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Abstract
Existing continual learning literature relies heav-
ily on a strong assumption that tasks arrive with
a balanced data stream, which is often unrealistic
in real-world applications. In this work, we ex-
plore task-imbalanced continual learning (TICL)
scenarios where the distribution of task data is non-
uniform across the whole learning process. We
find that imbalanced tasks significantly challenge
the capability of models to control the trade-off be-
tween stability and plasticity from the perspective
of recent prompt-based continual learning methods.
On top of the above finding, we propose Dynami-
cally Anchored Prompting (DAP), a prompt-based
method that only maintains a single general prompt
to adapt to the shifts within a task stream dynam-
ically. This general prompt is regularized in the
prompt space with two specifically designed prompt
anchors, called boosting anchor and stabilizing an-
chor, to balance stability and plasticity in TICL. Re-
markably, DAP achieves this balance by only storing
a prompt across the data stream, therefore offering
a substantial advantage in rehearsal-free CL. Ex-
tensive experiments demonstrate that the proposed
DAP results in 4.5% to 15% absolute improvements
over state-of-the-art methods on benchmarks under
task-imbalanced settings. Our code is available at
https://github.com/chenxing6666/DAP

1 Introduction
Human beings possess the remarkable ability to learn new
tasks and solve evolving challenges by leveraging knowl-
edge from their past experiences. Inspired by this, con-
tinual learning (CL) methods are designed to address a se-
ries of tasks using a singular model while preserving per-
formance on tasks previously mastered [Wang et al., 2022c;
Zhang et al., 2020; Aljundi et al., 2018]. However, achieving
this goal is challenging for deep models, as they tend to easily
forget previously learned information, i.e., a phenomenon
known as catastrophic forgetting [De Lange et al., 2021;
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Figure 1: An illustration of the scenario of task-imbalanced con-
tinual learning (TICL). (a) Three cases in TICL compared to ordi-
nary task-balanced CL. (b) Performance degradation of DualPrompt
on TICL CIFAR-100. The number of balanced and imbalanced tasks
is ensured to be the same.

Kirkpatrick et al., 2017]. This issue primarily arises from
the network’s tendency to overwrite old knowledge with new
data during the training process.

Although existing methods in CL have achieved notable
progress, they generally assume a balanced distribution of
training data across tasks, i.e., each task holds the same num-
ber of training samples. In practical applications, data streams
often exhibit an imbalanced distribution [Huang et al., 2019],
where the data volume for each task can vary significantly,
with some tasks presenting a large number of samples while
others may have far fewer. This gives rise to task-imbalanced
CL scenarios and introduces potential new issues for the CL
process. The imbalance among tasks will amplify the dif-
ficulty of striking a balance between learning and retaining
knowledge over time.

To address the aforementioned problem, this paper first
investigates this more general and realistic scenario: task-
imbalanced continual learning (TICL). TICL characterizes
environments where the number of samples in each class is
imbalanced across the data stream, reflecting the long-tailed
nature observed in most real-world data distributions. In such
distributions, a few classes dominate in terms of the number
of samples, while many others have significantly fewer. In
the context of CL, this imbalance manifests at the task level,
leading to imbalanced tasks, as shown in Figure 1a. We call the
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tasks with a relatively large number of samples the data-rich
tasks and the tasks with a relatively small number of samples
the data-scarce tasks. Specifically, we consider three cases of
TICL:

• Descending TICL: The learning process starts with data-
rich tasks followed by data-scarce ones.

• Ascending TICL: The learning process starts with data-
scarce tasks preceding data-rich ones.

• Shuffled TICL: Tasks arrive in a random sequence with-
out a prescribed order.

While descending and ascending TICL are two extreme cases,
the shuffled TICL can be regarded as the general form of
TICL.

To show the challenges brought by the proposed scenarios,
we conduct a quick experiment using DualPrompt [Wang et
al., 2022d], a typical prompt-based CL method, in Figure 1(b).

It can be observed that in the descending TICL case, the
model initially learns well on data-rich tasks but rapidly de-
clines when training becomes scarce. This indicates the poor
plasticity of the model in adapting to new tasks with fewer
samples. On the contrary, in the ascending TICL case, the
model initially struggles with learning data-scarce tasks and
remains poor in the following tasks. This is due to the severe
forgetting caused by the following data-rich tasks (see Fig-
ure. 2 for more analysis). These results reveal a more realistic
plasticity and stability dilemma: given an incoming task, the
model learns poorly when its training data is scarce and for-
gets rapidly when there is abundant data. Undoubtedly, both
learning and forgetting become more challenging in TICL.
Therefore, there is a clear need to design a specific method to
address this issue.

In this paper, we propose a novel prompt-based approach
named Dynamically Anchored Prompting (DAP). DAP only
maintains a general prompt to learn from imbalanced task
streams by strategically address the dilemma of stability and
plasticity. It tackles the dilemma by decoupling stability
and plasticity through two specialized prompts: the boost-
ing prompt and the stabilizing prompt. The stabilizing prompt
focuses on preserving the knowledge of past tasks, thereby en-
suring stability and mitigating catastrophic forgetting. In con-
trast, the boosting prompt enhances the model’s generalization
ability to learn and adapt to new tasks, promoting plasticity.
The general prompt is updated by a novel dynamic stability-
plasticity regularization (DSPR) strategy, which dynamically
regularizes the general prompt in the prompt space based on
task attributes, ensuring a flexible and adaptive learning pro-
cess. Since DAP only stores a general prompt, it achieves
superior performance with lower memory requirements, align-
ing well with the objectives of rehearsal-free CL. In summary,
our contributions are three-fold:

• We analyze a more realistic CL scenario with imbalanced
tasks along with prompt-based learning algorithms, un-
covering their defects caused by the stability and plastic-
ity dilemma. This dilemma highlights a critical challenge:
an effective balance between preserving existing knowl-
edge and accommodating new learning demands.

• We propose DAP, a novel approach to dynamically bal-
ance the stability and plasticity with a single regularized
general prompt, which effectively addresses the chal-
lenges in TICL.

• We evaluate the performance of DAP on benchmark
datasets. Our proposed DAP exhibits significant improve-
ments over previous state-of-the-art methods, with large
margins ranging from 4.5% to 15%.

2 Related Work
2.1 Continual Learning
The existing research in CL within machine learning primarily
assumes a balanced task distribution and focuses on addressing
catastrophic forgetting, which can be categorized into three
strategies [De Lange et al., 2021; Wang et al., 2023]: architec-
tural expansion, regularization, and rehearsal. Architectural
expansion adapts the model’s structure for new tasks, suitable
where adding to the model is practical [Kang et al., 2022;
Wang et al., 2022b]. Regularization, either in the weight
or prediction space, aims to retain past task knowledge dur-
ing new task training, with knowledge distillation being par-
ticularly effective in prediction space [Castro et al., 2018;
Cha et al., 2021]. Rehearsal methods, using original or
synthetic data, are efficient but face data privacy and stor-
age issues [Chaudhry et al., 2021; Wang et al., 2022a;
Kang et al., 2023]. These issues emphasize the need for
rehearsal-free methods in CL, addressing both privacy con-
cerns and computational efficiency [Vaishnavh et al., 2018].

2.2 Prompting for Continual Learning
The recent trend in CL research focuses on combining prompt-
ing techniques with Vision Transformers (ViTs). This ap-
proach involves using a pre-trained, frozen backbone model
from ImageNet, circumventing the need for a replay buffer.
Prompting, initially applied in transfer learning with pre-
trained language models like GPT-3, involves adding language-
based instructions to the input text to guide the model in un-
derstanding downstream tasks. Traditional prompting meth-
ods were heuristic, but recent developments like Prompt Tun-
ing [Kemker and Kanan, 2017] and Prefix Tuning [Kemker
et al., 2018] introduced the concept of learnable prompts in
a continuous space, becoming mainstream in prompt-based
learning.

In the realm of prompt-based CL, various methods have
been proposed. Specifically, L2P [Wang et al., 2022e] intro-
duced a prompt pool concept to adjust the frozen ViT back-
bone for CL tasks. Building on this, DualPrompt [Wang et
al., 2022d] employs two different prompt types: G-Prompt
for learning task-invariant knowledge and E-Prompt for task-
specific knowledge, drawing inspiration from complementary
learning systems. CODA-Prompt [Smith et al., 2023] adopts
input-conditioned prompts through an innovative attention-
based end-to-end key-query mechanism that integrates the
entire training sequence.

2.3 Imbalanced Continual Learning
While there is existing research on addressing imbalance in
CL, it primarily concentrates on specific aspects of imbal-



ance. For instance, BIC [Wu et al., 2019] focuses on the
imbalance between limited stored samples and current task
samples, addressing challenges in storage under highly im-
balanced conditions. PRS [Kim et al., 2020] investigates the
long-tail problem in multi-label scenarios, also relying on
sample storage. Two-Stage-CL [Liu et al., 2022] delves into
long-tail class imbalances in CL, storing substantial amounts
of original data.

It is worth noting that these studies are primarily rehearsal-
based methods. This underscores the significant challenge
of storing samples where class imbalance is inherent, as data
selection itself is imbalanced. Furthermore, our approach
to TICL diverges fundamentally from these existing works.
While they concentrate on addressing imbalances within sam-
ples or classes, our focus is on the imbalance across different
tasks.

3 Problem Formulation
3.1 Preliminaries
Our CL protocol adopts the class-incremental CL setting.
The training data is denoted as a sequence of T tasks D =
{D1, . . . ,DT }, where Dt = {(xt

i, y
t
i)}, i = 1, ..., Nt is sam-

pled from a joint data distribution in the input and label space
Xt × Yt at task t, whose size (i.e., the number of samples
in this task) is denoted as Nt. The target model is formu-
lated as f : X → Y , integrating a patch embedding layer
fp, and a backbone fb consisting of a stack of transformer
encoder layers followed by a classifier, thus f = fp ◦ fb. We
employ a ViT-Base model, pre-trained on ImageNet, as the
frozen feature extractor. In this class-incremental setting, sim-
ilar to recent prompt-based CL methods[Smith et al., 2023;
Wang et al., 2022d; Wang et al., 2022e], task boundaries are
clearly defined with no shared classes between them, and task
identity is provided only during training.

3.2 Task-Imbalanced Continual Learning
In this paper, we formally study task-imbalanced continual
learning (TICL). TICL is characterized by the distribution of
task sizes, i.e., Nt, throughout the learning process. Different
from the conventional task-balanced CL where Nt is drawn
from a uniform distribution, i.e., Ni = Nj ,∀i ̸= j and i, j ∈
{1, ..., T}. Any distribution deviating from the uniform one in-
troduces an inherent imbalance among tasks. By the long-tail
nature of real-world data distributions, we generally assume
that the task sizes also follow the long-tail distribution. Specif-
ically, the task sizes follow NI1 > ... > NIT , ∀Ii < Ij ,
where I1, ..., IT are the sorting index based on the task size by
non-increasing order.

3.3 Case Study
We first study how deep the model performance might drop on
two extreme cases of TICL: descending TICL and ascending
TICL. To properly quantify plasticity and stability [Sun et al.,
2022], we adopt two metrics to evaluate a model on the task t:

P = Acct,t, F = Acct,t −AccT,t. (1)

where Acci,j represents the accuracy on the test set of the task
j after finishing training on the task i. P measures the models’

-

(a) Stability

-

(b) Plasticity

Figure 2: Performance analysis of DualPrompt on different TICL
cases with evaluation metrics. (a): F shows the model stability
to resist forgetting. (b): P shows the model plasticity to learn new
tasks.

plasticity, i.e., the ability to learn new tasks, while F measures
the model’s stability, i.e., the resistance to catastrophic forget-
ting. Here, we examine the performance of DualPrompt [Wang
et al., 2022d] on descending TICL and ascending TICL with
evaluation metrics P and F . As a recent prompt-based CL
method, it achieves a good balance between stability and plas-
ticity in task-balanced scenarios. In addition, to eliminate the
factor of the absolutely small size of each task and focus on
the task imbalance problem, we also compare with the case of
one-shot, where each task contains only one sample for each
class.
Stability. Stability is extremely hard to achieve by a model
trained on ascending TICL as catastrophic forgetting occurs
more easily on past data-scarce tasks. As shown in Figure 2(a),
The model’s performance decline on earlier tasks in the as-
cending case is significant, which indicates severe catastrophic
forgetting. The result of the one-shot case reveals that this for-
getting is not just due to limited data quantity. On the contrary,
in the descending case, the model keeps good stability because
the data-rich tasks come first, and the following data-scarce
tasks can hardly overtake the knowledge of the data-rich tasks
in the model.
Plasticity. On the opposite, plasticity is also extremely hard to
achieve by a model trained on descending TICL as the model
learns well on past data-rich tasks such that the following data-
scarce tasks cannot be generalized well. As shown in Figure
2(b), the model performance in the descending case signif-
icantly drops. This raises the issue that the model initially
trained on data-rich tasks struggles to adapt to the following
data-scarce tasks, prioritizing stability over learning new infor-
mation. We also compare with the one-shot case. The model
shows consistent learning performance starting from the fifth
task, surprisingly suggesting better adaptation if the last few
tasks are not data-rich.

There exists a stability-plasticity dilemma in TICL scenar-
ios. Accordingly, we propose a method to effectively balance
this dilemma.

4 Dynamically Anchored Prompting
To address the issues identified in the case study, we propose
Dynamically Anchored Prompting (DAP) for TICL in this
paper. The proposed method is designed to dynamically bal-
ance and optimize the trade-off between stability and plasticity,
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empowering the model flexible to learn in TICL.
Different from the existing prompt-based CL meth-

ods [Wang et al., 2022d; Smith et al., 2023; Wang et al.,
2022e], the key idea of DAP is to maintain a prompt across
all the tasks, which is called the general prompt. The gen-
eral prompt aims to learn to generalize each task with the
knowledge of the pre-trained model. It can be easily used
during inference as there is no prompt pool, and therefore no
prompt selection is needed. During the inference, the chal-
lenge of adopting only a general prompt is to balance the
knowledge learned from each task, especially for imbalanced
tasks. Therefore, to achieve the goal of using the general
prompt to generalize well across all tasks, the proposed DAP
adopts a two-phase learning scheme for each training task,
termed in-task phases. Given a specific training task, during
the first in-task phase, we optimize a task-specific prompt,
which is then utilized to regularize the general prompt during
the second in-task phase. To tackle the imbalance problem of
TICL, we propose dynamic stability-plasticity regularization
to make the general prompt learn well and stably no matter the
amount of training data in the next incoming task. After two-
phase tuning for each task, we only need to save the general
prompt for inference. The overall framework of the proposed
DAP is shown in Figure 3.

4.1 Anchored Prompting
The goal of DAP is to obtain a high-quality general prompt
that properly addresses the intrinsic problem of TICL. For
each task, we first optimize the task-specific prompt in the first
in-task phase. The task-specific prompt is used to form two

key components: the boosting anchor pb and the stabilizing
anchor ps. These anchors are designed to regularize the re-
lationship between the general prompt pg and each anchor,
effectively handling the plasticity and stability dilemma during
training. The general prompt is then optimized in the prompt
space with a new strategy called dynamic stability-plasticity
regularization.
Boosting Anchor. Specifically, the boosting anchor pb aims
to maintain model plasticity, ensuring adaptability to new
tasks. It is especially useful when the size of the current task
is small compared to the past tasks. The boosting anchor
pb is simply set at the task-specific prompt optimized on the
current task to capture the task-relevant information. Thus, pb

functions as a critical focal point, guiding the model towards
learning trajectories that maximize plasticity. To optimize pb,
we formulate the following loss function:

L1 =

Nt∑
i=1

lCE(fb([pb, fp(x
t
i)]), y

t
i) (2)

Here, h(xt
i) and yti represent the patched features of the i-

th sample and its corresponding label from task t, respec-
tively. pb is initialized in each new task. The concatenation
[pb, h(x

t
i)] is fed into the pre-trained transformer as the input.

L1 represents the total loss for the first in-task phase, and lCE

is the cross-entropy loss. The goal of minimizing this loss is to
make pb fully learn the knowledge for adapting the pre-trained
model for the current task.
Stabilizing Anchor. To ensure model stability, the stabilizing
anchor ps is designed to prevent knowledge forgetting from



past tasks by monitoring the learned task-specific prompts.
To maintain the knowledge of all of the learned tasks, ps is
calculated by the weighted center of the boosting anchors of
all learned tasks in the prompt space from task 1 to the current
task t. The weight is associated with the inverse of the size of
each task. To make the algorithm rehearsal-free, i.e., without
storing any data or prompt, ps can be updated in an online
manner:

ps ←
1∑t

i=1 Ni

(
ps∑t−1
i=1 Ni

+
pb

Nt

)
. (3)

The rationale behind this update is that task-specific prompts
are optimized to generalize well in the corresponding task,
thus, their weighted average represents stability. The weights
in Eq. (3) associated with the corresponding task size Ni em-
phasize the past task with a smaller size to make the stabilizing
prompt uniformly represent the knowledge of past tasks.
Anchor Alignment. The purpose of maintaining the boosting
anchor and the stabilizing anchor in each task is to dynamically
regularize the learning of the general prompt, such that it
can be flexible to balance the stability and plasticity in the
TICL scenario. We employ cosine similarity to measure the
proximity between the general prompt and anchors in each
task for anchor alignment, as it focuses on the orientation
rather than the magnitude of vector representations, effectively
capturing the inherent relationships between prompts:

La(pg,p) = 1− pg · p
∥pg∥∥p∥

, (4)

where p can be either pb or ps to address the plasticity or
the stability, respectively. Different from the methods that
simultaneously adopt two sets of prompts [Wang et al., 2022d],
the proposed DAP only utilizes the boosting anchors (i.e. the
task-specific prompts) as a constant to regularize the general
prompt by anchor alignment. Therefore, task-specific prompts
are not involved in the final inference process. The advantages
of only maintaining the general prompt thought the CL process
are two-fold. On one hand, it avoids the error produced by
matching the improper prompts in the prompt pool [Wang et
al., 2022e]. On the other hand, it makes the proposed DAP
fully rehearsal-free.

4.2 Dynamic Stability-Plasticity Regularization
Anchored prompting offers an opportunity to address either
plasticity or stability individually, yet it falls short in dynami-
cally adapting within complex, imbalanced task streams. Re-
call the three cases in TICL described in Figure 1(a). Updating
the general prompt by anchor alignment with a single anchor
may only work for the descending TICL or the ascending
TICL. For shuffled TICL, the incoming task cannot be guaran-
teed to be a data-scarce or data-rich task, such that the empha-
sis on updating the general prompt cannot be determined. The
challenge of achieving balance in such fluctuating scenarios
remains unresolved.

To address the remaining issue in the DAP framework, we
introduce a strategy that enables the model to adjust its focus
between plasticity and stability in the nature of TICL tasks.
In the second in-task phase, we optimize the general prompt

pg by considering the balance between stability and plasticity.
Different from pb that is initialized in each new task, pg is
initialized in task 1 and updated through the whole CL process
in order to achieve the ability to generalize well on all learned
classes. Thus, we propose dynamic stability-plasticity factor λ
as the coefficient between two anchor alignments. The factor
λ modulates the balance between stability and plasticity by
considering the size of the current task t and the sizes of past
tasks:

λ =
Nt −Nmin

Nmax −Nmin + ϵ
, (5)

where Nmin = mini=0,...,t Ni and Nmax = maxi=0,...,t Ni are
the minimum and maximum sizes of learned tasks, and ϵ is
a small positive constant to prevent division by zero. It is
basically the min-max normalization that measures the dif-
ference between the size of the current task and the mini-
mum size of the learned tasks, which is then normalized into
the range of [0, 1]. As with many re-weighting techniques
in long-tail learning [Peng et al., 2023; Chen et al., 2023;
Zhang et al., 2023b], the task size Nt is an important indicator
to represent the learning difficulty. It is relatively easier to
learn from a task with a larger size. Accordingly, we use the
factor λ and 1− λ as the regularization coefficient to reflect
this relationship. In the second in-task phase, the general
prompt updated in the current task t is given by the following
loss function with the dynamic stability-plasticity factor λ:

L2 =

Nt∑
i=1

lCE(fb([pg, fp(x
t
i)]), y

t
i)

+ λ · La(pg,ps) + (1− λ) · La(pg,pb). (6)

Therefore, a larger Nt indicates a smaller λ, enhancing sta-
bility to prevent forgetting. On the other hand, a smaller Nn,
indicative of a more challenging task, prompts an increase in λ
to ensure sufficient plasticity for learning new, complex tasks.
If the size of the current task t is the largest or smallest ever, λ
then becomes 1 or 0, respectively.

The effective utilization of the prompt anchors and the flex-
ible adjustment of λ according to the task sizes are the core of
DAP, which adapts the pre-trained model well in the scenario
of TICL. It facilitates a balance between the acquisition of
new knowledge and the retention of prior learning.

5 Experimental Results
In this section, we first introduce the experimental setup and
then compare the proposed DAP with different existing CL
methods applied on TICL benchmarks. Finally, we specifically
evaluate the effectiveness of DAP and conduct ablation studies
to key elements.

5.1 Implementation Details
Datasets. Given that long-tail distributions are the most preva-
lent form of imbalance in the real-world, we adopt the long-
tailed setting to construct imbalances. The long-tailed distri-
bution typically follows an exponential decay in sample size
across classes [Cao et al., 2019]. This decay is parameterized
by ρ which is the ratio between the most and least frequent



Table 1: Comparison Results (%) on TICL-Cifar100 and TICL-ImageNet-R. ‘Pre’ refers to pretraining and ‘P’ stands for prompt. AN

gives the accuracy averaged over tasks, AL gives the last acccuracy.

TICL-Cifar100 TICL-ImageNet-R
Descending Ascending Shuffled Descending Ascending Shuffled

Method AN (↑) AL (↑) AN (↑) AL (↑) AN (↑) AL (↑) AN (↑) AL (↑) AN (↑) AL (↑) AN (↑) AL (↑) Buffer
BiC 27.92 38.02 36.08 37.90 27.11 33.63 21.91 18.9 13.52 16.01 16.36 16.32 20/cls

PODNET 26.48 23.82 32.31 28.24 28.49 26.21 22.32 18.90 16.61 16.20 17.11 18.70 20/cls
EEIL++ 31.49 38.24 35.93 37.85 31.63 39.31 18.50 17.81 15.76 15.60 15.79 16.30 20/cls

LUCIR++ 27.74 21.26 42.39 28.92 35.62 25.94 18.36 21.29 8.05 8.27 15.62 15.62 20/cls
Pre+FT 65.83 22.02 19.52 25.58 43.30 33.56 40.60 7.68 18.22 21.15 21.37 22.62 0

Pre+iCaRL 53.00 28.73 41.70 26.88 48.62 31.02 48.41 29.55 24.40 29.17 40.21 23.02 20/cls
CODA-P 81.91 58.98 54.54 41.84 60.90 42.56 52.39 35.21 28.21 32.62 40.02 34.78 0

L2-P 66.51 50.26 53.50 48.73 51.43 49.43 50.05 31.72 27.24 29.42 30.19 26.21 0
Dual-P 70.51 51.79 54.50 45.72 49.49 48.82 51.47 31.12 25.03 25.42 34.68 27.38 0
Ours 79.09 61.49 56.30 55.47 61.43 56.12 58.47 40.25 31.42 36.47 43.22 36.38 0

classes. ρ = 1 is the conventional CIL case and ρ in (0,1)
indicates different degrees of long-tailed distribution.

We follow the experimental datasets used in previous
works [Wang et al., 2022d; Khan et al., 2023], first con-
ducting a long-tail division of the datasets, and then divid-
ing them into 10 disjoint tasks. Specifically, the CIFAR-100
dataset [Krizhevsky et al., 2009] includes 100 classes of natu-
ral images, with 500 training samples for the head classes, and
subsequently decreasing for the remaining classes according
to the long-tail division method. To ensure balance within each
task, we select an equal number of samples from each class
within a task, based on the maximum class quantity present
in that task. The ImageNet-R dataset [Wang et al., 2022d]
contains 200 classes of images, divided in a similar manner for
long-tail calculation. Aligned with this long-tailed distribution
approach, we examine three cases in our study: Descending
TICL, where learners first encounter data-rich tasks followed
by data-scarce ones; Ascending TICL, featuring data-scarce
tasks preceding data-rich ones; Shuffled TICL, where tasks
arrive in a random sequence without a prescribed order of data
volume.
Comparison Methods. In our experiments, we compare our
Dynamically Anchored Prompting (DAP) with two groups of
rehearsal-based methods. The first group includes classical ap-
proaches like PODNET [Douillard et al., 2020] and BiC [Wu
et al., 2019]. The second group comprises methods designed
for long-tailed distributions such as EEIF++ [Liu et al., 2022]
and LUCIR++ [Liu et al., 2022]. Additionally, we include
pretrained methods in our comparison, FineTune [Khan et
al., 2023], iCaRL [Rebuffi et al., 2017], both these methods
start from the same ImageNet pre-trained ViT-Base [Dosovit-
skiy et al., 2020] model to ensure a fair comparison. Lastly,
we compare DAP against the current state-of-the-art (SOTA)
prompt-based methods, including L2P [Wang et al., 2022e],
DualPrompt [Wang et al., 2022d], and CODA-Prompt [Smith
et al., 2023]. These methods represent the latest advancements
in prompt-based CL.
Evaluation Protocol. For the test set, we followed the setting
of long-tailed learning research [Cao et al., 2019] where the
training set is imbalanced while the test set is balanced. There-
fore, our test set is consistent with the balanced CL [Wang et
al., 2022c; Wang et al., 2022d]. In this manner, the testing

accuracy can be easily averaged over all classes to reflect the
performance of each class with equal weight. For evaluation,
we report their average values with standard errors using two
widely used CL metrics: average accuracy (AN ↑) [Lopez-Paz
et al., 2017] of the final average accuracy by the model, last
accuracy (AL ↑) [Zhang et al., 2023a] of the last accuracy at
the end of the learning process.
Implementation. Following the settings of L2P [Wang et
al., 2022e], We train DAP using Adam with β1, β2 of 0.9, a
learning rate of 0.01, and a batch size of 64. We resize the
input images to a 224×224 resolution and normalize them
between 0 and 1. To ensure models converge, we train TICL-
CIFAR-100 for 5 epochs per task, TICL-ImageNet-R for 50
epochs each task.

5.2 Comparison to the State-of-The-Art
We compare various rehearsal-based and prompt-based meth-
ods for TICL-CIFAR-100 and TICL-ImageNet-R in Table 1.
We observe that DAP consistently outperforms all rehearsal-
based methods by a considerable margin, with a substantial
improvement ranging from 10% to 30%, establishing a new
state-of-the-art in all cases. It also demonstrates a signifi-
cant advantage over other prompt-based methods. showing an
increase of 4.5% to 15%.

5.3 Effectiveness of the General Prompt
To verify that adopting a single general prompt pg is able
to accumulate knowledge across the data stream, we adopt a
linear probing experiment [He et al., 2020] to evaluate the per-
formance of the representation layer. Specifically, following
each incremental learning task, we freeze the representation
layer and introduce an additional classification layer known as
a linear probe, which is trained on all classes of the benchmark
dataset.

We conducted a detailed analysis of the descending, as-
cending, and shuffled cases. As illustrated in Figure 4, in the
descending case, we observe a rapid initial improvement, indi-
cating that the model indeed learns significant global knowl-
edge when presented with abundant data initially. However,
as the tasks progress and data availability decreases, we notice
a stagnation in learning, suggesting that under typical con-
ditions, the model struggles to acquire new knowledge with
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Figure 4: Performance comparison between DAP and Dual-
Prompt with linear probe.

Desc. Asc. Shuff.

(1) w/ only task-specific prompt 64.75 52.56 52.23
(2) w/ only general prompt 66.79 50.49 47.50
(3) DAP 79.09 56.30 61.43

Table 2: Ablation on general prompt and task-specific prompt.

limited data. In contrast, DAP continues to improve even with
less data, overcoming this learning stagnation. In the ascend-
ing case, despite continuous learning, the final performance
is lower than in the descending case, implying some degree
of knowledge forgetting. Yet, DAP still shows an upward
trend at the end. A similar pattern is observed in the shuf-
fled case. This demonstrates DAP successfully accumulated
knowledge, effectively navigating the numerical disparities in
TICL environments. Moreover, DAP consistently outperforms
DualPrompt [Wang et al., 2022d] through all the tasks.

5.4 Ablation Study
In this section, we delve into an in-depth ablation study to
validate the effectiveness and contributions of different com-
ponents in our model.
Dynamic Factor λ. λ is essential for calibrating the balance
between stability and plasticity. Therefore, to assess the dy-
namic regularization’s effectiveness, we compare the results
in the shuffled case to the use of the fixed values of λ from
0 to 1. As illustrated in Figure 5, the dynamically adjusted λ
consistently outperforms any fixed value of λ. This supports
our premise that a dynamic λ is more flexible to adapt to the
evolving requirements of learning new information while re-
taining previously acquired knowledge. Generalization on all
classes is ensured irrespective of the data abundance in each
task during learning.
Task-specific Prompt and General Prompt. We further ex-
amine the roles of prompts within the DAP framework. Since
DAP optimizes the task-specific prompt for each task in the
first in-task phase and continually updates the general prompt
in the second in-task phase, we can investigate the perfor-
mance of using either prompt exclusively. This purpose of
the study aims to discern whether each prompt can sustain the
model’s efficacy across various learning scenarios on its own.
We compare DAP with two exclusively designed methods:
(1) To solely use the task-specific prompt. The task-specific
prompts for all tasks are stored during inference, and it is
assumed that the prompt is properly selected for each test sam-
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Figure 5: Ablation on dynamic factor λ.

AN (↑) F (↓) P (↑)

(1) w/ only general prompt 47.50 18.28 63.29
(2) w/ only boosting anchor 58.15 15.45 70.38
(3) w/ only stabilizing anchor 59.47 6.19 64.86
(4) DAP 61.43 8.04 68.04

Table 3: Ablation on boosting anchor and stabilizing anchor in
shuffled case AN gives the accuracy averaged over tasks and F gives
the average forgetting. P gives the average plasticity.

ple. (2) To solely use the general prompt. The general prompt
is continually optimized without dynamic stability-plasticity
regularization. As shown in Table 2, employing either the
task-specific prompt or the general prompt solely yields re-
sults that are much inferior to DAP. The task-specific prompt
cannot harness the information across tasks while updating
the general prompt without regularization cannot well balance
the stability and plasticity. The strength of DAP’s design of
updating the general prompt with regularization is verified in
addressing the demands of TICL.
Ablation on Anchors. To ablate the boosting anchor and
stabilizing anchor, we focused exclusively on the shuffled case
of TICL, because this case uniquely demands the model to
effectively balance both stability and plasticity. Therefore, we
conducted experiments in this setting using each anchor type
in isolation without the dynamic stability-plasticity regulariza-
tion, aiming to assess the capability of each anchor. As seen
from Table 3, employing the boosting anchor or the stabilizing
anchor in isolation only enhances the model’s plasticity or
stability but at a significant cost to each other. The best perfor-
mance is attained by combining both boosting and stabilizing
anchors with the dynamic factor.

6 Conclusion
In this paper, we formally define task-imbalanced continual
learning (TICL) and systematically study its three cases. We
discovered that imbalanced tasks significantly deteriorate the
performance of prompt-based CL methods because they raise a
new challenge to consider the dilemma of stability and plastic-
ity. To counteract this, we introduced Dynamically Anchored
Prompting (DAP). DAP addresses the challenge by separating
stability and plasticity with two prompts, one for stabilization
and the other for plasticity, serving as anchors to guide the
learning process of a general prompt. DAP improves the per-
formance of baseline prompt-based TICL methods to set a
new state-of-the-art.
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