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Stabilization schemes in wall-bounded flows often invoke fluid transpiration through porous
boundaries. While these have been extensively validated for external flows, their efficacy in chan-
nels, particularly from the standpoint of non-modal perturbations, is yet to be demonstrated. Here,
we show that crossflow strengths previously considered “ideal” for optimizing stability in channels
in fact admit strong non-modal energy amplification. We begin by supplementing existing modal
calculations and then show via the resolvent that extremely strong and potentially unfeasible cross-
flows are required to suppress non-modal growth in linearly stable regimes. Investigation of unforced
algebraic growth paints a similar picture. Here, a component-wise budget analysis reveals that en-
ergy redistribution through pressure-velocity correlations plays an important role in driving energy
growth/decay. The superposition of a moving wall is also considered, and it is shown that while
energy amplification generally worsens, it can potentially be suppressed beyond critical strengths of
the crossflow. However, these flow regimes are marred by rapidly declining mass transport, render-
ing their ultimate utility questionable. Our results suggest that crossflow-based stabilization might
not be useful in internal flows.

I. INTRODUCTION

The control of fluid flows in channels is among the most complex open problems in classical theory, a precise
understanding of which is yet to be established despite multiple decades of research. The shift from a benign laminar
state to the complex chaos of turbulence is, to all appearances, highly non-linear, and incurs key structural and
mechanistic changes in the processes driving mass and momentum transport. These modifications, depending on
the exact setting, can be both desirable or undesirable, so that strategies to suppress – or even instigate – them are
typically of significant interest. In this work, our aim is to reassess the efficacy of one such scheme: the superposition
of a homogeneous, vertical (i.e., in the wall-normal direction) crossflow, such as that generated by a steady, spatially
uniform transpiration of fluid through a porous boundary (or boundaries). Such systems have widespread utility, for
example, in filtration processes, medical apparatus, and various geophysical and astrophysical phenomena, although,
surprisingly, it is applications in external flows that are more frequently cited in the literature (e.g. modulating flow
separation or delaying inflectional instabilities over swept wings; see [1] or [2]).

To preface with a broader perspective, the debate on transition and instability in fluid flows has undoubtedly been
a long-standing one. Here, the standard analysis proceeds by deriving an eigenvalue problem from the equations
of motion linearized around some base state of interest, usually laminar. Eigenmodes with positive growth rates
suffer exponential amplification in time, and a critical value, Rec, of the Reynolds number defines the threshold
below which such an instability cannot survive. For simple parabolic profiles, such as those encountered in rectilinear
pressure-driven flows, this approach predicts Rec ≈ 5772, with the Reynolds number defined based on the channel
half-height h and the center-line velocity Up. As expected, the inclusion of crossflow, described by its own Reynolds
number, say Rv, dramatically alters the picture, and the first few treatments may perhaps be attributed to [3] and
[4]. Both authors resolved, at least for small to moderate Rv, a significant increase in Rec (again based on Up),
suggesting that the overarching influence of a net throughflow was very much stabilizing. Evidently, this remained
the prevailing opinion until [5] proposed an alternative non-dimensionalization of the dynamical variables, setting the
“actual” streamwise maximum as opposed to Up as the reference velocity unit. Because the injected wall-normal flux
dampens the base streamwise component, this framework, they argued, preserved the distinction between the base
velocity magnitude and the base velocity distribution when investigating stability. With this scaling, [5] demonstrated
pockets of stabilization and destabilization, called “branches” in their terminology. To recount their example of choice,
the wavenumber α = 1 at Re = 6000, known to exhibit a positive growth rate for Poiseuille flow, becomes increasingly
stable until a turning point of Rv ≈ 3.4. Thereafter, the trend reverses and the instability is restored for Rv ⪆ 42.5,
only to be suppressed once again for Rv ≈ O(102).
Apart from the initial study by [3], the work of [6] appears to be the first to provide a rigorous extension to the case

of moving (upper) boundaries, the so-called Couette-Poiseuille flows, which present interesting stability characteristics
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in and of themselves. In particular, adopting the dimensionless ratio ξ = Uc/Up (the equivalent proxy in [6] is k),
where Uc is the wall speed, [7] showed that complete linear stability – Rec → ∞ – could be achieved for ξ ⪆ 0.7,
termed the “cutoff”. This is, of course, not surprising since the Couette flow itself is known to be linearly stable
to infinitesimal perturbations for various rheological models; see, for example, [8]. At any rate, in the presence of
crossflow, [6] reported trends largely similar to the ξ = 0 case, except that the cutoff threshold could now be reduced
to, say, ξ ≈ 0.2 using intermediate Rv (a claim that, as they noted, was only valid for Re ≤ 106, the upper limit of their
numerical study). As special instances of this base flow, “generalized” Couette-like profiles have also been investigated
by [9]; these are precisely linear and develop when the influence of the crossflow in the streamwise momentum budget
is neutralized by a suitably chosen pressure gradient. In the presence of viscosity, these profiles exhibit complete
linear stability up to Rv ≈ 24, beyond which the critical Reynolds number can descend to as low as the relatively
mild Rec ≈ 725 [9]. Even in the inviscid (Rayleigh) limit, excellently treated by [10], a perturbation has the potential
to grow. Finally, we remark that the spatially developing (i.e., in the streamwise direction) analog has also been of
interest and has been rigorously explored using Berman-type similarity solutions in the works of [11] and [12].

Consequently, crossflow-laden channel flows demonstrate rich stability portraits and form an interesting testbed
for studying transition and disturbance amplification. From a purely application-oriented point of view, previous
work, particularly on spatially non-developing cases, can be summarized in the statement by [6], who posited that
modest wall velocities ξ coupled with weak-to-moderate crossflows strike the optimal balance between stability and
practicality. We argue here – and this is our main contribution – that this is not necessarily the case. In particular,
we cite the non-normality of the linearized operator, typical of inertia-dominated flows, as the main culprit. Since the
unstable eigenvalues are only really relevant at sufficiently large time horizons, when all other modal contributions
have more or less decayed, one can rarely accurately judge the stability of a system from its spectrum alone. In
shear flows, non-modal growth mechanisms are generally more dominant and therefore more informative, which is
a well-established result in hydrodynamic stability theory [13–16]. Surprisingly, despite their apparent simplicity,
a comprehensive analysis on non-modal perturbations in (internal) crossflow-laden flows is yet to be performed, at
least to the best of our knowledge. One relevant work in this regard seems to be that of [17], who investigated
transient, unforced, energy amplification using the base flow of [5]. However, the scope of their study was rather
narrow, and, as we discuss below, leaves much room for further investigation. On the other hand, the single-plate,
zero-pressure-gradient, analog – the so-called asymptotic suction boundary layer (ASBL) – has received much more
attention [18–20], and we make comparisons where appropriate.

We structure this paper as follows. Section II introduces the base flow and describes our analysis frameworks.
Section III augments previous discussion on eigenvalues, while Section IV presents a systematic summary of our non-
modal calculations, with a particular focus on the purely pressure-driven case. Section V investigates the effects of
wall motion, while Section VI offers conclusions.

II. PROBLEM FORMULATION

A. The Base Flow

We begin our analysis with the standard Navier-Stokes equations. In dimensional terms, these read

Du

Dt
=

1

ρ
(∇ · T) , (1)

∇ · u = 0. (2)

where D/Dt ≡ ∂/∂t + (u · ∇) is the total derivative, T = −pI + 2µe is the Cauchy stress, and e = (∇u+ (∇u)
⊺
) /2

is the symmetric rate-of-strain tensor. Here, Equation (2) encodes the usual incompressibility constraint. The system
of interest in this study can be summarized in the schematic presented in Figure 1(a). An incompressible Newtonian
fluid, confined between two rigid, porous, infinite boundaries positioned at y = ±h, is driven by a constant streamwise
pressure gradient −dp/dx > 0. A vertical crossflow is imposed by introducing a uniform injection, Vi, and suction, Vs,
of fluid through the lower and upper walls, respectively. We assume a fully-developed flow, so that ∂/∂x = ∂/∂z ≡ 0
and the compatibility of the boundary conditions with the continuity equation demands Vi = Vs = V0.

As noted earlier, the sensible selection of a reference velocity for this system is rather nuanced. The usual (and
admittedly immediate) choice is Up, the center-line velocity for the Poiseuille flow in the absence of crossflow. However,
since the streamwise velocity is directly coupled to – and decreases – with the crossflow strength, for sufficiently large
V0, Up is not a physically meaningful metric. Therefore, following [5], we adopt Um, the streamwise maximum, as our
characteristic velocity. With the channel half-width h as our length scale, the associated Reynolds number becomes
Re = Umh/ν, where ν is the kinematic viscosity, and the dimensionless form of the governing equations can be written
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FIG. 1. (a), a diagram of the present flow geometry; (b), streamwise velocity profiles for Rv = 0 (dashed line) to Rv = 15 in
increments of 2.5. Lighter to darker shades represent increasing Rv. Note that, contrary to the convention adopted by [5], the
direction of the crossflow here is from bottom to top.

as

ut + (u · ∇)u = −∇p+
1

Re
∇2u, (3)

∇ · u = 0. (4)

Furthermore, with the crossflow Reynolds number Rv = V0h/ν, the stationary laminar profile becomes

U =
(
U (y,Rv) V0/Um 0

)⊺
=

(
U (y,Rv) Rv/Re 0

)⊺
, (5)

where

U (y,Rv) =
Rv(y − cschRve

Rvy + cothRv)

Rv cothRv − 1− log (Rv cschRv)
. (6)

Figure 1(b) illustrates U plotted against the non-dimensional y-coordinate for some representative values of Rv. Since
the (non-dimensional) streamwise maximum has been fixed to unity, the primary effect of a stronger crossflow is to
skew the profile in the positive wall-normal direction. Consequently, as noted by [5], a very thin boundary layer
develops near the upper (suction) wall, leaving an approximately linear profile throughout the remainder of the
channel. In fact, one can show that

lim
Rv→∞

U (y,Rv) =
1

2
(1 + y) , (7)

in the channel bulk, which, save for the different top-wall boundary condition, is precisely the well-known Couette
profile for viscous flow between two parallel surfaces in relative motion. Thus, as Rv → ∞, complete linear stability
may be expected. On the other hand, the absence of crossflow, Rv = 0, yields the Poiseuille flow, although establishing
this directly from Equation (6) requires additional care, since U (y,Rv) is not defined in this limit. In fact, Rv = 0 is
a removable singularity for U , and the appropriate power expansion

U (y,Rv) = (1− y2) +
Rv

3
(y − y3) +O(R2

v), (8)

informs the smooth continuation of U (y,Rv) over all Rv ∈ R.

B. The Linearized Equations

To formulate the stability problem, we rewrite the Navier-Stokes equations in operator format

∂χ

∂t
= g (χ) (9)
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where χ is the state vector and g is a non-linear differential operator. Representing the base profile as χ, we consider
a set of infinitesimal fluctuations χ′ and perform a Jacobian linearization of g around χ. The result is a system
of linearized evolution equations for χ′, which, in the traditional fourth-order formulation involving perturbations
around the base state of the wall-normal velocity/vorticity (v′, η′), reads[(

∂

∂t
+ U

∂

∂x
+ V

∂

∂y

)
∇2 − d2U

dy2
∂

∂x
− 1

Re
∇4

]
v′ = 0, (10)[

∂

∂t
+ U

∂

∂x
+ V

∂

∂y
− 1

Re
∇2

]
η′ +

dU

dy

∂v′

∂z
= 0. (11)

Here, ∇4 ⟨·⟩ = ∇2
(
∇2 ⟨·⟩

)
is the standard bi-harmonic operator acting in Cartesian space, and U and V are the

streamwise and wall-normal components of the background flow, Equation (5). The appropriate boundary conditions
follow from the non-slip and impermeability restrictions at the wall

v′|y=±1 = η′|y=±1 = ∂v′/∂y|y=±1 = 0. (12)

In what follows, the prime notation is dropped with the understanding that all discussion is based on the disturbance
field, unless explicitly noted. We exploit the spatial homogeneity in the wall-parallel directions by applying a wave-like
ansatz

(v, η) = (ṽ (y, t) , η̃ (y, t)) ei(αx+βz), (13)

where α, β ∈ R represent the spatial wavenumbers. The result is the Orr-Sommerfeld-Squire initial-value problem

Lq = − ∂

∂t
Mq =⇒ ∂q

∂t
= (−M−1L)q =⇒ ∂q

∂t
= S′q. (14)

In Equation (14), q =
(
ṽ η̃

)⊺
and, by denoting D ≡ ∂/∂y and k2 = α2 + β2, the block operators L and M are

L =

(
LOS 0
iβDU LSQ

)
, M =

(
D2 − k2 0

0 1

)
, (15)

where

LOS = (iαU + V D) (D2 − k2)− iαD2U − 1

Re
(D2 − k2)2, (16)

LSQ = iαU + V D− 1

Re
(D2 − k2). (17)

The condition for Hurwitz stability can then be written as R (λ) < 0 for all λ ∈ Λ (S′), where Λ (S′) denotes
the spectrum of S′. Typically, these eigenvalues are subsequently related to a set of complex circular frequencies
ω = ωr + iωi, such that λ = −iω, rephrasing the stability constraint as ωi < 0 [21]. This completes the definition of
the normal mode in Equation (13), that is,

(v, η) = (ṽ (y, t) , η̃ (y, t)) ei(αx+βz) = (v̂ (y) , η̂ (y)) ei(αx+βz−ωt). (18)

In this approach, we are particularly interested in the manifold of neutral stability, defined here by the locus

ωi (α, β,Re,Rv) = 0. (19)

It is well-known, however, that a naive analysis of the spectral abscissa in this way is often very limiting, especially in
shear flows, because it provides predictions of flow stability only at asymptotically long times. In contrast, significant
energy growth can be initiated by non-modal mechanisms operating on much shorter time scales, potentially violating
the linear assumption prior to the emergence of the unstable eigenmode, if any, and encouraging the onset of non-linear
interactions (possibly even turbulence). This amplification usually supersedes the often weak growth rates associated
with modal solutions and therefore evades identification in a treatment based solely on eigenvalues [13, 21]. In fact,
even in the simplest examples of shear flows, the transition to turbulence is highly sub-critical, that is, it occurs well
below any threshold for the Reynolds number as predicted by eigenvalue theory. A model for this behavior lies in the

non-normality of S′, whose commutator with its adjoint S′
†
need not vanish

[S′,S′
†
] = S′S′

† − S′
†
S′ ̸= 0. (20)
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As a corollary, S′ admits oblique (non-orthogonal) eigenfunctions that, in a basis expansion, can allow for finite-time
energy growth, evidently in both sub- and super-critical parameter regimes. This (purely linear) mechanism is often
identified as a likely motivator for the so-called bypass route to turbulence [16, 22], and has even found utility in
elucidating key physical mechanisms driving fully turbulent flows; see, for example, [23–25].

To explore the potential for non-modal growth here, we work from the most general case, that is, when the initial-
value problem in Equation (14) is driven by a time-harmonic forcing F (y, t) = f (y) e−iυt. Thus, we write

∂q

∂t
= −iSq + F =⇒ ∂q

∂t
= −iSq + f (y) e−iυt, (21)

where υ ∈ C and S = iS′. Since S′ is time-independent, the system response is

q (t) = Φ (t, 0) q (0)− ie−iυt (S− υI)−1 f (y) , (22)

where Φ (t, 0) ≡ e−iSt is the solution propagator, which maps the initial state of the system q0 at t′ = 0 to its value

at t′ = t, and R ≡ (S− υI)−1
is the resolvent of S. Consider now the special case where F = 0; under appropriate

norms in the input and output spaces, the gain can be defined as

G (α, β,Re,Rv, t) = sup
q0 ̸=0

∥q∥2out
∥q0∥2in

, (23)

and represents, at time t, the largest energy growth optimized over all possible initial conditions having unit norm
[15]. As a physically meaningful metric, the energy norm is adopted here (see, for example, [22]), so that ∥·∥in =
∥·∥out = ∥·∥E and

∥q∥2E =

∫ 1

−1

ṽ†ṽ +
1

k2
(
η̃†η̃ + Dṽ†Dṽ

)
dy, (24)

where we have restricted attention to the real component of the disturbance. Therefore, it follows that G = ∥Φ (t, 0)∥2E .
Hereafter, there are two equally valid approaches: (i), convert directly to a weighted 2-norm through a similarity
transformation incorporating information on the non-uniform grid spacing [14] or (ii), project onto the space of eigen-
functions using the Gramian matrix M = W†W ≻ 0 [15]. At any rate, only a standard singular value decomposition is
required. In this setting, the right and left singular functions represent, respectively, the initial condition and response
pair that achieve the gain G at time t.
On the other hand, if F ̸= 0, then assuming asymptotic stability of S′, the long-time response reduces to

q (t) = −ie−iυt (S− υI)−1 f (y) (25)

Here, the resolvent R becomes the quantity of interest, encoding important information about the spectral properties
of the system. In particular, if the excitation frequency is resonant, so that υ ∈ Λ (S), the resolvent is ill-defined and
its norm ∥R∥E tends to infinity. However, for systems whose dynamics are governed by non-normal operators, this
norm may be large even when υ is merely pseudoresonant, that is, υ /∈ Λ (S). If υ is restricted to real frequencies, the
analysis can, in a sense, be physically motivated, with the resolvent describing the perturbed linear operator resulting
from, for example, exogeneous vibrations or experimental imperfections [13]. Generalizing to the complex plane allows
for the definition of the so-called ϵ-pseudospectrum, the set of values given by

Λϵ (S) = {υ ∈ C : ∥R∥E ≥ 1/ϵ} (26)

For normal operators, the ϵ-pseudospectra, at least under an appropriate 2-norm as chosen here, correspond to closed
ϵ-balls centered around the spectrum. Non-normality, on the other hand, allows for more complicated pseudospectral
boundaries, and the extent to which they protrude into the stable half of the complex plane can have important
implications for energy growth in the unforced initial-value problem – see, for example, [26] or [14].

To discretize the stability operators, we implement a standard Chebyshev pseudospectral method written in
Python. Our in-house solver has been extensively validated against classical rectilinear geometries, including the
(Newtonian and Oldroyd-B) Poiseuille flow, the Couette flow, and the Couette-Poiseuille flow, and has recently been
used in the linear analysis of three-dimensional boundary layers [27]. In most of the calculations presented here, unless
specifically noted, we employed N = 256 Chebyshev modes, resulting in a (2N + 2) × (2N + 2) matrix system. We
determined that this resolution was sufficient – and occasionally necessary – to achieve convergence for the values of
Rv treated here. All modal and non-modal calculations were performed in SciPy. To accelerate our output, we addi-
tionally scaled to an embarrassingly parallel workload using the Python module Ray [28]. Finally, the ϵ-pseudospectra
were created using Eigentools [29].
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FIG. 2. At Re = 6000, the growth rates ωi versus Rv for the most unstable eigenmode corresponding to α ∈ {0.5, 1, 1.5, 2}.
The gray dashed line denotes the stability boundary ωi = 0. For α = 1, the Branch-I and Branch-II Rv have been emphasized
through circles.

III. MODAL ANALYSIS

We begin by supplementing classical perspectives on the modal stability of this flow. We define the critical Reynolds
number, Rec, as the smallest value of the Reynolds number below which the flow is linearly stable. At this threshold,
a disturbance, described by the critical wavenumber (αc, βc) must achieve neutral stability. Despite a non-zero mean
velocity component in the wall-normal direction, Squire’s transformation [30] remains applicable, allowing us to set
βc = 0 a priori and restrict attention to transversal modes. In contrast to the purely streamwise (V = 0) case,
however, the Squire operator (see Equations (15) and (17)) cannot be ignored, since the associated eigenmodes need
not be damped. To confirm this, we follow [15] by converting to a formulation involving the complex phase speed,
c = ω/α = cr + ici, and multiplying the homogeneous Squire problem by η. Integrating across y, leveraging the
associated Dirichlet conditions, and isolating imaginary components, we find

ci

∫ 1

−1

|η̂|2 dy = −R

[∫ 1

−1

η̂†Dη̂ dy

]
V

α
− 1

αRe

∫ 1

−1

|Dη̂|2 + k2 |η̂|2 dy (27)

Assuming α > 0, the second term on the right-hand side of Equation (27) is necessarily negative, although the first
may or may not be. The latter, of course, vanishes when V = 0, ensuring ci < 0. Thus, for our purposes, we consider
the complete Orr-Sommerfeld-Squire system when investigating modal stability.

To preface the ensuing discussion, we cite a key finding from [5], referring in the process to Figure 2, which plots
at Re = 6000 the growth rate ωi corresponding to the least stable eigenmode for various representative choices of
the streamwise wavenumber α. [5] focused specifically on the case α = 1, which is unstable for the Poiseuille flow
(Rv = 0), and showed that it experienced stabilization followed by destabilization for small to intermediate Rv, see
Figure 2. Subsequently, at the so-called “Branch-I” Rv (≈ 42.91), exponential growth could be re-established (cf. [5],
the mode became unstable “again”) and sustained until the “Branch-II” Rv (≈ 636.16), which initiated yet another
region of stability.

Evidently, as verified in Figure 2, this classification is not appropriate for all combinations of (α,Re). As a simple
example, the wavenumber α = 0.5 does not exhibit instability at Re = 6000 for the Poiseuille flow, rendering the
notion of a Branch-I Rv inherently ill-defined. Indeed, since the upper and lower branches of the Poiseuille neutral
curve decay as Re−1/11 and Re−1/7 at large Re (see, for example, [31, 32]), such a Rv cannot be demarcated for any
Re at even smaller wavelengths, say α ≥ 1.5. [6] recognized this and circumvented the problem by introducing a third
branch (which marked the transition from unstable to stable when Rv initially increases from zero) whose existence
was predicated on the stability of (α,Re,Rv = 0). In summary, a more refined characterization was needed, and here
we attempt to add to the discussion.
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FIG. 3. The critical flow parameters versus the crossflow Reynolds number Rv; (a), the critical Reynolds number Rec, and (b),
the critical streamwise wavenumber, αc. In each panel, the dotted lines elucidate points of discontinuity, with Rv = Rd

v being
common to both Rec and αc. Furthermore, a circle indicates the flow parameters minimizing Rec. Finally, in (a), the dashed
line represents the scaling Rec ∼ R1.26

v .

Figure 3 summarizes a numerical search for the critical parameters (αc, Rec) for the range 0 ≤ Rv ≤ 250. Similarly
to previous studies, we ignore Rv < 0 due to the invariance of the eigenproblem under the transformation (y,Rv) →
(−y,−Rv). Consistent with the narrative suggested by Figure 2, we observe a rather sharp, monotonic increase in
the critical Reynolds number Rec through Rv ⪅ 1. This trend persists beyond this interval, adjusting, however, to
an approximate power-law behavior, Rec ∼ R1.26

v . Throughout the latter range, the value of Rec increases rapidly to
Rec ≈ O

(
106

)
, before abruptly descending to Rec ≈ O

(
103

)
at Rv = Rd

v ≈ 22.175. Shortly thereafter, the minimum
of Rec ≈ 667.48730 is achieved at the turning point Rv ≈ 38.75, which is in good agreement with the findings of
[5]. Meanwhile, the critical streamwise wavenumber αc initially experiences a brief drop from its value at Rv = 0
(αc ≈ 1.02), before recovering at Rv ≈ 1 – note that such a discontinuity does not exist for Rec. Following this, with
stronger crossflows, we observe an increasing preference for short-wavelength instabilities up to the critical value of
Rv = Rd

v. Here, in conjunction with Rec, another discontinuity is encountered and αc rapidly descends to near-zero
(≈ O

(
10−2

)
with the extent of our computation) before rising to what appears to be an asymptote. We remark

here that for 20.8 ⪅ Rv ⪅ 22, [6] report an unconditional linear stability for the crossflow-laden Poiseuille flow (in
fact, even for the Couette-Poiseuille flow ξ ̸= 0 – see Section V), which is in contrast to Figure 3. According to our
understanding, this discrepancy appears to be due to a combination of insufficient numerical resolution (they used
N = 120 collocation points) and a restriction of their search space to Re ≤ 106. We verified that our calculations
remained robust even when the resolution was doubled, indicating genuine instability.

To unravel the discontinuous nature of the critical parameters, Figure 4 details the movement of the neutral stability
curves (NSCs) in the (α,Re)-plane, particularly before and after Rv = Rd

v. Focusing first on Rv < Rd
v, Figure 3(a)

indicates that the presence of crossflow is exclusively stabilizing, and this is verified in Figure 4(a) by a net displacement
of the NSCs in the direction of increasing Re. A secondary minimum develops at intermediate Rv in this range, which
quickly coalesces with the primary one and appears to signal a small jump in the NSC towards larger wavenumbers,
consistent with the first discontinuity for αc observed in Figure 3(b). Henceforth, the NSCs continue to shift deeper
into the upper-right corner of the (α,Re)-plane.

Beyond Rv = Rd
v, more dynamic behavior can be resolved. Specifically, two different NSCs begin to co-exist. The

first set of unstable modes, relegated to Re ≥ O
(
106

)
, can effectively be traced back to the (sole) NSC that occurs

for Rv < Rd
v and, as such, can be interpreted as its continuation into this Rv regime. Neither [5] nor [6] reported this,

instead implying the presence of a single NSC for all unstable Rv; we label these (and their counterparts in Rv < Rd
v)

as “Type-I” instabilities and note that in both Rv regimes, they generally exhibit a monotonic displacement toward
increasing Re as the crossflow becomes stronger. The second group of instabilities, deemed “Type-II” and active only
in Rv ≥ Rd

v, manifest in the form of an NSC emerging from α ≈ 0 and are, of course, precisely those reported in
previous work since they formally define criticality for this Rv regime. As highlighted in the inset of Figure 4(b) these
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FIG. 4. Movement of the neutral curves in the (α,Re)-plane for (a), Rv < Rd
v and (b), Rv ≥ Rd

v. Where appropriate, Type-I
and Type-II instabilities have been labeled. For (b), specifically, an inset zooms in on the development of the Type-II NSCs; in
the same panel, the dashed contours correspond to Rv = Rd

v.

modes temporarily destabilize before stabilizing, defining in the process the turning point observed for Rec in Figure
3(a).

To dissect the physical mechanism driving the instability, one can turn to the perturbation energy budget. By
writing the energy density as ukuk/2, where a repeated index implies Einstein summation, the total disturbance
energy can be written as

E =
1

2

∫
V

ukuk dV (28)

where V ≡ [0, 2π/α]× [−1, 1]× [0, 2π/β] is taken as one full disturbance wavelength. Using the normal mode ansatz,
Equation (13), evolution equations for E then take the form

dE

dt
= ⟨PR⟩ − ⟨VD⟩ (29)

where

⟨f (y)⟩ =
∫ 1

−1

f (y) dy (30)

Here, PR represents production against the background shear (contributed to only by DU) and is responsible for
the transfer of energy from the base flow to the disturbance through the action of the Reynolds stress. The second
term VD ≥ 0 instead denotes viscous dissipation. In general, a (positive) production destabilizes, whereas dissipation
stabilizes the disturbance field, although for a marginally stable mode, as we will discuss here, these contributions
must exactly cancel.

Figure 5 explores for Type-I and Type-II instabilities the spatial variation of terms that contribute to the energy
budget at criticality. For Type-I modes below Rd

v, energy production PR operates primarily near the suction boundary,
its peak becoming sharper in tandem with Rv. For the weakest crossflow strengths in this range, an additional small
positive hump (not shown here) can also be resolved near the lower wall, although it decays very rapidly as Rv

increases. Similarly, viscous dissipation VD remains confined to the upper wall and also increases in conjunction
with PR, as required to ensure neutral growth. As highlighted in the second row of Figure 5, these trends appear to
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FIG. 5. Distributions of the energy production PR (left) and dissipation VD (right) for Type-I and Type-II modes at criticality.
Here, for Rv < Rd

v, we consider Rv ∈ {0.5, 2.5, 5, 7.5, 10, 12.5, 15, 17.5, 20}, whereas for Rv ≥ Rd
v, Rv ∈ {22.24, 26, 32, 45, 95}.

Darker to lighter shades represent stronger crossflows in the labeled regimes.

translate well to a Type-I criticality in Rv ≥ Rd
v, which provides further evidence that they are, in fact, a continuation

of Type-I modes from Rv < Rd
v. However, for Type-II instabilities, the picture changes dramatically. Here, PR

develops noticeable regions of energy negation and, more importantly, a wide positive peak in the lower (injection)
half of the channel. We find the latter behavior quite intriguing, particularly in light of recent work showing that it
is, in fact, the boundary inflow (outflow) that supports destabilization (stabilization); see [10]. Equally important to
mention here is that for moderate to large crossflows (such as those found in Rv ≥ Rd

v), variations in the streamwise
shear DU are primarily located near the upper wall (with DU → 1/2, the Couette value, elsewhere). However, since
the amplitude of positive production instead peaks specifically near the lower wall, we conclude that the crossflow
influences Type-II modes predominantly through modification of the Reynolds stress distribution.

Formally, the last row in Figure 5 corresponds to the regime explored in Section 5 of [6]. In their Figure 17, for
example, they reported that the dissipation at criticality for (ξ,Rv) = (0.5, 25) was completely overshadowed by the
energy production throughout the channel width. Therefore, any removal of energy from the perturbation field arose
directly from energy negation, rendering the movement of the critical layers, as they say, “irrelevant”. Clearly, as
highlighted in Figure 5, this is not an entirely robust mechanism, at least for ξ = 0, since, despite neutrality, VD for
Rv ≥ Rd

v operates at least one order of magnitude higher than PR (though only very close to the wall) and generally
intensifies with Rv. In other words, investigating the critical layers, the set of points where U (y) = cr, could be
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FIG. 6. Movement of the critical layers with Rv; (a), the real part of the phase speed at criticality (note that ci = 0 by
definition of neutral stability), (b), ys, the critical layer near the suction (upper) wall, and (c), yb, the critical layer near the
blowing (lower) wall.

instructive here. These points constitute regular singularities for the stability equations in the Rayleigh limit, but are
smoothed over with the addition of viscosity in the Orr-Sommerfeld-Squire formulation. More importantly, it is well
known that peaks in the amplitude of energy production are usually located within these layers [6, 15, 33, 34].

Figure 6(a) presents the variation of cr at criticality versus Rv; we immediately observe discontinuities synonymous
with those of αc, Figure 3(b). The exact location of the associated critical layers can be explicitly determined as the
solution(s) to the following transcendental equation

U (y) = cr =⇒ y − cschRve
Rvy = Π1, (31)

where we have elected to set

Π1 =
Π2cr
Rv

− cothRv, (32)

Π2 = Rv cothRv − 1− log (Rv cschRv) . (33)

Equation (31) is satisfied by

y = Π1 −
1

Rv
Wn(Π3). (34)

where Wn is the nth-branch of Lambert’s W -function and Π3 = −Rv cschRve
Π2Rv . Here, since −1/e ≤ Π3 < 0,

there exist two distinct critical layers (which can alternatively be concluded by noting that cr < 1 and inspecting the
velocity profiles in Figure 1(b)), and we only need to consider n ∈ {−1, 0}. We observe that, as Rv → 0, the symmetry
of the resulting profile requires the absolute values of these roots to coalesce, despite being in opposite halves of the
channel. Thus, the solutions, which we label ys and yb, respectively, can be naturally identified with the suction (top)
and blowing (lower) boundaries. On the other hand, due to the asymmetry inflicted upon U by the crossflow, one
can expect both critical layers to eventually shift toward the upper half of the channel, an intuition that is verified in
Figures 6(b–c). Specifically, commensurate with the movement of the peak in energy production for Type-I modes, ys
generally increases, effectively approaching ys = 1 for sufficiently large Rv. Separately, beyond Rv = Rd

v, yb undergoes
a sudden jump into the suction half of the channel, which is consistent with the wide production peaks (spanning
almost the entire lower half-width) observed for Type-II modes in the last row of Figure 5.

IV. NON-MODAL ANALYSIS

We now direct our focus toward non-modal energy amplification. As shown in Section III, an increase in the crossflow
component starting from Rv = 0 generally has a stabilizing effect, at least in the sense of the critical Reynolds number.
Following a paradigm shift at Rv = Rd

v, however, positive growth rates can be achieved for Reynolds numbers as low
as Re ≈ 700. When operating solely on this information, one would conclude that the most optimal (and practical)
stabilization is granted by weak to, at best, modest Rv. In this section, we show that non-normality indicates an
entirely different story.
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FIG. 7. For various wavenumber pairs at Re = 500, plots of R, the maximum resolvent norm over all real forcing frequencies;
(a), β = 1 and α increased from α = 0 to α = 0.75 in increments of 0.25 and (b), α = 1, with β varied in a similar manner.
The insets show the maximizing frequency υmax and, for each wavenumber combination, an associated dashed line represents
the lower bound of Equation (35) evaluated at υ = υmax.

We begin with the resolvent R. In particular, the following bounds on the norm ∥R∥E are standard

1

dist (υ,Λ (S))
≤ ∥R∥E ≤ κ (W)

dist (υ,Λ (S))
(35)

where dist (υ,Λ (S)) is the shortest distance between υ and the spectrum Λ (S) (equivalent to the spectral radius of
R) and κ (W) is the 2-norm condition number of W [13, 15, 26]. For systems governed by normal operators, κ = 1, so
that the bounds in Equation (35) coalesce into equality. On the other hand, for non-normal linear dynamics, κ ≫ 1
and the eigenfunctions of the underlying operator can be highly oblique, so that even pseudoresonant υ far from an
eigen-frequency are capable of generating a substantial response. Thus, to probe the potential for this energy growth,
we define the following quantity

R (α, β,Re,Rv) = max
υ∈R

∥R∥E (α, β,Re,Rv, υ) (36)

which, if the resolvent is interpreted as a transfer function between the excitation and its response, represents an H∞-
norm. In Figure 7, we visualize R, along with the maximizing frequency υ = υmax, for some sample wavenumbers at
Re = 500, which is sub-critical and, therefore, admits no modal instability for all Rv treated here. The dashed lines
denote the lower bound in Equation (35), plotted for υmax; the significant discrepancy observed with R is entirely a
consequence of non-normality.

We first comment on longitudinal (α = 0) and transverse (β = 0) perturbations. The former class typically elicits
the strongest resolvent response for purely streamwise base flows. Therefore, we expect this trend to persist at least
for weak Rv, and this is verified in Figure 7(a). In fact, we see that the amplification of streamwise-independent
modes can even be intensified in the presence of small amounts of crossflow. As an example, for Rv ≈ 2, for which
Figure 3(a) predicts Rec ≈ 48500, R ≈ 2000, so that a unit norm forcing can produce O(103) energy growth (compare
this with R ≈ 1000 at Rv = 0). This is the first indication of the unreliability of eigenvalues; when the effects of
non-normality are taken into account, weak crossflows are, in fact, the most prone to excitation.
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FIG. 8. Pseudospectral contours, log ∥R−1∥−E , calculated at Rv = 0.5, 1, 1.5, 2 (left-to-right) for some representative wavenum-
ber pairs. Darker to lighter (or, alternatively, outer to inner) shades correspond to decreasing contour values, i.e., increasing
amplification. Top row, (α, β) = (1, 0), with contours in each panel ranging from −0.5 to −4.5 in decrements of −0.5; middle
row, (α, β) = (0, 1.5), with contours ranging from −0.6 to −3 in decrements of −0.6; and bottom row, (α, β) = (0.5, 1.5), with
contours ranging from −0.5 to −4.5 in decrements of −0.5. The associated spectra (in terms of ω) have been denoted by circles.
A red cross marks the υ ∈ C maximizing K, the latter quantity displayed in the upper right corner of each panel.

Interestingly, for relatively large Rv, Figure 7(a) indicates that R tends to decay for longitudinal perturbations;
in contrast; an increasingly stronger response from spanwise-independent modes is seen in Figure 7(b), a gap that
appears to peak at Rv ≈ 40. More generally, in intermediate Rv regimes, oblique disturbances constitute the main
preference. Compared to the crossflow-independent case, these trends are inherently distinct but not unexpected, since
the addition of a third-order inertial term in the Orr-Sommerfeld-Squire system fundamentally alters its anatomy and,
therefore, that of the underlying non-normality (see Appendix A). However, what is crucial to note here is that R is
only truly attenuated when Rv becomes very large, say Rv ≥ 70. In other words, it is, in fact, the weakest crossflows
that instigate the strongest linear growth, possibly transition arising from subsequent non-linear processes. Given
that most practical applications are typically noise-heavy and that such (relatively) strong crossflows are often not
even feasible, we begin to see that crossflow-based modulation in channels might not be as appropriate a choice as
suggested in the previous literature.

Moving to the complex plane, υ ∈ C, in Figure 8, we illustrate, as is customary, the contours of ∥R−1∥−E , where

∥R−1∥−E = σmin(WR−1W−1) (37)

and σmin represents the minimum singular value of the operator WR−1W−1. To interpret this in the context of the
ϵ-pseudospectra, we note that ∥R∥E = ∥R−1∥−1

−E , so that

Λϵ =
{
υ ∈ C : ∥R−1∥−E ≤ ϵ

}
(38)

Thus, within the level set ∥R−1∥−E = ϵ, amplification of the order of 1/ϵ can be induced as a consequence of harmonic
forcing. The pseudospectra are extremely informative, revealing crucial insight on the sensitivity of the spectrum to
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FIG. 9. Plots of Gmax versus Rv, normalized against Gmax (Re,Rv = 0), for Re = 200 to Re = 600 in increments of 100. Rv =
Rmax

v , marked appropriately, denotes the crossflow strength that suffers the largest algebraic growth. Top: the wavenumbers
(αmax, βmax) and the time t = tmax corresponding to Gmax.

operator-level perturbations (see [35] and [36]) or, as is more relevant here, energy growth in the unforced initial-value
problem. More specifically, the Hille-Yosida Theorem states that G ≤ 1 if and only if the pseudospectra lie sufficiently
close to the lower (stable) half-plane [26]. This condition can be made explicit through either the pseudospectral
abscissa or, alternatively, the Kreiss constant K, defined as follows

K = sup
I(υ)>0

I (υ) ∥R∥E (39)

which in turn provides the following lower bound

max
t>0

G (α, β,Re,Rv, t) ≥ K2 (40)

Hence, substantial transient growth can be achieved if the pseudospectra protrude significantly into the unstable
half-plane. Returning to Figure 8, we immediately observe strong pseudo-resonance down to ϵ ≈ 10−5, indicative yet
again of the strong non-normality pervading the linear dynamics of this system. Reminiscent of the trends shown in
Figure 7, this amplification evidently worsens in tandem with the crossflow strength, eventually decaying only in the
intermediate to large Rv range (which is not shown here). Variations in the Kreiss constant suggest that, at least for
weak crossflows, streamwise-independent disturbances remain the most relevant for the unforced problem, although
oblique modes appear to be not too far behind. This is indeed representative of the ground truth, as we now proceed
to discuss.

In particular, for various Re, Figure 9 summarizes a numerical sweep for Gmax, defined as the maximum admissible
transient gain in energy over time and across wavenumber space, i.e.

Gmax (Re,Rv) = max
α,β,t

G (α, β,Re,Rv, t) (41)
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FIG. 10. Cross-stream (y–z) view of (a), the initial perturbation and (b), the response at optimal time associated with Gmax

for Rv = Rmax
v . Color and arrows represent, respectively, the streamwise and cross-stream components.

Here, to concentrate specifically on amplification that occurs in the absence of exponential instability, we have limited
our analysis to Reynolds numbers that are globally sub-critical, Re ⪅ 650. In doing so, we readily observe a familiar
pattern: for all Re considered here, peak energy growth is only enhanced by small levels of crossflow, with Rv =
Rmax

v ≈ 4.5 consistently characterizing the worst-case scenario. Furthermore, it is precisely at very large Rv that
Gmax begins to appreciably weaken relative to the Poiseuille flow. Note that for the asymptotic suction boundary
layer, [18] reported a similarly declining – but still significant – amplification relative to the Blasius (no suction) case,
although this conclusion could very well be specific to the Reynolds number they opted to focus on.

Regardless, as predicted by Figure 8, the optimal gain is indeed achieved for streamwise-elongated perturbations
for small Rv (say, Rv ≤ 2), after which oblique modes become the norm (note that [17] apparently did not see the
former for Re = 1000). Interestingly, however, at the lower end of the Reynolds numbers treated here, sufficiently
strong crossflows can once again establish a preference for streamwise-independent disturbances; we conjecture that
expanding the range of Rv investigated might lead to similar behavior at larger Re, although we did not attempt to
verify this. Finally, the optimal time tmax also temporarily increases and then decreases monotonically in conjunction
with Rv (equivalently Gmax), although its peak was found instead at Rv ≈ 2 ̸= Rmax

v . The immediate implication is
that algebraic growth operates on much longer timescales in the presence of crossflow. [18] concluded similarly for
ASBL but the effect is, in a sense, more pronounced here, since Gmax also increases.

Figure 10 shows the initial condition and response pair attached to the optimal gain calculated for Rv = Rmax
v .

Streaky structures, supported in both x and z, develop at initial time and are then subsequently tilted and advected
toward the suction boundary. A crucial question here is the precise mechanism driving the variation in the disturbance
energy. It is well-known that longitudinal perturbations develop primarily via the lift-up effect, whereby strong
streamwise streaks develop as a consequence of mean momentum transport in the wall-normal direction [37–39]. On
the other hand, for perturbations with finite streamwise wavenumbers, the tilting mechanism of Orr dominates instead
[40, 41]. In oblique disturbances, these processes operate simultaneously and [17] argued using a decomposition of
the energy production proposed by [42] that at larger Rv, the Orr mechanism became increasingly relevant. When
juxtaposed with Figure 9, this result should not be too surprising, since αmax generally also increases with Rv. To
refine this approach, however, we consider the time variation of the perturbation energy contained in each velocity
component

dEu

dt
= ⟨PRu⟩+ ⟨PVCu⟩+ ⟨VDu⟩ (42)

dEv

dt
= ⟨PVCv⟩+ ⟨VDv⟩ (43)

dEw

dt
= ⟨PVCw⟩+ ⟨VDw⟩ (44)

where PRi represents energy production, PVCi = PSi + PDi the pressure-velocity correlation, PSi the pressure-rate-
of-strain, PDi the pressure diffusion, and VDi the viscous dissipation; see, for example, [43]. One can further relate
the terms in Equations (42)–(44) to those in Equation (29) as follows

Eu + Ev + Ew = E (45)

⟨PRu⟩ = ⟨PR⟩ (46)

⟨PVCu⟩+ ⟨PVCv⟩+ ⟨PVCw⟩ = 0 (47)

⟨VDu⟩+ ⟨VDv⟩+ ⟨VDw⟩ = −⟨VD⟩ (48)
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FIG. 11. Budgets for the perturbation energy contained in each velocity component; left column, Rv = Rmax
v and right column,

Rv = 20. In each panel, a dashed line indicates energy production, dotted, pressure redistribution, dash-dot, viscous dissipation,
and solid, total. The insets show the variation of the perturbation energies Eu,Ev, and Ew in time.

From here, we note that when α = 0, PVCu vanishes, so that Ev and Ew decay simply due to a combination of the
inter-variance pressure redistribution and viscous dissipation. As a result, we have E ≈ Eu, whose growth in turn
depends on the injection of energy from the mean shear through PRu. In other words, any changes in the amplification
of streamwise-independent modes can be primarily attributed to modifications in the base shear and, by extension, to
the Reynolds stresses. On the other hand, when β = 0, the off-diagonal term in the Orr-Sommerfeld-Squire operator
vanishes, so that the impact of non-normality is anyway diminished. Thus, we are left to deal primarily with oblique
disturbances. In what follows, the pressure diffusion term PDi was found to contribute negligibly to PVCi and has
therefore been omitted for the sake of clarity.
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Rv ξ Rec (×106) αc Nconv

21.9 0.015 1.083334 3.956539 512
20.9 0.025 1.080632 3.956539 512
21.75 0.03 1.175339 4.144285 512
21 0.05 1.272604 4.037017 512

21.25 0.075 1.569059 4.340941 512
21.5 0.1 2.043112 4.546928 512
21.55 0.125 2.859688 5.225415 1024
21.3 0.16 6.950775 8.307361 2560

TABLE I. Flow parameters at criticality for select pairs (ξ,Rv) such that 20.8 ≤ Rv ≤ 22; Nconv represents the resolution
(number of Chebyshev modes) that was required for resolving the instability (i.e., that the instability remained robust to further
increases in numerical fidelity).

Using the energy-optimal initial conditions associated with Rv = Rmax
v and Rv = 20 (note that these disturbances

are both oblique), Figure 11 compares the development of the energy budget over time for each component of the
velocity. The primary motivator for the discrepancy in Gmax can be immediately identified as the significantly
attenuated production term, which evidently tapers around t = 45 for Rv = 20. In contrast, ⟨PRu⟩ for Rv = Rmax

v

operates longer and achieves much larger amplitudes. Furthermore, pressure redistribution remains active in both
cases, although its influence is much more pronounced for the sub-optimal Rv = 20. On inspection, this energy is
transferred to both the wall-normal and the spanwise perturbations, and it is interesting to note that Ev ultimately
achieves a slightly larger amplitude for Rv = 20, so that a stronger amplification of the streaks observed in Figure
10 might be expected due to the lift-up process. However, we see that this effect is negated not only by a moderate
increase in dissipation, but also by the rapid extraction of energy from Ev to Ew through a strongly negative pressure
redistribution term starting from, say, t ≈ 12.5. Consequently, any increase in the wall-normal perturbations is quickly
eroded and energy production suffers. The net influx of energy into Ew appears to primarily dissipate away, in part,
due to the lack of a feedback mechanism (e.g., a mean spanwise shear) to amplify it.

V. THE PRESENCE OF WALL VELOCITY

If either wall is translated in the streamwise direction with some finite velocity, say Uc ̸= 0, we recover the base flow
of [3] and [6]. More specifically, if this moving boundary is taken to be the upper (suction) one, the dimensionless
streamwise velocity becomes

U (y, ξ, Rv) =

Rv

(
ξRv + 4y + (4− ξRv) cothRv − eRvy (4− ξRv) cschRv

)
/
(
ξR2

v − 4 + Ξ1

)
, ξRv ≤ Ξ2,(

ξRv + 4y + (4− ξRv) cothRv − eRvy (4− ξRv) cschRv

)
/2ξRv, ξRv > Ξ2.

(49)

where ξ = Uc/Up and we have adopted a non-dimensionalization similar to that in Section IIA. Furthermore, we have
denoted

Ξ1 = Rv (4− ξRv) cothRv − 4 log (Rv (4− ξRv) cschRv/4) , (50)

Ξ2 = 4
(
1− sinhRv/Rve

Rv
)

(51)

We note two distinct scenarios in Equation (49), the need for which arises from the fact that both the crossflow and
the Couette component skew the velocity profile towards the upper half of the channel [6]. Thus, for strong enough
crossflows (alternatively, large enough wall speeds), the maximum of the streamwise velocity will necessarily occur at
the moving boundary, that is, Um = Uc and y (U = Um) = h. If the pair (ξ,Rv) is chosen such that ξRv = 4 > Ξ2,
one recovers U (y, ξ, Rv) = y, which constitutes the “generalized” Couette profile of [9]. Throughout this section, we
limit our attention to wall speeds ξ ∈ [0, 1], as in the prior literature.

A. Modal Instability Between 20.8 ≤ Rv ≤ 22 for ξ > 0

Although not the primary focus in this work, we begin by reporting in Table I samples from a set of novel instabilities
that we were able to compute for crossflow-laden Couette-Poiseuille flow for 20.8 ≤ Rv ≤ 22. Previous work in this
range by [6] posited unconditional linear stability for all ξ ≥ 0. However, as demonstrated in Section III and as is
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FIG. 12. (a), plots of Gmax, the maximal energy gain, in the presence of wall motion versus Rv for ξ > 0 and Re = 500; the
reference case, ξ = 0, is depicted with a dashed line. All curves have been normalized by Gmax at this Re for Poiseuille flow,
ξ = 0 = Rv. The yellow circles depict the minimal crossflow Reynolds number Rshift

v such that ξRv > Ξ2, cf. Equation (49);
these have been separately visualized in (b).

now apparent here, this is clearly an inaccurate conclusion arising again from a combination of a lack of polynomial
resolution and a truncated search region. Despite this, we determined that the instability was short-wavelength,
roughly consistent with the trends they calculated as Rv → 20.8 (cf. Figure 20 in their paper). Although we did
not conduct a detailed investigation to verify this, our numerical experiments suggest that the bounds offered in the
stability phase diagram of [6] might not be robust and could potentially be tightened if spatial discretization is refined.

B. Transient Growth

For various choices of the non-dimensional wall speed ξ, Figure 12(a) illustrates how the optimal gain Gmax is
modified in the presence of both crossflow and wall motion at Re = 500 (which remains globally sub-critical for
ξ > 0). Two main regions of development can be identified, related, respectively, to the two cases defined in Equation
(49). In particular, when ξRv ≤ Ξ2, the effect of wall motion is evidently minor, because while the maximum energy
growth generally increases, it does so only to remain around the same order as Gmax for crossflow-laden Poiseuille
flow (that is, without wall motion). The most noticeable change occurs in a short range around Rv = Rmax

v , which is
highlighted in the inset, although the details here are ultimately immaterial. Despite the substantial increase in Rec
afforded by small Rv coupled with modest wall speeds (as seen, for example, in Figure 3), deemed by [6] as the most
relevant parameters for control purposes, non-modal mechanisms nevertheless remain significant and are sometimes
even amplified. Of course, the situation can only worsen as Re increases.

Theoretically, one could then look towards flow parameters such that ξRv > Ξ2 (Figure 12(b) plots Rv = Rshift
v

initiating this regime) and, indeed, Figure 12(a) indicates that for sufficiently large wall speeds, successively weaker
crossflows can considerably suppress algebraic growth. At first glance, this is encouraging, but it is not without its
own caveats. Specifically, an increase in Rv (or ξ) for this regime is equivalent to a decrease in the background shear
DU , which asymptotically behaves as DU ∼ 2/ (ξRv). Consequently, as we highlight in Figure 13(a), the energy
production must also decrease. However, what is alarming is that, in this limit, the flow itself is, in fact, being killed
off. To verify this, it is easiest to consider the non-dimensional volumetric flow rate Q which, for ξRv > Ξ2, behaves
as

Q ∼ 1

Rv
+

4

ξRv
(52)

so that counter-productively, Q → 0 at large Rv; see Figure 13 (b).
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FIG. 13. (a) For the initial condition associated with Gmax, the evolution of the energy production in time at Rv = 45 for the ξ
treated in Figure 12(a) (note that ξRv > 4 is always satisfied for this choice of the crossflow). (b) The flow rate Q; for each wall
speed, the value Rshift

v is marked with a circle, whereas the dashed lines correspond to the regime ξRv > Ξ2. The asymptotic
result derived in Equation (52) is also illustrated (dotted lines). In each panel, ξ increases in the direction of the arrow.

VI. DISCUSSION & CONCLUSION

We have performed a detailed re-assessment of stability in channel flows with crossflow. Previous work has attempted
to determine parameter regimes supposedly ideal for delaying transition, and our primary contribution in this work
has been to show that non-modal growth may preclude this apparent suitability.

The main focus of our study has been the crossflow-laden Poiseuille flow. Beginning with an eigenvalue (modal)
analysis, we provide a global perspective on modal instability by tracking the trajectory of the neutral stability curves
in the (α,Re)-space. We show that beyond a discontinuity in the critical parameters, two individual neutral curves
begin to co-exist, with distinct properties exemplified through consideration of the corresponding linear energetics.
The movement of the critical layers is shown to be highly relevant in shaping the development of this budget.

From a non-modal perspective, which forms the crux of this paper, the resolvent is first inspected for real frequencies,
and later the more general complex case through the ϵ-pseudospectra. Substantial amplification is recovered even
at relatively mild sub-critical Re, and is only damped for large, possibly unfeasible, crossflows. Similar patterns
are observed when treating unforced algebraic growth, with non-modal interactions lasting longer (relative to the
reference Poiseuille flow) and being more dangerous at weak Rv – touted in the previous literature as the “ideal”
stability configuration. The precise mechanism driving (and suppressing) energy growth is explored by considering a
component-wise energy budget. The additional stability provided by large Rv is shown to be due to a combination
of decreased energy production and a more active velocity-pressure gradient term, which forces inter-component
redistribution of energy in a way that significantly dampens the wall-normal fluctuations and, therefore, the lift-up
effect.

This analysis has been extended to account for wall motion, cf. the flow of [6]. Here, we present novel instabilities for
a region of parameter space previously thought to be unconditionally linearly stable. These instabilities occur at very
high Re but are physically genuine and of the short-wavelength type. Optimal growth is found to only worsen with
the inclusion of wall motion, except beyond a regime change in the parameter space defined by Rv = Rshift

v (ξ), where
the background shear decays as 1/(ξRv) in the channel bulk. Here, the decrease in energy production is nonetheless
counter-productive, since it is shown to be accompanied by an impractical cessation of mass transport brought on
by a skewing of the velocity profile due to the combined effect of crossflow and wall motion. Collectively, our results
suggest that crossflow-based stabilization schemes, at least in internal flows, are unlikely to be effective.
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FIG. 14. The gain G plotted against time for Rv = 1 (top) and Rv = 15 (bottom) for (left to right), (α, β) = (1, 0),
(α, β) = (0, 1), and (α, β) = (1, 1). Solid lines indicate calculations with the crossflow term and dashed lines without. The
dotted line in each panel represents Poiseuille flow.
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Appendix A: Effect of the Mean Wall-Normal Velocity

An intriguing assertion put forward by [18] for the asymptotic suction boundary layer was that the reduction in G
relative to the reference Blasius case was primarily a consequence of variations in the streamwise velocity profile and
not due to the auxiliary terms introduced in the Orr-Sommerfeld-Squire system by the non-zero mean wall-normal
velocity. In contrast, [6] determined that the influence of these auxiliary terms on the spectra was, in fact, relevant,
although only when Rv was large. In a similar manner, here, we wish to categorize the impact of crossflow on algebraic
growth between its two main contributions, that is, the inertial operator I

I ≡ V
∂

∂y
∇2 (A1)

cf. Equations (10) and (11) and the asymmetry imposed on the streamwise velocity profile U . We follow the previous
approaches. In particular, for some sample wavenumber pairs, Figure 14 plots the gain G as a function of time for
Rv = 1, Rv = 15, and the Poiseuille flow (Rv = 0). For Rv ̸= 0, two sets of stability equations are considered, one
with and the other without the operator I, although both retain the U derived in the presence of crossflow. Therefore,
the latter case is equivalent to setting V = 0 a posteriori. Interesting phenomena are observed; specifically, in all
cases, including the crossflow term dampens the energy gain relative to when it is excluded. However, in line with the
findings of [6], this disparity only becomes significant for Rv = 15. In particular, for the latter, it is apparent that the
crossflow-laden U by itself can generate a much stronger response for streamwise-independent disturbances compared
to not only Poiseuille flow but also the equivalent profile at Rv = 1 (which, as suggested in Figure 9 should, in fact,
be the more “dangerous” scenario). This potential for growth is, of course, significantly suppressed when the inertial
operator is taken into account.

Thus, we conclude that the crossflow has a dual impact on non-modal stability. At small Rv, its influence is
felt predominantly through changes in the background streamwise flow (hence the negligible differences observed in
Figure 14). However, for large Rv, the third-order differential term in Equation (A1) is of greater relevance, likely
impacting energy amplification directly through variations in the perturbations themselves (and, by extension, the
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energy budget; see the discussion toward the end of Section IV).
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