but is independent of ε and λ. Moreover,

∥uε∥L∞(Ωε×(0,∞)) ≤ c1ε
−1/3+α.(6.3)

Proof. Let |Ωε| be the volume of Ωε. We have (6.2) by (4.2) and

∥uε0∥2L2(Ωε)
≤ ∥uε0∥2L∞(Ωε)

· |Ωε| ≤ c21ε
−2/3+2α · cε = c21cε

1/3+2α.(6.4)

Also, (6.3) follows from (4.4), (6.1), and c1ε
−1/3+α ≥ 1. □

Lemma 6.2. Under the assumptions of Lemma 6.1, we define

vε = Mεu
ε on Γ× [0,∞), vε0 = Mεu

ε
0 on Γ.

Then, vε ∈ ET (Γ) for all T > 0 and vε(0) = vε0 in L2(Γ)N . Moreover,

(6.5)

∫ T

0
⟨∂tvε(t), gζ(t)⟩(H1∩L4)(Γ) dt+

∫ T

0

(
g∇Γv

ε(t),∇Γζ(t)
)
L2(Γ)

dt

+ λ

∫ T

0

(
g(|vε(t)|2 − 1)vε(t), ζ(t)

)
L2(Γ)

dt = Rε(ζ;T )

for all T > 0 and ζ ∈ ZT (Γ). Here, Rε(ζ;T ) is linear in ζ and satisfies

|Rε(ζ;T )| ≤ cε3αaλ(T )∥ζ∥L2(0,T ;H1(Γ)),(6.6)

where aλ(T ) = (1 + λ)(1 + T )1/2eλT . Also, c > 0 is independent of ε, λ, and T .

Note that, if vε ∈ ET (Γ), then v
ε ∈ C([0, T ];L2(Γ)N ) by Lemma 3.3.

Proof. The regularity and initial condition of vε follow from those of uε and Lemma 5.9.
Let ζ ∈ ZT (Γ). We take ψ = ζ̄ in (4.1) and divide both sides by ε to get

ε−1

∫ T

0
⟨∂tuε(t), ζ̄(t)⟩(H1∩L4)(Ωε) dt+ ε−1

∫ T

0

(
∇uε(t),∇ζ̄(t)

)
L2(Ωε)

dt

+ ε−1λ

∫ T

0

(
(|uε(t)|2 − 1)uε(t), ζ̄(t)

)
L2(Ωε)

dt = 0.

In this equality, we use (5.14) with vε = Mεu
ε and

ε−1λ
(
uε(t), ζ̄(t)

)
L2(Ωε)

= λ
(
gvε(t), ζ(t)

)
L2(Γ)

by (5.2). Then, we get (6.5), if we define the residual term as

Rε(ζ;T ) = −
∫ T

0

{
ε−1
(
∇uε(t),∇ζ̄(t)

)
L2(Ωε)

−
(
g∇Γv

ε(t),∇Γζ(t)
)
L2(Γ)

}
dt

− λ

∫ T

0

{
ε−1
(
|uε(t)|2uε(t), ζ̄(t)

)
L2(Ωε)

−
(
g|vε(t)|2vε(t), ζ(t)

)
L2(Γ)

}
dt.
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This is linear in ζ. Moreover, by (5.8), (5.13), and Hölder’s inequality,

|Rε(ζ;T )| ≤ cε1/2∥uε∥L2(0,T ;H1(Ωε))∥∇Γζ∥L2(0,T ;L2(Γ))

+ cε1/2λ∥uε∥2L∞(Ωε×(0,T ))∥u
ε∥L2(0,T ;H1(Ωε))∥ζ∥L2(0,T ;L2(Γ)).

To the right-hand side, we further apply (6.3) and

∥uε∥L2(0,T ;H1(Ωε)) ≤ cε1/6+α(1 + T )1/2eλT

by (6.2). Then, we get (6.6), since ε1/2+1/6+α = ε2/3+α ≤ ε3α by α ∈ (0, 1/3]. □

6.2. Estimates for the averaged weak solution. Using (6.5), we derive estimates for
the averaged weak solution vε = Mεu

ε which give the uniform boundedness of vε.

Lemma 6.3. Under the assumptions of Lemma 6.1, we have

(6.7) max
t∈[0,T ]

∥vε(t)∥2L2(Γ) +

∫ T

0
∥∇Γv

ε(t)∥2L2(Γ) dt+ λ

∫ T

0
∥vε(t)∥4L4(Γ) dt

≤ cec(1+λ)T
{
∥vε0∥2L2(Γ) + ε6α(1 + λ)2

}
for all T > 0. Here, c > 0 is a constant independent of ε, λ, and T .

Proof. Let ζ = vε in (6.5) with T replaced by t ∈ [0, T ]. Then, noting that g is independent
of time and positive by (2.12), we observe by (3.6) that

1

2
∥g1/2vε(t)∥2L2(Γ) +

∫ t

0
∥g1/2∇Γv

ε(s)∥2L2(Γ) ds+ λ

∫ t

0
∥g1/4vε(s)∥4L4(Γ) ds

=
1

2
∥g1/2vε0∥2L2(Γ) + λ

∫ t

0
∥g1/2vε(s)∥2L2(Γ) ds+Rε(v

ε; t).

We apply (2.12) and (6.6) to this equality to get

(6.8) ∥vε(t)∥2L2(Γ) +

∫ t

0
∥∇Γv

ε(s)∥2L2(Γ) ds+ λ

∫ t

0
∥vε(s)∥4L4(Γ) ds

≤ c2

(
∥vε0∥2L2(Γ) + λ

∫ t

0
∥vε(s)∥2L2(Γ) ds

)
+ c3ε

3αaλ(t)∥vε∥L2(0,t;H1(Γ))

with some constants c2, c3 > 0 independent of ε, λ, and T . Moreover,

c3ε
3αaλ(t)∥vε∥L2(0,t;H1(Γ)) ≤ cε6αaλ(t)

2 +
1

2
∥vε∥2L2(0,t;H1(Γ))

= cε6αaλ(t)
2 +

1

2

∫ t

0

(
∥vε(s)∥2L2(Γ) + ∥∇Γv

ε(s)∥2L2(Γ)

)
ds

by Young’s inequality, and aλ(t) ≤ aλ(T ) for t ∈ [0, T ] by the definition of aλ(t). We apply
these estimates to (6.8) and make the integral of ∇Γv

ε appearing in the right-hand side
absorbed into the left-hand side. Then, we find that

(6.9) ∥vε(t)∥2L2(Γ) +

∫ t

0
∥∇Γv

ε(s)∥2L2(Γ) ds+ λ

∫ t

0
∥vε(s)∥4L4(Γ) ds

≤ c

(
∥vε0∥2L2(Γ) + ε6αaλ(T )

2 + (1 + λ)

∫ t

0
∥vε(s)∥2L2(Γ) ds

)
for all t ∈ [0, T ] and thus, by λ > 0,

∥vε(t)∥2L2(Γ) ≤ c

(
∥vε0∥2L2(Γ) + ε6αaλ(T )

2 + (1 + λ)

∫ t

0
∥vε(s)∥2L2(Γ) ds

)
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for all t ∈ [0, T ]. Hence, Gronwall’s inequality implies that

∥vε(t)∥2L2(Γ) ≤ cec(1+λ)t
(
∥vε0∥2L2(Γ) + ε6αaλ(T )

2
)
, t ∈ [0, T ].

Applying this to (6.9) and noting that

aλ(T )
2 = (1 + λ)2(1 + T )e2λT ≤ (1 + λ)2 · eT · e2λT ≤ (1 + λ)2ec(1+λ)T ,

we obtain (6.7). □

Lemma 6.4. Under the assumptions of Lemma 6.1, we have

∥∂tvε∥[ZT (Γ)]′ ≤ cλ,T

(
∥vε0∥L2(Γ) + ∥vε0∥

3/2
L2(Γ)

+ 1
)

(6.10)

for all T > 0, where cλ,T > 0 is a constant depending on λ and T but independent of ε.

Proof. Throughout the proof, we write cλ,T for a general positive constant depending on
λ and T but independent of ε. Then, we see by (6.7) and ε6α ≤ 1 that∫ T

0
∥vε(t)∥2H1(Γ) dt+

∫ T

0
∥vε(t)∥4L4(Γ) dt ≤ cλ,T

(
∥vε0∥2L2(Γ) + 1

)
.(6.11)

For ζ ∈ ZT (Γ), we substitute g−1ζ for the test function of (6.5). Then, by

∇Γ(g
−1ζ) =

(
Di(gζj)

)
i,j

=
(
−g−2(Dig)ζj + g−1Diζj

)
i,j

and by g ∈ C1(Γ), (2.12), and Hölder’s inequality, we find that∣∣∣∣∫ T

0
⟨∂tvε(t), ζ(t)⟩(H1∩L4)(Γ) dt

∣∣∣∣ ≤ cQ(vε, ζ;T ) + |Rε(ζ;T )|,

where

Q(vε, ζ;T ) = ∥∇Γv
ε∥L2(0,T ;L2(Γ))∥ζ∥L2(0,T ;H1(Γ)) + λ∥vε∥3L4(0,T ;L4(Γ)∥ζ∥L4(0,T ;L4(Γ))

+ λ∥vε∥L2(0,T ;L2(Γ))∥ζ∥L2(0,T ;L2(Γ)).

Since (6.11) holds and the norms of ζ are bounded by ∥ζ∥ZT (Γ), we have

Q(vε, ζ;T ) ≤ cλ,T

(
∥vε0∥L2(Γ) + ∥vε0∥

3/2
L2(Γ)

+ 1
)
∥ζ∥ZT (Γ).

Moreover, |Rε(ζ;T )| ≤ cλ,T ∥ζ∥ZT (Γ) by (6.6) and ε3α ≤ 1. Hence,∣∣∣∣∫ T

0
⟨∂tvε(t), ζ(t)⟩(H1∩L4)(Γ) dt

∣∣∣∣ ≤ cλ,T

(
∥vε0∥L2(Γ) + ∥vε0∥

3/2
L2(Γ)

+ 1
)
∥ζ∥ZT (Γ)

for all ζ ∈ ZT (Γ), which implies (6.10). □

6.3. Weak convergence and characterization of the limit. Based on the results in
the previous subsections, we prove Theorem 1.1.

Proof of Theorem 1.1. Suppose that uε0 ∈ L∞(Ωε)
N and the conditions (a) and (b) in

Theorem 1.1 are satisfied. Then, for each ε ∈ (0, ε0), there exists a unique global weak
solution uε to (1.2) by Theorem 4.5. Moreover, we have (6.2) and (6.3) by Lemma 6.1,
and thus we can use the results given in Sections 6.1–6.2. Let

vε = Mεu
ε on Γ× [0,∞), vε0 = Mεu

ε
0 on Γ.

Then, {vε0}ε is bounded in L2(Γ)N by the condition (b). Hence, for each fixed T > 0, we
see by (6.7) with ε6α ≤ 1 and by (6.10) that {vε}ε is bounded in the space ET (Γ) given by
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(3.5) (note that λ > 0 is independent of ε). By this fact, there exists a sequence {εk}∞k=1
in (0, ε0) with εk → 0 and some vT ∈ ET (Γ) such that vεk → vT weakly in ET (Γ), i.e.

lim
k→∞

vεk = vT weakly in ZT (Γ),

lim
k→∞

∂tv
εk = ∂tvT weakly in [ZT (Γ)]

′.
(6.12)

Moreover, since the embedding ET (Γ) ↪→ L2(0, T ;L2(Γ)N ) is compact by Lemma 3.5, we
may assume, by taking a subsequence again, that

lim
k→∞

vεk = vT strongly in L2(0, T ;L2(Γ)N ),

and in particular, vεk → vT a.e. on Γ× (0, T ) and thus

lim
k→∞

|vεk |2vεk = |vT |2vT a.e. on Γ× (0, T ).

We also observe by the boundedness of {vε}ε in ET (Γ) that the norm

∥ |vεk |2vεk∥L4/3(0,T ;L4/3(Γ)) = ∥vεk∥3L4(0,T ;L4(Γ))

is bounded uniformly with respect to εk. Hence, we can apply Lemma 3.8 to get

lim
k→∞

|vεk |2vεk = |vT |2vT weakly in L4/3(0, T ;L4/3(Γ)N ).(6.13)

Let us show that vT satisfies (4.5). For each ζ ∈ ZT (Γ), we have

(6.14)

∫ T

0
⟨∂tvεk(t), gζ(t)⟩(H1∩L4)(Γ) dt+

∫ T

0

(
g∇Γv

εk(t),∇Γζ(t)
)
L2(Γ)

dt

+ λ

∫ T

0

(
g(|vεk(t)|2 − 1)vεk(t), ζ(t)

)
L2(Γ)

dt = Rεk(ζ;T )

by (6.5). Let εk → 0 in this equality. Then,

lim
k→∞

∫ T

0
⟨∂tvεk(t), gζ(t)⟩(H1∩L4)(Γ) dt =

∫ T

0
⟨∂tvT (t), gζ(t)⟩(H1∩L4)(Γ) dt,

lim
k→∞

∫ T

0

(
g∇Γv

εk(t),∇Γζ(t)
)
L2(Γ)

dt =

∫ T

0

(
g∇ΓvT (t),∇Γζ(t)

)
L2(Γ)

dt,

lim
k→∞

λ

∫ T

0

(
gvεk(t), ζ(t)

)
L2(Γ)

dt = λ

∫ T

0

(
gvT (t), ζ(t)

)
L2(Γ)

dt

by (6.12). Moreover, we see by (6.13) that

lim
k→∞

λ

∫ T

0

(
g|vεk(t)|2vεk(t), ζ(t)

)
L2(Γ)

dt = λ

∫ T

0

(
g|vT (t)|2vT (t), ζ(t)

)
L2(Γ)

dt.

In the above, we also used the fact that g satisfies (2.12). We also have

|Rεk(ζ;T )| ≤ cε3αk aλ(T )∥ζ∥L2(0,T ;H1(Γ)) → 0 as εk → 0(6.15)

by (6.6). Hence, letting εk → 0 in (6.14), we find that vT satisfies (4.5).
Next, we verify the initial condition. For ζ0 ∈ C1(Γ), let

ζ(t) = (1− t/T )ζ0 ∈ C1([0, T ]; (H1 ∩ L4)(Γ)N ) ⊂ ET (Γ).

We take this ζ in (6.14) and carry out integration by parts with respect to time by using
(3.6). Then, by ζ(0) = ζ0 and ζ(T ) = 0, we have

−(vεk(0), gζ0)L2(Γ) + I(vεk) = Rεk(ζ;T ),
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where I(w) for w ∈ ET (Γ) is given by

I(w) = −
∫ T

0

(
gw(t), ∂tζ(t)

)
L2(Γ)

dt+

∫ T

0

(
g∇Γw(t),∇Γζ(t)

)
L2(Γ)

dt

+ λ

∫ T

0

(
g(|w(t)|2 − 1)w(t), ζ(t)

)
L2(Γ)

dt.

We send εk → 0, use vεk(0) = vεk0 → v0 weakly in L2(Γ)N by the condition (b) of Theorem
1.1, and apply (6.12), (6.13), and (6.15). Then, we find that

−(v0, gζ0)L2(Γ) + I(vT ) = 0.

On the other hand, since vT satisfies (4.5), we take the above ζ and use (3.6) to get

−(vT (0), gζ0)L2(Γ) + I(vT ) = 0.

Comparing the above two equalities, we obtain

(v0, gζ0)L2(Γ) = (vT (0), gζ0)L2(Γ) for all ζ0 ∈ C1(Γ).

This gives vT (0) = v0 in L2(Γ)N , since C1(Γ) is dense in L2(Γ) and g satisfies (2.12). By
the above results, we conclude that vT is a unique weak solution to (1.3) on [0, T ) with
initial data v0. Here, the uniqueness follows from Lemma 4.10.

By the above arguments, we can also prove the following statement: for any sequence
{εℓ}∞ℓ=1 in (0, ε0) with εℓ → 0, the sequence {vεℓ}∞ℓ=1 has a subsequence that converges
to the same vT weakly in ET (Γ). This shows that the full sequence vε converges to vT
weakly in ET (Γ) as ε→ 0. In particular, we have

lim
ε→0

vε = lim
ε→0

Mεu
ε = vT weakly in ZT (Γ)(6.16)

as stated in Theorem 1.1 (recall the definition (3.3) of ZT (Γ)).
Lastly, if T < T ′, then vT = vT ′ by the uniqueness of a weak solution to (1.3) on [0, T ).

Thus, setting v = vT on [0, T ) for each T > 0, we can define a function

v ∈ C([0,∞);L2(S)N ) ∩ L2
loc([0, T );H

1(S)N ) ∩ L4
loc([0,∞);L4(S)N ),

and we find that (6.16) holds with vT replaced by v for all T > 0 and that v is a unique
global weak solution to (1.3) with initial data v0. □

6.4. Difference estimate on the surface. Using the weak forms (4.5) and (6.5), we
derive the difference estimate of Mεu

ε and v stated in Theorem 1.2.

Proof of Theorem 1.2. Under the assumptions of Theorem 1.1, let uε and v be unique
global weak solutions to (1.2) and (1.3), respectively. We set

vε = Mεu
ε, V ε = vε − v on Γ× [0,∞),

vε0 = Mεu
ε
0, V ε

0 = vε0 − v0 on Γ.

Then, for each fixed T > 0, it follows form Definition 4.7 and Lemma 6.2 that

V ε ∈ ET (Γ) ⊂ C([0, T ];L2(Γ)N ), V ε(0) = V ε
0 in L2(Γ)N .

Moreover, for each t ∈ [0, T ] and ζ ∈ Zt(Γ), we subtract (4.5) from (6.5) to get∫ t

0
⟨∂sV ε(s), gζ(s)⟩(H1∩L4)(Γ) ds+

∫ t

0

(
g∇ΓV

ε(s),∇Γζ(s)
)
L2(Γ)

ds

+ λ

∫ t

0

(
g{|vε(s)|2vε(s)− |v(s)|2v(s)}, ζ(s)

)
L2(Γ)

ds

= λ

∫ t

0

(
gV ε(s), ζ(s)

)
L2(Γ)

ds+Rε(ζ; t),
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where Rε(ζ; t) satisfies (6.6). Let ζ = V ε = vε − v. Then, by (3.6), (4.3), and λ > 0,

1

2
∥g1/2V ε(t)∥2L2(Γ) +

∫ t

0
∥g1/2∇ΓV

ε(s)∥2L2(Γ) ds

≤ 1

2
∥g1/2V ε

0 ∥2L2(Γ) + λ

∫ t

0
∥g1/2V ε(s)∥2L2(Γ) ds+ |Rε(V

ε; t)|

for all t ∈ [0, T ]. Based on this, we proceed as in the proof of Lemma 6.3 to get

max
t∈[0,T ]

∥V ε(t)∥2L2(Γ) +

∫ T

0
∥∇ΓV

ε(t)∥2L2(Γ) dt ≤ cec(1+λ)T
{
∥V ε

0 ∥2L2(Γ) + ε6α(1 + λ)2
}

which gives (1.4) (with a different constant c > 0). □

7. Difference estimate in the thin domain

In this section, we prove the difference estimate (1.5) in Ωε. Let Mε be the weighted
average operator, and let η̄ = η ◦ π be the constant extension of a function η on Γ in the
normal direction of Γ. We write c for a general positive constant independent of ε and λ.

As mentioned in Section 1, the difference estimate (1.4) on Γ does not give (1.5), since
the estimate for the difference of uε and Mεu

ε requires a higher order regularity of uε as
in (5.4). In particular, since we consider a weak solution uε to (1.2) which does not have
the H2-regularity, the estimate for the gradient in (1.5) cannot be obtained from (1.4). To
overcome this difficulty, we derive a weak form in Ωε satisfied by the constant extension v̄
of a weak solution v to (1.3) and apply an energy method in Ωε to uε − v̄.

Lemma 7.1. For a fixed T > 0, let v ∈ ET (Γ). Then, v̄ ∈ ET (Ωε) and∫ T

0
⟨∂tv̄(t), ψ(t)⟩(H1∩L4)(Ωε) dt = ε

∫ T

0
⟨∂tv(t), gMεψ(t)⟩(H1∩L4)(Γ) dt.(7.1)

Proof. It follows from (2.18) and (2.19) that v̄ ∈ ZT (Ωε).

Let ψ ∈ C1
c (0, T ; (H

1 ∩ L4)(Ωε)
N ). By (5.3), (5.11), and ε−1/4 ≤ ε−1/2, we have

Mεψ ∈ C1
c (0, T ; (H

1 ∩ L4)(Γ)N ), ∥Mεψ∥ZT (Γ) ≤ cε−1/2∥ψ∥ZT (Ωε).

Moreover, ∂tMεψ = Mε(∂tψ) since the definition (5.1) of Mε is independent of time.
Thus, noting that g is also independent of time, we see by (5.2) that

ε

∫ T

0
⟨∂tv(t), gMεψ(t)⟩(H1∩L4)(Γ) dt = −ε

∫ T

0

(
v(t), g∂tMεψ(t)

)
L2(Γ)

dt

= −ε
∫ T

0

(
v(t), g[Mε(∂tψ)](t)

)
L2(Γ)

dt

= −
∫ T

0

(
v̄(t), ∂tψ(t)

)
L2(Γ)

dt.

(7.2)

Using this equality and

∥gMεψ∥ZT (Γ) ≤ c∥Mεψ∥ZT (Γ) ≤ cε−1/2∥ψ∥ZT (Ωε)

by g ∈ C1(Γ), we find that, for all ψ ∈ C1
c (0, T ; (H

1 ∩ L4)(Ωε)
N ),∣∣∣∣∫ T

0

(
v̄(t), ψ(t)

)
L2(Γ)

dt

∣∣∣∣ ≤ cε1/2∥∂tv∥[ZT (Γ)]′∥ψ∥ZT (Ωε).

Hence, ∂tv̄ ∈ [ZT (Ωε)]
′ and v̄ ∈ ET (Ωε).

When ψ ∈ C1
c (0, T ; (H

1 ∩ L4)(Ωε)
N ), we have (7.1) by (7.2). Since this space is dense

in ZT (Ωε), it follows that (7.1) also holds for ψ ∈ ZT (Ωε). □
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Lemma 7.2. For T > 0 and v0 ∈ L2(Γ)N , let v be a weak solution to (1.3) on [0, T ).
Then, v̄ ∈ ET (Ωε) and v̄(0) = v̄0 in L2(Ωε)

N . Moreover,

(7.3)

∫ T

0
⟨∂tv̄, ψ(t)⟩(H1∩L4)(Ωε) dt+

∫ T

0

(
∇v̄(t),∇ψ(t)

)
L2(Ωε)

dt

+ λ

∫ T

0

(
(|v̄(t)|2 − 1)v̄(t), ψ(t)

)
L2(Ωε)

dt = Sε(ψ;T )

for all ψ ∈ ZT (Ωε). Here, Sε(ψ;T ) is linear in ψ and satisfies

|Sε(ψ;T )| ≤ cε3/2
∫ T

0
∥∇Γv(t)∥L2(Γ)∥ψ(t)∥H1(Ωε) dt,(7.4)

where c > 0 is a constant independent of ε, λ, and T .

Note that v̄ ∈ ET (Ωε) implies v̄ ∈ C([0, T ];L2(Ωε)
N ) by Lemma 3.3.

Proof. We have the regularity and initial condition of v̄ by those of v and Lemma 7.1.
Let ψ ∈ ZT (Ωε). We set ζ = Mεψ in (4.5) and multiply both sides by ε to get

ε

∫ T

0
⟨∂tv(t), gMεψ(t)⟩(H1∩L4)(Γ) dt+ ε

∫ T

0

(
g∇Γv(t),∇ΓMεψ(t)

)
L2(Γ)

dt

+ ελ

∫ T

0

(
g(|v(t)|2 − 1)v(t),Mεψ(t)

)
L2(Γ)

dt = 0.

To the first and third terms, we use (5.2) and “unfold” the weighted average. Then, we
find that (7.3) holds with residual term

Sε(ψ;T ) =

∫ T

0

(
∇v̄(t),∇ψ(t)

)
L2(Ωε)

dt− ε

∫ T

0

(
g∇Γv(t),∇ΓMε(t)

)
L2(Γ)

dt,

which is linear in ψ. Moreover, (7.4) follows from (5.13). □

Remark 7.3. In fact, we can also unfold the integral involving ∇ΓMεψ by using (5.9), but
we avoid to do that here since the estimate (7.4) is enough for our purpose.

Remark 7.4. Contrary to the averaging method (see Lemma 5.5), we can recover the cubic
term of (7.3) from that of (4.5) without any error by the unfolding method. This enables
us to remove the assumption uε0 ∈ L∞(Ωε)

N in Theorem 1.3.

Now, we are ready to prove the difference estimate (1.5) in Ωε.

Proof of Theorem 1.3. For uε0 ∈ L2(Ωε)
N and v0 ∈ L2(Γ)N , let uε and v be global weak

solutions to (1.2) and (1.3), respectively. We define

wε = uε − v̄ in Ωε × [0,∞), wε
0 = uε0 − v̄0 in Ωε.

For each fixed T > 0, it follows from Definition 4.1 and Lemma 7.2 that

wε ∈ ET (Ωε) ⊂ C([0, T ];L2(Ωε)
N ), wε(0) = wε

0 in Ωε.

Moreover, for each t ∈ [0, T ] and ψ ∈ Zt(Ωε), we subtract (7.3) from (4.1) to get∫ t

0
⟨∂twε(s), ψ(s)⟩(H1∩L4)(Ωε) ds+

∫ t

0

(
∇wε(s),∇ψ(s)

)
L2(Ωε)

ds

+ λ

∫ t

0

(
|uε(s)|2uε(s)− |v̄(s)|2v̄(s), ψ(s)

)
L2(Ωε)

ds

= λ

∫ t

0

(
wε(s), ψ(s)

)
L2(Ωε)

ds− Sε(ψ; t).
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We set ψ = wε = uε − v̄ and use (3.6), (4.3), and λ > 0. Then,

(7.5)
1

2
∥wε(t)∥2L2(Ωε)

+

∫ t

0
∥∇wε(s)∥2L2(Ωε)

ds

≤ 1

2
∥wε

0∥2L2(Ωε)
+ λ

∫ t

0
∥wε(s)∥2L2(Ωε)

ds+ |Sε(ψ; t)|.

Moreover, by (7.4), Young’s inequality, and (4.6),

|Sε(ψ; t)| ≤ cε3/2
∫ t

0
∥∇Γv(s)∥L2(Γ)∥wε(s)∥H1(Ωε) ds

≤ cε3
∫ t

0
∥∇Γv(s)∥2L2(Γ) ds+

1

2

∫ t

0
∥wε(s)∥2H1(Ωε)

ds

≤ cε3ecλt∥v0∥2L2(Γ) +
1

2

∫ t

0

(
∥wε(s)∥2L2(Ωε)

+ ∥∇wε(s)∥2L2(Ωε)

)
ds.

We apply this to (7.5), make the integral of ∇wε appearing in the right-hand side absorbed
into the left-hand side, and use ecλt ≤ ecλT for t ∈ [0, T ]. Then, we get

∥wε(t)∥2L2(Ωε)
+

∫ t

0
∥∇wε(s)∥2L2(Ωε)

ds

≤ c

(
∥wε

0∥2L2(Ωε)
+ ε3ecλT ∥v0∥2L2(Γ) + (1 + λ)

∫ t

0
∥wε(s)∥2L2(Ωε)

ds

)
for all t ∈ [0, T ]. Applying Gronwall’s inequality to this, we find that

max
t∈[0,T ]

∥wε(t)∥2L2(Ωε)
+

∫ T

0
∥∇wε(t)∥2L2(Ωε)

dt

≤ cec(1+λ)T
(
∥wε

0∥2L2(Ωε)
+ ε3ecλT ∥v0∥2L2(Γ)

)
.

Taking the square root of both sides, and using 1 ≤ ecλT ≤ ec(1+λ)T , we get

∥wε∥C([0,T ];L2(Ωε)) + ∥∇wε∥L2(0,T ;L2(Ωε)) ≤ cec(1+λ)T
(
∥wε

0∥L2(Ωε) + ε3/2∥v0∥L2(Γ)

)
.

Hence, we obtain (1.5) by dividing the above inequality by ε1/2. □

8. Outline of the Galerkin method

In this section, we give the outline of the proof of the existence of a global weak solution
to (1.2) by the Galerkin method. For the sake of simplicity, we use the following notations
and assumptions throughout this section:

• We suppress the parameter ε, since the explicit dependence on ε is not required.
For example, we write Ω, u, and u0 instead of Ωε, u

ε, and uε0.
• We only consider the scalar-valued case (N = 1), since the vector-valued case can
be shown in the same way.

• We abbreviate function spaces X (Ω) to X .

For the global existence of a weak solution, it is enough to show the local existence on any
finite time interval. Indeed, if uT and uT ′ are weak solutions to (1.2) on [0, T ) and [0, T ′)
with T < T ′, then uT = uT ′ on [0, T ) by the uniqueness of a weak solution (Lemma 4.4).
Hence, we can get a global weak solution u by setting u = uT on [0, T ) for all T > 0.

Let us give the outline of construction of a weak solution on [0, T ) with any fixed T > 0
by the Galerkin method.
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8.1. Basis functions. We first take basis functions of H1 ∩ L4 directly.

Lemma 8.1. There exists a countable subset {ϕℓ} of H1 ∩ L4 such that

(i) the subspace spanned by {ϕℓ}, i.e. the space

L({ϕℓ}) = {α1ϕ1 + · · ·+ αLϕL | L ∈ N, α1, . . . , αL ∈ R},

is dense in H1 ∩ L4, and
(ii) {ϕℓ} forms an orthonormal basis of L2.

Proof. The space H1∩L4 can be identified with {(u, ∂1u, . . . , ∂nu)T | u ∈ H1∩L4}, which
is a subspace of the separable space L4 × (L2)n. Hence, H1 ∩ L4 is also separable and
we can take a countable set {ψℓ} of linearly independent functions in H1 ∩ L4 such that
L({ψℓ}) is dense in H1 ∩ L4. Then, we easily find that L({ψℓ}) is also dense in L2, since
H1∩L4 is dense in L2 and ∥u∥L2 ≤ ∥u∥H1∩L4 for u ∈ H1∩L4. Hence, applying the Gram–
Schmidt orthonormalization in L2 to {ψℓ}, we can get a countable subset {ϕℓ} of H1 ∩L4

satisfying (i) and (ii) (note that L({ψℓ}) = L({ϕℓ}) by the construction of {ϕℓ}). □

For each L ∈ N, let PLu =
∑L

ℓ=1(u, ϕℓ)L2ϕℓ be the orthogonal projection from L2 onto
the subspace spanned by {ϕℓ}Lℓ=1. Note that PLu → u in L2 as L → ∞, but we cannot
say that the same convergence holds in H1 ∩ L4 even if u ∈ H1 ∩ L4, since the functions
ϕℓ are not the eigenfunctions of the Neumann Laplacian.

8.2. Approximate solutions and weak convergence. For each L ∈ N, we look for a
function of the form uL(t) =

∑L
ℓ=1 αℓ(t)ϕℓ which satisfies uL(0) = PLu0 and

(∂tuL(t), ϕℓ)L2 + (∇uL(t),∇ϕℓ)L2 + λ
(
(|uL(t)|2 − 1)uL(t), ϕℓ

)
L2 = 0, t ∈ (0, T )(8.1)

for all ℓ = 1, . . . , L. Note that the term (|uL(t)|2uL(t), ϕℓ)L2 makes sense, since

|(|uL(t)|2uL(t), ϕℓ)L2 | ≤ ∥uL(t)∥3L4∥ϕℓ∥L4

by Hölder’s inequality and by ϕℓ ∈ L4 and thus uL(t) ∈ L4.
Since {ϕℓ} is orthonormal in L2, this problem can be formulated as a system of ODEs

for α1(t), . . . , αL(t), which can be uniquely solved on some time interval by the Cauchy–
Lipschitz theorem. Moreover, multiplying (8.1) by αℓ(t), summing over ℓ = 1, . . . , L, and
integrating with respect to time, we can get the energy estimate

∥uL(t)∥2L2 + 2

∫ t

0
∥∇uL(s)∥2L2 ds+ 2λ

∫ t

0
∥uL(s)∥4L4 ds ≤ e2λt∥PLu0∥2L2(8.2)

as long as uL(t) exists, as in the proof of Lemma 4.3. This gives the uniform boundedness
of α1(t), . . . , αL(t) on [0, T ], so we can extend uL(t) to the whole time interval [0, T ].

Let ZT = ZT (Ω) be the function space given by (3.3) (recall that we suppress ε of Ωε).
We observe by (8.2) and ∥PLu0∥L2 ≤ ∥u0∥L2 that

∥uL∥ZT
= max{∥uL∥L2(0,T ;H1), ∥uL∥L4(0,T ;L4)} ≤ C.(8.3)

Here and in what follows, C denotes a general positive constant depending on λ, T , and
∥u0∥L2 but independent of L. Therefore, up to a subsequence, we have

lim
L→∞

uL = u weakly in ZT = L2(0, T ;H1) ∩ L4(0, T ;L4)(8.4)

with some u ∈ ZT . However, we cannot get a uniform estimate for ∂tuL in [ZT ]
′. Indeed,

to estimate ∂tuL, we need to take ψ ∈ H1 ∩L4, test PLψ by using (8.1), and estimate the
resulting equality in terms of ∥ψ∥H1 and ∥ψ∥L4 uniformly in L, but we do not have

∥∇PLψ∥H1 ≤ c∥ψ∥H1 , ∥PLψ∥L4 ≤ c∥ψ∥L4

with some constant c > 0 independent of L. Thus, Lemma 3.5 is not available here, which
was essential for the weak convergence of the cubic term in the proof of Theorem 1.1 (see
Section 6.3), and we need another approach to get the weak convergence of |uL|2uL.
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8.3. Strong convergence. To circumvent the above difficulty, we show the strong con-
vergence of {uL} by following the idea used in [25] and [20, Chapter V, Theorem 6.7].

Lemma 8.2. For each fixed k ∈ N, the sequence {(uL(t), ϕk)L2}∞L=k is uniformly bounded
and equicontinuous on [0, T ].

Proof. By Hölder’s inequality, ∥ϕk∥L2 = 1, and (8.2), we have

max
t∈[0,T ]

|(uL(t), ϕk)L2 | ≤ max
t∈[0,T ]

∥uL(t)∥L2 ≤ eλT ∥PLu0∥L2 ≤ eλT ∥u0∥L2 .

Thus, {(uL(t), ϕk)L2}∞L=k is uniformly bounded. Also, when L ≥ k and 0 ≤ s ≤ t ≤ T ,

(uL(t), ϕk)L2 − (uL(s), ϕk)L2 =

∫ t

s
(∂τuL(τ), ϕk)L2 dτ

= −
∫ t

s
(∇uL(τ),∇ϕk)L2 dτ − λ

∫ t

s

(
(|uL(t)|2 − 1)uL(t), ϕk

)
L2 dτ

by (8.1). Hence, by Hölder’s inequality in space and time, and by (8.3), we get

|(uL(t), ϕk)L2 − (uL(s), ϕk)L2 |

≤ C
{
(t− s)1/2∥∇ϕk∥L2 + λ(t− s)1/4∥ϕk∥L4 + λ(t− s)1/2∥ϕk∥L2

}
,

which shows that {(uL(t), ϕk)L2}∞L=k is equicontinuous on [0, T ]. □

Based on Lemma 8.2, we apply the Ascoli–Arzelá theorem and a diagonal argument to
take a subsequence of {uL}, which is again denoted by {uL}, such that {(uL(t), ϕk)L2}∞L=1
converges uniformly on [0, T ] for each k ∈ N. Then, we can show the strong convergence
of {uL} by using the following Friedrichs inequality.

Lemma 8.3. For each γ > 0, there exists an Nγ ∈ N such that

∥w∥2L2 ≤ (1 + γ)

Nγ∑
k=1

|(w, ϕk)L2 |2 + γ∥w∥2H1(8.5)

for all w ∈ H1 (note that Nγ does not depend on w).

Proof. The lemma can be shown by a contradiction argument and the compact embedding
H1 ↪→ L2. We refer to the proof of [20, Chapter II, Lemma 2.4] for details. □

For any γ > 0, let Nγ ∈ N be given in Lemma 8.3. We set w = uL(t)− uM (t) in (8.5)
and integrate the resulting inequality with respect to time. Then, we get∫ T

0
∥uL(t)− uM (t)∥2L2 dt

≤ (1 + γ)

Nγ∑
k=1

∫ T

0
|(uL(t)− uM (t), ϕk)L2 |2 dt+ γ

∫ T

0
∥uL(t)− uM (t)∥2H1 dt.

Let L,M → ∞ in this inequality. Then, the first term on the right-hand side converges
to zero, since {(uL(t), ϕk)L2}∞L=1 converges uniformly on [0, T ] for each k ∈ N and Nγ is
independent of L and M . Also, the last integral is bounded by (8.3). Hence,

lim sup
L,M→∞

∫ T

0
∥uL(t)− uM (t)∥2L2 dt ≤ Cγ for any γ > 0,

which shows that {uL} is Cauchy in L2(0, T ;L2) and thus converges strongly in the same
space. By this result, (8.4), and the uniqueness of a weak limit, we have uL → u strongly
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in L2(0, T ;L2) as L→ ∞ and thus, up to a subsequence, uL → u a.e. in Ω× (0, T ) (recall
that we suppress ε). Hence, |uL|2uL → |u|2u a.e. in Ω× (0, T ). Moreover,

∥ |uL|2uL∥L4/3(0,T ;L4/3) = ∥uL∥3L4(0,T ;L4) ≤ C

by (8.2). Therefore, we can apply Lemma 3.8 to get

lim
L→∞

|uL|2uL = |u|2u weakly in L4/3(0, T ;L4/3).(8.6)

8.4. Characterization of the limit. Let us show that u is a weak solution to (1.2) on
[0, T ). For each fixed ℓ ∈ N, let L ≥ ℓ. We multiply (8.1) by θ ∈ C1

c ([0, T )) and integrate
the resulting equality with respect to time. Then, by integration by parts,

−
∫ T

0
(uL(t), θ

′(t)ϕℓ)L2 dt+

∫ T

0
(∇uL(t), θ(t)∇ϕℓ)L2 dt

+ λ

∫ T

0

(
(|uL(t)|2 − 1)uL(t), θ(t)ϕℓ

)
L2 dt = (PLu0, θ(0)ϕℓ)L2 .

We send L→ ∞ and use (8.4), (8.6), and PLu0 → u0 in L2 to get

−
∫ T

0
(u(t), θ′(t)ϕℓ)L2 dt+

∫ T

0
(∇u(t), θ(t)∇ϕℓ)L2 dt

+ λ

∫ T

0

(
(|u(t)|2 − 1)u(t), θ(t)ϕℓ

)
L2 dt = (u0, θ(0)ϕℓ)L2

for all ℓ ∈ N. Hence, we have

(8.7)

∫ T

0

(
u(t), ∂tψ(t)

)
L2 dt+

∫ T

0

(
∇u(t),∇ψ(t)

)
L2 dt

+ λ

∫ T

0

(
(|u(t)|2 − 1)u(t), ψ(t)

)
L2 dt =

(
u0, ψ(0)

)
L2

for all ψ in the space (recall that L({ϕℓ}) = {
∑L

ℓ=1 αℓϕℓ | L ∈ N, αℓ ∈ R})

U = {
∑K

k=1 θk(t)wk | K ∈ N, θk ∈ C1
c ([0, T )), wk ∈ L({ϕℓ})}.

Let ψ ∈ C1
c ([0, T );H

1 ∩L4). Then, since L({ϕℓ}) is dense in H1 ∩L4, we can prove, as in
the proof of [25, Lemma 2.2], that there exist functions ψK ∈ U such that

lim
K→∞

∥ψ − ψK∥C([0,T ],H1∩L4) = lim
K→∞

∥∂tψ − ∂tψK∥L2(0,T ;H1∩L4) = 0.

Hence, (8.7) holds for the above ψ, since it is valid for each ψK ∈ U . In particular,∣∣∣∣∫ T

0

(
u(t), ∂tψ(t)

)
L2 dt

∣∣∣∣ ≤ C(u, λ, T )∥ψ∥ZT
,

C(u, λ, T ) = ∥∇u∥L2(0,T ;L2) + λ
(
∥u∥3L4(0,T ;L4) + ∥u∥L2(0,T ;L2)

)
for all ψ ∈ C1

c (0, T ;H
1 ∩ L4) by ψ(0) = 0 and Hölder’s inequality, which shows that

∂tu ∈ [ZT ]
′, u ∈ ET ⊂ C([0, T ];L2).

Here, ET = ET (Ω) is given by (3.5) and we used Lemma 3.3 (recall that we suppress ε).
Moreover, when ψ ∈ C1

c (0, T ;H
1 ∩ L4), we apply (3.6) to (8.7) to get

(8.8)

∫ T

0
⟨∂tu(t), ψ(t)⟩H1∩L4 dt+

∫ T

0

(
∇u(t),∇ψ(t)

)
L2 dt

+ λ

∫ T

0

(
(|u(t)|2 − 1)u(t), ψ(t)

)
L2 dt = 0.
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Since C1
c (0, T ;H

1 ∩ L4) is dense in ZT , it follows that (8.8) also holds for all ψ ∈ ZT .
It remains to verify the initial condition. Let θ ∈ C1

c ([0, T )) satisfy θ(0) = 1. For any
ψ0 ∈ C∞

c , we take ψ(t) = θ(t)ψ0 ∈ ZT in (8.8) and use (3.6) and ψ(0) = ψ0 to get

−
∫ T

0

(
u(t), ∂tψ(t)

)
L2 dt+

∫ T

0

(
∇u(t),∇ψ(t)

)
L2 dt

+ λ

∫ T

0

(
(|u(t)|2 − 1)u(t), ψ(t)

)
L2 dt = (u(0), ψ0)L2 .

By this equality and (8.7), we have (u(0), ψ0)L2 = (u0, ψ0)L2 for all ψ ∈ C∞
c . Since C∞

c is
dense in L2, we find that u(0) = u0 in L2 and u is a weak solution to (1.2) on [0, T ).

9. Proofs of auxiliary lemmas

This section gives the proofs of Lemmas 3.2, 3.6, 3.7.

Proof of Lemmas 3.2. As mentioned in Section 3.2, we omit the proof of (i), since it can
be shown by standard cut-off and mollification arguments.

Let us show (ii). In what follows, we suppress the domain S and the superscript N of
function spaces on S for the sake of simplicity. For example, we write ET and H1 ∩ L4

instead of ET (S) and (H1 ∩ L4)(S)N . We take a function θ ∈ C∞([0, T ]) such that

0 ≤ θ ≤ 1 on [0, T ], θ(t) =

{
1 (0 ≤ t ≤ T/3),

0 (2T/3 ≤ t ≤ T ).

Let u ∈ ET . We set u1 = θu and u2 = (1− θ)u. Clearly, u1, u2 ∈ ZT . Moreover,∫ T

0

(
u1(t), ∂tψ(t)

)
L2 dt =

∫ T

0

(
u(t), ∂t[θψ](t)

)
L2 dt−

∫ T

0

(
∂tθ(t)u(t), ψ(t)

)
L2 dt

= −
∫ T

0
⟨∂tu(t), [θψ](t)⟩H1∩L4 dt−

∫ T

0

(
∂tθ(t)u(t), ψ(t)

)
L2 dt

for each ψ ∈ C1
c (0, T ;H

1 ∩ L4), and thus, by θ ∈ C∞([0, T ]),∣∣∣∣∫ T

0

(
u1(t), ∂tψ(t)

)
L2 dt

∣∣∣∣ ≤ c
(
∥∂tu∥[ZT ]′ + ∥u∥L2(0,T ;L2)

)
∥ψ∥ZT

,

which shows ∂tu1 ∈ [ZT ]
′. Similarly, ∂tu2 ∈ [ZT ]

′, and we easily find that ∂tu = ∂tu1+∂tu2.
Hence, it is sufficient to approximate u1 and u2 separately in ET . In what follows, we only
give the approximation of u1, since u2 can be approximated in the same way. Moreover,
we rewrite u1 as u for the sake of simplicity.

Now, let u ∈ ET satisfy u(t) = 0 when 2T/3 ≤ t ≤ T . We extend u to (0, 2T ) by setting
u(t) = 0 for t ≥ T . Clearly, u ∈ Z2T . Moreover, we see that ∂tu ∈ [Z2T ]

′. Indeed, we take
a function Θ ∈ C∞([0, 2T ]) such that

0 ≤ Θ ≤ 1 on [0, 2T ], Θ(t) =

{
1 (0 ≤ t ≤ 3T/4)

0 (5T/6 ≤ t ≤ 2T ).

Let ψ ∈ C1
c (0, 2T ;H

1 ∩ L4). Since Θψ ∈ C1
c (0, T ;H

1 ∩ L4), and since u(t) = 0 for
t ∈ [2T/3, T ] and ∂tΘ(t) = 0 for t ∈ [0, 2T/3], it follows that∫ 2T

0

(
u(t), ∂tψ(t)

)
L2 dt =

∫ 2T/3

0

(
u(t), ∂tψ(t)

)
L2 dt =

∫ 2T/3

0

(
u(t), ∂t[Θψ](t)

)
L2 dt

=

∫ T

0

(
u(t), ∂t[Θψ](t)

)
L2 dt = −

∫ T

0
⟨∂tu(t), [Θψ](t)⟩H1∩L4 dt
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and thus, by ∂tu ∈ [ZT ]
′ and Θ ∈ C∞([0, 2T ]), we have∣∣∣∣∫ 2T

0

(
u(t), ∂tψ(t)

)
L2 dt

∣∣∣∣ ≤ ∥∂tu∥[ZT ]′∥Θψ∥ZT
≤ c∥∂tu∥[ZT ]′∥ψ∥Z2T

.

Therefore, ∂tu ∈ [Z2T ]
′, and we observe by (3.4) that ∂tu is of the form

∂tu = v1 + v2, v1 ∈ L2(0, 2T ; [H1]′), v2 ∈ L4/3(0, 2T ;L4/3).

Note that we do not know whether v1(t) = 0 and v2(t) = 0 for t ≥ T . Although we may
get ∂tu(t) = 0 for t ≥ T , it may be possible that v1(t) ̸= 0 and v2(t) = −v1(t). However,
this does not matter for the approximation of ∂tu on the shorter time interval (0, T ).

Let h ∈ (0, T/2). For t ∈ (−h, 2T − h), we set

uh(t) = u(t+ h), v1,h(t) = v1(t+ h), v2,h(t) = v2(t+ h).

Then, we easily observe that

uh ∈ L2(−h, 2T − h;H1) ∩ L4(−h, 2T − h;L4),

v1,h ∈ L2(−h, 2T − h; [H1]′), v2,h ∈ L4/3(−h, 2T − h;L4/3),

and ∂tuh = v1,h + v2,h on (−h, 2T − h). For τ ∈ (0, h/2), let

wh,τ (t) =

∫ ∞

−∞

1

τ
ρ

(
t− s

τ

)
wh(s) ds, t ∈ R, wh = uh, v1,h, v2,h

be the mollification of wh, where ρ is a standard 1D mollifier and wh is extended to R by
zero outside of (−h, 2T − h). Then, we have uh,τ ∈ C∞(R;H1 ∩ L4) and

∥u− uh,τ∥ZT
→ 0, ∥v1 − v1,h,τ∥L2(0,T ;[H1]′) → 0, ∥v2 − v2,h,τ∥L4/3(0,T ;L4/3) → 0(9.1)

as h, τ → 0 by the integrability of u, v1, and v2. Moreover, since [0, T ] ⊂ (−h, 2T − h) by
h ∈ (0, T/2), we can show that ∂tuh,τ = v1,h,τ + v2,h,τ on (0, T ) in a standard manner by
testing functions supported in (0, T ) and using Fubini’s theorem. Hence,

∂tu− ∂tuh,τ = (v1 − v1,h,τ ) + (v2 − v2,h,τ ) on (0, T ),

v1 − v1,h,τ ∈ L2(0, T ; [H1]′), v2 − v2,h,τ ∈ L4/3(0, T ;L4/3).

Now, we recall that [ZT ]
′ is of the form (3.4) and the norm ∥ · ∥X0+X1 is given by (3.1) for

Banach spaces X0 and X1. Hence, it follows from (9.1) that

∥∂tu− ∂tuh,τ∥[ZT ]′ ≤ ∥v1 − v1,h,τ∥L2(0,T ;[H1]′) + ∥v2 − v2,h,τ∥L4/3(0,T ;L4/3) → 0

as h, τ → 0. By this result and (9.1), we find that uh,τ → u in ET as h, τ → 0. Therefore,
the statement (ii) of Lemma 3.2 follows. □

To prove Lemmas 3.6 and 3.7, we prepare auxiliary functions.

Lemma 9.1. Let C0, γ > 0 be constants. For z ∈ R, we define

λγ(z) =

{
0 if z ≤ C0,√

(z − C0)2 + γ2 − γ if z ≥ C0,
Λγ(z) =

λγ(z)

z
.(9.2)

Then, λγ ,Λγ ∈ C1(R) and

|λγ(z)| ≤ |z|, |Λγ(z)| ≤ 1, lim
γ→0

λγ(z) = (z − C0)+, lim
γ→0

Λγ(z) =
(z − C0)+

z
(9.3)

for all z ∈ R. Moreover, for all z ∈ R,
|λ′γ(z)| ≤ χ(C0,∞)(z), lim

γ→0
λ′γ(z) = χ(C0,∞)(z),

|Λ′
γ(z)| ≤ χ(C0,∞)(z)

2

z
, lim

γ→0
Λ′
γ(z) = χ(C0,∞)(z)

C0

z2
.

(9.4)
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Here and in what follows, χI(z) denotes the characteristic function of I ⊂ R.

Proof. We have (9.3) by direct calculations, z − C0 ≤ z, and

0 ≤
√
ξ2 + γ2 − γ =

ξ2√
ξ2 + γ2 + γ

≤ |ξ|, ξ ∈ R.(9.5)

Also, it is easy to observe (with a few discussions when z = C0) that

λ′γ(z) = χ(C0,∞)(z)
z − C0√

(z − C0)2 + γ2
, Λ′(z) =

λ′γ(z)

z
− λγ(z)

z2

for all z ∈ R. Hence, λγ ,Λγ ∈ C1(R) and (9.4) follows. □

Lemma 9.2. Let C0, γ > 0 be constants such that 2γ ≤ C0. For a ∈ RN , we define

σγ(a) =
√

|a|2 + γ2 − γ, Fγ(a) = Λγ

(
σγ(a)

)
a.(9.6)

where Λγ is given by (9.2). Then, σγ ∈ C1(RN ), Fγ ∈ C1(RN )N , and

|σγ(a)| ≤ |a|, |Fγ(a)| ≤ |a|, lim
γ→0

σγ(a) = |a|, lim
γ→0

Fγ(a) =
(|a| − C0)+

|a|
a(9.7)

for all a ∈ RN . Moreover, for all a ∈ RN and k = 1, . . . , N ,∣∣∣∣∂σγ∂ak
(a)

∣∣∣∣ ≤ 1, lim
γ→0

∂σγ
∂ak

(a) =

{
ak/|a| if a ̸= 0,

0 if a = 0.
(9.8)

Also, the j-th component Fγ,j(a) = Λγ

(
σγ(a)

)
aj satisfies∣∣∣∣∂Fγ,j

∂ak
(a)

∣∣∣∣ ≤ 5, lim
γ→0

∂Fγ,j

∂ak
(a) =

(|a| − C0)+
|a|

δjk + χ(C0,∞)(|a|)
C0ajak
|a|3

(9.9)

for all a ∈ RN and j, k = 1, . . . , N , where δjk is the Kronecker delta.

Proof. We have (9.7) by direct calculations, (9.3), and (9.5). Also,

∂σγ
∂ak

(a) =
ak√

|a|2 + γ2
,

∂Fγ,j

∂ak
(a) = Λγ

(
σγ(a)

)
δjk + Λ′

γ

(
σγ(a)

)∂σγ
∂ak

(a)aj .

By these expressions and (9.3), (9.4), and (9.7), we find that (9.8) and the second relation
of (9.9) are valid. To get the first relation of (9.9), we see that∣∣∣∣∂Fγ,j

∂ak
(a)

∣∣∣∣ ≤ 1 + χ(C0,∞)

(
σγ(a)

) 2

σγ(a)
|aj |(9.10)

by (9.3), (9.4), and (9.8). Moreover, since σγ(a) ≤ |a| and 2γ ≤ C0,

χ(C0,∞)

(
σγ(a)

)
≤ χ(C0,∞)(|a|) ≤ χ(2γ,∞)(|a|).

We also observe that σγ(a) ≥ |a| − γ ≥ |a|/2 if |a| ≥ 2γ. Hence,

χ(C0,∞)

(
σγ(a)

) 1

σγ(a)
≤ χ(2γ,∞)(|a|)

1

σγ(a)
≤ χ(2γ,∞)(|a|)

2

|a|
.

We apply this to (9.10) and use |aj |/|a| ≤ 1 to get the first relation of (9.9). □

Now, let us give the proofs of Lemmas 3.6 and 3.7.

Proof of Lemma 3.6. Let C0 > 0 be a constant. We take a small γ > 0 such that 2γ ≤ C0,
and define the mappings F and Fγ by (3.8) and (9.6), respectively.

Let u ∈ H1(Ωε)
N . For i = 1, . . . , n and j = 1, . . . , N , we set

Gi,j(u) =
(|u| − C0)+

|u|
∂uj
∂xi

+

N∑
k=1

χ(C0,∞)(|u|)
C0ujuk
|u|3

∂uk
∂xi

in Ωε.



36 T.-H. MIURA

Note that Gi,j(u) ∈ L2(Ωε) by |Gi,j(u)| ≤ c|∇u| with some constant c > 0.
Since Fγ ∈ C1(RN )N and the inequalities in (9.7) and (9.9) hold, we can show that

Fγ(u) ∈ H1(Ωε)
N ,

∂

∂xi

(
Fγ,j(u)

)
=

N∑
k=1

∂Fγ,j

∂ak
(u)

∂uk
∂xi

a.e. in Ωε

as in the proof of [16, Lemma 7.5]. Moreover, by (9.7) and (9.9), we have

lim
γ→0

Fγ(u) = F (u), lim
γ→0

∂

∂xi

(
Fγ,j(u)

)
= Gi,j(u) a.e. in Ωε.

It also follows from (9.7), (9.9), and direct calculations that

|Fγ(u)− F (u)| ≤ |Fγ(u)|+ |F (u)| ≤ 2|u|,∣∣∣∣ ∂∂xi
(
Fγ,j(u)

)
−Gi,j(u)

∣∣∣∣ ≤ ∣∣∣∣ ∂∂xi
(
Fγ,j(u)

)∣∣∣∣+ |Gi,j(u)| ≤ c|∇u|

a.e. in Ωε, where c > 0 is a constant independent of γ. Since |u|, |∇u| ∈ L2(Ωε), we can
apply the dominated convergence theorem to deduce that

lim
γ→0

∥Fγ(u)− F (u)∥L2(Ωε) = lim
γ→0

∥∥∥∥ ∂

∂xi

(
Fγ,j(u)

)
−Gi,j(u)

∥∥∥∥
L2(Ωε)

= 0.

Therefore, letting γ → 0 in∫
Ωε

Fγ,j(u)
∂φ

∂xi
dx = −

∫
Ωε

φ
∂

∂xi

(
Fγ,j(u)

)
dx, φ ∈ C∞

c (Ωε),

we find that F (u) ∈ H1(Ωε)
N and (3.9) holds. □

Proof of Lemma 3.7. Let C0 > 0 be a constant and F be given by (3.8). Also, let Fj be
the j-th component of F for j = 1, . . . , N . If u ∈ ZT (Ωε), then F (u) ∈ ZT (Ωε) since

|F (u)| ≤ |u|,
∣∣∣∣ ∂∂xi

(
Fj(u)

)∣∣∣∣ ≤ c|∇u| a.e. in Ωε × (0, T )

for i = 1, . . . , n and j = 1, . . . , N by (3.9).
Next, let u ∈ ET (Ωε). To get (3.10), it is sufficient to prove that

−1

2

∫ T

0
θ′(t)∥(|u(t)| − C0)+∥2L2(Ωε)

dt =

∫ T

0
θ(t)

〈
∂tu(t), F

(
u(t)

)〉
(H1∩L4)(Ωε)

dt(9.11)

for all θ ∈ C∞
c (0, T ). Let us show (9.11) in three steps. We write

Qε,T = Ωε × (0, T ), Qε,T = Ωε × [0, T ]

in the rest of the proof for the sake of simplicity.
Step 1: for u ∈ C∞(Qε,T )

N , we show that

−1

2

∫ T

0
θ′(t)∥(|u(t)| − C0)+∥2L2(Ωε)

dt =

∫ T

0
θ(t)

(
∂tu(t), F

(
u(t)

))
L2(Ωε)

dt.(9.12)

Let γ > 0 satisfy 2γ ≤ C0, and let λγ and σγ be given by (9.2) and (9.6), respectively.
Since λγ ◦ σγ ◦ u is of class C1, we can differentiate it pointwisely to get

1

2

∂

∂t

({
[λγ ◦ σγ ]

(
u(t)

)}2)
= [λγ ◦ σγ ]

(
u(t)

)
[λ′γ ◦ σγ ]

(
u(t)

) N∑
k=1

∂σγ
∂ak

(
u(t)

)∂uk
∂t

(t)

=
[λγ ◦ σγ ]

(
u(t)

)
[λ′γ ◦ σγ ]

(
u(t)

)√
|u(t)|2 + γ2

u(t) · ∂u
∂t

(t)

= F̃γ

(
u(t)

)
· ∂u
∂t

(t)
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in Qε,T , where

F̃γ(a) =
[λγ ◦ σγ ](a)[λ′γ ◦ σγ ](a)√

|a|2 + γ2
a, a ∈ RN .

We multiply the above equality by θ ∈ C∞
c (0, T ) and integrate both sides over Qε,T . Then,

after integration by parts with respect to time, we have

−1

2

∫ T

0
θ′(t)

∥∥[λγ ◦ σγ ](u(t))∥∥2L2(Ωε)
dt =

∫ T

0
θ(t)

(
∂tu(t), F̃γ

(
u(t)

))
L2(Ωε)

dt.(9.13)

Let γ → 0 in this equality. Then, by (9.3), (9.4), and (9.7), we have

lim
γ→0

[λγ ◦ σγ ](u) = (|u| − C0)+, lim
γ→0

F̃γ(u) = F (u),

and |[λγ ◦ σγ ](u)| ≤ |u| and |F̃γ(u)| ≤ |u| in Qε,T , where we also used

χ(C0,∞)(z)(z − C0)+ = (z − C0)+, 0 ≤ χ(C0,∞)(z) ≤ 1, z ∈ R.

Hence, noting that u ∈ C∞(Qε,T )
N and θ ∈ C∞

c (0, T ), we can apply the dominated
convergence theorem to (9.13) to find that (9.12) holds.

Step 2: for u ∈ C∞([0, T ]; (H1 ∩L4)(Ωε)
N ), we prove (9.11). Since u is of class H1 on

the space-time domain Qε,T with Lipschitz boundary, there exist functions

uk ∈ C∞(Qε,T )
N such that lim

k→∞
∥u− uk∥H1(Qε,T ) = 0.(9.14)

Then, since uk → u strongly in L2(Qε,T )
N , we can take a subsequence of {uk}, which is

again denoted by {uk}, and a function f ∈ L2(Qε,T ) such that

|uk| ≤ f, lim
k→∞

uk = u a.e. in Qε,T ,

as in the proof of the completeness of L2. Hence,

lim
k→∞

(|uk| − C0)+ = (|u| − C0)+, lim
k→∞

F (uk) = F (u) a.e. in Qε,T .

Moreover, since 0 ≤ (z − C0)+ ≤ |z| for z ∈ R, we have

|(|uk| − C0)+ − (|u| − C0)+| ≤ (|uk| − C0)+ + (|u| − C0)+ ≤ |uk|+ |u| ≤ f + |u|,
|F (uk)− F (u)| ≤ |F (uk)|+ |F (u)| ≤ |uk|+ |u| ≤ f + |u| a.e. in Qε,T ,

where f, |u| ∈ L2(Qε,T ). Hence, by the dominated convergence theorem,

lim
k→∞

(|uk| − C0)+ = (|u| − C0)+ strongly in L2(Qε,T ),

lim
k→∞

F (uk) = F (u) strongly in L2(Qε,T )
N .

(9.15)

Also, each uk satisfies (9.12) by Step 1. Hence, we send k → ∞ in that equality and apply
(9.14) and (9.15) to find that (9.12) also holds for u (note that (9.14) includes the strong
convergence of ∂tuk). Moreover, since(

∂tu(t), F
(
u(t)

))
L2(Ωε)

=
〈
∂tu(t), F

(
u(t)

)〉
(H1∩L4)(Ωε)

, t ∈ [0, T ]

by u ∈ C∞([0, T ]; (H1 ∩ L4)(Ωε)
N ), it follows that (9.11) holds for this u.

Step 3: let u ∈ ET (Ωε). By Lemma 3.2, (ii), there exist functions

wk ∈ C∞([0, T ]; (H1 ∩ L4)(Ωε)
N ) such that lim

k→∞
∥u− wk∥ET (Ωε) = 0.(9.16)

Recall that ∥u∥ET (Ωε) = ∥u∥ZT (Ωε) + ∥∂tu∥[ZT (Ωε)]′ and

ZT (Ωε) = L2(0, T ;H1(Ωε)
N ) ∩ L4(0, T ;L4(Ωε)

N ).
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Hence, by a diagonal argument and discussions as in the proof of the completeness of Lp,
we can take a subsequence of {wk}, which is again denoted by {wk}, and functions

f1 ∈ L4(Qε,T ) ⊂ L2(Qε,T ), f2 ∈ L2(Qε,T )

(note that Qε,T = Ωε × (0, T ) is bounded) such that

|wk| ≤ f1, |∇wk| ≤ f2, lim
k→∞

wk = u, lim
k→∞

∂wk

∂xi
=

∂u

∂xi
a.e. in Qε,T(9.17)

for i = 1, . . . , n. Using these relations, we can show that

lim
k→∞

(|wk| − C0)+ = (|u| − C0)+ strongly in L2(Qε,T ),

lim
k→∞

F (wk) = F (u) strongly in L4(Qε,T )
N

(9.18)

as in Step 2. Let i = 1, . . . , n and j = 1, . . . , N . We would like to show

lim
k→∞

∂

∂xi

(
Fj(wk)

)
=

∂

∂xi

(
Fj(u)

)
strongly in L2(Qε,T ),

but this is not possible since the convergence a.e. in Qε,T does not necessarily hold because
of the discontinuity of the characteristic function χ(C0,∞) appearing in (3.9). Instead, we
can get the weak convergence. Indeed, by the second convergence of (9.18) and integration
by parts, we see that

lim
k→∞

(
∂

∂xi

(
Fj(wk)

)
, φ

)
L2(Qε,T )

=

(
∂

∂xi

(
Fj(u)

)
, φ

)
L2(Qε,T )

(9.19)

for all φ ∈ C∞
c (Qε,T ). Note that Qε,T = Ωε × (0, T ) and that (3.9) is not used here. Since

C∞
c (Qε,T ) is dense in L2(Qε,T ), and since∥∥∥∥ ∂

∂xi

(
Fj(wk)

)∥∥∥∥
L2(Qε,T )

≤ c∥∇wk∥L2(Qε,T ) ≤ c∥f2∥L2(Qε,T )

by (3.9) and (9.17), where the last term is independent of k, we can get

lim
k→∞

∂

∂xi

(
Fj(wk)

)
=

∂

∂xi

(
Fj(u)

)
weakly in L2(Qε,T )

by (9.19) for φ ∈ C∞
c (Qε,T ) and a density argument. By this result, the second convergence

of (9.18), and L4(Qε,T ) ↪→ L2(Qε,T ), we find that

lim
k→∞

F (wk) = F (u) weakly in ZT (Ωε).(9.20)

Now, since each wk satisfies (9.11) by Step 2, we send k → ∞ in that equality and apply
(9.16), (9.18), and (9.20). Then, we find that (9.11) holds for u ∈ ET (Ωε) (note that (9.16)
includes the strong convergence of ∂twk). □
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