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Abstract

Unsupervised domain adaptation (UDA) is a challeng-
ing open problem in land cover mapping. Previous stud-
ies show encouraging progress in addressing cross-domain
distribution shifts on remote sensing benchmarks for land
cover mapping. The existing works are mainly built on large
neural network architectures, which makes them resource-
hungry systems, limiting their practical impact for many
real-world applications in resource-constrained environ-
ments. Thus, we proposed a simple yet effective frame-
work to search for lightweight neural networks automat-
ically for land cover mapping tasks under domain shifts.
This is achieved by integrating Markov random field neu-
ral architecture search (MRF-NAS) into a self-training UDA
framework to search for efficient and effective networks un-
der a limited computation budget. This is the first attempt
to combine NAS with self-training UDA as a single frame-
work for land cover mapping. We also investigate two dif-
ferent pseudo-labelling approaches (confidence-based and
energy-based) in self-training scheme. Experimental re-
sults on two recent datasets (OpenEarthMap & FLAIR #1)
for remote sensing UDA demonstrate a satisfactory per-
formance. With only less than 2M parameters and 30.16
G FLOPs, the best-discovered lightweight network reaches
state-of-the-art performance on the regional target domain
of OpenEarthMap (59.38% mIoU) and the considered tar-
get domain of FLAIR #1 (51.19% mIoU). The code is at
https://github.com/cliffbb/UDA-NAS.

1. Introduction

Land cover mapping with very high-resolution optical
(VHR) remote sensing (RS) imagery provides detailed in-
formation about the Earth’s surface for applications such
as environmental monitoring [12, 70], urban planning [23],
disaster response and damage assessment [1, 64], and pre-
cision agriculture [50]. With supervised learning methods

Figure 1. Self-training UDA with MRF-NAS process. The super-
net can be any neural network. After the search, i.e., learning pair-
wise factors in MRF of the student supernet Gθ

stud, m optimal sub-
nets (lightweight networks) are inference over the learned factors
via diverse M-best loopy inference [45]. Then, we retrained the
discovered lightweight networks. Ls and Lt are cross-entropy loss
functions for the source labelled data and target pseudo-labelled
data, respectively. The teacher supernet Gθ

teach is only used to
generate pseudo-labels for the target images to train Gθ

stud, in ad-
dition to the source labelled data. See Section 3 for more details.

[47], land cover mapping can be fulfilled automatically by
semantic categorization of each pixel in a remotely-sensed
optical image. Supervised learning methods assume that
the training data and test data have the same distribution,
which might not be possible in real-world land cover map-
ping tasks since the varying geographical regions present
vastly different land features with different distributions (re-
ferred to as domain-shift) [46]. Thus, well-trained classi-
fiers, for example, deep neural networks, perform poorly on
the test data (target domain) that is different from the train-
ing data (source domain) distribution [4].

Annotating a large dataset of a new geographical region
(new domain) for supervised learning is costly and time-
consuming [18, 65]. Researchers in the RS community
have explored unsupervised domain adaptation (UDA) tech-
niques [67] to adapt neural networks trained on labelled data
in one domain (source domain) to a new domain (target do-
main), which only has unlabelled data. While successful
progress has been made in the traditional UDA for land
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cover mapping [30, 33, 52], lightweight UDA remains a
challenge and under-investigated. The existing UDA meth-
ods for land cover mapping rely on handcrafted large neural
network architectures [8, 10, 24], which may not be prac-
tically suitable for real-world applications across a wide
range of resource-constrained platforms such as nanosatel-
lites (CubeSat) [15], drones [42], and mobile devices [40].

Marsocci et al., [38] recently proposed GeoMulti-
TaskNet with 33M parameters to address the lightweight
network challenge in UDA land cover mapping tasks. The
size of GeoMultiTaskNet might not fit a wide range of en-
vironments where computation resources are limited. Thus,
it is important to develop lightweight networks for UDA
land cover mapping tasks. This will provide an opportu-
nity for a practical land cover mapping domain adaptation
deployment in resource-constrained environments. Doing
this manually is a daunting exercise, especially, since the
optimal networks can be data-dependent across different
geographical regions and scenes. Thus, we turn to auto-
mated neural architecture search (NAS) [17] to automati-
cally search for lightweight networks with different compu-
tation budgets for resource-constrained platforms in UDA
land cover mapping tasks. In computer vision, there are
some studies on NAS for UDA, but most of the stud-
ies have been performed in UDA for image classification
[11, 29, 41, 48, 51, 72]. The challenging UDA for semantic
segmentation [16] is barely investigated. On the other hand,
NAS for UDA in RS remains unexplored.

To this end, in this paper, we explore lightweight NAS
for UDA land cover mapping on two new RS bench-
marks, OpenEarthMap [65] and FLAIR #1 [18] datastes,
which have been properly curated for UDA tasks in land
cover mapping. Specifically, we extend Markov random
fields neural architecture search (MRF-NAS) [62] to a UDA
scheme to learn a single neural network, called super-
net, using both source domain labelled data and target do-
main unlabelled data, and inference over the learnt super-
net to find subnets (lightweight networks) for resource-
constrained platforms. Adapting NAS into UDA is chal-
lenging as the target domain has only unlabelled data [48].
Just searching and building networks, and then applying
the networks for domain adaptation might not be effective
[11, 16]. It requires different training configurations for
the weights and architecture adaptation [41]. Therefore,
we propose self-training UDA-NAS framework of which
the workflow process is shown in Figure 1. Self-training
UDA employs a teacher network to produce pseudo-labels
for a target domain. Applying pseudo-labelling naively in
UDA can lead to training difficulty for a network to learn
the hard-to-predict classes [77]. For this reason, in addi-
tion to confidence-based pseudo-labelling, which is com-
monly used in self-training UDA [20, 56, 73], we also in-
vestigate energy-based pseudo-labelling technique [69] for

self-training in the context of UDA-NAS.
The key contributions of this paper are summarised as

follows. We propose a self-training UDA-NAS framework,
which extends MRF-NAS to a UDA scheme, to search for
lightweight networks for land cover mapping that has been
beyond the reach of previous UDA land cover mapping
methods. This offers an opportunity to leverage the ad-
vancement made in UDA land cover mapping to address
the practical problem of deploying UDA in a resource-
constrained environment. Moreover, with very few param-
eters (< 2M ), the discovered lightweight networks im-
prove the performance of the handcrafted large networks
on the OpenEarthMap and the FLAIR #1 datasets. Fur-
thermore, the extensive experiments on the two benchmarks
show promising performance of applying confidence-based
pseudo-labelling techniques over energy-based pseudo-
labelling in lightweight UDA-NAS for land cover mapping.

2. Related Work
2.1. UDA for Land Cover Mapping

UDA is employed in land cover mapping to alleviate the
need for per-pixel annotation, aiming for the model trained
with labelled source data and unlabelled target data to attain
high performance on the target data by minimising the dis-
similarity between the source and target domains. Many
methods, including adversarial learning and self-training,
are proposed. Ji et al. [22] proposed a generative adversar-
ial network (GAN) based domain adaptation for land cover
classification. Furthermore, a category-space-constrained
adversarial method was proposed to execute category-level
adaptive coastal land cover mapping [13]. Colour map-
ping generative adversarial network (ColorMapGANs) is
proposed to reduce the colour gap between source and tar-
get domains [54]. Capliez et al. [9, 10] adopted adversarial
learning, spatially aware self-training, and spatial pseudo-
labelling for multi-sensor land cover mapping. Ma et
al. [37] proposed novel local consistency and global diver-
sity metrics into the UDA framework. Wang et al. [60] pro-
posed the LoveCS framework that integrated cross-sensor
normalization, self-training domain adaptation, and multi-
scale pseudo-labelling. A novel two-stage Domain Adapta-
tion method for Cross-Spatio-Temporal (DASCT) classifi-
cation was proposed in [35].

2.2. Neural Architecture Search for UDA

NAS for UDA leverages automated architecture search
to find an optimal network architecture for UDA tasks.
There are few studies on NAS for UDA tasks in com-
puter vision, but it remains unexplored in RS image un-
derstanding. AdaptNAS [29] and NASDA [28] investi-
gated the generalization abilities of NAS for UDA with a
gradient-based NAS method. AdaXpert [43] proposed a
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progressive search to adjust architectures on growing data.
Leveraging reinforcement learning, DAMPC-NAS [71] and
AASPC [72] learned architectures that can align the source
and target domains via population correlation. ABAS [48]
learned an auxiliary network branch with Bayesian op-
timisation in the scheme of adversarial learning UDA.
EvoADA [51] adopted an evolutionary algorithm to learn
domain-conditioned attention mechanisms for UDA tasks.
These NAS for UDA methods produce resource-hungry net-
works for UDA image classification. AutoAdapt[16] de-
parted from image classification to search for UDA net-
works for image semantic segmentation using an evolu-
tionary algorithm with maximum mean discrepancy. How-
ever, AutoAdapt also produces resource-hungry UDA net-
works, which are not suitable for resource-constrained en-
vironments. Leveraging knowledge distillation with one-
shot NAS technique, SlimDA [41] and AnyDA [11] learned
lightweight UDA networks for image classification, but
the challenging problem of lightweight UDA for seman-
tic segmentation remains uninvestigated. This paper at-
tempts to address this problem by integrating MRF-NAS
into self-training UDA as a single framework to search for
lightweight UDA for land cover mapping.

3. Methodology
The proposed self-training UDA-NAS aims to search for
lightweight networks with MRF-NAS strategy by transfer-
ring labelled source domain knowledge to an unlabelled
target domain. We provide background material in Sec-
tion 3.1. Self-training UDA is described in Section 3.2 and
MRF-NAS is described in Section 3.3. Finally, the self-
training UDA-NAS framework is illustrated in Section 3.4.

3.1. Preliminaries

Neural architecture search (NAS): Given a task, NAS
aims to search for an optimal network architecture α∗ auto-
matically, together with its parameters θ, via search strate-
gies such as reinforcement learning [75] and evolutionary
algorithms [34]. Without loss of generality, the joint search
for optimal architecture and its parameters for a specific task
can be formulated as a bi-level optimization problem

α∗ = argmin
α∈A

Lsearch(θ
∗(α), α),

s.t., θ∗(α) = argmin
θ

Ltrain(θ, α),
(1)

where A is the search space containing all possible archi-
tectures that can be found. Lsearch and Ltrain indicate val-
idation loss and training loss, respectively, that can be min-
imised by using a validation set to update α and a training
set to update θ. In the one-shot NAS approach [31, 63, 66],
the architecture search space A is represented as a directed
acyclic graph (DAG) and the optimal network architecture

is a subgraph α ∈ A. We assume this definition in this
work. Traditionally, NAS methods assume that both the
training and the validation sets have labels and are from the
same distribution, which is not the case in UDA [20, 32, 51].

Unsupervised domain adaptation (UDA): Let S and T
respectively denote a source domain and a target domain
that are related semantically. We are given a labelled dataset
Ds = {(xs

i ,y
s
i )}

ns
i=1 of ns examples from S and unlabelled

dataset Dt = {xt
i}

nt
i=1 of nt examples from T . UDA aims

at mitigating the domain gap between S and T by training
a neural network fθ on the labelled dataset Ds to exploit
meaningful knowledge learned from S, to perform well on
the unlabelled dataset Dt of T [20, 32, 51].

3.2. Architecture search strategy

In this work, we leverage MRF-NAS [62] as the archi-
tecture search strategy to build the proposed self-training
UDA-NAS framework. The goal is to search for lightweight
networks that are optimal to achieve domain alignment be-
tween Ds and Dt. MRF-NAS is a resource-aware architec-
ture search method based on AOWS [6]. It can find architec-
tures that satisfy resource constraints such as the number of
floating-point operations (FLOPs) and latency. We briefly
describe MRF-NAS and we refer to Wang et al., [62] for
more details.

Denote A as a neural network with n choices of nodes
such that αn = {ni|i ∈ [n]}}, node ni takes value from a
finite label set Qi (e.g., kernel size = 3, 5, or 7), and A(α)
as sub-network (subnet) of A with α architecture. [n] is a
short form for {1, 2, ..., n}. The MRF-NAS represents the
NAS problem as maximum a posteriori (MAP) inference
over pairwise MRF [25]. Let Ψ denotes a set of factors
{ψS |S ⊆ [n] and |S| ≤ 2} in a pairwise MRF of A, where
ψS : αS → R. Let PΨ(α) = 1

Z exp(
∑

S ψS(αs)) de-
notes a probabilistic distribution of the set of factors, where
Z is the normalizing constant. Given a task-specific per-
formance measurement M (e.g. classification accuracy),
PΨ(α1) ≥ PΨ(α2) ⇒ M(A(α1)) ≥ M(A(α2)). The
NAS problem then becomes MAP inference over a set of
defined factors, which aims to find the optimal α∗ as

α∗ = argmax
α

M(A(α)) = argmax
α

E(PΨ(α)), (2)

where E is an energy function. The factors are learned via
differentiable parameter learning [3, 31] by minimising the
following objective

−Eα∼PΨ
(α)

[
L(θ∗|α)

]
s.t. θ∗ = argmin

θ
L(θ|α) (3)

where L is a cross-entropy loss function. Monte Carlo ap-
proximation (e.g., Gibbs sampling) is applied to make the
Equation (3) differentiable. Then it is solved by adopting
the Gumbel-Softmax reparameterization trick to smooth the
discrete categorical distribution [21].
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After learning the factors, the diverse M-best loopy infer-
ence method [45] is employed to find a set of diverse opti-
mal subnets (lightweight networks) {α1, α2, ..., αm}. This
makes the MRF-NAS method akin to one-shot NAS meth-
ods with weight sharing [5, 14]. The advantage of MRF-
NAS is that it imposes factorisation, therefore, the cardinal-
ity of its set of factors does not grow exponentially in the
order of the number of nodes in the network, as it does in
other one-shot NAS methods [5, 14, 19].

3.3. Self-training UDA

Most existing UDA methods can be grouped into self-
training [20, 56, 77] and adversarial training [36, 57, 59]
approaches. In this work, we employ self-training UDA as
adversarial training UDA is less stable, and the self-training
methods usually perform better than the adversarial training
ones [20, 56]. To address the domain gap between S and T ,
a self-training UDA method adopts a teacher network hϕ to
generate pseudo-labels {ŷt

i}
nt
i=1 for the unlabelled images

{xt
i}

nt
i=1 in Dt as

pt(i,j,c) = [c = argmax
c′

hϕ(x
t
i)(j,c′)], (4)

where [·] denotes Iverson bracket and c is the class index for
pixel j in xt

i. As adopted in DAFormer [20], hϕ applies a
confidence estimate with threshold τ of maximum softmax
probability [56] to generate the pseudo-labels. Hence,

ŷt
i = pt(i,j,c)

∑H×W
j=1 [maxc′hϕ(xt

i)(j,c′) ≥ τ ]

H ×W
, (5)

whereH andW are the height and width of xt
i, respectively.

As an alternative, energy score threshold τe can also
be applied to generate the pseudo-labels [69]. The energy
score is defined as [26]:

E(xt
i, hϕ(x

t
i)) = −T log

( C∑
c=1

e
hϕ(xt

i)c/T
)
, (6)

where hϕ(·)c indicates the corresponding logit value of the
c-th class, C is the total number of classes, and T is a tem-
perature that can be tuned. Applying the energy score, the
pseudo-labels are generated as:

ŷt
i = pt(i,j,c)[E(xt

i, hϕ(x
t
i)) < τe]. (7)

We investigate both the confidence-based pseudo-
labelling and the energy-based pseudo-labelling techniques.
The parameters θ of a student network fθ is trained by min-
imising the following loss:

L(θ) = E
[
H
(
fθ(X s),Ys

)
+ λH

(
fθ(X t), Ŷt

)]
, (8)

where the expectation E is over batches of random vari-
ables of image-label pairs (X s,Ys) and (X t, Ŷt) sampled

uniformly from Ds and Dt (with generated pseudo-labels),
respectively. H indicates the cross-entropy between the
predictions and the reference labels averaged over all im-
ages and pixels, and λ is a hyperparameter to determine
the amount of the loss in T that affects the overall training.
Note that the parameters ϕ of the teacher network hϕ are not
updated via backpropagated gradients. They are updated
based on the exponentially moving average of the parame-
ters θ of the student network fθ after each training epoch
to improve the prediction stability of the teacher network
hϕ [53]. And we adopt online self-training [2, 20, 74] in
generating the pseudo-labels as the alternative offline self-
training has a complex training setup [77, 78].

3.4. UDA-NAS framework

Figure 1 provides an overview of the proposed self-training
UDA-NAS framework. The framework integrates NAS
into UDA by applying the MRF-NAS strategy (see Sec-
tion 3.2) for resource-aware search in the self-training UDA
scheme (see Section 3.3) to find optimal architectures that
can satisfy resource-constrained platforms. Based on the
teacher-student scheme, our self-training UDA-NAS frame-
work consists of a teacher supernet Gθ

teach (which corre-
spond to teacher network hϕ in Section 3.3) and a student
supernet Gθ

stud (which correspond to student network fθ in
Section 3.3) with the architectures parameterised by θteach
and θstud, respectively, and the student supernet Gθ

stud is
configured with MRF-NAS scheme. The teacher supernet
Gθ
teach is only used to generate pseudo-labels for the un-

labelled images in Dt, while the architecture search takes
place in the student supernet Gθ

stud space only.
The student supernet Gθ

studtakes both the source and tar-
get images to learn architectures, whereas the teacher su-
pernet Gθ

teach is fed with only the target images to generate
their pseudo-labels. During the search, that is, learning pair-
wise and unary factors in the MRF of Gθ

stud with differen-
tiable parameter learning [3, 31], Gθ

stud is trained based on
supervised learning using both Ds and Dt (with the pseudo-
labels). Gθ

stud is trained with knowledge obtained from
Gθ
teach, to enable its subnets (lightweight networks) capable

of aligning the source and the target domains under limited
computation budget. Following DACS [56], the ClassMix
[44] mixing strategy is applied to mix the images from Ds

and Dt to enable the subnets of Gθ
stud to learn cross-domain

robust features. The parameters θteach of Gθ
teach are up-

dated via the exponential moving average of the parameters
θstud of Gθ

stud.
Then, after the search, the diverse M-best loopy infer-

ence [45] is applied over the learned Gθ
stud MRF factors to

find m optimal subnets (lightweight networks) that achieve
good performance under a given computation budget. Fi-
nally, the discovered lightweight networks are retrained, as
normally done in NAS [7, 16, 76], in the self-training UDA
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mode (without the MFR-NAS process) to find the best op-
timal network.

4. Experimental Setup
4.1. Datasets

OpenEarthMap: OpenEarthMap serves as a benchmark
dataset dedicated to advancing global high-resolution land
cover mapping. It encompasses 5000 aerial and satellite
images with the size of 1024 × 1024, each manually an-
notated with 8-class land cover labels. Covering 97 regions
across 44 countries on 6 continents, OpenEarthMap com-
prises 2.2 million segments captured at ground sampling
distances ranging from 0.25 to 0.5 meters [65]. For the
UDA setting, the dataset is divided into 73 regions for the
source domain and 24 regions for the target domain. This
division ensures a balanced representation across both do-
mains, encompassing countries from all six continents and
maintaining an equilibrium between urban and rural areas.
FLAIR #1: The French Land cover from Aerospace Im-
ageRy dataset (FLAIR) comprises 50 spatial domains,
each representing the varying landscapes and climates of
metropolitan France, with each domain corresponding to a
French department [18]. Each patch measures 512 × 512
pixels, with a GSD of 0.2 m, and each domain consists of
1725 to 1800 patches. Following the experimental settings
in GeoMultiTaskNet [38], ten (D06, D08, D13, D17, D23,
D29, D33, D58, D67, D74) and three (D64, D68, D71) de-
partments are selected as the source and target domains, re-
spectively, consisting of 16k images for training and 5k for
testing with 12 classes.

4.2. Baselines

Unfortunately, we could not compare the performance
of the proposed method to any UDA-NAS methods for
land cover mapping as the code for the previous UDA-
NAS method for semantic segmentation [16] is unavailable.
However, we compare our work to 9 handcrafted, state-
of-the-art, semantic segmentation UDA methods for land
cover mapping. These are: AdaptSegNet [57], CLAN [36],
TransNorm [61], CBST [77], and IAST [39] on the Open-
EarthMap dataset (see Table 2) and AdaptSegNet [57], AD-
VENT [58], DAFormer [20], UDA_for_RS [27], and Geo-
MultiTaskNet [38] on the FLAIR #1 dataset (see Table 3).

4.3. Implementation details

All the experiments are implemented in the PyTorch li-
brary and run on a single NVIDIA Tesla P100 (DGX-2)
with 32GB memory. The search is performed on the Open-
EarthMap dataset. We evaluate the discovered architectures
on the FLAIR #1 dataset as well.

Search space: The search space contains all the possible
architectures that can be found. In this work, we adopt the

same search space provided in Wang et al. [62] that was
designed on the U-Net architecture [49] with 4× 1023 con-
figurations. The search space has three neural network oper-
ations with different kernel sizes and different width ratios
of the network as presented in Table 1.

Operation Size Width

Normal 3, 5 0.5, 0.75, 1.0, 1.25, 1.5
Downsampling 3 0.5, 0.75, 1.0, 1.25, 1.5
Upsampling 2 0.5, 0.75, 1.0, 1.25, 1.5

Table 1. The search space based on U-Net architecture.

Searching and training: During the architecture search,
the student supernet Gθ

stud is trained for 40,000 iterations
with an initial warmup period of 1,500 iterations before
the factors are updated. We employ the sandwich train-
ing scheme [68] to train Gθ

stud at the largest width, small-
est width, and other randomly sampled widths altogether in
each iteration. We use the AdamW optimizer with a learn-
ing rate of 0.003 for the network weights and a weight de-
cay of 0.05. To improve class imbalance, we adopt recall
cross-entropy loss [55]. Following DAFormer [20], colour
jitter and Gaussian blur are applied as data augmentation
after a random crop of size 512 × 512 is applied. Other
search settings such as the learning rate for the MRF factors
and the hyperparameters for sampling and diverse M-best
inference remain the same as in Wang et al. [62]. The
architecture search is performed in two different pseudo-
labelling scenarios of the teacher supernet Gθ

teach: (1) ap-
plying confidence-based pseudo-labelling with confidence
threshold τ = 0.968 as in DAFormer [20] and (2) ap-
plying energy-based pseudo-labelling with cutoff threshold
τe = −8.0 and temperature T = 1 as in InPL [69], to
generate pseudo-labels for training Gθ

stud. For the infer-
ence, we select 8 optimal subnet architectures, 4 from each
pseudo-labelling scheme, based on a computation budget
of 2.5G FLOPs computed on 256 × 256 image resolution
(smaller resolution is used for fast inference). We retrain
them and select the top 2 networks from each set as the
best-discovered networks. We use the same hyperparame-
ters as in the search phase for the retraining phase, except
that we train for 140,000 iterations.

5. Experimental Results
Here, we present and discuss the experimental results of
the proposed method. Table 2 presents the evaluation of
the discovered lightweight networks against UDA base-
line methods in terms of accuracy (mIoU) on the Open-
EarthMap regional target domain, the number of parame-
ters (M), the FLOPs (G), and the latency (speed in frames
per second (FPS)). The results of the baselines shown in
Table 2 are based on the experiments we performed us-
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Method IoU (%) mIoU Params FLOPs Speed
Bareland Rangeland Developed Road Tree Water Agriculture Building (%) ↑ (M) ↓ (G) ↓ (FPS) ↑

AdaptSegNet [57] 28.77 41.47 36.09 45.16 46.65 34.48 68.47 63.74 45.60 30.05 134.80 9.17
CLAN [36] 22.90 42.25 39.49 44.12 58.98 58.99 59.51 64.53 48.85 27.61 136.16 19.06
TransNorm [61] 27.54 45.13 37.99 45.56 57.06 63.84 66.26 64.71 51.01 30.38 135.68 2.23
CBST [77] 29.64 43.79 37.99 49.19 57.33 60.75 71.93 65.46 52.01 46.59 208.18 40.28
IAST [39] 33.68 43.64 37.03 45.16 59.61 72.08 74.72 61.77 53.46 49.36 209.24 41.65

Our Net-C1 28.00 49.41 50.35 58.70 68.75 73.51 69.20 77.20 59.38 1.28 30.16 21.79
Our Net-C2 26.41 49.11 50.22 58.99 67.94 70.38 69.94 77.10 58.76 1.63 30.53 22.53
Our Net-E1 22.99 49.14 48.94 58.74 67.07 69.28 67.10 74.01 57.15 1.65 33.59 21.47
Our Net-E2 24.25 47.60 47.91 57.45 68.21 66.17 68.90 76.40 57.11 1.45 29.16 22.39

Table 2. Comparison with other UDA methods on the regional target domain test set of the OpenEarthMap dataset. In addition to the
improved performance in terms of mIoU, the discovered lightweight networks are significantly smaller than that of the handcrafted
baselines. The results of the baselines are based on the experiments we performed using their official implementations from GitHub.
The best score is in bold and the second-best is underlined.

Figure 2. Visual comparison of land cover mapping results of the best-discovered network and some representative baselines in Table 2.

ing the official implementations obtained from their GitHub
sites. In addition, to evaluate the transferability of the
discovered networks, we employ the best-discovered net-
works on the considered target domain of the FLAIR #1
dataset and compared the results with other UDA methods
that were reported in GeoMultiTaskNet [38] (see Table 3).
The networks discovered with confidence-based pseudo-
labelling are denoted as Net-C and the ones with energy-
based pseudo-labelling are denoted as Net-E.

5.1. Searching on OpenEarthMap

The Net-C1 and Net-C2 in Table 2 are the top 2 networks
discovered by applying confidence-based pseudo-labelling,

whereas the Net-E1 and Net-E2 are top 2 discovered by
applying energy-based pseudo-labelling. As shown in the
Table 2, with the lowest number of parameters (1.28M ),
Net-C1 outperformed both Net-E1 and Net-E2 by 2.23%
(mIoU). Also, Net-C2 surpassed both Net-E1 and Net-E2
by 1.62% (mIoU). This shows that the networks discov-
ered via confidence-based pseudo-labelling achieve better
performance compared to the ones discovered via energy-
based pseudo-labelling. However, we need to mention that
the tunable threshold τe and the temperature T of the energy
function were not tuned. Tuning them might have improved
the performance of the energy-based pseudo-labelling.

Compared with the baseline methods based on the four
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Method IoU (%) mIoU Params
Build Perv. Imp. Bare Water Conif. Decid. Brush Vine Herb Agric Plowed (%) ↑ (M) ↓

AdaptSegNet [57] 39.98 20.75 40.23 20.36 15.25 4.93 35.37 10.99 34.51 42.69 11.06 23.47 24.97 99
ADVENT [58] 35.79 24.38 48.82 6.85 31.98 0.00 51.65 11.79 33.33 25.76 11.46 24.29 25.56 99
DAFormer [20] 67.09 45.56 61.99 55.35 65.12 8.91 54.39 20.31 64.39 38.79 23.74 41.83 45.61 85
UDA_for_RS [27] 66.30 48.05 62.36 59.28 61.24 9.22 60.02 16.52 57.74 40.12 30.32 54.17 47.02 85
GeoMultiTaskNet [38] 67.53 40.86 63.89 55.31 67.02 13.85 60.97 14.08 53.09 40.33 35.02 54.79 47.22 33

Our Net-C1 74.96 49.92 70.34 50.61 72.49 10.99 58.96 25.55 69.58 43.75 42.42 44.78 51.19 1.28
Our Net-E1 75.21 51.17 70.44 52.26 68.95 11.21 61.25 25.31 51.62 44.38 40.16 47.97 49.99 1.65

Table 3. Comparison with other UDA methods on the considered target domain test set of the FLAIR #1 dataset. The discovered
lightweight networks improved the performance of the handcrafted baselines, which shows a strong transferability of the discovered
networks. Here, all the baselines results were reported in GeoMultiTaskNet [38]. The best score is in bold and the second-best
is underlined. (Note: Build=Building, Perv.=Pervious, Imp.=Impervious, Bare=Bare soil, Conif.=Coniferous, Decid.=Deciduous,
Brush=Brushwood, Vine=Vineyard, Herb=Herbaceous, Agric=Agriculture land, and Plowed=Plowed land)

Figure 3. Visual comparison of land cover mapping results of the best-discovered network and some representative baselines in Table 3.
The land cover maps of the baselines, GeoMTNet and UDA_for_RS, were obtained from GeoMultiTaskNet [38].

metrics we employed, except for the speed (FPS) that
IAST and CBST topped, the discovered lightweight net-
works achieve better performance over all the baselines.
This is because the U-Net-based architecture of discov-
ered networks has multiple skip connections, which are
good for the performance of the networks, but are detri-
mental to the speed of the networks. Using fewer parame-
ters (1.28M ) with only 30.16G FLOPs, the best-discovered
network (Net-C1) achieved better accuracy results (59.38%
mIoU) than all the representative baselines. For example, it
can be seen from the Tabel 2 that Net-C1 improved the per-
formance (mIoU) of IAST and CBST by 5.92% and 7.27%,
respectively. Furthermore, Net-C1 demonstrated a big per-
formance gap with regard to AdaptSegNet (13.78% mIoU)

and CLAN (10.53% mIoU). Focusing on individual classes,
it can be observed that Net-C1 has the best performance in
most of the classes, except for bareland, road, and agricul-
ture. IAST gained approximately 5.5% in IoU over Net-C1
for both bareland and agriculture. The overall results of
the discovered lightweight networks show that the proposed
method achieves an encouraging performance.

Visualization: In Figure 2, we present examples of land
cover mapping results obtained from the best-discovered
network (Net-C1) and representative baselines on the Open-
EarthMap regional target domain test set (see Table 2). The
Net-C1 produces detailed land cover maps. In row (a), ex-
cept for some portion of agricultural land that Net-C1 mis-
classified as rangeland, IAST and CBST wrongly classified
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most of the agricultural land as rangeland. This might be
because of the spectra similarity of agricultural land and
rangeland. Although Net-C1 produces the best land cover
map in row (b), it failed to identify the water at the top-
left part of the image, which CBST failed as well but it was
identified by IAST. However, in row (c), Net-C1 was able
to identify the tiny water at the top-right, whereas IAST
failed to do so. In all, most of the buildings and roads were
wrongly classified as developed space by IAST and CBST
because some developed space might have cover materials
quite similar to buildings and roads.

5.2. Transferrability on FLAIR

We also employ the discovered lightweight networks on the
challenging FLAIR #1 dataset. Compared to the 8 classes
in the OpenEarthMap dataset, the FLAIR #1 has 12 classes,
which makes it a more difficult benchmark than the Open-
EarthMap. Here, we aim to find out if the discovered net-
works have UDA-oriented capability when they are used on
different benchmark datasets. In other words, can the dis-
covered lightweight networks achieve satisfactory perfor-
mance if they are employed on datasets that they were not
searched on? For each of the pseudo-labelling schemes that
we employed, only the top network was evaluated on the
considered target domain test set of FLAIR #1.

As presented in Table 3, using fewer parameters (less
than 2M ), both Net-C1 and Net-E1 of the proposed method
improved the performance of all the representative base-
lines results that were reported in GeoMultiTaskNet [38],
the state-of-the-art UDA method on FLAIR #1. For exam-
ple, Net-C1 (51.19% mIoU) and Net-E1 (49.99% mIoU)
improved the performance of GeoMultiTaskNet (47.22%
mIoU) and UDA_for_RS (47.02% mIoU) by approximately
4.0% and 2.7%, respectively. The encouraging results of
the discovered networks is due to the U-Net-based archi-
tecture (which has proven to be good for semantic segmen-
tation) that was employed as the base architecture for the
search. For individual class IoU, the Net-C1 performed
best in four classes (water, brushwood, vineyard and agri-
culture), and Net-E1 in five classes (building, pervious,
impervious, deciduous, and herbaceous). The GeoMulti-
TaskNet achieved the best IoUs in coniferous and plowed
land, whereas UDA_for_RS in bare soil. Overall, the re-
sults on the considered target domain test set of FLAIR #1
show that the discovered lightweight networks have UDA-
oriented capability to transfer the knowledge learnt from a
source domain to a target domain.

Visualization: Figure 3 presents some examples of land
cover mapping results on the test set of the FLAIR #1 tar-
get domain that we considered. The maps are obtained
from the best-discovered network (Net-C1) and some of
the representative baselines provided in Table 3. Net-C1
and UDA_for_RS misclassified some portion of pervious

surface as herbaceous in the row (a), however, GeoMT-
Net wrongly classified some impervious surface as pervious
surface. In row (b), while Net-C1 wrongly classified some
deciduous as water and brushwood as herbaceous, GeoMT-
Net misclassified most of the brushwood as herbaceous.
UDA_for_RS produced the most misclassification of all the
classes. For example, deciduous was easily confused with
coniferous and brushwood was confused with herbaceous.
This might be due to spatial pattern similarities among the
images as alluded by GeoMultiTaskNet [38]. In row (c),
UDA_for_RS produced the best result for the impervious
surface but failed to identify the deciduous at the centre-left
of the image. Net-C1 was able to identify the deciduous, but
it misclassified some herbaceous as deciduous. GeoMTNet
wrongly classified most impervious surface as pervious sur-
face. The impervious surface and pervious surface might be
confused easily due to their spectra similarities.

5.3. Limitations

Although the proposed method demonstrated an encourag-
ing performance it has some limitations. First, the overhead
of the Gibbs sampling and inference over a complex loopy
network. Hence, the inference has to be approximated as
it is normally done in MRF [25] to minimise the cost of
inference, which might have affected the optimal solution.
Second, the speed of the discovered networks might not be
suitable for real-time applications. It would make sense to
improve the speed of the discovered networks, maybe by
pruning the unnecessary skip connections in the network.
Finally, we partially answer the question: "What pseudo-
labelling technique is best suited for UDA-NAS?". Our ob-
servations indicate that confidence-based pseudo-labelling
is a good choice. However, we did not tune the hyperpa-
rameters of the energy-based pseudo-labelling, hence, the
need for further studies in this direction.

6. Conclusion
The existing UDA methods for land cover mapping are
resource-hungry systems, and they are not suitable for real-
world applications in resource-constrained platforms. In
this paper, we introduce a novel approach to search for
lightweight neural networks under a limited resource bud-
get for UDA land cover mapping. In particular, we lever-
age a self-training UDA framework with a Markov random
filed architecture search strategy to learn lightweight archi-
tectures that can transfer knowledge learned from a source
domain to a target domain. We demonstrate the effective-
ness of the proposed approach on two recent UDA bench-
mark datasets of remote sensing, which improve the perfor-
mance of several competing UDA methods. We are hoping
the UDA-NAS framework proposed here will also suggest
something inspiring for the research on UDA-NAS for land
cover mapping and remote sensing in general.
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