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Abstract— The execution of flight missions by unmanned aerial 
vehicles (UAV) primarily relies on navigation. In particular, the 
navigation pipeline has traditionally been divided into positioning 
and control, operating in a sequential loop. However, the existing 
navigation pipeline, where the positioning and control are 
decoupled, struggles to adapt to ubiquitous uncertainties arising 
from measurement noise, abrupt disturbances, and nonlinear 
dynamics. As a result, the navigation reliability of the UAV is 
significantly challenged in complex dynamic areas. For example, 
the ubiquitous global navigation satellite system (GNSS) 
positioning can be degraded by the signal reflections from 
surrounding high-rising buildings in complex urban areas, 
leading to significantly increased positioning uncertainty. An 
additional challenge is introduced to the control algorithm due to 
the complex wind disturbances in urban canyons. Given the fact 
that the system positioning and control are highly correlated with 
each other, this research proposes a tightly joining positioning 
and control model (JPCM) based on factor graph optimization 
(FGO). In particular, the proposed JPCM combines sensor 
measurements from positioning and control constraints into a 
unified probabilistic factor graph. Specifically, the positioning 
measurements are formulated as the factors in the factor graph. 
In addition, the model predictive control (MPC) is also 
formulated as the additional factors in the factor graph. By 
solving the factor graph contributed by both the positioning-
related factors and the MPC-based factors, the 
complementariness of positioning and control can be deeply 
exploited. Finally, we validate the effectiveness and resilience of 
the proposed method using a simulated quadrotor system which 
shows significantly improved trajectory following performance. 
To benefit the research community, we open-source our code and 
make it available at https://github.com/RoboticsPolyu/IPN_MPC. 
 
Index Terms— Positioning; Model predictive control (MPC); 
Dynamic model; Factor graph optimization (FGO); Joint 
optimization; Positioning uncertainty, Unmanned aerial vehicles 
(UAV).   

I. INTRODUCTION 

The pipeline of decoupling positioning and control has 
dominated the practice of UAV for decades: Reliable 
navigation is of great significance for the applications of 
unmanned aerial vehicles (UAV) [1-5]. Typically, the 
navigation pipeline has traditionally been divided into 
positioning and control, operating in a sequential loop [6, 7]. 
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The positioning can be achieved using sensors, such as the 
global navigation satellite system (GNSS) receivers [8, 9]. 
Then the state estimation from the positioning module is fed to 
the controller of the UAV, such as the popular model 
predictive control (MPC) [10]. The practice of decoupled 
positioning and control has become a classical pipeline of 
autonomous systems for years.  

Positioning solutions can be challenged with large 
uncertainty in complex scenes: In particular, the positioning 
can be derived from the state estimator, such as the Kalman 
filter [11, 12] or factor graph optimization (FGO) [13, 14] 
based on the onboard sensors. For example, GNSS was widely 
used in vehicular localization under open sky and usually 
combined with proprioceptive sensors such as inertial 
measurement unit (IMU) and exteroceptive sensors such as 
light detection and ranging (LiDAR) during satellite signal 
outages [9, 15-20]. However, the performance of these 
solutions relies strongly on the environmental conditions [21-
23]. On the one hand, the GNSS positioning can be 
significantly degraded in urban canyons due to the multipath 
effects caused by the signal reflections from high-rise 
buildings [23]. Although numerous works were proposed to 
mitigate the impacts of the GNSS outliers [23, 24], the 
positioning solution derived from the GNSS is still unreliable 
in highly urbanized areas with significant uncertainty. 
Moreover, the LiDAR-based positioning can also be 
significantly challenged in urban canyons due to the excessive 
dynamic objects [25], leading to unacceptable positioning 
uncertainty. 

Insufficient awareness of the positioning uncertainty can 
challenge the controllers in complex scenes: Usually, the 
positioning solution is directly fed to the controller, such as 
the PID controller [26], assuming a perfect positioning 
accuracy is guaranteed. Unfortunately, positioning accuracy is 
usually not guaranteed in complex scenes using the existing 
GNSS or multi-sensory integration [9, 15-20]. As a result, the 
controller would inevitably lead to non-optimal control 
commands, therefore causing dangerous UAV actions. Hence, 
the control stability under large positioning uncertainty is 
essential for safety. The traditional control methods struggle to 
simultaneously deal with the uncertainty of state [27], 
obstacles [28], and nonlinear dynamics in the context of 
decoupling the positioning and control modules [29]. Instead 
of carefully coping with the uncertainty arising from the 
positioning module, the existing work [30, 31] mainly focuses 
on the disturbances of the dynamical model, while ignoring 
the uncertainties of raw measurements. In other words, 
positioning uncertainty is also considered a potential 
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disturbance from the environment. However, it is difficult to 
reliably distinguish the positioning uncertainty and the exact 
disturbance coming from the surrounding environments. To 
effectively consider the uncertainty of the positioning module, 
researchers proposed to directly add the positioning 
uncertainty as the covariance matrix of the cost function in the 
MPC [32, 33], which has attracted lots of attention recently. 
However, the work in [32, 33] has several key drawbacks: (1) 
it relied heavily on the reliability of the uncertainty provided 
by the positioning module, which is hard to obtain in complex 
scenes as mentioned above. (2) the information from the 
controller cannot flow back to the positioning modules. For 
example, the dynamics of the UAV system applied in the 
controller can also contribute to the positioning modules [34, 
35]. In other words, the positioning modules and the controller 
are highly complementary and correlated with each other. Why 
do we decouple the positioning and control module? 
Interestingly, the work from Prof. Frank Dellaert, from the 
School of Interactive Computing at the Georgia Institute of 
Technology, U.S., proposed a control and planning joint model 
[36] for robotics, in a tightly coupled manner. To enable 
efficient information flow between the positioning and control 
module, the path planning and control problems are 
formulated as a combined problem using the factor graph. As a 
result, the uncertainty from both the path planning and the 
control can be considered optimally and simultaneously. The 
work [37] also reformulated the measurements over a fixed 
time window into an optimal control problem instead of a 
single measurement for the estimation at each time step. 
Similar work was done in equality and inequality-constrained 
optimal control [38, 39], and kinematic and dynamics 
problems for multi-body systems [40], which were solved by 
factor graphs [6]. Besides, some works [41, 42] tightly 
integrated trajectory estimation and path planning by utilizing 
obstacle avoidance factors and goal factors. The above papers 
revealed the feasibility of applying factor graphs to trajectory 
planning or control. All these exciting works inspire us with a 
question: can we design a tightly coupled model to solve the 
positioning and control problems simultaneously?  

Inspired by the work in [36], this paper proposed a tightly 
joined positioning and control model (JPCM) that allows 
unifying the positioning and control under the same 
mathematics representation. Therefore, the primary aim is to 
tightly formulate a unified problem of positioning and control. 
Fortunately, the factor graph is investigated that can be used to 
construct the same mathematics representation for both 
positioning [43, 44] and control. Finally, the JPCM is 
evaluated by a well-designed quadrotor simulator, which 
considers the impact of aerodynamic drag force and the 
actuator’s dynamic [45]. The results demonstrate the 
feasibility of the joining model and significantly improve 
trajectory tracking accuracy and success rate compared to 
nominal MPC methods, particularly under conditions 
characterized by significant state uncertainty. Moreover, the 
JPCM exhibits robust resilience. Concisely, after encountering 
rapid motion or serious observation errors, the controller will 
not exhibit excessive feedback and can slowly change in its 
original state. Resilience is a critical feature, as it ensures the 
stability of the system even in adverse conditions. We believe 

that the tightly JPCM, proposed in this paper, would be a 
profound framework that is expected to be applied to multi-
sensor integrated autonomous systems under complex 
environments.  

Specifically, the main contributions of this paper include: 
(1) Propose a tightly coupled model to solve navigation 

problems, which combines positioning constraints and 
control constraints into a singular quadratic optimization 
problem. The proposed approach formulates a tightly 
coupled joint positioning and control model that effectively 
addresses the navigation challenges due to positioning and 
dynamics uncertainty.  

(2) Formulate the tightly joined positioning and control 
model through the probability factor graph. We categorize 
measurements into absolute factors, such as the GNSS 
factor, and relative factors, like the LiDAR scan-matching 
factor. Additionally, we formulate dynamics, trajectory 
following, and control input constraints as control-based 
factors. Further considering the aerodynamic drag effect in 
the dynamics model, JPCM-drag is proposed to tackle the 
path following offset. All these factors are consolidated into 
a unified factor graph, which is then solved using GTSAM 
[13]. As a result, the uncertainty of state and nonlinear 
dynamics is coupled with the control law, bridging the gap 
between positioning and control. 

(3) Evaluate the proposed JPCM through simulations 
and open-source code. Except for the uncertainty of sensors 
and dynamic processes, the sharp wind, aerodynamic drag, 
and actuator’s time constant are also simulated. These 
elements add a layer of complexity and realism to our 
simulator, making it closer to the real system. Lastly, we 
have made the code open source to benefit the research 
community.  
The structure of the paper is as follows. In Section II, we 

give an overview of the proposed model’s pipeline. Section III 
introduces the UAV’s dynamic model and uniformly 
formulates positioning and MPC using the same mathematical 
representation. A tight JPCM is proposed and solved in 
Section IV. In Section V, numerical experiments are 
conducted to evaluate the performance of the proposed model. 
Section VI discusses more details. Finally, the conclusion is 
summarized in Section VII.  

II. OVERVIEW 

As illustrated in Fig 1, the classical navigation framework’s 
pipeline runs in cycles, first by estimating the state and then 
deriving a control input 𝐮௢௣௧ based on MPC. However, in the 
proposed JPCM, the positioning cost function from sensor-
based constraints and control cost function from MPC-based 
constraints are integrated into a tightly joined optimization 
problem. Both positioning and control of autonomous systems 
are fundamentally quadratic nonlinear optimization problems, 
although the control problem has additional equality and 
inequality constraints on variables to be optimized. Then, the 
joined cost function is converted into a unified factor graph. 
Finally, we solve the tightly joined FGO problem using the 
popular GTSAM [13] library. All the symbols used in the 
paper are recorded in Table I .
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Fig. 1. The navigation pipeline: from (left) the classical model-based navigation to (right) the proposed tight JPCM. (a) The model-based navigation method has 
a fixed loop: estimating state and then deriving control. The positioning module and control module are decoupled. (b) The proposed JPCM integrates 
positioning and control into a cost function. Then, we convert the cost function to a probability factor graph, in which the positioning-related factors and MPC-
based factors are tightly combined. More details on the joined factor graph are discussed in Section IV. 

Table I. List of symbols 
Symbol Remarks 

𝛉× , 
 𝛉 = [𝜃ଵ 𝜃ଶ 𝜃ଷ]୘ 𝛉× = ൥

0 −𝜃ଷ 𝜃ଶ

𝜃ଷ 0 −𝜃ଵ

−𝜃ଶ 𝜃ଵ 0
൩ 

𝐱 = [𝐩୘, 𝛉୘, 𝐯୘, 𝛚୘]୘ State 𝐱, position 𝐩, rotation 𝐑 = exp(𝛉× ), 
velocity 𝐯, and angular speed 𝛚 

𝐱ො Optimized state 
∆𝐱 State increment w.r.t initial state 
δ𝐱 State increment in the tangent space  
𝐳 Sensor observation  
𝐮 Control input 

𝐳୰, 𝐮୰ Reference state and reference input 

𝛕 =  ൣ𝐓௕
୘, 𝐌௕

୘ ൧
୘

 Resultant thrust 𝐓 and resultant torque 𝐌 

𝐏 Covariance matrix 
K Control law 
𝐃 Aerodynamic drag coefficient matrix  
𝐈௕ Moment of inertia 
g Gravity constant 

m௕ UAV’s mass 
c௧ Rotor’s aerodynamic thrust coefficient 

k௠ Rotor’s aerodynamic torque coefficient 
𝐩௥ೕ

௕  𝑗-th rotor’s position in the body frame 

𝐓௕೗

௪  UAV’s pose in the world frame at 
timestamp 𝑙 

𝐓
௟ା1
௟  , 𝐏௟

௅ Relative pose transformation from 
timestamp 𝑙  to timestamp 𝑙 + 1  and its 
covariance matrix 

𝐫ோ Relative factor residuals 
𝐫஺ Absolute factor residuals 

𝐫௥௘௙ Reference trajectory factor residuals 
𝐫𝐃  Dynamic control factor residuals 
𝐫𝑼 Control limit factor residuals 

𝐡(𝐮௝) Input constraint factor residuals 
𝐐௞, 𝐐ே, 𝐑௧, 𝐐୪୧୫ Weighting matrix in MPC; covariance 

matrix in JPCM  
𝐈௡ n-dimensional unit vector 

III. PROBLEM DESCRIPTION 

Fig 2 demonstrates that both positioning (red box) and MPC 
(blue box) can be conceptualized as an optimization problem 
on-manifold. In the context of a canonical positioning model, 

factors derived from measurements can be categorized into 
two distinct types [46]: absolute factors and relative factors. 
Absolute factors apply constraints to the robot’s state at a 
specific moment, while relative factors constrain the variation 
between states at varying time intervals.  

 
Fig. 2. The representation and linearization of the positioning and MPC 
problem can be unified, which implies the information of control can flow 
back to the positioning problem. (a) Positioning is a probability FGO problem 
with absolute factors 𝐫஺  and relative factors 𝐫ோ . (b) MPC can also be 
formulated as an FGO problem. Futural states are predicted by the dynamic 
model, hence the dynamic factors 𝐫஽ become the informational bridge. 

As for the MPC in the blue box of Fig 9, starting from an 
initial state 𝐱଴ , constraints derived from the pre-planned 
trajectory reference 𝐳௥  and the dynamic model collectively 
affect the adjustment of on-manifold variables. Therefore, we 
combine measurement-based factors and control-based 
constraints into a unified optimization problem. The UAV 
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dynamic model, positioning, and MPC are further explored in 
the following sections. 

A.  The UAV dynamic model 

The generalization dynamics model [27, 47] of a UAV is as 
follows: 

𝐱̇ = f(𝐱, 𝛕) (1a) 
𝛕 = g(𝐮) (1b) 

where 𝐱 =  [(𝐩௕
௪)୘, (𝛉௕

௪)୘, (𝐯௕
௪)୘, (𝛚௕)୘]୘ is the UAV’s state 

that includes position 𝐩௕
௪ , rotation 𝐑௕

௪ = exp{(𝛉௕
௪)× } , 

velocity 𝐯௕
௪ , and angular speed  𝛚ୠ , and 𝛕 =  ൣ𝐓௕

୘, 𝐌௕
୘൧

୘
 

represents the resultant thrust 𝐓௕ ∈ ℝଷ  and resultant torque 

𝐌௕ ∈ ℝଷ , and 𝐮 =  ൣ𝑢଴, . . . , 𝑢௝, … , 𝑢௄൧
୘

, 𝐾 ≥ 3, 𝐾 ∈ ℕ is the 
control input vector, where 𝑢௝ represents the angular speed of 
the 𝑗 -th motor of the UAV. f(∗)  and g(∗)  represent the 
generalization dynamics model and control allocation model, 
respectively. 

The continuous-time linearized dynamics of (1a) is as 
follows [27, 47]:  

𝐩̇௕
௪ = 𝐯௕

௪  

𝐑̇௕
௪ = 𝐑௕

௪𝛚௕
×

𝐯̇௕
௪ = −𝐑ீ

௪𝐞ଷg + (𝐑௕
௪𝐓௕ + 𝐑௕

௪𝐃𝐑௪
௕ 𝐯௕

௪) m௕⁄

𝛚̇௕ = 𝐈௕
ିଵ(−𝛚௕

×𝐈௕𝛚௕ + 𝐌௕)

 (2) 

where m௕  is UAV’s mass, 𝐞ଷ =  [0,0,1]୘ , g  is the gravity 
constant, 𝐃  is the aerodynamic drag coefficient matrix [45], 
and 𝛚௕

× represents an operator that spins a 3D vector 𝛚௕ to a 
skew-symmetric as follows: 

𝛚௕
× = ൥

0 −𝜔ଷ 𝜔ଶ

𝜔ଷ 0 −𝜔ଵ

−𝜔ଶ 𝜔ଵ 0
൩ (3) 

𝐈௕ is the moment of inertia, which is usually regarded as a 
diagonal matrix:  

𝐈௕ = diag(I௕
ଵ I௕

ଶ I௕
ଷ) (4) 

Every rotor can generate aerodynamic thrust 𝐹 = c௧𝑢௝
ଶ and 

aerodynamic torque 𝑘௠𝑢௝
ଶ . The model of resultant thrust 𝐓௕ 

and torque 𝐌௕  are as follows:  

𝐓௕ = ෍ 𝐞ଷ𝐹௝
௕

୏

௝ୀଵ

= ෍ c௧𝑢௝
ଶ𝐞ଷ

୏

௝ୀଵ

𝐌௕ = ෍ ቀ𝐩௥ೕ
௕ × 𝐞ଷ𝐹௝

௕ + (−1)௝ିଵk௠𝐞ଷ𝑢௝
ଶቁ

୏

௝ୀଵ

 (5) 

where 𝑢௝ is the 𝑗-th ( 1 ≤  𝑗 ≤  K) rotor’s angular speed, c௧ is 
the rotor aerodynamic thrust coefficient, and k௠  is the rotor 
aerodynamic torque coefficient. 𝐩௥ೕ

௕  is the 𝑗-th rotor’s position 

in the body frame.  
As shown in Fig. 3, according to (5), the typical quadrotor’s 

thrust and torque model is as follows: 

g(𝐮) =

⎣
⎢
⎢
⎢
⎢
⎡

0 0 0 0
0 0 0 0
c௧ c௧ c௧ c௧

−c௧l௬ c௧l௬ c௧l௬ −c௧l௬

−c௧l௫ −c௧l௫ c௧l௫ c௧l௫

k௠ −k௠ k௠ −k௠ ⎦
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝑢

1

2

𝑢
2

2

𝑢
3

2

𝑢
4

2

⎦
⎥
⎥
⎥
⎥
⎥
⎤

 (6) 

where l௫ and l௬ are the length and width of every arm of the 
quadrotor.  

  
Fig. 3. The structure of the quadrotor. 

To determine the covariance matrix of dynamic factor, an 
explicit noise model with additive Gaussian white noise is 
assumed as follows: 

𝐹௝ = c௧𝑢௝
ଶ + 𝑛஺, 𝑛஺~𝒩(0, 𝑠) (7) 

where 𝑠 is the variance. Based on the noise model assumption, 
the thrust covariance matrix 𝐏୘

௜  and torque covariance matrix 
𝐏୑

௜  of the quadrotor can be derived as follows:  

𝐏୘
௜ = 4 ൥

0 0 0
0 0 0
0 0 𝑠

൩

𝐏୑
௜ = 4 ቎

l௬
ଶ 𝑠 0 0

0 l௫
ଶ𝑠 0

0 0 k௠
ଶ 𝑠

቏

 (8) 

Moreover, the dynamic model (1) ignores the actuator’s 
constraints due to its driving capability. For example, there is 
a time-constant 𝑡௖ in the motor, so the whole motor dynamic is 
assumed to behave as a first-order system [48]. Therefore, the 
actual actuator’s model is as follows: 

𝐮̇ =
𝐮௖௠ௗ − 𝐮

𝑡௖

 (9) 

where 𝐮௖௠ௗ  is the control command.  

B. Positioning based on FGO 

For simplicity, we assume that the observations of the 
absolute factor include position, attitude, velocity, and angular 
velocity in the simulation. We use multivariate Gaussian 
measurement assumption for state observation [36]:  

Φ𝐱 ∝ exp ൜
1

2
‖z(𝐱௖) − 𝐳௖‖𝐏೎

ଶ ൠ (10) 

where 𝐳௖ is the actual observation, and z(𝐱௖) is the predicted 
observation model.  

In addition, the relative pose transformation 𝐓௟ାଵ
௟  from the 

timestamp 𝑙 to the timestamp 𝑙 + 1 is denoted as follows: 

𝐓௟ାଵ
௟ = ൫𝐓௕೗

௪൯
ିଵ

𝐓௕೗శభ

௪  (11) 

where 𝐓௕೗

௪ represents the UAV’s pose at the timestamp 𝑙, 𝐓௕೗శభ

௪  
represent the UAV’s pose at the timestamp 𝑙 + 1. 

Hence, the relative factor is simplified as: 

Φ𝐋 ∝ exp ൜
1

2
ቛLogmap ቄ𝐓௟ାଵ

௟ ൫𝐓௕೗శభ

௪ ൯
୘

𝐓௕೗

௪ቅቛ
𝐏೗

ಽ

ଶ

ൠ (12) 

where 𝐏௟
௅  is the covariance matrix of a relative pose from 

timestamp 𝑙 to timestamp 𝑙 + 1.  
Based on (10) and (12), the residuals of absolute factor and 

relative factor are denoted as follows, respectively: 

l௬

l௫

𝐹௕

𝑦௕

𝑥௕1 2

34
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𝐫௖

஺ = 𝑧(𝐱௖) − 𝐳௖

𝐫௟
ோ = Logmap ቄ𝐓௟ାଵ

௟ ൫𝐓௕೗శభ

௪ ൯
୘

𝐓௕೗

௪ቅ
 (13) 

C. MPC based on FGO 

The general MPC problem is as follows [10]: 

min
𝐮బ:ಿషభ

෍൫𝐱௞
୘𝐖௞𝐳௞

௥ + 𝐮௞
୘𝐘௞𝐮௞

௥ ൯ + 𝐱ே
୘ 𝐖ே𝐱ே

௥

ேିଵ

௞ୀ଴

,

𝑠. 𝑡. 𝐱௞ାଵ = F(𝐱௞, 𝐮௞), 0 ≤ 𝑘 ≤ 𝑁 − 1, 𝐱଴ = 𝐱௜௡௜௧ ,
𝐮௠௜௡ ≤ 𝐮௞ ≤ 𝐮௠௔௫ ,

 (14) 

where 𝐖௞ = 𝐇𝐤
𝐓𝐇𝐤 ≥ 0  and 𝐖ே ≥ 0  are the real symmetric 

matrices and 𝐘௞  is a symmetric real matrix. 𝐮௞  and 𝐮௞
௥  (0 ≤

𝑘 ≤ 𝑁 − 1) are the input vector and the input set-point vector, 
respectively. 𝐳௞

௥  (1 ≤ 𝑘 ≤ 𝑁 − 1) and 𝐱ே
௥  are reference states.  

The objective function of MPC is essentially the sum of the 
squares of various error terms, including distances and input 
constraints for a period. The distance error is the discrepancy 
between the predicted states and the pre-set reference states. 
The input constraints include the bound limit and rate limit.  

We consider 𝐮௥ as the initial value when implementing the 
FGO’s iterative solver. The control input’s change rate 𝐮௧ −
𝐮௧ାଵ  of actuators is restricted due to its driving capability. 
Furthermore, the input adheres to the actuator’s bound limit 
function h(𝐮). Further details will be discussed in Section IV. 
Consequently, (14) can be reformulated for representation in a 
factor graph as follows: 

min
௨బ:ಿషభ

⎩
⎪
⎨

⎪
⎧ ෍‖𝐱௞ − 𝐳௞

௥‖𝐐ೖ

ଶ

ேିଵ

௞ୀଵ

+ ‖𝐱ே − 𝐱ே
௥ ‖𝐐ಿ

ଶ

+ ෍‖𝐮௧ − 𝐮௧ାଵ‖𝐑೟

ଶ

ேିଶ

௧ୀ଴

+ ෍ฮh൫𝐮௝൯ฮ
𝐐ౢ౟ౣ

ଶ
ேିଵ

௝ୀ଴ ⎭
⎪
⎬

⎪
⎫

,

𝑠. 𝑡.  𝐱௞ାଵ = F(𝐱௞, 𝐮௞), 0 ≤ 𝑘 ≤ 𝑁 − 1, 𝐱଴ = 𝐱௜௡௜௧

 (15) 

where 𝐐௞ , 𝐐ே , 𝐑௧ , and 𝐐୪୧୫  represent different weighting 
matrices.  

IV. METHODOLOGY 

We combine positioning and control into a quadratic 
problem. Assuming 𝑀 is the number of states to be estimated 
and 𝑁  is the length of the predicted states. The unknown 

variables are 𝛘 = ൛𝐱ିெାଵ:ே
୘ , 𝐮଴:ேିଵ

୘ ൟ
୘

. The unified optimization 
problem combines absolute factors, relative factors, and 
control-related factors. Therefore, JPCM’s optimization 
problem is as follows: 

min
𝛘

⎩
⎪
⎨

⎪
⎧ ෍ ‖𝐫௖

஺‖
𝐏೎

ಲ
ଶ

଴

௖ୀିெାଵ

+ ෍ ‖𝐫௟
ோ‖

𝐏೗
ಽ

ଶ

ିଵ

௟ୀିெାଵ

+ ෍‖𝐫௜
஽‖

𝐏೔
ವ

ଶ

ேିଵ

௜ୀ଴

+ ෍ฮ𝐫௞
௥௘௙

ฮ
𝐐ೖ

ଶ
ே

௞ୀଵ

+ ෍‖𝐫௧
௎‖𝐑೟

ଶ

ேିଶ

௧ୀ଴

+ ෍ฮh(𝐮௝)ฮ
𝐐ౢ౟ౣ

ଶ
ேିଵ

௝ୀ଴ ⎭
⎪
⎬

⎪
⎫

 (16) 

Additionally, the control part involves the reference 
trajectory factor residuals 𝐫௥௘௙ = 𝐱 − 𝐱௥௘௙ , dynamic factor 
residuals 𝐫𝒊

஽ = 𝐱𝑖+1 − F(𝐱𝑖, 𝐮𝑖) , control limit factor residuals 
𝐫௧

௎ = 𝐮𝒕 − 𝐮𝒕ା𝟏 , and input constraint factor residuals 𝐡(𝐮௝) . 
These factors are further explained in the following sections.  

To simplify the cost function of (16), we obtain: 
min

஧
൛fୱ୳ୠ୮୭ୱ + ‖z(x଴) − z଴‖୔బ

ଶ + fୢ୷୬ + f୑୔େൟ (17) 

where fௗ௬௡ = ∑ ‖𝐫௜
஽‖

𝐏೔
ವ

ଶேିଵ
௜ୀ଴  is the dynamic-related cost term, 

and fெ௉஼  is the cost function of MPC. Absolute factors and 
relative factors are reformulated to express the residuals 
z(𝐱𝟎) − 𝐳଴ for the initial state 𝐱଴ and the cost function term 
f௦௨௕௣௢௦ for the subsequent states. If only the current state 𝐱଴ is 
considered, f௦௨௕௣௢௦ is zero.  

  
Fig. 4. The factor graph of the proposed tight JPCM. The absolute factor and 
relative factor are two types of factors generated from common sensors, 
respectively. The dynamic factor is derived from the UAV’s dynamic model, 
which bridges the gap between positioning and the control module. The 
reference trajectory factor makes predicted states close to the pre-planned 
trajectory.  

Therefore, we provide a unified factor graph framework to 
implement the proposed JPCM. As illustrated in Fig. 4 this 
unified factor graph slides over a time window, which 
contains 𝑀  states and 𝑁  predicted states. The positioning 
component, highlighted in red, incorporates both absolute and 
relative factors. In our simulation, 𝑁 = 20, and 𝑀 depends on 
the size of the sliding window. For example, if only one state 
is considered, then 𝑀 = 1. 

Additionally, the control component comprises the dynamic 
factor, reference trajectory factor, input constraint factor, and 
control limit factor. To bridge the gap between positioning and 
control, the dynamic factor imposes dynamic constraints on 
the states at adjacent moments from 𝐱଴ to 𝐱ே. The reference 
trajectory factor guides the predicted trajectory towards the 
pre-planned trajectory.  

A. Dynamic factor 

The dynamic factor serves as a crucial link, bridging the 
gap between positioning and control. The discrete form of 
state propagation is 𝐱௜ାଵ   =  𝐱௜ + 𝐱̇௜Δt . Thus, ignoring 
aerodynamic drag, the dynamic error can be represented 

through 𝐫௜
஽ = ൣ𝐞௣

୘, 𝐞ఏ
୘, 𝐞௩

୘, 𝐞ன
୘ ൧

୘
 =  𝐱௜ାଵ  −  𝐱௜  −  𝐱̇௜Δt  as 

follows:  
𝐞୮ = 𝐩௕೔శభ

௪ − 𝐯௕೔

௪ ∗ Δt − 𝐩௕೔

௪

𝐞஘ = Log(𝐑௪
௕೔శభ 

 𝐑௕೔

௪  (𝐈ଷ×ଷ + 𝛚௕
×Δt)

𝒆୴ = 𝐯௕೔శభ

௪ − 𝐯௕೔

௪ −  ൫−𝐑ீ
௪𝐞ଷg + 𝐑௕೔

௪ 𝐓௕೔
mୠ⁄ ൯ ∙ Δt

𝐞ன = 𝛚௕೔శభ
− 𝛚௕೔

− 𝐈ୠ
ିଵ(𝐌௕೔

− 𝛚௕೔
× 𝐈ୠ𝛚௕೔

) ∙ Δt

 (18) 

where Δt is the period between two contiguous states. Log(∗) 
and Exp(∗) represent and Logarithmic map and Exponential 
map of Lie theory, respectively.  

To propagate covariance, the dynamic model factor’s error 

function 𝐫௜
஽ = ൣ𝐞ത௣

୘, 𝐞തఏ
୘, 𝐞ത௩

୘, 𝐞തఠ
୘ ൧

୘
 can be derived from the error 

model (18): 

Input constraint factor

Dynamic factor

Reference trajectory factor

U

D

D

Control

𝐮𝟎 𝐮𝟏

D

U

Absolute factor

L

L Relative factor

State

𝐱𝟎𝐱ି𝟏
… 𝐱𝟏 𝐱𝟐

…

Positioning

…

Tightly Joined Positioning and Control Model (JPCM)

Control limit factor

𝑀

𝑁
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𝐞ത௣ = 𝐑௪

௕೔m௕൫𝐩௕೔శభ

௪ − 𝐯௕೔

௪Δt + 0.5𝐑ீ
௪𝐞ଷgΔtଶ − 𝐩௕೔

௪ ൯

−0.5𝐓௕೔
Δtଶ

𝐞തఏ = Log൫𝐑௪
௕೔ 

 𝐑௕೔శభ

௪  ൯ − 𝛚௕೔
Δt

𝒆ത௩ = 𝐑௪
௕೔m௕൫𝐯௕೔శభ

௪ − 𝐯௕೔

௪ + 𝐑ீ
௪𝐞ଷgΔt൯ − 𝐓௕೔

Δt

𝐞തఠ = 𝐈௕൫𝛚௕೔శభ
− 𝛚௕೔

൯ − (𝐌௕೔
− 𝛚௕೔

× 𝐈ୠ𝛚௕೔
) ∙ Δt

 (19a) 

If aerodynamic drag is further considered, according to (2), 
the velocity component 𝐞ത௩ of the dynamic factor’s residual is 
as follows:  
𝐞ത௩ = 𝐑௪

௕೔m௕൫𝐯௕೔శభ

௪ − 𝐯௕೔

௪ + 𝐑ீ
௪𝐞ଷgΔt൯  − 𝐓௕೔

Δt − 𝐃𝐑௪
௕೔𝐯௕೔

௪Δt (19b) 
According to (8) and (19), the covariance matrix of  𝐞ത௩ and 

𝐞തఠ  are 𝐏୘
௜ Δtଶ  and 𝐏୑

௜ Δtଶ , respectively. Moreover, the 
covariance matrix of  𝐞ത௣ is set by 0.25𝐏்

௜ Δtସ . The Jacobian 
matrix is provided in the Appendix.  

B. Control limit factor 

The control limit factor is designed to ensure that the 
control input meets the actuator’s limits. Defining the hinge 
loss cost function 𝐄 = h൫𝐮௝൯  for the control input inequality, 
which is as follows: 

𝐄௜ = ቐ

𝑢௠௜௡
௝

+ 𝑢௧௛௥
௝

− 𝐮௝(𝑖) if 𝐮௝(𝑖) < 𝑢௠௜௡
௝

+ 𝑢௧௛௥
௝

𝐮௝(𝑖) − 𝑢௠௔௫
௝

+ 𝑢௧௛௥
௝

if 𝑢௠௔௫
௝

− 𝑢௧௛௥
௝

≤ 𝐮௝(𝑖)

0 otherwise

 

(1 ≤ 𝑖 ≤ 𝐾) 

(20) 

where 𝑢௠௜௡
௝  is the input lower bound, and 𝑢௠௔௫

௝  is the input 

upper bound, and 𝑢௧௛௥
௝  is the threshold value. The values of 

bounds and threshold are illustrated in Table II. In addition, 
𝐐௟௜௠  is a control limit factor’s weighting matrix which 
determines how fast the error grows as the value approaches 
the limit.  

B. Reference trajectory factor 

The reference trajectory factor’s residual is as follows: 
𝐫௥௘௙  =  (𝐩, 𝐑, 𝐯) ⊖ (𝐩௥ , 𝐑௥ , 𝐯௥) (21) 

where ⊖  is a subtraction operator, which calculates the 
residuals of position, velocity, and rotation. The position 
residual is 𝐞௣

௥௘௙
= 𝐩 − 𝐩௥ , the velocity residual is 𝐞௩

௥௘௙
= 𝐯 −

𝐯௥ , and the rotation residual is 𝐞ఏ
௥௘௙

= Log(𝐑୘𝐑௥) . Then, 

𝐫௥௘௙ = ቂ൫𝐞௣
௥௘௙

൯
୘

൫𝐞௩
௥௘௙

൯
୘

൫𝐞ఏ
௥௘௙

൯
୘

ቃ
୘

. In addition, the 

reference trajectory factor’s covariance 𝐐௞(1 ≤  𝑘 ≤  𝑁) can 
be configured by users. 

V. NUMERICAL EXPERIMENTS 

The quadrotor’s trajectory control simulation is conducted 
to evaluate the proposed JPCM’s performance. The reference 
path is assumed a circle. Then, the trajectory is generated by 
the minimum snap trajectory generation method [49]. 
Moreover, the Gaussian white noise is added to the thrust and 
torque of the quadrotor simulator. In particular, the reasons 
that the simulated dataset is employed to validate the 
effectiveness of the proposed method lie in three folds: (1) By 
employing the simulation, the noise of the positioning module 
can be ideally simulated using the Gaussian noise which is 
hard to achieve in real environments. (2) The external 
disturbance can be accurately modeled using the simulated 
environments which is important for the validation of the 
proposed method. (3) By using the simulated environments, 

the dynamic parameters of the UAV system can also be 
accurately modeled. More importantly, the full 
implementation of the model in this paper is open-source to 
benefit the research community.  

The gravity of the quadrotor is 10 N (Newton). The thrust 
noise’s sigma is 0.1N, and the angular speed process noise’s 
sigma is 0.02rad/s. The simulated circle trajectory’s linear 
speed is 5m/s, and its radius is 1.5m. The control frequency is 
100 Hz. We assume that the absolute factor’s measurement 
not only includes position, velocity, and angular speed but also 
the attitude with simulated uncertainty. The proposed unified 
factor graph is solved using based on the open-source software 
GTSAM.  

 
Fig. 5. Simulation framework.  

As shown in Fig 5, we simulated a quadrotor based on the 
quadratic thrust model (5). In our dynamic model, we 
incorporate various disturbances including the aerodynamic 
drag, the actuator’s time constant, and Gaussian noise. In 
addition, the performance of the proposed method involving 
abrupt motion is simulated and studied. This allows us to 
assess the algorithm’s resilience and adaptability under sudden 
changes in motion dynamics. Moreover, we introduce 
Gaussian noise into the observation of sensors to simulate 
large-state uncertainty. This enables us to validate the 
trajectory tracking performance of our proposed algorithm 
under challenging conditions characterized by high 
uncertainty.  

A. Performance comparison between MPC and JPCM with 
high positioning uncertainty 

Illustration of the abbreviations of different methods to be 
evaluated in this paper: 
MPC-pre [50] represents the nominal MPC method with 

highly precise positioning.  
MPC [50] represents the nominal MPC method with highly 

uncertain observation with parameters listed in Table II 
JCPM represents the proposed tightly joined positioning 

and control model with highly uncertain observation for Case 
1. 

JCPM-SW represents the proposed tightly joined 
positioning and control model based on a sliding window with 
highly uncertain observation for Case 2.  

Case 1: First, it is assumed that only absolute measurements 
exist at the current moment. Similarly, a state with uncertainty 
output by the common positioning module is provided to the 
MPC and JPCM. Both MPC and JPCM are implemented 
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based on FGO. MPC directly adopts the observation of the 
current state as the initial state.  

Case 2: In addition to the conditions of case 1, it is assumed 
that the UAV is equipped with a LiDAR and can measure the 
pose transformation at adjacent timestamps. The length of the 
variables to be estimated is set to 10. The extrinsic parameter 
between the LiDAR frame and the body frame is an identity 
matrix. Verify the feasibility of the proposed method under 
these conditions. We define JPCM based on sliding window as 
JPCM-Sliding Window (JPCM-SW). We simulate the relative 
pose transformation 𝐓௟ାଵ

௟  with the Gaussian white noise 𝐧௟  as 
follows: 

𝐓
௟ା1
௟ = 𝐓෡

௟ା1
௟ Expmap(𝐧௟) (22) 

where 𝐓෡௟ାଵ
௟  is the true value of relative pose.   

All simulation parameters are listed in Table II. 
TABLE II 

Simulation parameters 
Parameters Case 1 Case 2 

M (the length of historical 
states constrained by 

observation) 
1 10 

N (the length of predicted 
states in control) 

20 

Position sigma 0.20 m 
Rotation sigma 0.03 rad 
Velocity sigma 0.05 m/s 

Angular velocity sigma 0.001 rad/s 
Sigma of 𝐓

௟ା1
௟  diag൛0.03ଶ𝐈ଷ

୘, 0.03ଶ𝐈ଷ
୘ൟ 

𝐏௟
௅ diag൛0.03ଶ𝐈ଷ

୘, 0.03ଶ𝐈ଷ
୘ൟ 

𝐐௞ diag൛0.03ଶ𝐈ଷ
୘, 0.3ଶ𝐈ଷ

୘, 3ଶ𝐈ଷ
୘ൟ 

diag൛0.01ଶ𝐈ଷ
୘, 0.3ଶ𝐈ଷ

୘, 3ଶ𝐈ଷ
୘ൟ 𝐐ே 

𝐑௧ diag൛1000𝐈ସ
୘ൟ 

𝑢௠௜௡ 12000 

𝑢௧௛௥ 100 

𝑢௠௔௫ 18000 

1) Simulation Results of Case 1 

 
Fig. 7. Case 1: The paths of MPC and JPCM (linear speed = 5m/s, radius = 
1.5m). The red solid line and blue solid line represent the tracking path based 
on MPC and the tracking path based on JPCM, respectively.  

For case 1, Fig 7 illustrates the path of MPC and JPCM, 
which shows that JPCM aligns more closely with the reference 
path than the MPC method. In contrast, the nominal MPC 
exhibits significant fluctuation. Furthermore, the rotation and 
position control errors are depicted in Fig 8. The root mean 
square errors (RMSEs) are also summarized in Table I. MPC-
pre represents the MPC method with high-precision 
positioning. When positioning measurements are precise, the 
MPC problem solved by FGO converges to the reference 
trajectory with minimal control errors. However, compared to 
JPCM, the control errors of the nominal MPC increase 
significantly in the presence of large positioning uncertainty. 
This indicates that noisy positioning adversely affects the 
control performance of UAVs. Moreover, Table I reveals that 
both the position and rotation control errors of the proposed 
JPCM are reduced compared to the nominal MPC with large 
noise positioning. 

TABLE III 
THE TRAJECTORY FOLLOWING RMSE OF MPC-PRE (MPC WITH PRECISE 

POSITIONING), MPC, JPCM, AND JPCM-SW (SLIDING WINDOW-BASED 

JPCM) 
Method Position RMSE (m) Rotation RMSE (rad) 

MPC-pre 0.010 0.010 0.005 0.005 0.005 0.004 
MPC 0.068 0.066 0.055 0.246 0.151 0.251 
JPCM 0.031 0.019 0.015 0.031 0.018 0.158 

JPCM-SW 0.017 0.017 0.019 0.010 0.011 0.205 

 
Fig. 8. Case 1: Position following residuals comparison: JPCM and MPC. 

As shown in Fig 9, under highly uncertain observations, the 
MPC’s control inputs often reach the upper or lower bound. 
On the contrary, the control inputs of the JPCM are relatively 
concentrated. The MPC is probing at the edge of the control 
boundary, indicating that the solution of the control quantity is 
on the verge of reaching a critical constraint. Specifically, 
when the positioning value strays excessively from the 
intended target, the optimization process may fail to procure a 
viable solution.  
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Fig. 9. Case 1: The comparison of control input between MPC and JPCM. 
Most control inputs are strictly limited between upper and lower bounds. 

2) Simulation Results of Case 2  
As for case 2, the JPCM-SW is conducted with 𝑀 =  10. 

As demonstrated in Table III, the JPCM-SW method exhibits 
a slight reduction in both the x-axis and y-axis position 
following residuals when compared to the standard JPCM 
method. The enhanced performance of JPCM-SW is achieved 
through a tightly integrated approach that effectively combines 
historical observations with control objectives. By utilizing 
more historical information, the JPCM-SW method achieves 
higher precise control than MPC.   

MPC can handle most control tasks effectively when the 
positioning accuracy is high. However, in urban scenarios 
where severe positioning noise is prevalent, the trajectory 
following the error of MPC may be significantly exacerbated. 
In contrast, the proposed JPCM substantially improves 
trajectory tracking performance in situations where 
positioning uncertainty is high. To conclude, the performance 
of JPCM based on FGO surpasses that of the standard MPC, 
particularly when precise positioning is not available.  

B. Performance comparison under disturbances 

(1) Abrupt movements 

Sudden winds or brief malfunctions can cause UAVs to 
experience instantaneous movement. This poses a risk to the 
stability of the control. The controller should have the ability 
to maintain a stable status. We refer to the process of 
recovering to a predetermined trajectory after a rapid and large 
movement as a “recovery process”. We simulate a rapid and 
large movement at one moment and investigate the “recovery 
process”. 

As illustrated in Fig 10, an unplanned movement Δ𝐩௕
௪  =

 [0.00m, 0.30m, −0.40m]୘  is simulated at 0.5 seconds, and 
the UAV controlled by JPCM returns to the planned trajectory 
in about three seconds. In comparison to MPC, the recovery 
process of the proposed JPCM method takes a longer duration. 
However, JCPM renders a smoother position tracking error 
curve according to Fig. 10. The disadvantage is that when 
JPCM experiences significant movement disturbances, the 
control delay will be greater. Conversely, in scenarios that 

pursue smoother control, this becomes an advantage. For 
example, in the case of positioning outliers or spoofing, 
smoother and slower JPCM is more robust than MPC. Besides, 
the control delay can be accepted in practical systems. 

 
Fig. 10. Position and rotation following residuals after abrupt movement.  

(2) Aerodynamic drag force  

First, we investigate the performance of JPCM affected by 
the aerodynamic drag (not considering aerodynamic drag 
factors in the controller). Then, to mitigate the effects of 
aerodynamic drag force, we introduce a drag-aiding JPCM 
method, namely JPCM-Drag.  

To evaluate the performance of the proposed JPCM under 
the simulated parameters in Table II Case 1, four prevalent 
aerodynamic drag coefficients are strategically chosen. An 
analysis of the data presented in Table IV indicates a direct 
correlation between the trajectory position tracking error of 
JPCM and the magnitude of the aerodynamic drag coefficient. 
Despite the increase in error, it is noteworthy that the system 
maintains its stability and does not diverge.  

TABLE IV 
THE TRAJECTORY FOLLOWING RMSE OF JPCM AND JPCM-DRAG WITH 

AERODYNAMIC DRAG FORCE 

Method 
Drag 

parameter 
Position RMSE (m) Rotation RMSE (rad) 

JPCM 
 

𝟎 
0.026 0.025 0.018 0.022  0.016 0.024 

JPCM 
 

𝟎. 𝟏𝐈𝟑×𝟑 
0.040  0.031 0.024 0.023 0.013  0.045 

JPCM 
 

𝟎. 𝟐𝐈𝟑×𝟑 
0.053 0.047 0.035 0.018 0.023 0.040 

JPCM 
 

𝟎. 𝟑𝐈𝟑×𝟑 
0.067 0.061 0.039 0.032 0.036 0.062 

JPCM-
Drag  

𝟎. 𝟑𝐈𝟑×𝟑 
0.031 0.025 0.028 0.011 0.037 0.064 

Eliminating aerodynamic drag effects: JPCM-Drag 
incorporates the aerodynamic drag into the error function 
(19b) and recalculates the Jacobian matrix of the modified 
dynamic model factor. This is achieved by integrating a non-
zero coefficient matrix, denoted as 𝐃 , into the formulas 
provided in the Appendix. A specific instance of this method 
is demonstrated where 𝐃  is set to 0.3𝐈ଷ×ଷ  that is consistent 
with the actual system level. As shown in Fig 11, the JPCM 
method reveals a significant deviation in the circular trajectory 
towards the center of the circle. The shift is attributed to the 
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influence of aerodynamic drag. The JPCM-Drag method, 
which accounts for this drag effect, shows a tendency to 
converge towards the pre-set trajectory. Furthermore, when 
the JPCM-Drag method is implemented, the RMSE of the 
position following closely approximates the RMSE in 
scenarios devoid of aerodynamic drag. This observation 
underscores the efficacy of the JPCM-Drag method in 
neutralizing the impact of aerodynamic drag.  

 
Fig. 11. Path comparison of JPCM method and JPCM-Drag method with 

aerodynamic drag (𝐃 = 0.3𝐈ଷ×ଷ).  

(2) Actuator Time constant 
TABLE V 

THE TRAJECTORY FOLLOWING RMSE OF JPCM WITH ACTUATOR TIME 

CONSTANT 

𝒕𝒄 Position RMSE (m) Rotation RMSE (rad) 

10ms 0.031 0.019 0.015 0.031 0.007 0.158 
25ms 0.026 0.017 0.017 0.010 0.010 0.014 
50ms 0.027 0.017 0.023 0.028 0.022 0.035 
60ms divergence 

100ms divergence 
The whole actuator’s dynamic is approximately a first-order 

system [48], in which a time constant is a key factor affecting 
system convergence. The stability is tested by simulating 
different actuators at constant time.  

An examination of Table V reveals a key characteristic of 
the system’s performance: when the time constant remains at 
or below 50ms, the controller error does not exhibit a 
significant increase. Despite the impacts imposed by the 
actuator time constant, the system can consistently and 
reliably accomplish the control task. This observation 
underscores the system’s robustness and its ability to maintain 
stability under these specific conditions. Nevertheless, as the 
time constant progressively escalates to a certain threshold, the 
controller begins to diverge. In actual UAV applications, the 
time constant can be obtained by analyzing the response time 
of the actuator.  

VI. DISCUSSION 

When substantial errors occur in the initial state, they can 
induce significant fluctuations in the predicted trajectory, as 
evidenced by the MPC in Fig 12. This discrepancy arises 

because the navigation solution fails to align with the actual 
position of the UAV, potentially leading to unstable control. 
Furthermore, the UAV model is characterized by high 
nonlinearity, and any attitude jitter can pose a significant 
safety risk. This is due to the potential for rapid, unpredictable 
changes in the UAV’s orientation, which could lead to loss of 
control or collision.  

 
Fig. 12. State uncertainty has an impact on the stability of control.  
 

However, a control mechanism that incorporates the initial 
positioning probability may mitigate the risks due to 
positioning uncertainty. This is primarily because the 
probabilistic representation of positioning can minimize the 
control overshoot, which is a common issue in dynamic 
control systems.  

Only considering the current state 𝐱଴, the cost function in 
JPCM is equivalent to:  

f௃௉஼ெ = fெ௉஼ + fௗ௬௡ + ‖𝐇0𝐱଴ − 𝐳୭ୠ‖𝐏బ

ଶ  (23) 
where 𝐇଴  is the Jacobian matrix at 𝐱ො଴ , and 𝐳୭ୠ  is the 
observation of the initial state.  

MPC can handle control problems when the positioning 
accuracy is high. In other words, if the covariance matrix 𝐏଴ in 
(23) approaches 0, that is, when the positioning accuracy is 
high, JPCM equivalents the MPC problem. However, in real-
world applications that permeate our daily lives, such as 
autonomous vehicles navigating city streets and cooperative 
robots performing tasks in indoor environments, the financial 
burden associated with achieving high-precision capabilities 
may be substantial. In some instances, the attainment of such 
precision may not even be feasible, thus posing significant 
challenges to the implementation of these advanced 
technologies. In contrast, JPCM is equivalent to relaxing the 
fixed-value constraints in the MPC problem into a 
probabilistic constraint on the initial variables. This relaxation 
allows for greater flexibility in the control mechanism, 
potentially improving the UAV’s ability to handle unexpected 
changes in its environment or initial state. 

Moreover, the recovery process demonstrates that the 
proposed JPCM necessitates a longer duration to revert to the 
pre-set path in comparison to the conventional MPC. This can 
be attributed to the simultaneous optimization of positioning 
and control. The constraints imposed by the planned trajectory 
exert a pull on the estimated state, drawing it closer to the 
trajectory, which, in turn, diminishes the control energy. The 
traditional MPC, with its ability to plan actions with 
decisiveness, is more prone to fluctuations with bad 
positioning. It is a stark contrast to the controller based on 
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JPCM, which exhibits resilience to faults triggered by 
irregular positioning or sudden, large-scale movements. 
Should users seek to enhance the response speed, they have 
the option to strategically decrease the value of  𝐏଴. 

VII. CONCLUSION AND FUTURE WORK 

To establish a tightly integrated model with positioning and 
control, we propose a tight JPCM. The model combines 
positioning and control into a unified factor graph. 
Additionally, we provide a design framework for the unified 
factor graph, formulating a series of factors pertinent to 
positioning, dynamic control and trajectory tracking. These 
factors are instrumental in ensuring precise and efficient 
control over the system’s trajectory. Finally, a quadrotor 
simulator is used to evaluate the proposed method’s 
performance. The simulation results show that the proposed 
method is convergent with smaller errors than the 
conventional MPC. In simulation, the proposed method is 
tested with three kinds of disturbances. For future research, we 
will conduct real-world experiments. In addition, the design 
law governing the control weight matrix of the FGO needs to 
be explained further. 
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IX. APPENDIX 

Jacobian matrix of dynamic factor 
The Jacobian matrix of error 𝐞஽ to state 𝐱௜ is as follows: 
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where 𝐩௣, 𝐩௩, 
డ𝐞ത౬

డ𝐑್೔
ೢ , 

డ𝐞ത౬

డ𝐯್೔
ೢ , and 

డ𝐞തഘ

డ𝛚್೔

 are as follows:  
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The Jacobian matrix of error 𝐞஽ to state 𝐱௜ାଵ is as follows: 
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The Jacobian matrix of error 𝒆ത௩  to control input 𝐮  is as 
follows:  

J𝐮
𝐞തೡ = J𝐓
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𝐓 = −Δt ቎

𝟎ସ
୘

𝟎ସ
୘

2c௧𝐮୘

቏ (27) 

The Jacobian matrix of error 𝒆ത𝛚  to control input 𝐮  is as 
follows: 

J𝐌
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