
1

Enhancing High-Speed Cruising Performance of
Autonomous Vehicles through Integrated Deep

Reinforcement Learning Framework
Jinhao Liang, Member, IEEE, Kaidi Yang, Chaopeng Tan, Jinxiang Wang, Member, IEEE, Guodong Yin, Senior

Member, IEEE

Abstract—High-speed cruising scenarios with mixed traffic
greatly challenge the road safety of autonomous vehicles (AVs).
Unlike existing works that only look at fundamental modules
in isolation, this work enhances AV safety in mixed-traffic high-
speed cruising scenarios by proposing an integrated framework
that synthesizes three fundamental modules, i.e., behavioral
decision-making, path-planning, and motion-control modules.
Considering that the integrated framework would increase the
system complexity, a bootstrapped deep Q-Network (DQN) is
employed to enhance the deep exploration of the reinforcement
learning method and achieve adaptive decision making of AVs.
Moreover, to make AV behavior understandable by surrounding
HDVs to prevent unexpected operations caused by misinter-
pretations, we derive an inverse reinforcement learning (IRL)
approach to learn the reward function of skilled drivers for
the path planning of lane-changing maneuvers. Such a design
enables AVs to achieve a human-like tradeoff between multi-
performance requirements. Simulations demonstrate that the
proposed integrated framework can guide AVs to take safe actions
while guaranteeing high-speed cruising performance.

Index Terms—Autonomous vehicle, deep reinforcement learn-
ing, model predictive control, high-speed cruising.

I. INTRODUCTION

AUTONOMOUS vehicles (AVs) have been widely rec-
ognized as a promising technology with enormous po-

tential for improving traffic efficiency, road safety, and en-
ergy consumption in intelligent transportation systems [1],
[2]. Equipped with advanced sensors, such as cameras and
LiDARs, AVs demonstrate the capability of perceiving the
environment and serving as control actuators for improving
traffic flow [3]. However, the penetration rates of AVs can
only gradually increase as technological maturity and public
acceptance improve, and hence AVs are expected to operate
in mixed traffic scenarios together with human-driven vehicles
(HDVs). Within this context, the inherent unpredictability of
HDVs emphasizes the critical need to investigate the safe
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control of AVs in mixed-traffic environments. On the one hand,
this requires AVs to systematically consider their autonomous
driving capabilities and the behavior of surrounding vehicles.
On the other hand, it is crucial to make the decisions of AVs
understandable by surrounding HDVs to prevent unexpected
operations caused by misinterpretations.

Most studies divide the autonomous driving task into three
sequentially executed modules, i.e., the behavioral decision-
making, path-planning, and motion-control modules, and seek
to enhance the safety of AVs by improving each of them
in isolation [4]–[6]. The behavioral decision-making module,
taking into account road rules and traffic conditions, is first
executed to help AVs choose between lane keeping and lane
changing, based on methods such as finite state machines [7],
behavior trees [8], and deep reinforcement learning (DRL)
[9]–[11]. It is worth noting that DRL-based methods have re-
cently attracted increasing research attention for the behavioral
decision-making module, thanks to its ability to make robust
decisions efficiently in complex traffic conditions. Then, if lane
changing is chosen, the path-planning module is executed to
generate a collision-free trajectory, which is typically achieved
by formulating an optimization problem [12]–[16]. Finally, the
motion-control module allows AVs to implement behavioral
decisions and maintain precise and stable movement along
planned trajectories. Some model-based algorithms, such as
linear quadratic regulator [17], sliding mode control [18],
and robust H-∞ control [19] are widely used to guarantee
autonomous tracking performance. Recently, Model Predictive
Control (MPC) [20]–[22] has received considerable attention
due to its ability to explicitly handle system constraints.

However, the above-mentioned studies enhance AV safety
only focusing on individual modules in isolation without
considering the coupling between these modules. Intuitively,
without accounting for the lower-level modules, the upper-
level decisions may not be optimal or even physically feasible
[23]. To address this issue, several studies have been conducted
to achieve integrated control by combining some of these
modules. In [24], a hierarchical reinforcement learning frame-
work is proposed for the integrated control of lane-changing
decisions and velocity planning. In [25], an enhanced double
DQN algorithm is employed to generate binary actions to
choose between lane keeping and lane changing. Reference
[26] extends [25] by further introducing a path-planner to
provide a safety guarantee in generating lane-changing maneu-
vers. Nevertheless, to the best of our knowledge, the motion-
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control module is rarely considered in these integrated frame-
works or simply regarded as a kinematic model [24]–[26].
Ignoring the motion-control module can render the planned
path or behavioral decision infeasible, which is especially
possible in high-speed cruising scenarios where the physical
constraints of the vehicles are more likely active, making the
kinematic models inaccurate and leading to a deterioration in
motion-control performance and safety concerns. Therefore,
it is crucial to incorporate a motion-control module into the
integrated control framework [27].

Moreover, even if safety can be enhanced from a techno-
logical perspective, human drivers may not understand the
unexpected decisions made by AVs. This lack of understanding
could potentially lead to undesirable HDV operations and
increase the risk of collisions [28]. Therefore, enhancing
the safety of autonomous driving also requires ensuring that
HDVs understand the behavior of AVs, typically characterized
by their trajectories. One promising solution to improve the
interpretability of autonomous driving is to make AV behavior
human-like [28], [29]. Current research on achieving human-
like behavior in AVs aims to emulate human drivers’ character-
istics during navigation, thereby enhancing AVs’ adaptability
in complex environments [30]. This pursuit seeks to foster
greater compatibility and trust between AVs and HDVs on the
road.

The commonly employed approach to achieve human-like
capabilities involves the utilization of machine learning models
trained on extensive datasets to simulate human behavior. In
[31], a model-free DRL framework was proposed to learn
obstacle-avoidance behavior from skilled drivers. This frame-
work encompassed a data-driven approach to integrate the
expertise of human drivers and a rule-based method to encode
fundamental driving rules. Reference [32] proposed heuristic
and learning methods for training human-like lane-changing
maneuvers based on naturalistic driving data. However, tra-
ditional machine learning methods suffer from several draw-
backs, including relying solely on trial-and-error exploration
and having limited generalization in new driving scenarios.
Inverse Reinforcement Learning (IRL) offers advantages, such
as the utilization of expert behavior demonstrations to learn
task-relevant features and better adaptation to dynamic envi-
ronments [33]. These advantages enable AVs to better under-
stand and mimic human-like behaviors through demonstrations
rather than rely solely on labeled data. Furthermore, unlike
the conventional IRL method [34] that focuses on directly
learning human driving actions, we learn the reward functions
of human drivers’ lane-changing maneuvers in this study to
understand the tradeoff between various control objectives.
This design helps incorporate the IRL method into the path-
planning process to generate a human-like path.

Statement of Contribution. The main contributions of this
paper are two-fold. First, we enhance AV safety by propos-
ing an integrated AV control framework in the high-speed
cruising scenario that synthesizes the three fundamental mod-
ules of autonomous driving, i.e., behavioral decision-making,
path-planning, and motion-control modules. Specifically, the
behavioral decision-making module leverages Bootstrapped
DQN to determine whether to perform lane-keeping or lane-

changing, considering the interactions with the path-planning
and motion-control modules. The Bootstrapped DQN can
effectively enhance the deep exploration ability, which is im-
portant with the added complexity brought by the integration
with two lower-level modules. Second, we devise an IRL-
based approach to learn skilled drivers’ reward function for
planning lane-changing paths, which characterizes the human-
like tradeoff between various considerations (e.g., vehicle
safety, driving comfort, and travel efficiency).

The rest of this paper is organized as follows. Section II
introduces the overall framework, while Sections III, IV, and V
present the bootstrapped DQN-based decision-making module,
the IRL-inspired path-planning module, and the MPC-based
motion-control module, respectively. Section VI analyzes the
simulation results to highlight the significance of the proposed
integrated framework. Section VII concludes the paper.

II. PROBLEM FORMULATION AND OVERALL FRAMEWORK

A. Problem Formulation

Let us consider a highway scenario where an AV seeks to
optimize its high-speed cruising performance. We assume that
all surrounding vehicles around this AV are HDVs, which is
typical in the early deployment stages of AVs with very low
penetration rates. The driving behavior of these surrounding
HDVs is characterized by the Intelligent Driver Model (IDM)
for car following and the MOBIL model for lane changing,
both of which are widely adopted in transportation research
[24]. The vehicle dynamics of AVs are modeled using a bicycle
model (see Fig. 1) with configuration parameters obtained
from a high-fidelity vehicle model in the commercial software
Carsim, as detailed in Table I.

This study aims to devise a controller for the longitudinal
(i.e., lane-keeping) and lateral (i.e., lane-changing) move-
ments of the AV in high-speed cruising scenarios. Hence,
the AV’s control input is defined by v = [ax, δf ]

T , where
ax and δf are the longitudinal acceleration and front-wheel
steering input, respectively. The AV’s state is defined by
ζ = [Vx, Vy, φ, γ,X, Y ]

T , where Vx, Vy, φ, γ, X , and
Y represent the longitudinal velocity, lateral velocity, yaw
angle, yaw rate, global longitudinal position, and global lateral
position, respectively.

With these notations, the vehicle’s position under the global
coordinate system can be modeled as

Ẋ = −Vyφ+ Vx (1a)

Ẏ = Vxφ+ Vy (1b)

When the vehicle operates with a small steering input, the
dynamics of the longitudinal velocity, lateral velocity, and yaw
angle can be represented as follows [35].

M
(
−Vyγ + V̇x

)
= Ffx + Frx, (2a)

M
(
Vxγ + V̇y

)
= Ffy + Fry, (2b)

Jz γ̇ = −LrFry + LfFfy, (2c)

where M represents the vehicle mass, Jz represents the inertia
yaw moment of the vehicle, Ffy and Ffx represent the lateral
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and longitudinal forces of the front tire, respectively, Fry and
Frx represent the lateral and longitudinal forces of the rear
tire, respectively, and Lf and Lr represent the distances from
the center of gravity (CG) to the front axle and rear axle,
respectively. As shown in Fig. 1, the relation between these
variables can be described by

Ffx + Frx = Max, Ffy = 2Kfαf , Fry = 2Krαr

αf =
Lfγ + Vy

Vx
− δf , αr =

−Lrγ + Vy

Vx

(3)

where Kf and Kr represent the cornering stiffness of front and
rear tires, respectively, αf and αr represent the slip angles of
front and rear tires, respectively. β is the vehicle sideslip angle
and calculated by Vy/Vx.

By combining Eq.(1)-Eq.(3), the vehicle dynamics can be
written as follows.

ζ̇ = Aζ +Bv (4)

where

A=



0 0 0 Vy 0 0

0
2(Kr+Kf )

MVx
0

2(KfLf−KrLr)
MVx

− Vx 0 0

0 0 0 1 0 0

0
2(Cf lf−Crlr)

JzVx
0

2(KrL
2
r+KfL

2
f)

JzVx
0 0

1 0 −Vy 0 0 0
0 1 Vx 0 0 0


,

B=

[
1 0 0 0 0 0

0
−2Kf

M 0
−2KfLf

Jz
0 0

]T
.

TABLE I: Vehicle Configuration Parameters

Symbol Description Value[units]

M Vehicle mass 1274 (kg)
Jz Inertia yaw moment of the vehicle 606.1

(
kg ·m2

)
Lf Distance from front axle to CG 1.016 (m)
Lr Distance from rear axle to CG 1.562 (m)
Kf Cornering stiffness of front tire 85000 (N/rad)
Kr Cornering stiffness of rear tire 112000( N/rad)

f
fv

r rv

V



f

fyF

fxF

ryF



rxF

X

Y

O

xVyV

Fig. 1: Vehicle dynamics model.

B. Overall Framework

This section presents an integrated framework (see Fig. 2)
to systematically combine the decision-making, path-planning,
and motion-control modules. The decision-making module
chooses between lane-keeping and lane-changing maneuvers,
using a DRL agent that takes into account high-speed cruising
performance and collision avoidance. If lane keeping is cho-
sen, the DRL agent generates an acceleration/deceleration con-
trol signal. If lane changing is chosen, the path-planning mod-
ule generates an efficient and human-like path that effectively
trade off vehicle safety, driving comfort, and travel efficiency,
with the corresponding weights learned from experienced
drivers using an IRL algorithm. Finally, the motion-control
module calculates the control signals with a model predictive
controller that tracks the planned path while ensuring the
physical feasibility by fully considering the vehicle dynamics
constraints and actuator saturation.

Note that, different from existing works that combine only
the decision-making module with the path-planning module,
we further incorporate the motion-control module into the
integrated framework. Such an integration involves two as-
pects. First, the DRL agent in the behavioral decision-making
module generates not only the behavioral decisions but also
the control weights that will be used in the motion-control
module. Such a treatment systematically aligns the control
objectives of the motion-control module with the other two
modules. Second, the motion-control module is incorporated
into the DRL agent’s training process, thereby ensuring that
the trained DRL agent can generate physically feasible actions.

III. BOOTSTRAPPED DQN-BASED BEHAVIORAL
DECISION-MAKING FOR THE AUTONOMOUS VEHICLE

This section presents a bootstrapped DQN method for the
behavioral decision-making module in the integrated frame-
work. Here, we leverage the bootstrapped DQN method to
enhance the deep exploration ability to address the added
complexity of incorporating the other two modules into the
training process.

A. MDP Formulation

The decision-making process can be described as a
Markov Decision Process (MDP), denoted by a tuple M =
(S,A, P,R), where S, A, P , and R are the state space,
action space, state transition probability, and reward function,
respectively. The details are presented below.

1) State Space. The state space comprises the vehicle
states of the ego AV and its relative vehicle states to the
HDVs. The state of the MDP at decision step i is repre-
sented by Si = (ϑev,i, {ϑev,i − ϑm,i}nm=1), where ϑev,i =
[Yev,i, Xev,i, Vev,i]

T denotes the states (i.e., lateral position,
longitudinal position, and velocity) of the ego AV at decision
step i, and ϑm,i = [Ym,i, Xm,i, Vm,i]

T denotes the correspond-
ing states of the surrounding HDV m at decision step i.

2) Action Space. In a high-speed cruising scenario, the
DRL agent in the behavioral decision-making module makes
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Fig. 2: The Systematic framework of the proposed method.

a choice between lane-keeping and lane-changing maneu-
vers while simultaneously generating the control weights
of the motion-control module associated with these driv-
ing maneuvers. Therefore, the action for an ego AV
comprises lane-keeping and lane-changing decisions, as
well as control weights for the motion-control mod-
ule. Specifically, as illustrated in Table II, the action
for an ego AV can be represented as an 8-dimensional
vector u = [uacc, umod, udcc, ulc, P1, R1, P2, R2] with
[uacc, umod, udcc, ulc] being a one-hot vector (i.e., only one
element being one and the others being zeros). Here, lane-
keeping decisions uacc, umod, and udcc are binary variables
representing the selection of acceleration with a rate of
2 m/s2, no acceleration, and deceleration with a rate of
−2 m/s2, respectively, where the value of 2 m/s2 is chosen
to consider vehicle dynamics and road adhesion limits. The
lane-changing decision variable ulc is also a binary vari-
able with ulc = 1 indicating the selection of lane-changing
maneuvers and the activation of the path-planning module.
The weights P1, R1, P2 and R2 represent the coefficients
of various criteria in the objective function of the motion-
planning module, the specific forms of which are defined in
Section IV-C.

TABLE II: AV’s Action Space

Action
space

Lane-keeping decision Lane-changing
decision

Control
weightsAcceleration Moderate Deceleration

Value +2 0 −2 Path-planning
process

P1, P2

(m/s2) (m/s2) (m/s2) R1, R2

3) Reward. This work incorporates high-speed driving perfor-
mance and collision avoidance guarantees into the construction

of the reward function, defined as follows:

r = ωspedrsped + ωcolrcol + ωlancrlanc, (5)

where rsped, rcol, and rlanec represent the high-speed in-
centive, collision penalty, and frequent lane-changing penalty,
respectively, with the forms specified as Eq.(6)-Eq.(8), and
ωsped, ωcol, ωlanc represent the corresponding coefficients that
are chosen as 20,−5, and −0.1, respectively, after experi-
ments.

rsped =
Vev,i − Vmin

Vmax − Vmin
, (6)

rcol =
n∑

m=1

exp
[
σ1 (Yev,i − Ym,i)

2
+ σ2 (Xev,i −Xm,i)

2
]
,

(7)

rlanc = Plane · exp

(
(Yev,i − Ymid )

2

2σ2
3

)
, (8)

where Eq.(6) encourages the AV to drive faster, with Vev,i,
Vmin, and Vmax indicating the ego AV velocity at decision
step i, minimum velocity, and maximum velocity, respectively.
The constraint Vev,i ∈ [Vmin, Vmax] is ensured in the lower
motion-control module via the MPC controller. Eq. (7) em-
ploys an artificial potential field (APF) function to penalize
the ego AV from being too close to surrounding HDVs to
enhance its collision-avoidance ability in high-speed cruising
scenarios, where Yev,i and Xev,i represent the global lateral
and longitudinal positions of ego AV at decision step i, while
Ym,i and Xm,i indicate the global lateral and longitudinal
positions of HDV m at decision step i. The scale factors
σ1 and σ2 normalize the longitudinal and lateral spacing
between vehicles. Eq.(8) is a Gaussian-type reward with scale
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factor σ3 implemented to discourage excessive lane-changing
maneuvers to reduce the impact on congestion, where Ymid
is the lateral coordinate of the lane centerline, and Plane
normalizes the reward term to be between 0 and 1. During
the training process, the scale factors are tuned to minimize
collisions. After experiments, σ1, σ2, σ3, and Plane are set by
-3, -0.5, -0.1, and 2.5, respectively.

B. Bootstrapped DQN

The bootstrapped DQN is leveraged as the RL agent in
this paper to enhance training efficiency, which provides
exponential learning speed by approximating the population
distribution using the distribution of bootstrapped samples
Ω(Ẽ), where the data set Ẽ is obtained by sampling uniformly
with replacement from the real data set E.

Q-value

 network 1

. . .

Q-value

 network 2

Q-value

 network K

Shared core network

Head network 1

Head network 2

Head network K

Fig. 3: The network structure of the Bootstrapped DQN.

Fig. 3 illustrates the network structure of the bootstrapped
DQN that consists of a shared core network and k indepen-
dent branches, each representing a head network. Each head
network combined with the core network can be seen as a Q-
value network, denoted by Qk. Note that the training data for
each head network only includes the bootstrapped sample with
distribution Ω(Ẽ). This allows K independent Q-networks to
collaborate and produce improved Q-value estimation results.

The bootstrapped DQN is implemented by generating a
bootstrap mask to acquire a subsample each time after an
action is selected. The bootstrap mask at decision step i,
represented by a binary vector di = {dki }Kk=1 ∈ {0, 1}K
with K denoting the number of head networks, indicates
which neural network to update with the current transition.
Considering the bootstrap mask d, the state transition at
decision step i can be augmented by (si, ui, ri+1, si+1, di) and
stored in the experience buffer. Consequently, the gradient of
the k-th Q-value network can be represented as follows.

gki = dki

(
yQ

k

i −Qk
(
si, ui; θ

k
i

))
∇θQ

k
(
si, ui; θ

k
i

)
(9)

where

yQ
k

i = ri + γmax
u

Qk
(
si+1, u; θ

−) (10)

where θki represents the k-th neural network parameters at
decision step i, yQ

k

i represents the approximate target value
at decision step i, and ri and γ refer to the interactive reward
with the environment and the discount factor, respectively.
maxu Q (si+1, u; θ

−) represents the action corresponding to
the maximum action value of the target Q network at the state
si+1. During the training process, similar to the traditional Q-
network [26], we introduce θ− to denote the target network
parameter, which satisfies the fixed θ− = θki . It means the
target network parameters θ− are updated at a frequency
of τ and remain fixed in between updates. Furthermore,
gradient normalization is used to mitigate the impact of back-
propagation from each Q-value network onto the shared core
network. The normalized process is represented as follows.

gki,nor = gki /K (11)

When an RL agent starts the training process and explores
potential rewards from the environment, it first follows the
basic DQN method. Note that a Q-value network is randomly
chosen at each episode. After completing the training, the
optimal policy can output a set of actions. Considering the
diversity of the Q-value network in the Bootstrapped DQN
structure, a voting mechanism is introduced to select the
optimal action, whereby the action with the highest number of
votes across K different Q-value networks will be executed.
The pseudo-code for the bootstrapped DQN is shown in
Algorithm 1.

Algorithm 1 The algorithm flow of the bootstrapped DQN

Input: Initialize Q-value networks Qk(k = 1...K) and mask-
ing distribution D; target network update frequency τ and
an empty experience buffer B.

Initialize: Network parameters θk0 and θ− = θk0 .
1: for each episode T = 1, 2, . . . , N , where N is the number

of episodes, do
2: Obtain state s0 by interacting with the environment
3: Select a head network Qk to derive an action with k

chosen uniform at random from {1, 2, . . . ,K}.
4: for time step from i = 1, 2 . . . to the end of the episode,

do
5: Select an action ui ∈ argmaxu Q

k (si, u).
6: Transmit and execute action ui in path planning

and motion control modules to obtain the next state
si+1 and collect the interactive reward ri from the
environment.

7: Sample the mask di ∼ D.
8: Add the tuple (si, ui, ri+1, si+1, di) to the experience

buffer B.
9: if i mod τ=0, then

10: θ− = θki
11: end if
12: if the experience buffer B is full, then
13: update θki
14: end if
15: end for
16: end for
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IV. PATH-PLANNING MODULE DESIGN VIA IRL METHOD

After the DRL agent makes a lane-changing decision,
the path-planning module is responsible for generating a
human-like collision-free trajectory. The path-planning module
includes two components: (i) a candidate path generation
component that generates a set of possible paths and (ii) a
selection component that chooses the optimal trajectory with
a reward function learned from skilled human drivers via
IRL to characterize human preferences over various control
objectives.

A. Candidate Paths Generation

Ego AV HDV 

Fig. 4: The candidate paths of path-planning scenario.

To simplify the path-planning process, we employed a
widely used polynomial expression [36] to generate candidate
paths. The representation of the candidate paths is as follows.

Yref = ϵ0 + ϵ1Xref + ϵ2X
2
ref + ϵ3X

3
ref + ϵ4X

4
ref + ϵ5X

5
ref
(12)

where Yref is the reference lateral position. ϵ0, ϵ1, ϵ2, ϵ3, ϵ4,
and ϵ5 are the coefficients of the polynomial. In the path-
planning process, the constraints, which include both the
initial and terminal points of the lane-changing behavior, are
designed as follows to determine these coefficients.


Yref |Xref ,0

= 0, Ẏref

∣∣∣
Xref ,0

= 0, Ÿref

∣∣∣
Xref ,0

= 0

Yref |Xref ,t
= P, Ẏref

∣∣∣
Xref ,t

= 0, Ÿref

∣∣∣
Xref ,t

= 0
(13)

where (Xref ,0, Yref ,0) and (Xref ,t, Yref ,t) represent the initial
and terminal position of the lane-changing maneuver along the
reference path, respectively.

Then by substituting Eq.(13) into Eq.(12), the candidate
paths can be further represented as follows.

Yref =
10F

P 3
X3

ref −
15F

P 4
X4

ref +
6F

P 5
X5

ref (14)

where F and P represent the lateral and longitudinal lane-
changing distances, respectively. In this work, to facilitate
system design, the longitudinal velocity of the AV is treated
as constant during the lane-changing maneuver [22], which
can be achieved through a Proportional-Integral algorithm in
the motion-control module. Let tc denote the lane-changing
duration, and hence the longitudinal distance of the lane-
changing maneuver can be expressed as P = Vxtc. Note that

the mathematical expression for the bounds of tc is obtained
by the constraint (15):daovi = Vx, rel tc +

1

2
ax,maxt

2
c ≤ (min {dc, da} − ssaf )

βref ≤
∣∣tan−1(0.02µg)

∣∣
(15)

Eq.(15) is derived to ensure the collision avoidance and
stability of the AV, where davoi represents the collision-
avoidance distance, and dc and da are the available space
for the lane-changing maneuver at the current and adjacent
lanes, respectively. ssaf indicates the minimum safety distance
between vehicles, ax,max is the maximum allowed deceleration
rate, and µ is the road adhesion coefficient. βref represents the
vehicle sideslip angle at the reference path, which can serve
as an indicator to characterize the AV’s stability in vehicle
dynamics [21]. Specifically, the reference value of βref can be
calculated as follows.

βref =
Ẏref

Vx
(16)

where

Ẏref =
30F

t3c
t2 − 60F

t4c
t3 +

30F

t5c
t4 (17)

A set of candidate paths as shown in Fig. 4 are generated
from Eq.(14) with a time interval of 0.1 s between tc, min and
tc, max , where Let tc,min and tc,max denote the lower and upper
bounds for tc, respectively, calculated from Eq.(15).

B. IRL-Based Optimal Trajectory Selection

To make the behavior of AVs (characterized by their tra-
jectories) understandable by HDVs, this work captures the
preference of human drivers over multiple control objectives
by introducing an IRL approach to learn skilled drivers’ reward
function for planning lane-changing paths. After finishing
training, an optimal reference path would be selected to
achieve a human-like tradeoff between these control objec-
tives.

1) IRL Reward Construction

In this work, we generate human-like paths by learning the
preferences of human drivers over various control objectives,
including vehicle safety, driving comfort, and travel efficiency.
Such preferences are characterized by a reward function rep-
resented as a linear combination of these objectives, whereby
the weights are learned via an IRL framework. The training
data to the IRL framework involves the paths generated by
skilled drivers on a driving simulator, because skilled drivers
are more likely able to control the vehicles according to their
preferences, while the actions of unskilled drivers may be
subject to unexpected errors.

Specifically, AV’s safety is quantified by considering the
stability of the vehicle dynamics and the potential collision
risk. Driving comfort is indicated by the change rate of the
yaw angle, while travel efficiency is represented by the lane-
changing duration tc. A vector of control objectives for a
considered candidate path is constructed as follows:

H = [Hsta, Hcol, Hcom, Htra] (18)
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where Hsta, Hcol, Hcom and Htra represent the control
objectives for vehicle stability, collision risk, comfort, and
travel efficiency, respectively, with the specific forms given
as follows:

Hsta =
1

η

η∑
l=1

β2
l , Hcom =

1

η

η∑
l=1

φ̇2
l , Htra =

t2c
η
,

Hcol =
1

η

η∑
l=1

n∑
m=1

exp
[
σ1 (Yref,l − Ym,l)

2
+

σ2 (Xref,l −Xm,l)
2
]

(19)

where we discretize the lane-changing duration [tc,min, tc,max]
into η time instants with equal intervals of 0.1 s, indexed by
l, and φ̇l represents the change rate of the yaw angle at the
time instant l.

The reward function of IRL is then constructed by a linear
combination of the feature vector.

r = ϖTH (20)

where ϖ = [ϖsta, ϖcol, ϖcom, ϖtra].

2) IRL Training Process

During the training process, we utilize the driving behavior
of skilled drivers as expert experience to optimize the feature
weight coefficients ϖ in Eq.(20). Note that we adopt a
maximum entropy method [37] for training the IRL model.
The objective of such method is to maximize the likelihood
of the driver’s trajectory λq ∈ Θ, (q = 1, 2, . . . , Q).

max
ϖ

∑
λ∈Θ

logP (λ | ϖ) (21)

P (λ | ϖ) =
eϖ

THλ∑S
j=1 e

σTHλ̄j

(22)

where Q indicates the total driver’s trajectories collected in the
tests. λ̃j is the candidate path generated by the polynomial ex-
pression Eq.(14). S and Hλ represent the number of candidate
paths and feature vector of the driver trajectory, respectively.
To guarantee the effectiveness of the training data, the initial
state when generating the trajectory λ̃j is the same as that of
driver trajectory λ.

The objective function of the IRL framework can be written
as follows.

Ω(ϖ) =
∑
λ∈Θ

ϖTHλ − log

S∑
j=1

e
ϖTHλ̃j

 (23)

The gradient of Ω(ϖ) is computed as:

∇ϖΩ(ϖ) =
∑
λ∈Θ

Hλ −
S∑

j=1

e
ϖTHλ̄j∑S

j=1 e
ϖTHλ̃j

Hλ̃j

 (24)

=
∑
λ∈Θ

Hλ −
S∑

j=1

P (λ̃ | ϖ)Hλ̃j


Eq.(23) could reflect the difference between the driver

trajectory and candidate paths. It is employed to iterate and

update the feature weight vector ϖ using the gradient ascent
method Eq.(24). The IRL algorithm flow is presented in
Algorithm 2. After completing the training, the feature weight
vector is determined. Hence, the AV’s path-planning ability
can emulate a skilled driver to effectively balance different
control objectives in high-speed cruising scenarios. In the IRL
framework, the learning rate ρ and episodes E can impact the
training effectiveness. By comparing the human-like driving
results with different settings, ρ = 0.08 and E = 150.

Algorithm 2 IRL algorithm

Input: Trajectories of skilled driver obtained in the driving
simulator λq ∈ Θ, (q = 1, 2, . . . , Q), learning rate ρ, and
episodes E.

Initialize: Feature weight vector ϖ ← ϖ0.
1: Calculate the feature vector of driver trajectories∑Q

q=1 Hλq .
2: for each λq ∈ Θ, (q = 1, 2, . . . , Q), do
3: Generate candidate path λ̃j according to potential selec-

tions of lane-changing duration tc, with the same initial
state as λq .

4: for each λ̃j , do
5: Based on the vehicle states on the candidate paths,

calculate the feature vector Hλ̄j
.

6: Store λ̃j and Hλ̃j
to the buffer B′.

7: end for
8: end for
9: for each episode, do

10: Use the variables in buffer to calculate the gradient
∇ϖΩ(ϖ).

11: Update the IRL optimization parameter ϖ = ϖ+ρ∇ϖ.
12: end for
13: Then ϖ′ ← ϖ, where ϖ′ is the optimized feature weight

vector.

V. MOTION-CONTROL MODULE DESIGN VIA MPC
METHOD

In this section, we develop an MPC-based tracking con-
troller to implement the motion control of potential lane-
keeping and lane-changing behaviors, in order to accurately
track the planned path while respecting constraints on physical
dynamics and safety.

A. Lane-Keeping Motion Control

The lane-keeping motion-control module aims to track the
reference acceleration/deceleration signal ax, ref calculated in
the behavioral decision module, while ensuring high-speed
cruising of the ego AV. This is achieved via a MPC-based
controller with an embedded quadratic programming (QP)
problem described as follows. Note that the system state-space
equation adopts the vehicle longitudinal dynamics model and
can be derived from Eq.(4) [40].

min Jkeeping =

Np∑
t=1

(
∥Vx(k + t | k)− Vx,max∥2P1
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+ ∥ax(k + t | k)− ax,ref∥2R1

)
(25a)

s.t. ax,min ≤ ax(k) ≤ ax,max (25b)
Vx,min ≤ Vx(k) ≤ Vx,max (25c)
Xpre(k)−Xev(k) ≥ ssaf (25d)

where the objective function Eq.(25a) minimizes the total
costs over a prediction horizon Np, including (i) the deviation
from the maximum speed (the first term) and (ii) the tracking
error between the actual acceleration rate and the reference
acceleration rate ax,ref given by the decision-making module
(the second term), weighted by constants P1 and R1. The
specific values of P1 and R1 are determined by the DRL
agent in the behavioral decision-making module. Constraints
(25b) and (25c) impose physical bounds on the acceleration
and velocity at each decision step. Constraint (25d) ensures
that the spacing between the ego AV and the preceding HDV
is lower bounded by the safe spacing. Notice that here we
assume that the following HDV will not actively collide with
the AV.

B. Lane-Changing Motion Control

The lane-changing motion-control module devises an MPC-
based controller to track the reference path generated by the
path-planning module, while ensuring the AV’s lateral stability
[38]. The embedded optimization problem of the MPC can
be represented as follows. The system state-space equation
employs the vehicle lateral dynamics model [22].

min Jchanging =

Np∑
t=1

(∥∥ζ̄(k + t | k)− ζ̄pre
∥∥2
P2

+ ∥δf (k + t | k)∥2R2

)
(26a)

s.t. δf,min ≤ δf (k) ≤ δf,max (26b)

|γ| ≤ µg

Vx
(26c)

|αf | ≤ arctan
µMgLr

2Kf (Lf + Lr)
(26d)

|αr| ≤ arctan
µMgLf

2Kr (Lf + Lr)
(26e)

where ζ̄ = [φ, Y ]T , and ζ̄ref = [φ̄ref , Yref ]
T . The objective

function Eq.(26a) includes (i) the deviation from the reference
trajectories (the first term) and (ii) the cost of the control
inputs (the second term), weighted by positive-definite ma-
trices P2 ∈ R2×2 and R2 ∈ R. The specific values of P2 and
R2 are determined by the behavioral decision-making module,
where P2 = diag (P21, P22). φ̄ref = 0 is set to guarantee the
AV’s heading angle is zero after completing the lane-changing
maneuver. Constraint (26b) imposes physical bounds on the
front-wheel steering input. Constraints (26c), (26d), and (26e)
ensure the AV’s lateral handling stability [38].

VI. SIMULATION

In this section, simulations are conducted to verify the
effectiveness of the proposed method using a Simulink/Python
joint platform. The vehicle model in Section II and the

motion-control module are constructed in Simulink, while the
behavioral decision-making and path-planning modules are
implemented with Python.

TABLE III: Parameters Setting

Parameters Bootstrapped DQN

Learning rate 1e− 4
Reward discount 0.95

Batch size 64
Memory capacity 15000

Target replace 500
Network layers 3

Number of neurons [128, 64, 64]

A. Training Process of the Integrated Framework

The integrated framework requires the training of the feature
weight vector ϖ and the behavioral decision-making policy,
which is performed in a sequential manner. First, using col-
lected data of skilled human drivers, the IRL method is trained
based on Algorithm 2 to obtain the feature weight vector ϖ.
Then, Algorithm 1 is employed to train an AV navigating in
a high-speed cruising scenario by integrating the behavioral
decision-making, path-planning, and motion-control modules.
After tuning in the training progress, the hyperparameters
of the bootstrapped DQN are given in Table III. Note that
during the training process, the initial positions and velocities
of HDVs are randomly set. Meanwhile, the Long Short-Term
Memory network is employed to obtain the driving behavior
of the leading HDVs from the historical data.

Furthermore, to simplify the system design, we set a bench-
mark for the training of control weights in the motion-control
module. For lane-keeping control (Eq.(25a)), to prioritize the
optimization objective of tracking the reference acceleration
signal, R1 = 4P1 is set as a benchmark. As for the lane-
changing control (Eq.(26a)), considering the priority of path-
tracking performance, we set P22 = 10P21. After completing
the training, the RL agent in the behavioral decision-making
module would output the specific values of control weights.

Vehicle position 

information

Road information

PXI Simulator set-up

Angle 

sensor signal

Carsim full-vehicle 

modelDriver 

steering angle

Road information 

feedback

Fig. 5: Driving simulator platform.

B. Verification of Human-Like Path-Planning

In the path-planning module, we introduce the IRL method
to learn skilled drivers’ reward function for planning lane-
changing paths. The driving simulator, as depicted in Fig.
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5, is employed to collect driver behavior data. More details
regarding the driving simulator can be found in [39]. We invite
skilled drivers to participate in the tests, who will get familiar
with the testing equipment in advance to ensure the accuracy
of the test data.

Through these experiments, we construct a dataset compris-
ing 50 drivers’ lane-changing trajectories under different test
conditions. This dataset is utilized to update the IRL weight
vector ϖ. After finishing the training, we employ a set of
10 driver trajectories to evaluate the learning performance.
Here, the feature vector H in Eq.(18) is calculated to pro-
vide a comparison of human-like path-planning performance.
The specific indices from IRL’s learning results and driver’s
trajectories are presented in Table IV. The average learning
errors for different performance indices, including vehicle
safety, driving comfort, and travel efficiency, in ten tests are
6.92%, 3.36%, 6.14%, and 0.83%, respectively. These results
demonstrate the effectiveness of the proposed IRL method
in acquiring preferences of human drivers, thereby balancing
different control objectives during lane-changing maneuvers.

TABLE IV: Test Results of Human-like Performance

Performance
index

Stability
performance

Potential
collision

Driving
comfort

Travel
efficiency

Test
case1

IRL 0.000395 167.571 22.524 0.105
Driver 0.000416 163.312 30.104 0.095

Test
case2

IRL 0.000204 133.042 16.958 0.12
Driver 0.000175 141.730 19.654 0.13

Test
case3

IRL 0.000257 121.956 20.652 0.115
Driver 0.000325 134.513 18.293 0.115

Test
case4

IRL 0.000181 152.038 19.024 0.13
Driver 0.000258 160.642 21.924 0.125

Test
case5

IRL 0.000257 118.793 17.462 0.13
Driver 0.000218 115.923 18.942 0.13

Test
case6

IRL 0.000451 169.723 25.863 0.11
Driver 0.000497 181.543 28.727 0.11

Test
case7

IRL 0.000263 118.192 21.038 0.13
Driver 0.000291 123.321 19.526 0.14

Test
case8

IRL 0.000236 143.160 22.481 0.125
Driver 0.000248 138.379 21.017 0.115

Test
case9

IRL 0.000256 121.815 17.556 0.135
Driver 0.000317 113.679 20.571 0.14

Test
case10

IRL 0.000421 164.552 25.471 0.10
Driver 0.000393 179.727 23.954 0.11

C. Verification of the Integrated Framework

1) Overall Performance Analysis

Simulations are conducted to demonstrate the value of the
integrated framework in enhancing the overall performance
of autonomous driving. Specifically, we compare the resulting
performance of the proposed integrated framework with that
of a sequential framework that involves separate training and
execution of the three fundamental modules, i.e., behavioral
decision-making, path-planning, and motion-control. Note that
to decouple the training of fundamental modules in the se-
quential framework, we train the behavioral decision-making
module by assuming a simplified path planning procedure with
a constant lane-changing execution time (i.e., 2 seconds) and
motion control with pre-defined constant control weights.

After completing the training for these two frameworks,
ten test cases with different initial positions and velocities

Fig. 6: Average velocity with different frameworks.

Fig. 7: Reward with different frameworks.

of HDVs are conducted to verify the control performance.
As shown in Figs. 6 and 7, it is clear that the proposed
integrated framework outperforms the sequential framework
in both the average AV velocity and reward. Overall, the total
average velocity and reward with the integrated framework
for ten test cases can be improved by 2.12% and 10.25%,
respectively. Although the average velocity of the AV with
the sequential framework is slightly higher than that of the
integrated framework in test cases 3 and 8, the integrated
framework performs significantly better in ensuring a high
reward. This is because the sequential framework cannot
make optimal decisions from a global perspective due to the
lack of coordination between these fundamental modules. The
results demonstrate that the integrated framework can enhance
high-speed cruising performance while considering collision
avoidance, the interpretability of AVs’ trajectories, and the
feasibility of AV motion.

TABLE V: Evaluating Indicators for Longitudinal Dynamics
Performance

Description Math expression

AV’s longitudinal tracking E1=
1

K|ax,max|
∑K

t=1

∣∣ax,t−ax, ref
∣∣

High-speed cruising E2=
1

K|Vx,max|
∑K

t=1 |Vx,t−Vx,max|

Control effort E3=
1

K|ax,max|
∑K

t=1 |ax,t|

2) Value of integrating the motion-control module
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TABLE VI: Evaluating Indicators for Lateral Dynamics Per-
formance

Description Math expression

Path-tracking accuracy Ē1 = 1
K|Ymax|

∑K
t=1 |Yt − Yref |

Stability state Ē2 = 1
K|βmax

∑K
t=1 |βt|

control effort Ē3 = 1
K|δf, max |

∑K
t=1

∣∣δf,t∣∣
t =1.5~4.4s 

t =5.9~8.5s 

t =11.7~13.9s 

t =16.2~18.2s 

X/(m)

Y
/(

m
)

(a) The trajectory of the ego AV.

(b) The speed of the ego AV.

Fig. 8: The continuous overtaking maneuver scenario under
the integrated framework. The ego AV performs lane changes
at t = 1.5 s, t = 5.9 s, t = 11.7 s and t = 16.2 s to
achieve a higher speed (i.e., 88 km/hr, 88 km/h, 100 km/h,
and 100 km/h, respectively) while keeping safe distance with
the front HDVs. The resulting lane-changing duration ranges
from 2 s to 3 s during high-speed cruising, consistent with the
typical driving profile of a skilled driver.

We specifically highlight the value of integrating the
motion-control module by dynamically setting up control
weights, which has not been considered in the existing litera-
ture. To this end, we compare our integrated framework with
a semi-integrated framework that only incorporates the path-
planning module, while the control weights in the motion-

control module are assumed to be pre-defined constants.
For both the integrated and semi-integrated frameworks, we
simulate a continuous overtaking maneuver scenario, which
provides a comprehensive test case to better assess the longitu-
dinal and lateral driving performance of AVs. Specifically, the
continuous overtaking maneuver scenario under the integrated
framework is shown in Fig. 8.
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1E

2E

3E
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With constant weights

0.2
0.4
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With dynamic weights

With constant weights

With dynamic weights

Fig. 9: Evaluating indicators for longitudinal dynamics perfor-
mance in test 1.
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0.2
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Fig. 10: Evaluating indicators for lateral dynamics perfor-
mance in test 1.

The value of integrating the motion-control module is illus-
trated by evaluating the performance indicators summarized in
Tables V and VI, respectively, for the longitudinal and lateral
control of AVs. The comparison between the integrated frame-
work (i.e., with dynamic weights) and the semi-integrated
framework (i.e., with constant weights) is shown in Figs. 9
and 10, whereby it is clear that the ego AV exhibits better
high-speed cruising performance and stability. This can be
attributed to the DRL agent’s ability to dynamically adjust con-
trol weights, thereby ensuring optimal control performance in
dynamic driving conditions. From Fig. 10, although the semi-
integrated framework with constant control weights consumes
slightly less control effort, it performs worse in ensuring path-
tracking and stability.
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Fig. 11: The lateral motion phase plane of the ego AV with
and without the constraint in test 1.

In addition, we assess the stability performance of the
ego AV using the β−γ phase plane [35]. As depicted in
Fig. 11, when introducing the integrated framework with
dynamic control weights, the ego AV runs within a smaller
region, indicating a more stable state. As the third and fourth
lane-changing maneuvers are executed at higher speeds, the
stability state of the ego AV deteriorates when using constant
control weights in the motion-control module. In contrast,
the proposed integrated framework reliably ensures the AV’s
stability.

D. Value of the Bootstrapped DQN for Training the Behav-
ioral Decision-Making Module

1) Comparison of Different DRL Strategies

We demonstrate the value of using the Bootstrapped DQN for
training the behavioral decision-making module by comparing
it with other widely used DRL algorithms, including DQN
and double DQN, in the same simulation environment as the
proposed framework. As illustrated in Figs. 12 and 13, the
bootstrapped DQN outperforms other strategies in both the
average reward and the collision rate. Specifically, the boot-
strapped DQN exhibits the potential to achieve a maximum
reduction of 62.31% and 43.59% in the average collision rate
compared to the DQN and double DQN, respectively. These
results indicate the ability of the bootstrapped DQN to enhance
the training of the behavioral decision-making module in the
complex integrated framework proposed in this work.

2) Sensitivity Analysis on the Number of Head Networks in
the Bootstrapped DQN

We perform a sensitivity analysis on the number of head
networks in the bootstrapped DQN. As shown in Figs. 14
and 15, the bootstrapped DQN results in a higher average
reward and a lower collision rate when employing more head
networks. This can be attributed to the enhancement of the

Fig. 12: Average reward with different strategies.

Fig. 13: Average collision rate with different strategies.

exploration capability with the increasing number of head
networks. However, the marginal benefits of having more
head networks diminish when the number of head networks
reaches 6. This is because an adequate number of head
networks could guarantee the precision of the uncertain Q-
value estimation. Since more head networks consume more
computing resources, we select the number of head networks
as 6 in this work.

VII. CONCLUSION
In this study, we present an autonomous driving framework

to systematically enhance the safe driving capabilities of AVs
in high-speed cruising scenarios by integrating behavioral
decision-making, path-planning, and motion-control modules.
We further improve the interpretability of AV driving decisions
by learning the reward function of skilled drivers for planning
lane-changing paths in the path-planning module. Taking into
account the complexity of the integrated framework, we in-
troduce a bootstrapped DQN to enhance the deep-exploration
ability. The DRL agent would adaptively choose between
potential lane-keeping and lane-changing maneuvers, while
generating control weights for the MPC-based motion-control
module. Our simulation results indicate that the proposed
integrated framework can effectively guide AVs to ensure
high-speed cruising performance while avoiding collisions.
In comparison to the conventional sequential framework, the
average reward in test cases can be improved by 10.25% by
the proposed method.

This paper opens several interesting directions for future
work. First, we would like to extend our framework to enable
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Fig. 14: Average reward with different head networks.

Fig. 15: Average collision rate with different head networks.

cooperative control in connected and autonomous vehicle sys-
tems. Second, it would be interesting to improve the generaliz-
ability of the proposed framework to various driving scenarios
(e.g., mandatory lane changes at highway bottlenecks, adverse
weather conditions, etc.).
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