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Abstract 

This paper presents a topological analytics approach within the 5-level Cyber-Physical Systems (CPS) architecture for the Stream-

of-Quality assessment in smart manufacturing. The proposed methodology not only enables real-time quality monitoring and 

predictive analytics but also discovers the hidden relationships between quality features and process parameters across different 

manufacturing processes. A case study in additive manufacturing was used to demonstrate the feasibility of the proposed 

methodology to maintain high product quality and adapt to product quality variations. This paper demonstrates how topological 

graph visualization can be effectively used for the real-time identification of new representative data through the Stream-of-Quality 

assessment.   
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1. Introduction 

In multi-stage manufacturing systems (MMS) [1,2], the task 

of analyzing operational parameters and sensor data for various 

stages is a significant challenge due to the complexity of 

different manufacturing processes. In recent advancements, the 

Stream-of-Quality (SoQ) [3] framework has offered a 

methodology for the integrated assessment of product quality 

indicators across different stages of manufacturing. However, 

MMS often produce vast, multidimensional datasets that 

traditional statistical methods struggle to analyze effectively 

due to the non-linear and dynamic behaviors of these systems. 

To address these challenges, this paper introduces a topology 

analytics approach [4,5], emphasizing its advantages in 

visualizing data shapes, detecting clusters and topological 

structures, and selecting features for discrimination and 

interpretability. Most importantly, topology analytics 

effectively integrate into CPS [6], enabling online monitoring 

to identify process variability correlations within the SoQ 

framework. This paper emphasizes the important role of 

topology analytics in smart manufacturing by improving data 

analysis and decision-making processes.  

2. Topological Machine Learning Methodology 

2.1. Data Selection 

Table 1 shows the comparison of original data and 

representative data. Original data, collected randomly and in 

high volumes, presents ununiform quality with low 

representativeness and scarce information density because of 

redundant or irrelevant information, especially in high-

dimensional datasets where the inherent complexity of data 

space complicates the extraction of significant patterns. In 

contrast, representative data is selected based on topological 

criteria, wherein the selection process is guided by the dataset’s 

intrinsic connectivity and continuity properties on topological 

spaces, enabling the extraction of data that accurately 

represents the dataset’s overall structure. Therefore, the 

representative data is typically of lower volume but higher 

quality to possess high representatives due to preserving 

invariant topological features under continuous 

transformations. These features represent the richest 

information to withstand the complexities of high-dimensional 

datasets. 
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Table 1  

The comparison of original data and data with topological representation. 

 Original Data Data with topological 

representation 

Selection Random Topology-based selection 

Data Quantity 

Data Quality 

High volume 

Ununiform 

Clustered low volume 

High 

Representative 

Informative  

Low representative data 

Scarce 

High representative data  

Rich  

 

2.2. Topological Data Analysis 

Topological Data Analysis (TDA) [7,8] transforms complex 

datasets into simplified but informative representations, using 

persistent homology (e.g., persistence diagrams and barcodes). 

Persistence diagrams plot the birth and death of these features, 

while barcodes represent them as line segments, enhancing the 

ease of visualization and comparative assessment of 

topological properties. These TDA’s representations, by 

facilitating the identification of holes or persistent features in 

the data that remain invariant over a range of scales, provide a 

powerful way to distinguish patterns that might not be apparent 

through conventional data analysis techniques. 

2.3. Adaptive Clustering & Prediction Model 

Adaptive clustering and predictive modeling are addressed 

to enhance analytical ability and predictive accuracy. Adaptive 

clustering, influenced by the underlying topological structure, 

can dynamically adjust groups’ formation based on shared 

features. Predictive models perform the development of 

decision trees, support vector machines, neural networks, and 

other machine-learning techniques to efficiently evaluate the 

overall performance gained from TDA to forecast quality 

trends, optimize production processes, and monitor quality 

control. Integrating TDA with these predictive models assists 

on-site engineers in maintaining quality and improving 

accuracy in decision-making, leading to more informed and 

effective strategies in smart manufacturing. 

2.4. Topological Graph Visualization & Update Model 

The first phase, employed by the mapper algorithm, 

analyzes topological graph visualization dynamically to reveal 

hidden patterns and anomalies, decomposed into three major 

steps: filtration, which condenses high-dimensional data to 

preserve critical features; coverage, segmenting the reduced 

space into overlapping areas to capture diverse data facets; and 

clustering, utilizing algorithms to group data based on 

topological proximity. The second phase is to identify new 

representative data via topological graph visualization to 

update the model in real-time. These two phases not only 

enhance the interpretability of complex manufacturing data via 

topological graph visualization, but also advance 

manufacturing systems towards an online adaptive, 

continuously updating model. 

2.5. Online Analysis 

Online analytic frameworks are capable of conducting real-

time analysis, including monitoring data distributions across 

different classes for quickly identifying potential issues, 

enabling manufacturers to make informed decisions, optimize 

processes promptly, and proactively adapt to changes in smart 

manufacturing. Additionally, the real-time analysis of data 

distribution can also assist in identifying changes in production 

quality and detecting inefficiencies to move towards more 

intelligent, data-driven manufacturing processes. 

 

3. System Architecture of Implementing Topological 

Analytics  

     To implement TDA in smart manufacturing, the 5C level 

CPS architecture was deployed [6] with compelling case 

studies. Fig. 1 illustrates how the topological machine learning 

methodology can be integrated with the 5C level CPS 

architecture in different applications, such as design & 

simulation optimization, smart manufacturing, and predictive 

maintenance. Three principal technologies (i.e., Data 

Technology (DT), Analytic Technology (AT), and Operation 

Technology (OT)) can be applied when they are situated in the 

5C level CPS architecture (i.e., 5C: Connection, Conversion, 

Cyber, Cognition, and Configuration).  

Fig. 1. Topological analytics within 5C level CPS architecture and stream-of-quality platform. 
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4. Topological Analytics on SoQ Platform 

    The flowchart in Fig. 2 illustrates the application of 

topological analytics for the SoQ (i.e., integration within the 

platform technology, as shown in Fig.1) assessment of multi-

stage manufacturing processes. The process starts with data 

collection from different manufacturing stations, where data 

sources, including man, machine, material, method, and 

environment, are collected to process data preprocessing and 

topological-based feature extraction, followed by filtering to 

preserve important features for quality assessment. Online 

update visualization is initiated to integrate new important 

features from each new station to generate cluster quality 

metrics. The final cluster quality represents the stream of 

quality, encompassing the initial cluster quality, ongoing 

updates to the cluster quality as the new station is added, and 

the final cluster quality that feeds back into the process for 

continuous online updating. When new representative data are 

identified at the final station based on cluster quality, the online 

update model is initiated to update labels to the visualization 

layer and simultaneously output the final prediction quality.      

Therefore, the total SoQ comprises the process of online 

updates, outputting content within both the final cluster quality 

and the final prediction quality.                   

5. Case Study: Topological Analytics for SoQ in Additive 

Manufacturing System 

Two-Photon Lithography (TPL) is an emerging technique in 

additive manufacturing that fabricates the three-dimensional 

nanostructure. A significant challenge in TPL is to identify the 

optimal light dosage parameters, influenced by the scanning 

speed and laser intensity, during the manufacturing process.  

The purpose of this case study, which utilizes data collected 

[9,10] by Lawrence Livermore National Laboratory (LLNL), 

implements topological analytics for the SoQ assessment 

applied to an additive manufacturing system that can online 

detect the part quality across multiple stages, as shown in Fig. 

3. A manufacturing line with eight stages is arranged to process 

materials into a final product. SoQ can be evaluated by the 

following outcomes: 

I. Cluster Quality Analysis: At each stage, the clusters 

are visualized in a topological graph visualization 

format, with the node color representing the 

proportion of every class. While the manufacturing 

process advances to the next stage, cluster quality is 

visualized to dynamically update how new data 

integrates with existing data.  

II. Prediction Quality Analysis: A predictive quality 

model, which uses the incoming new data to update 

its prediction continuously, is designed to forecast the 

product’s quality at subsequent stages, showing the 

variation of the product’s quality from one stage to the 

final stage, which could be original, uncured, cured, 

or damaged, as indicated by the color-coded legend. 

III. Integration of New Representative Data: At the final 

stage, the model identifies new representative data 

that significantly differs from the existing clusters. 

These new representative data, potentially indicating 

process anomalies or quality deviations, represent a 

new label for an online update of the model to ensure 

that the prediction accurately shows the final 

product’s quality and enhances the model’s 

adaptability to process variations. 

6. Challenges of Topological Analytics in Manufacturing 

Employing the mapper algorithm in topological analysis for 

the SoQ assessment can be visualized to uncover hidden 

patterns through node property comparisons. Although the 

proposed framework has proven effective, as shown in section 

5: case study, it also highlights key factors for further 

exploration and challenge. 
I. Parameter Settings: key considerations include 

distance metric, filter function, and resolution 

parameter. In particular, the filter function, which 

reduces dimensionality (e.g., options like t-SNE, PCA, 

 

Fig. 2. Topological analytics of SoQ on a multi-stage manufacturing system. 
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and UMAP), is crucial for simplifying complex data 

structures.  

II. Processing Filtered data: Adjusting two key 

parameters, both interval and overlap, is essential for 

analyzing data clusters in each subset, enhancing a 

comprehensive understanding of data distribution.   

7. Conclusions 

This study emphasizes the importance of employing 

topological analytics within the SoQ methodology in smart 

manufacturing. Through a practical case study, the proposed 

framework demonstrates the critical role of topological 

analytics in dynamically integrating new representative data 

and updating the model to refine quality prediction. Its function 

is to maintain a high-quality final product and adapt the 

variations of the product quality throughout the manufacturing 

process. Moreover, SoQ includes both cluster quality and 

prediction quality to have real-time monitoring, root cause 

analysis, and the optimization of process-to-process 

relationships, which ultimately leads to improved product 

quality.  
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