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Abstract

We numerically study the stability and morphology of geometrically confined skyrmions in nan-

odots using Finsler geometry (FG) modeling technique. The FG model dynamically implements

anisotropies in ferromagnetic interaction, Dzyaloshinskii-Moriya interaction, and magneto-elastic

coupling in response to mechanical stresses. Without the stresses, there exists a geometrically

confined effect originating from the surface effect of small nanodots, in which skyrmions are stabi-

lized under a low external magnetic field. This surface effect is enhanced by radial stresses, which

significantly reduce the surface DMI compared to the bulk DMI. The radial stresses also alter

the interactions to be anisotropic. Owing to these position- and direction-dependent interactions,

incomplete skyrmions emerge at the center of the nanodots under the tensile stress. In addition

to the incomplete skyrmions, target skyrmions are observed under the compressive stress. Our nu-

merical results indicate that the strain-enhanced surface effect and the strain-induced interaction

anisotropies suitably explain the skyrmion stability in nanodots with zero magnetic field.
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I. INTRODUCTION

A topologically stable spin configuration called skyrmion emerges in chiral magnetic mate-

rials under competition between ferromagnetic interaction (FMI) and Dzyaloshinskii-Moriya

interaction (DMI), and many studies have been conducted [1–7] since its experimental dis-

covery [8–10]. It is well known that skyrmions are stabilized by an external magnetic field in

Zeeman energy and mechanical strains from magnetoelastic coupling (MEC) and magnetic

anisotropy [11, 12]. The confinement of skyrmions, called geometric confinement (GC), has

also been proposed as a stabilization technique and emphasized to be caused by surface or

edge boundary conditions for spin configurations in nanodot [13], and several experimental

and numerical studies on GC and strain effects have been conducted [14–21].

As a GC effect inside nanowires, thermodynamically stable unusual skyrmions were the-

oretically investigated [22]. One is called ”target skyrmion” surrounded by multiple circular

stripes. The target skyrmions can be identified with ”helix” numerically investigated in the

presence of dipolar coupling [23] and were experimentally observed in nanodisks of FeGe [24]

and Permalloy [25]. The other is of a vortex-like structure called ”incomplete skyrmions”

with the topological charge or skyrmion number Nsk less than 1. The incomplete skyrmions

were numerically studied for their responses to the variations of external magnetic field and

nanodot diameter in the ground states [26, 27].

Y. Wang et al. demonstrated the application of GC of skyrmions to electric switching

and confirmed a controllability of skyrmion on nanodots of diameter 350 nm without a

magnetic field, in combination with GC and strain effects [20]. Their results show that the

strain effects on magnetic anisotropy and DMI are crucial for the morphological changes. The

skyrmion stabilization was numerically confirmed on nanodots without an external magnetic

field under a specific boundary condition [21], and the effects of magnetic anisotropy were

studied numerically [28]. A GC effect for stabilizing skyrmion vortex was also observed

in tetrahedral nanoparticles [29]. However, the origins of GC and the effects of strain are

unclear and need to be studied further.

In this study, we apply Finsler geometry (FG) modeling to clarify the strain effect on

morphological changes in spin configurations in nanodots using the Monte Carlo (MC) sim-

ulation technique [30]. Dynamical anisotropies in the FMI, DMI, and MEC emerging under

radial stresses are numerically evaluated to explain the skyrmion stability. For the stabi-
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lization, FG modeling implements anisotropic effects of strains on interactions by internal

degrees of freedom, such as the strain direction, which dynamically modifies the interactions

to be direction-dependent and position-dependent. For this simple geometric treatment of

interactions, FG modeling allows us to perform theoretical studies on skyrmions based on

the same input-output relation as experimental studies, leading to a better understanding of

the surface effect of skyrmions in nanodots. This is the main advantage of FG modeling over

standard modeling, in which interactions are manually controlled by fixing the coefficients

to be anisotropic.

This study is motivated by the experimental study in Ref. [20]. However, the targeted

material is simplified for modeling: for example a spontaneous in-plane magnetic anisotropy

assumed in [20] is not necessary in our model. Furthermore, our model is based on a single

layer that may not be as thin as experimental samples, and the experimental technique for

the application of radial strains to nanodots is not the same as in our model. Nevertheless,

we believe that these differences do not change the main effects of the radial strains observed

in [20] and the present numerical study.

II. 3D CYLINDRICAL LATTICES AND HAMILTONIAN

A. 3D cylindrical lattices and radial stresses

Cylindrical lattices constructed by the Voronoi tessellation technique [31] are used to

simulate skyrmions in nanodots [20] (Fig. 1(a)). The total number of vertices is N =1533,

2083, 5430, 8465, and 11932, and the ratio R = d/h of diameter d and a fixed height h

is approximately given by R = 1.01, 1.20, 2.00, 2.51, and R = 3.00 (see Appendix A for

further details of the lattice structure). Mechanical stresses, f > 0 and f < 0 applied along

the radial direction (Fig. 1(b)), cause a variation of strain variable τ⃗ (Fig. 1(c)) leaving

the lattice structure non-deformed, and a magnetic field B is applied along the z direction.

The direction of magnetic field and that of stresses are the same as those in [20]. A free

boundary condition is assumed for all surfaces, including the lower disk, which contacts

with a polymer substrate for strain transfer in the reported experiment in [20]; hence, the

boundary condition in the present study is not exactly the same as that of the experiment.
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FIG. 1. (a) A cylindrical lattice of radius d and height h, (b) illustrations of tensile (f > 0) and

compressive (f <0) stresses radially applied to cylindrical lattice, (c) strain direction τ⃗1 at vertex

1 and its component |τ⃗1 · e⃗12|, where ∥e⃗12∥=1, along a local coordinate axis x1 of a tetrahedron

with vertices 1, 2, 3 and 4. The variables s, τ⃗ are defined at vertices and ζ on bonds, and these are

introduced in the following subsection. Free boundary condition is assumed for all surfaces.

B. Hamiltonian and Monte Carlo

௝

௜

(a )                                        (b)                                  (c) 

FIG. 2. (a) Illustration of bond a or ij and the connected bonds. The total number of the

connected bonds at vertex i (j) is qi−1 (qj−1), where qi (qj) is the coordination number at vertex i

(j). Illustrations of (b)
∑

ij(∆); the sum over bonds ij(∆) of tetrahedron ∆, and (c)
∑

∆(ij); the sum

over tetrahedrons ∆(ij) sharing bond ij.
∑

ij(∆) 1=6 for all ∆, while the number nij =
∑

∆(ij) 1

depends on bond ij, and we have the identity 6Ntet=
∑

∆

∑
ij(∆) 1=

∑
ij

∑
∆(ij) 1=

∑
ij nij , where

Ntet is the total number of tetrahedrons.

The discrete Hamiltonian is

H(s, τ⃗ , ζ) = λHFM +DHDM −HB − αHME −Hf − δHζ , (1)

where s(∈ S2 : unit sphere) and τ⃗(∈ S2/2 : half sphere) denote the spin and strain variables,

respectively, defined at every lattice vertex, and ζ(∈ {1,−1}) on the bonds (Fig. 1(c)); ζ
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is a variable to implement a dynamical anisotropy in MEC. The symbols λ,D, α, δ on the

right-hand side are the interaction coefficients; λ, D and α are strengths of FMI, DMI and

MEC, respectively, and δ denotes a strength of ζ interaction for Finsler length of MEC

(Appendix B).

The terms on the right hand side are given as follows:

HFM =
∑
∆

∑
ij(∆)

Γij(τ⃗) (1− si · sj) , HDM =
∑
∆

∑
ij(∆)

Γij(τ⃗)e⃗ij · si × sj,

HB =
∑
i

si · B⃗, B⃗ = (0, 0, B), HME = f
∑
∆

∑
ij(∆)

Ωij(τ⃗ , ζ) (si · sj)2 ,

Hf = sgn(f)
∑
i

(
τ⃗i · f⃗

)2

, f⃗ = f e⃗ r, sgn(f) =

 1 (f > 0)

−1 (f < 0)
,

Hζ =
∑
(ab)

ζaζb

(2)

The first term HFM is an FMI energy that is modified to have a τ⃗ -dependent interaction

coefficient Γij(τ⃗), which depends on a small number v0 playing a role in the strength of

anisotropy (see Appendix B for FG modeling details). The same Γij(τ⃗) is included in the

second term HDM for DMI energy. The third term HB is the Zeeman energy, and the fourth

term HME is the energy for the ME coupling quadratic with respect to s with a coefficient

Ωij(τ⃗ , ζ), which is dynamically variable depending on ζ and, in this sense, different from

Γij(τ⃗), which varies depending only on τ⃗ , in HFM and HDM (Appendix B). The fifth term

Hf denotes the energy required for the response of strain τ⃗ to an external stress f⃗ along

the radial direction e⃗ r. The final term Hζ , which is not included in the model in Ref. [30],

describes the dynamical Finsler length for an anisotropic MEC in HME. Hζ is defined as

the sum of connected bonds a and b denoted by (ab) (Fig. 2(a)). We note that Hζ is

equivalent to the Potts model Hamiltonian, HP =
∑

ab δζa,ζb , where δζa,ζb = 1 (ζa = ζb) and

δζa,ζb =0 (ζa ̸=ζb). HFM, HDM and HME are commonly defined by
∑

∆

∑
ij(∆), the sum over

tetrahedrons ∆, where
∑

ij(∆) denotes the sum over bonds ij(∆) of tetrahedron ∆ (Fig.

2(b)).

In the case of a zero stress f = 0, the spin configurations are determined only by the

first three terms. For this reason, no spontaneous magnetic anisotropy is assumed in the

model; therefore, the material studied in the present paper is not exactly the same as that

experimentally studied in Ref. [20] in addition to a difference in the application technique of
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radial stress on nanodots. Moreover, the materials studied in Ref. [20] are layered ones and a

Neel-type skyrmion is assumed in their simulations; in contrast, the materials in the present

paper are single-layer and not always thin, in which a Bloch-type skyrmion is assumed.

The partition function to be simulated by MC technique is given by

Z =
∑
s

∑
τ⃗

∑
ζ

exp [−H(s, τ⃗ , ζ)/T ] , (3)

where T is the temperature and
∑

s,τ,ζ denotes the sum of all possible configurations of s, τ⃗

and ζ. The partition cannot be numerically obtained, and instead, the sum over configura-

tions, defined by
∑

s

∑
τ⃗ =(

∫
ΠN

i=1ds⃗i)(
∫
ΠN

i=1dτ⃗i) the multiple integrals on the unit sphere

and
∑

ζ = ΠN
i=1

∑
ζi∈{−1,1}, is simulated by Metropolis importance MC sampling [32, 33],

where τ⃗i is identified with −τ⃗i in the Hamiltonians. The mean value of physical quantity Pq

is defined by the ensemble average ⟨Pq⟩=
∑

s,τ,ζ Pq exp(−H/T )/Z, which is calculated using

Metropolis MC technique [32, 33] with the sample average ⟨Pq⟩=
∑

i Pq(i)/
∑

i 1, where Pq(i)

is i-th sample evaluated by the lattice average. A new variable s′ is randomly generated,

independent of the present s and updated with probability Min[1, exp−(Hnew−Hold)]. The

same procedure is applied to the variable τ⃗ . When updating ζ(∈{−1, 1}), we fix ζ ′ to the

opposite to the present ζ and accept ζ ′ with the same procedure. N consecutive updates for

each of the three variables are examined, and a uniform random number is used to select N

from NB ζ-variables defined on the bonds, where NB is the total number of bonds (Appendix

A).

The total number of MC sweeps (MCS) for the calculation of physical quantities is 5.25×

107 for the lattices of N≤8465 and (1.75 ∼ 3.5)×108 for the N=11932 lattice. The samples

are calculated for every 500 MCS after the thermalization iterations of 7.5×106 ∼ 12.5×106

MCS for the lattices of N ≤ 8465 and 5×107 MCS for the N =11932 lattice starting with

random initial configurations.

III. RESULTS

A. Size effect without strains

First, we demonstrate a size effect that enables skyrmions to emerge on smaller nanodots

with a small external magnetic field. The assumed parameters are shown in Fig. 3. The

7



0 10 20 30

0.4

0.6

0.8

1
B

d

:confined
:nonconfined

zero stress
f=0,

଴

N=5430

N=2083

N=11932

N=8465
confined

nonconfined
or stripe

௭

FIG. 3. Phase diagram of B vs. d for confined skyrmion (•) and non-confined or stripe (◦)

observed on four different lattices, where d is the diameter of lattice in the unit of the edge length

(a = 1) of a regular triangle (Appendix A). Spins of sz < 0 are plotted with small cones in the

snapshots. Small cylinders or lines, shown only on the surface for clear visualization, denote τ⃗ ,

which is isotropic and does not influence the spins.

temperature is fixed to T =0.5 in all simulations, because it is low enough to see skyrmions.

v0=(0.1, 0.1) denotes that v0=0.1 for both the FMI and DMI in Eq. (B1). v0 plays a role

in the strength of anisotropy in the cases that strains τ⃗ are uniformly aligned; however, it

does not play any role in anisotropy of interactions in the case of f=0, where τ⃗ is isotropic.

Plots in Fig. 3 represent configurations of confined skyrmion (•) and non-confined or stripe

(◦) observed on four different lattices. The color code represents sz and the spins of sz <0

are plotted with cones, and small cylinders or lines represent the direction of τ⃗ .

All the plotted data are obtained by visually evaluating whether the skyrmions are con-

fined using snapshots. The ”non-confined” means (i) stripe configurations or (ii) skyrmions

are located at the boundary, and the ”confined” means (iii) skyrmions are inside the bound-

ary. However, these criteria are not strict, and the phase diagram shown in Fig. 3 is a

rough estimate. The dashed line in red (blue) shows the upper (lower) limit of B for the

non-confined (confined) phase. The region between these two dashed lines is similar to the
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range of two-phase coexistence; however, it does not always imply a first-order phase transi-

tion because no clear jump is observed in the physical quantities, including the topological

charge between the confined skyrmion and non-confined skyrmion phases. Interestingly,

the decrease of B for the confined region with decreasing d is qualitatively consistent with

experimental data reported in Ref. [20].

Notably, the confinement mechanism in the model originates from a surface effect, in

which the absolute value of the surface DMI coefficient is smaller than that of the bulk DMI

[34]. For this reason, skyrmions hardly appear on the periphery region. A static part of this

difference in the DMI strength for f =0 is intuitively understood from the discrete form of

HDM in Eq. (2) (Appendix B), and a dynamical enhancement of the difference for f >0 will

be shown below.

B. Strain effect

Next, we show the effects of the strain caused by radial tension (f > 0) and compression

(f < 0) under zero external magnetic field (B=0). To visualize the configurations of s and

τ⃗ , a small cylinder of size N=2803 is used in this subsection. The assumed parameters are

shown in Fig. 4; v0=(0.1, 0.1, 0.2) denotes that v0=0.1 for both FMI and DMI in Eq. (B1)

and v0=0.2 for MEC in Eq. (B2), which are fixed in this study.

Snapshots are shown in Figs. 4(a)–(c), where top and side views are plotted in (a)

f =−4.8, (b) f =0, and (c) f =2.28. Small cylinders representing τ⃗ can be viewed as (a)

a spiral along the z direction, (b) isotropic, and (c) radially aligned. These observations

are consistent with expectations because τ⃗ represents the elongation direction owing to the

radial stress f .

The configuration shown in Fig. 4(a) is a skyrmion enclosed by circular stripes corre-

sponding to the target skyrmion denoted by ”target Sk” or simply by ”target” [22], which is

not exactly the same as ”vortex” observed in Ref. [20] for the thin-layered case. The config-

uration in Fig. 4(c) is also a skyrmion, which is called ”incomplete skyrmion” in [22] denoted

by iSK in the figure. The direction of s at the periphery is not completely opposite to that

at the center [22, 26, 27]. However, in their experiment on the thick-layered case, stripes

were observed, which are consistent with our numerical data. We checked that these mor-

phological changes under radial stress can also be observed in Neel-type skyrmions. Thus,
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zero magnetic field
N=2083

଴

(a)                               (b)                              (c) 

stripe iSktarget Sk ௭

FIG. 4. The snapshots obtained for (a) f = −4.8 (compression), (b) f = 0 , and (c) f = 2.28

(tension) on a small lattice of size N =2803 for clear visualization. We find the target skyrmions

(target Sk), stripes, and incomplete skyrmion (iSk) phases for negative, zero, and positive stresses.

These three phases correspond to vortex, stripe and skyrmion in the thin-layered case of the

reported experimental data [20]. Small cylinders for τ⃗ are shown only on the surface for clear

visualization. The parameters T, λ,D, α, δ and v0 shown in the figure are used in all simulations

below.

we consider that these morphological changes under radial stresses correspond to vortices,

stripes, and skyrmions in the thin-layered case of reported experimental data [20], although

the vortex and skyrmions in [20] are not exactly corresponding to the target and incomplete

skyrmions in this paper, respectively.

It should be noted that the spin direction at the center of the target skyrmion shown

in Fig. 4(a) is spontaneously determined and opposite to that shown in Fig. 3. This

spontaneous direction occurs because B=0, in contrast with the case in Ref. [20], where a

small magnetic field is applied for atomic microscopy measurements, even with zero external

magnetic field. For the same reason, the polarity at the center of the incomplete skyrmion
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in Fig. 4(c) is also spontaneously determined. Note also that the radial stress, for example,

compression, is well defined only in 3-dimensional models because of the induced deformation

of the nanodots along the z direction indicated by the τ⃗ direction.

(a)                                (b)                              (c) 

(d)                               (e)                              (f) 

zero magnetic 
field

௭

isolated incompleteincomplete

targettargettarget

N=1533 N=5430 N=11932

N=11932N=1533 N=11932

three different
unusual skyrmions

FIG. 5. The snapshots of target skyrmions on the lattices of size (a) N=1533, (b) N=5430 and

(c) N=11932, and (d) incomplete skrymion on the N=1533 lattice, (e) an isolated skrymion and

(f) incomplete skrymion on the N =11932 lattice. The polarity variation between the center and

periphery is less than π in (d), (f), whereas it is more than π in (e).

To observe the lattice size dependence, snapshots of the target, incomplete, and isolated

skyrmions are shown in Figs. 5(a)–(f) for lattices of size N=1533, N=5430 and N=11932.

Note that the total number of circular stripes of N =5430 and N =11932 lattices is larger

than that of the N = 1533 lattice because the lattice diameter d approximately increases

1.97 and 2.97 times, respectively (Table I in Appendix A). Such a change in the number

of morphology can also be observed in the stripe phase. Therefore, the number of circular

stripes is determined by the scale λ/D of the FMI and DMI coefficients in Eq. (1).

However, the total number (=1) of incomplete skyrmions remains unchanged and is

independent of d on the lattices of N =1533 in Fig. 5(d) and N =5430 (not shown in Fig.

5), in sharp contrast to the case of nonzero magnetic field with f=0 in Fig. 3; the incomplete
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skyrmion looks like a vortex [36, 37]. Nevertheless, when the diameter d increases further,

an isolated skyrmion, denoted by ”isolated”, emerges in the positive region of f (Fig. 5(e)),

in which the polarity between the center and periphery changes more than π in contrast

to the case of incomplete skyrmion. When f is further increased to f = 2.56, incomplete

skyrmions appear even on the N=11932 lattice (Fig. 5(f)).

The emergence of incomplete skyrmions is expected to be owing to the strong MEC

effect for a relatively large f(> 0), where a strain configuration (⇔ τ⃗∝ e⃗ r= r⃗/r) shares the

center with the skyrmion for the rotational symmetry independent of N . This rotationally

symmetric configuration of τ⃗ enhances the surface effect of GC. The τ⃗ direction is almost

perpendicular to the bond directions, and the FMI and DMI are expected to be very small

on the side surface owing to the FG modeling prescription. Therefore, there is no chance for

incomplete skyrmions to appear independently of the primary incomplete skyrmions on the

nanodots, which emerge as a ground state without strain under zero magnetic field [26, 27].

This problem will be further discussed below.

C. Order parameters and energies

In Fig. 6(a), we plot nonpolar order parameters of spins defined by

Qµ
s =

3

2

(
⟨(s · e⃗ µ

i )
2⟩ − 1

3

)
,

(−0.5 ≤ Qµ
s ≤ 1), (µ = r, θ, z),

Qin
s =Qr

s +Qθ
s

(4)

where e⃗ r
i and e⃗ θ

i denote unit vectors along the radial and tangential directions at vertex

i, respectively (Appendix C). Order parameters of this type are always used for liquid

crystal molecules, which are nonpolar [35]. The reason why nonpolar order parameters are

calculated for s is that Qµ
s are useful to find the phase boundaries as shown below.

The parameters Qr
s (◦), Qθ

s (△) and Qin
s (•) discontinuously change at f ≃ 1 indicating

that the incomplete skyrmion phase is discontinuously separated from the stripe phase. The

jump of Qin
s at the phase boundary is owing to those in Qr,θ

s . The jump in Qθ
s implies an

anisotropic alignment of si in the ±e⃗ θ directions, and this in-plane magnetic anisotropy as a

response to f(>0) is a non-trivial effect of FMI, DMI, and MEC implemented in HFM,DM,ME.

We find an intermediate phase denoted by ”r-stripe” (rounded stripe) between the target

12
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FIG. 6. (a) Nonpolar order parameters Qµ
s (µ = r, θ, z) and Qin

s (= Qr
s+Qθ

s) vs. f , where the

indices represent the directions µ and spin s, and ”in” denotes ”in-plane”. (b)–(i) Snapshots for

−5.6 ≤ f ≤ 2.64 obtained on the N = 5430 lattice under B = 0, and (j) FMI, DMI, MEC, and

stress-strain energies in Eq. (2) vs. f . We find three different phases; target skyrmion (target

Sk) and stripe, and incomplete skyrmion (iSk), and the stripe phase can be divided into two

phases; rounded stripe (”r-stripe”) and stripe. We find target skyrmions in (f) and (g), elongated

incomplete skyrmion in (h) and rotationally symmetric incomplete skyrmion in (i), where sz at the

periphery is sz >−1. Note that −αHME and −Hf are included in the total Hamiltonian of Eq.

(1).

skyrmion and stripe phases has continuous but cusp-like changes in the variation of Qr
s (◦)

and Qθ
s (△) vs. f . The incomplete skyrmion and stripe phases are also characterized by

Qin
s (•), although the difference in Qin

s between the two phases is not very large. Note that

behaviors of Qµ
s depend on the lattice size N ; the transition point between the incomplete

skyrmion and stripe phases depends on N . Here, we only describe the results obtained on

the N =5430 lattice, which is not sufficiently large. However, this lattice size is reasonable
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for studying the surface effect.

Here, we discuss the differences in Qr
s between the target skyrmion, r-stripe, stripe, and

incomplete skyrmion phases. Note that Qr
s→−0.5 if all s satisfy s⊥ e⃗ r, Qr

s→0 for random

s with respect to the direction e⃗ r, and Qr
s → 1 for s ∥ e⃗ r. These properties of Qµ

s describe

directional- or anisotropic-property of magnetization independent of ±-direction. In the

target skyrmion phase (Figs. 6(f),(g)), Qr
s remains monotonically decreasing as f increases

but almost constant; Qr
s≃−0.2, indicating that s⊥ e⃗ r for many s. In the r-stripe phase (Fig.

6(b)), Qr
s starts to increase implying that the condition s⊥ e⃗ r is not always satisfied as f

increases. This increase in Qr
s terminates and decreases again as f moves to the right in the

stripe phase (Figs. 6(c),(d) and (e)), and it discontinuously decreases at f ≃1 illuminating

the phase boundaries.

In the incomplete skyrmion phase (Figs. 6(h),(i)), we find Qr
s →−0.5 for large f(> 0)

corresponding to s⊥ e⃗ r. This s⊥ e⃗ r implies that s aligns along the z-direction or θ-direction

and is reasonably understood from the incomplete skyrmion configuration. The alignment

in the θ-direction can be confirmed in Qθ
s in Fig. 6(a), and the alignment along the z-

direction will be shown below. Thus, we find a strain-induced magnetic anisotropy along

the θ-direction and z-direction in the incomplete skyrmion phase for increasing tensile stress.

The sign of sz at the periphery of the skyrmions that emerge under tensile stress is not

always completely opposite to that at the center, as shown in Figs. 6(h),(i). Therefore,

these skyrmions resemble vortex configurations, as mentioned above [36, 37]. However, the

opposite sign of sz at the periphery is apparent when f is small; that is, f = 1.68 in Fig.

6(i). Therefore, the configurations shown in Figs. 6(h),(i) are considered to be incomplete

skyrmions.

FMI, DMI and MEC energies per tetrahedron plotted in Fig. 6(j), where HFM, HDM,

HME and Hf are given in Eq. (2) and Ntet is the total number of tetrahedrons. We find

that HFM/Ntet (HDM/Ntet) in the incomplete skyrmion phase is smaller (negatively larger)

than that in the other phases, implying that the incomplete skyrmion phase is energetically

stable for the FMI and DMI, although HDM/Ntet discontinuously increases when f increases

at f ≃ 1. HME/Ntet and Hf/N increase almost linearly with increasing f for f > 0 as

expected from the definitions of HME and Hf in Eq. (2). These results also imply that HME

and Hf are small or negatively large in the incomplete skyrmion phase because −αHME

and −Hf are included in the total Hamiltonian of Eq. (1). The shape of Hf/Ntet is almost
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constant zero for f < 0 implying that (τ⃗i · f⃗)2 → 0 for negatively large f . This result is

consistent with the observation that τ⃗i ⊥ e⃗ r in the target skyrmion phase (Figs. 4(a) and

5(a)-(c)).

To see effects of strains on magnetization, we plot the absolute of polar order parameters

M z =
1

N
|
∑
i

szi |, Mxy =
1

N

√
(
∑
i

sxi )
2 + (

∑
i

syi )
2 (5)

in Fig. 7(a), where the dashed vertical lines represent the phase boundaries plotted in

Fig. 6(a). In the incomplete skyrmion phase, we find that M z increases from M z ≃ 0 to

M z >0 as f increases. The small increment of M z with increasing f is considered a signal

of ”the strain-induced alignment of s along the ±z direction”. This result is consistent with

”the strain-mediated increase of in-plane magnetic anisotropy” observed under increasing

compression in Ref. [20], because we can read the plotted M z such that M z decreases with

decreasing f in the incomplete skyrmion phase. The result Mxy≃0 does not imply that the

tensile stress f decreases the in-plane magnetization but is simply owing to the cancellation

in ±sxi and ±syi . This is the reason why the non-polar order parameters Qµ
s plotted in Fig.

6(a) are useful to observe the ±-direction independent alignment. The plotted data M z→0

in the stripe and target skyrmion phases are also reasonable because s that align along the

±z direction cancel each other.
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target
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Qz


FIG. 7. (a) Polar order parameter M z and Mxy vs. f , and (b) order parameters Qζ and

Qµ
τ (µ = r, θ, z) vs. f .

An order parameter Qζ for ζ defined by

Qζ = (1/NB)
∑
a

ζa, (6)
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is plotted in Fig. 7(b). The value Qζ = 1 (Qζ = −1) corresponds to the cosine (sine)

type vij in Eq. (B2). An abrupt change in Qζ at f = 0 does not always indicate an

internal phase transition caused by external mechanical stress f , because no abrupt change

is observed in energies including Hζ . However, this change in Qζ causes a discontinuity

in the effective coupling constant Ω as shown below. Notably, we verified that no target

skyrmion configuration would emerge if Qζ =1(⇔ vij = | cos θij|+v0) for f < 0 by manually

fixing ζ to be ζ=1. Therefore, this transition in Qζ (Fig 7(b)) is expected to be crucial for

the morphological change on nanodots under radial stress. From the direction-dependent

nonpolar order parameters Qµ
τ =

3
2

(
⟨(τ⃗ · e⃗ µ

i )
2⟩ − 1

3

)
, (µ = r, θ, z) in Fig. 7(b), we find that

the strain τ⃗ is at random (⇔Qµ
τ → 0, (µ= r, θ, z)) for f → 0 and aligns such that τ r → 0

(⇔Qr
τ →−0.5) [(τ θ,z → 0 (⇔Qθ,z

τ →−0.5)] in the target [incomplete] skyrmion phase, as

expected.

D. Direction-dependent interaction coefficients with effective Hamiltonian and

topological charge

side
disk

= disk(top,bottom) + side + bulk(inside)N=5430
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bulk
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FIG. 8. Position-dependent energies. Bulk and side energies per bond for (a) FMI, (b) DMI,

and (c) MEC. The coefficients (λ,D, α) = (1, 0.7, 0.3) are not included in these energies. We

find a surface effect that HFM(side)/NB → 0, HDM(side)/NB → 0 and HME(side)/NB → 0 in the

incomplete skyrmion (iSk) phase. We also find a competing nature of FMI and DMI in the iSk

phase, such that HFM(bulk)/NB decreases, whereas HDM(bulk)/NB increases with increasing f .

Note that −αHME is included in the total Hamiltonian of Eq. (1).
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First, we plot the FMI and DMI Hamiltonians on the side surface and inside or bulk

to show the surface effect. From the identity
∑

∆

∑
ij(∆) =

∑
ij

∑
∆(ij) for the summation

convention, energies per tetrahedron can also be written as energies per bond such that

HFM/NB =
1

NB

∑̇
ij

∑
∆(ij)

Γij(τ⃗) (1− si · sj) ,

HDM/NB =
1

NB

∑̇
ij

∑
∆(ij)

Γij(τ⃗)e⃗ij · si × sj,

HME/NB =
f

NB

∑̇
ij

∑
∆(ij)

Ωij(τ⃗ , ζ) (si · sj)2 ,

(7)

where
∑̇

ij denotes that the sum over bond ij is limited to a part of the lattice, and NB(=∑̇
ij1) is the total number of bonds included in that part. The expression of energy per

bond is more convenient for observing the difference in energies between the surface and

bulk, because it is apparent whether a bond ij is on the surface or not. Note that, when

HDM/NB is limited to the side surface, NB is the total number of bonds on the side surface.

The circular edges shared by the side surface and disks are one-dimensional objects; however,

the edges are included on the side surface, for simplicity.

The data obtained on the N=5430 lattice are plotted in Figs. 8(a)–(c). We find a large

difference between HDM(side)/NB and HDM(bulk)/NB. One reason for this difference is that

(i) there exists a sum over tetrahedrons
∑̇

∆(ij) inside the sum over bonds
∑̇

ij such that∑̇
ij

∑
∆(ij) in HDM, and this

∑
∆(ij) depends on whether bond ij is on the surface or inside;

the large difference is not obtained if we use the sum over bonds HDM=
∑̇

ij e⃗ij · si × sj. The

other reason is a dynamical one that (ii) the intensive part of energy Γij(τ⃗) included in HDM

depends on position and direction. This second part (ii) is a main topic in this paper.

To see this second reason (ii), we plot the effective DMI (and FMI) coupling constant

defined by

Γ =
1

NB

∑̇
ij

∑
∆(ij)

Γij(τ⃗) (8)

and Ω defined by the same expression in Figs. 9(a),(b). In this lattice average, the direction

dependence of Γij(τ⃗) is integrated out or summed over. To extract the direction dependence

of Γij(τ⃗), we define the direction-dependent coefficients

Γµ =
1

NB

∑̇
ij

∑
∆(ij)

|Γµ
ij(τ⃗)|, (µ = r, θ, z) (9)
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FIG. 9. (a) Position-dependent Γ(bulk, side,disk) in Eq. (9); Γ (•) is calculated using the

whole bonds. (b) Position-dependent Ω(bulk, side, disk) for ME. (c) Direction-dependent coeffi-

cients Γµ(bulk), and (d) the corresponding bulk Hamiltonian hµDM in Eq. (10) and (e) hµDM(side)

on the side surface. (f) The bulk coefficient of the magneto-elastic coupling Ωµ, and (g) the corre-

sponding bulk Hamiltonian hµME(bulk), (h) FMI bulk Hamiltonian hµFM(bulk) and side Hamiltonian

hµFM(side).

which are plotted in Fig. 9(c), where Γµ
ij(τ⃗) is given by Eq. (C2). The corresponding

direction-dependent energies hµ
DM plotted in Fig. 9(d) are defined by

hµ
DM = Hµ

DM/NB,

Hµ
DM =

∑̇
ij

∑
∆(ij) Γij(τ⃗)(e⃗ij · e⃗ µ)2e⃗ij · si × sj

1
NB

∑̇
ij

∑
∆(ij) |Γ

µ
ij(τ⃗)|

, (µ = r, θ, z)
(10)

where
∑

∆

∑
ij(∆) is replaced by

∑̇
ij

∑
∆(ij) in Hµ

DM of Eq. (C4) and NB is given by NB =∑̇
ij1 as in Eq. (7).

The reason for Γµ≃0.5 at f→0 in Fig. 9(c) is that the normalization factor Γ̂ of Γij in
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Eq. (B6) is defined such that Γij → 1 for isotropic configuration of τ⃗ and that the lattices

are constructed isotropic such that the mean value of |e⃗ij · e⃗ µ| is |e⃗ij · e⃗ µ|≃ 0.5. The large

difference between Γr(bulk) and Γθ,z(bulk) in the incomplete skyrmion phase shown in Fig.

9(c) indicates a strong helical order along the e⃗ r direction than along the e⃗ θ,z directions.

Discontinuities of Ω and Ω(bulk) at f→0 observed in Fig. 9(b) are owing to the difference

between vij(ζij=1) and vij(ζij=−1) in Eq. (B2) corresponding to the discontinuous change

in Qζ plotted in Fig. 7(b).

The surface DMI (= Γ(side) and Γθ,z(side)) plotted in the lower part of Figs. 9(a) and

9(c) are remarkably smaller than the bulk DMI (=Γ(bulk) and =Γθ,z(bulk)) indicated by

(↕) in the incomplete skyrmion phase; the r component is not defined on the side surface

because e⃗ij ⊥ e⃗ r is expected on the side surface. Note also that the direction dependence

or anisotropy and the position dependence of Γµ are apparent only for f > 0, where τ⃗ ∝ e⃗ r

(Figs. 4(c), 5(f)). This dynamical enhancement of the surface effects is considered to be an

origin of the GC effect on the skyrmions in nanodots and compatible with the assumption

of zero surface DMI in a confinement model of Ref. [34]. By contrast, the direction and

position dependence of Γµ disappears for negative large f(< 0), where τ⃗ is spiral along the

z direction (Figs. 4(a), 5(a)–(c)).

No apparent difference is observed between the surface DMI (= Γr(disk)) on the up-

per/lower disk and the bulk DMI (=Γr(bulk)). The other component Γθ(disk) that is not

plotted is comparable to the bulk component Γθ(bulk). Note that Γµ, (µ = r, θ, z) are con-

sidered the µ components of a DMI vector [2–6] (Appendix D). It is also noteworthy that

Γµ(bulk), (µ=r, θ, z) increase with increasing f in the whole range of f and this behavior is

qualitatively consistent with the reported result that Dave decreases with increasing strain

in Ref. [20], where −Dave corresponds to Γ plotted in Fig. 9(a) with the symbol (•).

The direction dependence of hµ
DM(bulk) (Fig. 9(d)) is apparent in the target and incom-

plete skyrmion phases. The direction-dependent energies hµ
DM(side) plotted in Fig. 9(e)

are comparable with the bulk ones hµ
DM(bulk) in 9(d). This result implies that the reason

for a large difference between hDM(side) and hDM(bulk) in Fig. 8(b) is mainly due to the

difference between Γµ(side) and Γµ(bulk), because the DMI energies plotted in Fig. 8(b)

can also be expressed by using the direction-dependent quantities in Eq. (C6) such that

HDM = ΓrHr
DM + ΓθHθ

DM + ΓzHz
DM. (11)
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Thus, we should emphasize that the reason for |HDM(side)/NB|≪ |HDM(bulk)/NB| in Fig.

8(b) is that the intensive part of energy satisfies

Γθ,z(side) ≪ Γθ,z(bulk)

as shown in Fig. 9(c). Note that a small discontinuity in hθ
DM(bulk) at the phase boundary

between the skyrmion and stripe, denoted by ”gap” in Fig. 9(d), indicates a weak first-order

transition.

It is also interesting to observe that the variations of Ωµ in Fig. 9(f) are almost the same

as those of Γµ; the definition of Ωij is considerably different from that of Γij (Appendix

B). Ωθ,z(side) are very small compared with Ωθ,z(bulk) in the incomplete skyrmion phase

(Fig. 9(f)). The corresponding hµ
ME plotted in Fig. 9(g) are direction-dependent only in the

target and incomplete skyrmion phases similar to hµ
DM. The symbol Ωz

eff denotes an effective

coupling constant

Ωz
eff = αfΩz, (12)

where the constant α is included. This Ωz
eff corresponds to the magnetic anisotropy Kave in

Ref. [20], however, the z component of HME does not always play a role in the magnetic

anisotropy in our model. Nevertheless, we find qualitative consistency between the obser-

vation that Ωz
eff increases with increasing f and the behavior of Kave versus strain in Ref.

[20]. Note that Ωz
eff → 0 for f → 0, and therefore no spontaneous magnetic anisotropy is

implemented in the model, as mentioned in Section II B; all anisotropies are dynamically

generated and can be evaluated.

We should note that a strong anisotropy in Ωµ(bulk), (µ= r, θ, z), which is considered a

strain-induced interaction anisotropy, appears only in the region of f > 0 in the proposed

model as confirmed from Fig. 9(f). In the region of f > 0, we find Ωr(bulk) > Ωθ,z(bulk),

which indicates that the tensile stress makes the spin correlation (si · sj)2 along the r-axis

to be stronger than those along the other axes. This strong and anisotropic correlation

implemented in Ωr(bulk) of MEC, in addition to the enhanced effective FMI, competes

with the enhanced DMI along the r-axis. Consequently, the spin correlation along the

r direction becomes stronger than that without MEC. This strain-enhanced competition

modified by ME along the r-axis increases the skyrmion size and is considered the reason

for the appearance of incomplete skyrmions. Note that the inequality Ωr(bulk) > Ωθ,z(bulk)
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does not imply anisotropy of si along the r direction because Qr
s →−0.5 in Fig. 6(a). In

contrast, strain-mediated magnetic anisotropies along the θ, z directions are expected in the

incomplete skyrmion phase owing to the observation that Γθ,z(bulk) and Ωθ,z(bulk) in the

incomplete skyrmion phase are larger than those in the stripe and target skyrmion phases

(Figs. 9(c),(f)). This expectation of strain-mediated magnetic anisotropy is consistent with

the increase in both M z (Fig. 7(a)) and Qθ
s (Fig. 6(a)) with increasing f in the incomplete

skyrmion phase.

We also find that hµ
DM(bulk) increase as shown in Fig. 9(d), while hµ

FM(bulk) decrease

as shown in Fig. 9(h), as f increases in the incomplete skyrmion phase. This behavior

represents the competing nature of the interactions necessary for skyrmion emergence and is

consistent with the observation in the full Hamiltonians HFM(bulk)/NB and HDM(bulk)/NB

in Figs. 8(a),(b).
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FIG. 10. (a) A triangle ijk and the spins si, sj and sk for the calculation of the topological

charge Nsk on the upper disk. (b) |Nsk| vs. f and (c) absolute topological charge Nab
sk vs. f . The

dashed vertical lines are discontinuous phase boundaries between incomplete skyrmion and stripe

phases (N=1533, N=5430), and a continuous phase boundary between incomplete skyrmion and

isolated skyrymion phases (N =11932). The dashed vertical lines represent the phase boundaries

depending on N .
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The topological charge Nsk=
1
4π

∫
d2x s· ∂s

∂x1× ∂s
∂x2 is calculated using the discrete expression

Nsk =
1

4π

∑
∆(ijk)

si · (sj − si)× (sk − si) (13)

on the upper disk of the lattice, where
∑

∆(ijk) denotes the sum of triangles with vertices i,

j and k (Fig. 10(a)). We observe a topological phase transition between the skyrmion and

stripe phases (Fig. 10(b)) at least for N ≤ 5430, although |Nsk| is smaller than |Nsk|=1 in

the skyrmion phase owing to the nature of incomplete skyrmions that the polarity change

between the center and the periphery is less than π. Another reason for |Nsk| < 1 is the

numerical error originating from discretization. The order of the transition is considered

first-order if we employ the definition of the first-order transition such that there exists a

physical quantity that is discontinuously changing. Moreover, |Nsk| in the skyrmion phase

for the N≥5430 lattices is larger than |Nsk|(=0.5) of the vortex, implying that the skyrmion

configurations under tensile stress are different from those of vortices, as discussed in Section

III C. Note that an isolated skyrmion phase appears on the N =11932 lattice between the

incomplete skyrmion and stripe phases in the region of f indicated by (↔) in Fig. 10(a).

However, surface effects are expected to be weak due to the increasing bulk volume on

large nanodots, and for this reason, a discontinuous transition is observed only on smaller

nanodots.

The absolute of topological charge defined by

Nab
sk =

1

4π

∑
∆(ijk)

|si · (sj − si)× (sk − si) | (14)

is convenient to see the total topological excitation (Fig. 10(c)). This quantity is called

absolute skyrmion number in Ref. [26, 27]. We find that Nab
sk increases with increasing N

and smoothly varies with respect to f .

IV. CONCLUDING REMARKS

In this paper, we numerically study the skyrmion stability in nanodots with and without

a magnetic field using the Finsler geometry (FG) modeling technique and find that a single

incomplete and/or isolated skyrmion is stabilized at the center of the nanodots under radial

tension. Metropolis Monte Carlo technique is used for the simulations on 3D tetrahedral

lattices of cylindrical shape. Our Hamiltonian is defined with the variables of electric spins
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and strain direction, and an Ising-like variable to dynamically treat the anisotropy of the

magneto-elastic coupling (MEC). In such FG modeling, position- and direction-dependent

coupling constants emerge dynamically in response to the the tensile stress.

As a GC effect without stress, we confirm that the minimal external magnetic field for

skyrmions decreases when the nanodot diameter decreases. This observation is consistent

with previously reported experimental data by Y. Wang et al. [20] for materials with a

spontaneous in-plane magnetic anisotropy. When radial stresses are applied under zero

magnetic field, we confirm three different phases: incomplete (or isolated) skyrmions, stripes,

and target skyrmions, by varying the stress from positive (tension) to negative (compression).

In the incomplete skyrmion phase, we find that the effective DMI coefficient increases with

increasing tensile stress, and there is a large difference in the effective coupling constants,

including FMI and MEC, between the surface and bulk in the nanodots. This modification

of the coupling constants is considered a strain-enhanced surface effect. We also find a

strain-induced z-direction alignment of spin configurations in the polar-order parameter.

These observations are consistent with the experimental results reported in Ref. [20] that

the DMI coefficient and spontaneous in-plane magnetic anisotropy are modified by strains.

Moreover, we observe that the incomplete skyrmions close to the stripe phase change to

isolated skyrmions when the disk diameter increases.

Thus, we find that a stable incomplete (or isolated) skyrmion emerges at the center of the

nanodot owing to the dynamical enhancement of the surface effect by radially applied tensile

stresses. In summary, the origins of skyrmion stability in nanodots without a magnetic

field are (i) dynamically enhanced or strain-enhanced surface effects for position-dependent

interactions and (ii) dynamically generated or strain-induced interaction anisotropies of the

FMI, DMI, and MEC by radial stresses.
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Appendix A: Lattice construction
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FIG. 11. Cylindrical lattices of size (a) N =2803, (b) N =5430 and (c) N =11932 composed of

tetrahedrons. The diameter d and the height h are written in the plots; h is fixed to h=12b=6
√
3a,

where a is the edge length of regular triangle on the side cylinder and b is the height. The diameter

d=a/ sin(π/ne) is that of circumscribed circle of regular ne-gon with ne given in Table I, because

the upper and lower disks are identified with the regular ne-gon. (d) Distribution h(ℓ) of bond

length ℓ, where both h(ℓ) and ℓ are normalized. The peak at ℓ≃ 0.6 corresponds to the bond of

the cylindrical side surface. The height shares the symbol h with the distribution h(ℓ), however,

no confusion is expected.

The height h of the cylinder is fixed to h = 12b in the unit of regular triangle height

b(= (
√
3/2)a) with the edge length a (Fig. 11). The upper and lower disks are identified
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TABLE I. Lattices are characterized by the numbers N,NB, NT , Ntet, which are the total number

of vertices, bonds, triangles, and tetrahedrons. The Euler number χ(=N−NB+NT−Ntet) satisfies

χ=1, implying that the lattices are filled with tetrahedrons. ne is the total number of edges of the

upper/lower disk, which is a regular ne-gon. The diameter d and ratio R(=d/h) characterize the

lattice shape. The height h of the cylinders is h=12b=6
√
3a (Fig. 11).

N NB NT Ntet χ ne d R(= d/h)

1533 9970 16315 7877 1 33 10.5a 1.02

2083 13686 22501 10897 1 39 12.4a 1.20

5430 36720 61093 29802 1 65 20.7a 1.99

8465 57882 96700 47282 1 82 26.1a 2.51

11932 82097 137492 67326 1 98 31.2a 3.00

with a regular ne-gon, where ne is the total number of vertices or edges of the disk, and

the diameter d is given by the circumscribed circle diameter d = a/ sin(π/ne). Therefore,

the cylinders are also characterized by the ratio R = d/h. We plot three cylinders of R

approximately given by R=1.20, R=1.99 and R=3.00 in Figs. 11(a)–(c). The cylindrical

surface is composed of a regular triangle. The total number of vertices on each of the top and

bottom disks, including the edge, is given by π(d/2)2/(
√
3/2), where

√
3/2 is the area of two

regular triangles in the case of a=1, and the vertices are randomly distributed as uniformly

as possible. The distribution of vertices on the upper disk is the same as that on the bottom

disk. The vertices inside the surface are also randomly distributed as uniformly as possible,

and the total number is calculated using the volume of vertices inside the surface, in which

the space is assumed to be filled with regular tetrahedrons. Vertex volume is calculated

as (
√
2/48)×22.8, where (

√
2/48 is a quarter of the regular tetrahedron volume and 22.8

is an approximate number of the regular tetrahedrons emanating from the inner vertices

calculated by 4π/Ω with the solid angle Ω of a vertex of the tetrahedron. The peak of the

distributions h(ℓ) of the bond length ℓ plotted in 11(d) corresponds to the bonds on the

cylindrical surface. Table I lists the numbers characterizing the lattices.

The mean value of the total number of tetrahedrons nij(=
∑

∆(ij) 1) sharing bond ij are

shown in Table II. We find that n(side)
n(bulk)

≃0.51. This ratio is one of the origins of the surface
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effect on GC that the surface DMI on the side surface is smaller than the bulk DMI. The

surface effect will be described in Appendix B. To show that the direction e⃗ij of bond ij

is isotropic, the lattice averages (e⃗ij · e⃗ r)2, (e⃗ij · e⃗ θ)2 and (e⃗ij · e⃗ z)2 are listed. We find

from (e⃗ij · e⃗ µ)2 ≃ 1/3, (µ = r, θ, z) that the bond direction e⃗ij is isotropically distributed.

Interaction anisotropy comes only from a dynamical reason in contrast to the surface effect.

TABLE II. The mean value of the total number of tetrahedrons sharing bond ij are calculated

using n =
∑

ij

∑
∆(ij) 1∑
ij 1

on upper and lower disks, side surface and inside, denoted by n(disk), n(side)

and n(bulk), respectively. n is the mean value for all bonds ij. (e⃗ij · e⃗ µ)2, (µ=r, θ, z) are the lattice

averages of squared µ components of bond direction e⃗ij , where e⃗ µ(µ= r, θ, z) denote the (r, θ, z)

direction at the center of bond ij (see Appendix C).

N n(disk) n(side) n(bulk) n (e⃗ij · e⃗ r)2 (e⃗ij · e⃗ θ)2 (e⃗ij · e⃗ z)2

1533 2.87 2.64 5.15 4.74 0.334 0.337 0.326

2083 2.85 2.65 5.16 4.78 0.340 0.336 0.330

5430 2.80 2.64 5.17 4.87 0.333 0.330 0.338

8465 2.80 2.65 5.17 4.90 0.329 0.329 0.340

11932 2.80 2.65 5.17 4.92 0.330 0.329 0.342
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Appendix B: Discretization of direction-dependent interaction coefficient

௜௝

unit Finsler distance   
from vertex 

(in Euclidean space ) 

(a)                (b)                

௜

௜௝ ௜

௜௝ ௜௝

௜௝ ௜௝

௜௝

>

FIG. 12. (a) Trajectory of unit Finsler length vij at i is not always spherical or symmetric in

Euclidean space, (b) the trajectory for vij assumed in this paper, where v0 = 0 is assumed for

simplicity. In (b), vij=cos θij>vij=sin θij for the given strain direction τ⃗i(∈ S2/2). Finsler length

vij does not correspond to the real length in materials but it is used to define direction-dependent

interaction anisotropy between spins s and strains τ⃗ .

Finsler geometry framework provides interaction anisotropy between two particles via a

direction-dependent Finsler length vij (Fig. 12(a)). The Finsler length vij for HFM, HDM is

fixed to be cosine type, and vij for HME is defined to be dynamically convertible to cosine

type or sine type depending on ζij (∈ {−1, 1} on bond ij):

vij = | cos θij|+ v0, (v0 = 0.1; HFM, HDM) (B1)

vij =

 | cos θij|+ v0, (ζij = 1)

sin θij + v0, (ζij = −1)
, (v0 = 0.2; HME), (B2)

where cos θij and sin θij (Fig. 12(b)) are

cos θij = τ⃗i · e⃗ij, sin θij =
√

1− |τ⃗i · e⃗ij|2 (≥ 0), (B3)

and v0 is a small cutoff; the smaller v0, the larger interaction anisotropy.

Using these vij, the Finsler metric is defined by

gab =


v−2
12 0 0

0 v−2
13 0

0 0 v−2
14

 ,
√
g =

√
det gab = v−1

12 v
−1
13 v

−1
14 , gab = (gab)

−1. (B4)
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These expressions are used in the continuous Hamiltonians

HFM =
1

2

∫
√
gd3xgab

∂s

∂xa
· ∂s

∂xb
,

HDM =

∫
√
gd3xgab

∂r⃗

∂xa
· s× ∂s

∂xb
,

HME =
1

4

∫
√
gd3x

(
gab

∂s

∂xa
· ∂s

∂xb

)2

,

(B5)

where the factor f is removed from HME for simplicity. From these continuous Hamiltonians,

we obtain the discrete ones in Eq. (2) by replacing the differentials with differences such

that ∂1s→s2−s1, ∂2s→s3−s1 and ∂3s→s4−s1 for a local coordinate system with the origin

at the vertex 1, and by replacing
∫ √

gd3x with
∑

∆

∑
ij(∆); the sum over tetrahedrons

∑
∆

and the sum over bonds
∑

ij(∆) of the tetrahedron ∆, and by summing over all symmetric

expressions obtained by the cyclic replacements 1 → 2, 2 → 3, 3 → 4, 4 → 1 (Fig. 1(c)).

For the discretization of HME, only quadratic terms such as (si · sj)2 in the expansion of(
gab ∂s

∂xa · ∂s
∂xb

)2
are used.

In these discrete calculations, we extract an intensive part of the energies, the so-called

position- and direction-dependent coupling constants

Γij = Γ̂−1γij, Γ̂ = n̄ ⟨γiso⟩, (FMI,DMI), (B6)

γ12 =
v12

v13v14
+

v21
v23v24

, γ13 =
v13

v12v14
+

v31
v32v34

,

γ14 =
v14

v13v14
+

v41
v42v43

, γ23 =
v23

v21v24
+

v32
v31v34

,

γ24 =
v24

v21v23
+

v42
v41v43

, γ34 =
v34

v31v32
+

v43
v41v42

(B7)

for HFM and HDM, and

Ωij = Ω̂−1ωij, Ω̂ = n̄ ⟨ωiso⟩, (MEC), (B8)

ω12 =
v312

v13v14
+

v321
v23v24

, ω13 =
v313

v12v14
+

v331
v32v34

,

ω14 =
v314

v13v14
+

v341
v42v43

, ω23 =
v323

v21v24
+

v332
v31v34

,

ω24 =
v324

v21v23
+

v342
v41v43

, ω34 =
v334

v31v32
+

v343
v41v42

(B9)

for HME. The difference between γij and ωij comes from the quadratic form of the integrand

of HME in Eq. (B5).

Here, we describe only Γij for simplicity; the definitions of these two are the same except

for the expressions of γij and ωij and their vij in Eqs. (B1) and (B2). We should note that

28



Γ̂ in Γij is an irrelevant normalization constant, and a non-trivial interaction comes from γij

in Eq. (B7). The position- and direction-dependence of interaction is effectively introduced

as an intensive part of energy in Hamiltonian via Γij in the FG modeling.

In Eq. (B6), n̄(=
∑

∆(ij) 1∑
ij 1

) denotes the mean value of nij =
∑

∆(ij) 1, which is the total

number of tetrahedrons ∆ sharing bond ij (Fig. 2(c)), and ⟨γiso⟩=⟨
∑

∆

∑
ij(∆) γij∑

∆

∑
ij(∆) 1

⟩ denotes the

ensemble average calculated with 1000 isotropic configurations of τ⃗ . Note that the random

configurations for ⟨γiso⟩ in Ωij include a randomly distributed ζ on the bonds. The reason

for introducing the v0-dependent factor ⟨γiso⟩ is that γij varies depending on v0 in Eqs. (B1)

and (B2), and the parameters λ, D and α should be changed according to any variations in

v0 if ⟨γiso⟩ is not included.

We briefly show the surface effect for GC. There are two possible sources; static and

dynamical, for the surface effect. The first one comes from the lattice structure and the

other from a dynamical effect in FG modeling. The first one, which is the static part, is

shown using the coupling constant in Eq. (B6) as follows. It is noteworthy that the lattice

average Γ =
∑

∆

∑
ij(∆) Γij∑

∆

∑
ij(∆)

of Γij for an isotropic configuration of τ⃗ satisfy Γ(= Γij) ≃ n̄−1.

Indeed, let γij be a coefficient obtained with an isotropic configuration of τ⃗ and γ be the

lattice average of γij. Then, we have that Γ= n̄−1⟨γiso⟩−1γ= 1
n̄⟨γiso⟩

∑
∆

∑
ij(∆) γij∑

∆

∑
ij(∆) 1

≃ n̄−1 because

the lattice average γ(=
∑

∆

∑
ij(∆) γij∑

∆

∑
ij(∆) 1

) for isotropic τ⃗ is close to ⟨γiso⟩. Using this Γ, the

Hamiltonian of DMI in Eq. (2) for isotropic τ⃗ can be written as

HDM =
∑
∆

∑
ij(∆)

Γij e⃗ij · si × sj

→
∑
ij

(n̄−1
∑
∆(ij)

1)e⃗ij · si × sj =
∑
ij

(nij/n̄)e⃗ij · si × sj,
(B10)

where Γij is replaced by Γ≃ n̄−1 and the summation convention
∑

ij

∑
∆(ij)=

∑
∆

∑
ij(∆) is

used. The replacement of Γij with a constant Γ is to neglect all dynamical effects imple-

mented in FG modeling and to leave only contribution from the lattice structure. This form

of HDM =
∑

ij(nij/n̄)e⃗ij · si × sj includes the weight nij/n̄, which modifies the interaction

e⃗ij · si × sj to be dependent on the position of bond ij whether it is on the surface or inside.

The number nij =
∑

∆(ij) 1 is smaller (larger) than the mean value n̄ on the surface (bulk)

(Table II and Fig. 2(c)). Thus, we confirm that this weight difference is one possible origin

of the surface effect in the small strain region f→0, where τ⃗ is isotropic. This GC effect at

f=0 is confirmed in Section IIIA.
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When an anisotropic configuration of τ⃗ (and ζ) is reflected in γij, the weight difference

is further enlarged in the region of f > 0 in the incomplete skyrmion phase (Fig. 9(a)).

This enlargement caused by anisotropic τ⃗ is the dynamical part of the surface effect for GC.

Here, we should emphasize that the surface effect is the difference in the interaction weight

in HDM; effective DMI coupling on the side surface is considerably smaller than the bulk

one (Fig. 9(a)).

Appendix C: Decomposition of interaction coefficient and the corresponding ener-

gies

(a)                                  (b) (c)
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FIG. 13. (a) Polar coordinate position of vertex i. The coordinate origin is at the center of

nanodot. (b) Spin vector si is decomposed into the radial e⃗ r
i , tangential e⃗

θ
i and e⃗ z directions at

vertex i, where sµi = (si · e⃗ µ
i )e⃗ µ

i , (µ = r, θ, z). (c) The unit vector e⃗ij from vertices i to j can be

decomposed into the e⃗ r, e⃗ θ and e⃗ z components, where e⃗ r and e⃗ θ are given by Eq. (C1) and

e⃗ µ
ij =(e⃗ij ·e⃗ µ)e⃗ µ, (µ=r, θ, z).

Let e⃗ij be the unit vector from vertices i to j and e⃗ r
i , e⃗

θ
i and e⃗ z be the unit vectors

along the r, θ and z directions at the vertex i as illustrated in Figs. 13(a),(b), where the

coordinate origin is at the center of nanodot and e⃗ z
i is independent of i and written as e⃗ z.

Here, we define unit vectors

e⃗ µ =
(
e⃗ µ
i + e⃗ µ

j

)
/∥e⃗ µ

i + e⃗ µ
j ∥, (µ = r, θ) (C1)

to represent the r and θ directions at the center of bond ij (Fig. 13(c)). Then, we have

a decomposition of e⃗ij such that e⃗ij = (e⃗ij · e⃗ r)e⃗ r+(e⃗ij · e⃗ θ)e⃗ θ+(e⃗ij · e⃗ z)e⃗ z. Since Γij is

defined on bond ij along e⃗ij, Γij is naturally direction-dependent. To extract this direction
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dependence, we use the vector Γij e⃗ij, which is decomposed as

Γij e⃗ij = Γr
ij e⃗

r + Γθ
ij e⃗

θ + Γz
ij e⃗

z,

Γr
ij(τ⃗) = Γij(τ⃗)(e⃗ij · e⃗ r), Γθ

ij(τ⃗) = Γij(τ⃗)(e⃗ij · e⃗ θ), Γz
ij(τ⃗) = Γij(τ⃗)(e⃗ij · e⃗ z).

(C2)

This decomposition of Γij e⃗ij corresponds to the decomposition of DMI vector (Appendix

D) and is considered a physically meaningful decomposition. Using these ”microscopic”

direction-dependent factors Γµ
ij, the ”macroscopic” direction-dependent coefficients are nat-

urally defined by

Γµ =
1

NB

∑
ij

∑
∆(ij)

|Γµ
ij(τ⃗)|, (µ = r, θ, z). (C3)

The meaning of Γµ is as follows: If Γr>Γθ,z for example, we understand from this inequality

that Γij along bond ij parallel or almost parallel to ±e⃗ r is larger than Γij along bond ij

parallel or almost parallel to ±e⃗ θ,z, because the direction of e⃗ij is uniformly distributed.

Using these Γµ, the corresponding HDM can also be decomposed into direction-dependent

energies:

Hr
DM =

∑
∆

∑
ij(∆) Γij(τ⃗)(e⃗ij · e⃗ r)2e⃗ij · si × sj

1
NB

∑
∆

∑
ij(∆) |Γr

ij|
,

Hθ
DM =

∑
∆

∑
ij(∆) Γij(τ⃗)(e⃗ij · e⃗ θ)2e⃗ij · si × sj

1
NB

∑
∆

∑
ij(∆) |Γθ

ij|
,

Hz
DM =

∑
∆

∑
ij(∆) Γij(τ⃗)(e⃗ij · e⃗ z)2e⃗ij · si × sj

1
NB

∑
∆

∑
ij(∆) |Γz

ij|
,

(C4)

where NB=
∑

ij 1 is the total number of bonds. Using these expressions, we have

HDM =
∑
∆

∑
ij(∆)

Γij(τ⃗)e⃗ij · si × sj

=
∑
∆

∑
ij(∆)

Γij(τ⃗)
[
(e⃗ij · e⃗ r)2 + (e⃗ij · e⃗ r)2 + (e⃗ij · e⃗ r)2

]
e⃗ij · si × sj

=

 1

NB

∑
∆

∑
ij(∆)

|Γr
ij(τ⃗)|

Hr
DM +

 1

NB

∑
∆

∑
ij(∆)

|Γθ
ij(τ⃗)|

Hθ
DM

+

 1

NB

∑
∆

∑
ij(∆)

|Γz
ij(τ⃗)|

Hz
DM,

(C5)

and therefore, the lattice average is given by

HDM = ΓrHr
DM + ΓθHθ

DM + ΓzHz
DM. (C6)
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Eq. (C6) is satisfied only in the lattice average. However, for the ensemble average ⟨∗⟩

calculated via MC simulations, it is reasonable to assume Γµ ≃ ⟨Γµ⟩ and Hµ
DM ≃ ⟨Hµ

DM⟩

in the equilibrium configurations, and hence, we use this decomposition of HDM for the

simulation data to evaluate the direction-dependent effective coefficients and energies. We

should note that Γij in HFM and Ωij in HME in Eq. (2) are defined on bond ij and can

also be decomposed into µ components in the same procedure described in Eq. (C2). The

directional dependence of HFM and HME can also be evaluated with the same procedure for

HDM.

For the calculation ofHµ
DM(side) on the side surface (Figs. 9(d),(e)), the sum

∑
ij

∑
∆(ij)(=∑

∆

∑
ij(∆)) in the expressions of Eq. (C4) should be limited to the bonds ij on the side

surface. In this case, NB is the total number of bonds on the side surface.
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FIG. 14. (a) Position-dependent Finsler length v vs. f for the cosine type vij = | cos θij |+v0

(v0=0.1) for DMI (and FMI) obtained on the N=5430 lattice, where cos θij= τ⃗ · e⃗ij (Fig. 12(b))

and (b) the direction-dependent (⇔ (r, θ, z)-dependent) Finsler length vµ vs. f .

Finally, in this appendix, we plot the unit Finsler length for DMI in Fig. 14(a) calculated

using the lattice average

v =
1

NB

∑̇
ij

vij + vji
2

(C7)

on the side surface (side), the upper/lower disk (disk), and the inside (bulk). The compo-

nents vµ, (µ= r, θ, z) (Fig. 14(b)) are obtained with the absolute components of the vector
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v⃗ij(=
vij+vji

2
e⃗ij) such that

vµ =
1

NB

∑̇
ij

vij + vji
2

|eµij|, (C8)

where NB =
∑̇

ij1. The meaning of
∑̇

ij, which is the same as that in Eq. (7), is that the

sum over bonds
∑

ij is limited to the disk, or side, or bulk. The index symmetrization of vij

for v and vµ is necessary owing to vij ̸=vji, in contrast with the case of Γij, where Γij =Γji

(Eq. (B6)). Without the symmetrization,
∑

ijvij depends on the labeling of vertex i and

becomes ill-defined because the symbol
∑

ij implies the sum over pairs of vertices i and j

connected by bond under the condition i> j. The sum over bonds (1/NB)
∑

ij
vij+vji

2
is the

same as the sum over bonds (1/2NB)
∑

ijvij without the condition i>j. Finsler length v is

direction independent, whereas vµ depends on the direction µ(=r, θ, z).

We find from Fig. 14(a) that v(bulk) is almost constant and v(side) and v(disk) depend on

f for positive f . In the incomplete skyrmion phase, v(side)≪v(bulk), which is considered to

be the origin of the surface effect in the FG modeling. From Fig. 14(b), we find that vr(bulk)

(vθ,z(bulk)) increases (decrease) with increasing f , and hence, the variation of vr(bulk) is

opposite to those of vθ,z(bulk). The observation that vr(bulk) increases for f > 0 indicates

that vij on bond ij in the direction e⃗ij almost parallel to e⃗ r
ij is larger than that on bonds

ij of e⃗ij almost perpendicular to e⃗ r
ij. It is noteworthy that this behavior of vµ is reflected

in Γ(bulk) and Γµ(bulk) in Figs. 9(a),(c), though Γij is a rational function of vij in Eqs.

(B6) and (B7). We should note that in the isotropic case at f → 0, vij is at random and

independent of vji, whereas vij ≃ vji in the anisotropic case |f | > 0 where τ is uniformly

aligned. We find no position dependence of v on f at f =0. The directional independence

of v implies that the original isotropic model (⇔Γij =constant ) is restored in the limit of

f→0, where τ⃗ randomly distributes and effectively has no influence on s.

Appendix D: DMI vector

Effective coupling constants
∑

∆(ij) Γ
µ
ij(τ⃗), (µ = r, θ, z) are understood to be µ compo-

nents of a DMI vector. It is interesting to observe that DMI vector is composed of primitive

objects in FG modeling. First, HDM can be written as

HDM =
∑
ij

Dij · si×sj, (D1)
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where Dij is a DMI vector and
∑

ij denotes the sum over bonds ij. Second, HDM in Eq. (2)

can be expressed by the sum over bonds:

HDM =
∑
ij

∑
∆(ij)

Γij(τ⃗)e⃗ij · si × sj, (D2)

where
∑

∆(ij) denotes the sum over tetrahedrons sharing bond ij. The expression in Eq.

(D2) is obtained from HDM in Eq. (2) by using the identity
∑

∆

∑
ij(∆)=

∑
ij

∑
∆(ij) (Fig.

2 and the caption). Therefore, comparing Eqs. (D1) and (D2), we obtain

Dij =
∑
∆(ij)

Γij(τ⃗)e⃗ij

=
∑
∆(ij)

Γij(τ⃗)
[
(e⃗ij · e⃗ r)e⃗ r+(e⃗ij · e⃗ θ)e⃗ θ+(e⃗ij · e⃗ z)e⃗ z

]
,

(D3)

and the µ component

Dµ
ij = Dij ·e⃗ µ =

∑
∆(ij)

Γij(τ⃗)

 e⃗ij · e⃗ µ, (µ = r, θ, z), (D4)

where e⃗ µ represents e⃗ r, e⃗ θ and e⃗ z (see Eq. (C1) and Fig. 13(c)). Since e⃗ij · e⃗ µ in Eq.

(D4) is independent of the sum
∑

∆(ij) and Γij(τ⃗) > 0, we find |Dµ
ij| =

∑
∆(ij) Γij(τ⃗)|e⃗ij ·

e⃗ µ|. If we write the lattice average of |Dµ
ij| by Dµ such that Dµ = 1

NB

∑
ij |D

µ
ij(τ⃗)| =

1
NB

∑
ij

∑
∆(ij) Γij(τ⃗)|e⃗ij · e⃗ µ|, then Γµ(= 1

NB

∑
∆

∑
ij(∆) |Γ

µ
ij(τ⃗)|) is identified with Dµ:

Dµ =
1

NB

∑
ij

∑
∆(ij)

Γij(τ⃗)|e⃗ij · e⃗ µ|

=
1

NB

∑
∆

∑
ij(∆)

Γij(τ⃗)|e⃗ij · e⃗ µ|

=Γµ, (µ = r, θ, z).

(D5)

Using these relations, Eq. (C6) can also be written as

HDM = DrHr
DM +DθHθ

DM +DzHz
DM. (D6)

Therefore, the extensive parts Hµ
DM, (µ= r, θ, z) are considered to be physically meaningful

direction-dependent energies, expressed to be determined as a response to the intensive parts

Dµ, which are also dynamically determined.

The symbol Γ is used for the lattice average defined by

Γ =
1

NB

∑
ij

∑
∆(ij)

Γij(τ⃗), (D7)
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which corresponds to the lattice average of Dij=∥Dij∥=
∑

∆(ij) Γij(τ⃗).
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