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Abstract

In the classic realm of impact mitigation, targeting different impact scenarios with a universally

designed device still remains an unassailable challenge. In this study, we delve into the untapped

potential of Resch-patterned origami for impact mitigation, specifically considering the adaptively

reconfigurable nature of the Resch origami structure. Our unit-cell-level analyses reveal two dis-

tinctive modes of deformation, each characterized by contrasting mechanical responses: the folding

mode that displays monostability coupled with strain-hardening, and the unfolding mode that

manifests bistability, facilitating energy absorption through snap-through dynamics. Drop tests

further unveil a novel dynamic bifurcation phenomenon, where the origami switches between fold-

ing and unfolding depending on impact speed, thereby showcasing its innate self-reconfigurability

in a wide range of dynamic events. The tessellated meter-scale Resch structure mimicking an au-

tomotive bumper inherits this dynamically bifurcating behavior, demonstrating the instantaneous

morphing into favorable deformation mode to minimize the peak acceleration upon impact. This

suggests a self-adaptive and universally applicable impact-absorbing nature of the Resch-patterned

origami system. We believe that our findings pave the way for developing smart, origami-inspired

impact mitigation devices capable of real-time response and adaptation to external stimuli, offering

insights into designing universally protective structures with enhanced performance in response to

various impact scenarios.

I. INTRODUCTION

Impact mitigation remains an enduring challenge across diverse disciplines, including au-

tomotive, aerospace, sports science, and biomedicine. Traditional materials and structures,

such as foam materials, damper systems, and crashworthy frames, have been used widely,

each of which targets specific impact conditions and corresponding energy absorption mech-

anisms. However, due to the wide-ranging impact conditions, such as low-speed pedestrian

impact to high-speed head-to-head collision of automotive vehicles, concussion-causing mild

impact to a crash of sports and motorcycle helmets, and low- to high-speed ballistic impact

in aerospace applications, it has always been a challenge to develop an omnifarious material
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or structure that caters to different scenarios of energy absorption. For instance, in low-speed

collisions, the soft and elastic medium is typically preferred for absorbing energy efficiently

but is not suitable for high-speed and momentum impact scenarios. On the other front,

the stiff and multi-stable (typically plastic) materials are considered ideal for the high-speed

impact case, which is clearly the opposite requirement to the low-speed scenario [1]. In

light of such limitations, the simplest and most intuitive solution is the adaptive material or

structure that behaves in a multi-modal manner, which adjusts the system to absorb energy

efficiently under various impact conditions.

To fulfill the multi-modal and self-adaptive requirement criteria, we draw inspiration

from the traditional art of paper folding, known as the origami principle. This principle,

renowned for its versatility and design flexibility for designing deployable or shape morphing

structures [2–5], has proven effective in the exploration of origami-based mechanical meta-

materials. To list a few exemplary properties, origami-inspired systems support load-bearing

capability [4, 6–13], variable stiffness [14, 15], auxeticity [9, 16], and multi-stability [10, 17–

21], most of which are highly tunable. Moreover, the origami principle facilitates mechanics-

based structural design, where we can obtain desired mechanical properties simply by tai-

loring the geometry, e.g., crease patterns, of the constituting origami. Thus, origami-based

designs can allow predictable geometrical morphing in response to external loading condi-

tions. When used for impact mitigation purposes, a plethora of unconventional mechanical

properties associated with various morphing stages can be leveraged to achieve multi-model

deformation and adaptive energy absorption. This is in contrast to conventional energy

absorption systems that deform in an unpredictable and inefficient manner, often relying on

plastic deformation of the constituent material.

While origami-inspired materials offer promising pathways for sophisticated material de-

sign, most of the previous studies target either the static or quasi-static behavior of origami,

except for very few predecessor works on waveguide [22–24] and vibration filtering [25–27].

However, these exceptions dealt with dynamics of origami limited to either small amplitude

oscillation or a long-wave propagation in a chain of approximated continuum system. The

study on simple energy-absorbing dynamics of the origami itself under the abrupt and large

magnitude of load, commonly observed in the impact, is yet largely unexplored. Only re-

cently, and limited to very few, the origami behavior in such an extreme dynamic scenario is

considered, showing the potency of origami as the impact mitigation device [28, 29], which
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leverages the crashworthiness of origami-inspired geometry, and not the folding behavior

itself for energy absorption. Moreover, most of the commonly used origami architectures

for dynamic studies do not take advantage of the rich morphology of origami in various

tessellations, but are restricted to a mere assembly of simple origami units, such as Miura-

ori [7], Yoshimura [6], Kresling origami [30], and Tachi-Miura polyhedron [31]), in a planar

or stacked configuration. This, in turn, limits the origami-based structures to be considered

for a wide range of structural members that necessitate curved geometries without being

restricted to a polyhedral bulk profile.

In the present study, we investigate the dynamically—yet passively—tunable origami

layer based on the Resch origami structure through numerical and experimental means.

Resch-patterned origami, initially developed for versatile architectural surfaces [32, 33],

achieves both flat and hemispherical surfaces during folding, enabling free-form morphing to

program curvature [34–36]. While being studied on its complex high-degree-of-freedom shape

morphing capability, the mechanical response of the Resch-patterned structure remains un-

derinvestigated except for those that reported the usage of the Resch origami as the sandwich

core structure under quasi-static loading [37–39]. Nonetheless, the load-carrying capability

does not originate from the folding behavior of the Resch pattern; instead, it relies on plastic

deformation to absorb energy. The mechanical response of the Resch origami under both

static and dynamic load, dominated by its highly versatile free-from folding motion of the

Resch origami itself, has remained obscure.

To address this indisputable knowledge gap, we first conduct an elastic folding simula-

tion of the Resch origami to explore its highly versatile morphing behavior, which reveals

a hemispherical morphing stage between flat states [32–34]. Such curved, yet developable,

morphing behavior enables two distinct modes of the deformation: folding and unfolding

modes, offering significantly different mechanical behavior between modes, such as monos-

table and bistable, and strain-softening and -hardening. Leveraging this distinctive response,

we investigate the dynamic behavior of Resch origami under collision with a spherical im-

pactor in the drop test. We report the dynamic bifurcation of the Resch origami triggered

by the wide-ranging impact speeds. This is in contrast to some of the previously studied

bifurcation of kinematic or static origami behavior [40–46]. Interestingly, the Resch origami

reconfigures itself to follow a specific deformation path between multi-modes, dynamically

bifurcating under impact and enabling the switching between folding and unfolding deforma-
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tion modes across the critical impact speed. Such unique switching behavior can also be seen

in the meter-scale prototype of the Resch origami tessellation that mimics an automotive

bumper. Upon collision with the mannequin at different speeds, the Resch origami structure

switches between folding and unfolding mode to minimize peak accelerations, suggesting the

generality and universality of the energy absorption mechanism triggered by the dynamic

bifurcation. We believe our findings shall bring new insight into the design methodology of

smart impact mitigation devices featuring self-adaptivity to be employed in a wide spectrum

of impact scenarios.

II. RESULTS

A. Physical set-up and modeling

In this study, we consider the Resch origami shown in Fig. 1a consisting of hexagonal

panels (shaded with light grey) connected through triangular folding structures (shaded

with dark grey), which we will refer to as startuck henceforth [34]. We primarily select the

circular tiling pattern where the hexagonal facets are tessellated radially while maintaining

the rotational symmetry. The folding directions are defined in Fig. 1a, where mountain and

valley folds are denoted as black solid and dashed lines, respectively. As the crease pattern

suggests, the geometry of the Resch origami is determined solely by the length parameter

a, which is the side length of the hexagonal facets (see Fig. 1b).

The current configuration of the Resch origami shows a folding sequence that radially

contracts while hexagonal facets rotate about their own centroid (see Supplementary Movie 1

for visual representation). Furthermore, the origami goes through a fully folded flat surface,

a hemispherical surface, and then a fully deployed flat surface [32–34]. This folding process

typically necessitates the non-rigid elastic behavior of the hexagonal and startuck facets.

To capture such peculiar folding behavior and the corresponding mechanical responses, we

employ the bar-hinge-mass model of origami [36, 47–50]. The model consists of three com-

ponents: the axial bar element to describe non-rigid facet deformation, the torsional hinge

element to model the crease folding, and the lumped mass assigned to each vertex of the

facet to give an inertial property to the origami (see Methods section and Supplementary

Note 1, and Supplementary Figure 1 for more detail of each element).
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The resulting equation of motion of the i-th vertex (i.e., mass) of the origami reads,

miüi + Fi,bar + Fi,tor + Fi,damp = Fext, (1)

where mi is the lumped mass, ui is the displacement vector, Fi,bar and Fi,tor are the internal

forces due to axial spring and torsional spring deformation, respectively. Note that the axial

bar stiffness is estimated based on the material properties [51], and the torsional spring

stiffnesses are calibrated through a single hinge compression test (see Supplementary Note 2

and Supplementary Figure 4 for more detail). Any possible energy dissipation is governed

by Fi,damp term, the details of which are laid out in Supplementary Note 1. The sum of the

above left-hand-side terms balances with the external force Fext. This term can be zero for

free unfolding simulation, gradually increasing over time for examining quasi-static response,

or contact force with another object for the dynamic impact cases. (For more details on each

term and derivation, see the Methods section and Supplementary Note 1 and Supplementary

Figure 1-3.)

Figure 1c shows folding behavior obtained using the dynamic unfolding simulation via

the aforementioned bar-hinge-mass model. Our simulation starts from the fully folded flat

surface [sub-panel (i)]. The Resch origami then goes through the hemispherical profile [sub-

panel (ii) and (iii)], which becomes a flat state when fully deployed [sub-panel (iv)]. Such

behavior coincides well with the previously shown Resch origami behavior [32–34] (see also

Supplementary Note 1, Supplementary Movie 1 for more information on the quasi-static

unfolding behavior).

To quantitatively characterize the aforementioned folding sequence, we illustrate the re-

lationship between two morphometric quantities hc and γ in Fig. 1d. Here, the height hc is

defined as the out-of-plane distance between the centroid of the center hexagon and the outer

hexagon along the out-of-plane direction. The height hc varies as the Resch origami develops,

which is described with the deployment ratio γ =
r − r(0)

r(1) − r(0)
, where r is the radial distance

from the origin to the centroid of the outer hexagons (see inset of Fig. 1d). Superscripts

(0) and (1) denote the folded and deployed state, respectively. Therefore, γ = 0 (γ = 1)

when fully folded (deployed). As γ varies from 0 to 1, hc first increases monotonically until

it reaches its peak (hc,max ≈ 0.67a) at the critical deployment ratio γcr ≈ 0.51. After γcr,

the height decreases and falls to zero when the Resch pattern is fully deployed, as shown in

Fig. 1d.
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Now, if we closely examine the folding behavior, we can see that it hints at two possible

paths of deformation starting from the hemispherical configuration: folding and unfolding,

with respect to the translational degree of freedom. In particular, consider loading the Resch

pattern normal to the center hexagon (i.e., out-of-plane direction). Under such loading

conditions, the Resch origami set at maximum hc,max configuration (i.e., hc ≈ 0.67a, labeled

(ii) in Fig. 1d) can either fold or unfold, both of which are a geometrically compatible

path (labeled as ‘F-path’ and ‘U-path’, respectively). This dual-mode deformation, enabled

by a predefined crease pattern, is in contrast to conventional planar structures that typically

deform monotonously and unpredictably under loading. Such versatile dual-mode behavior

will be investigated rigorously in quasi-static and dynamic loading conditions below.

B. Dual deformation mode and static response

We consider the scenario where the external load Fext = Pz is applied normal to the

center hexagon of the Resch pattern. The initial state of the Resch pattern is set at the

most convex posture (i.e., hc,max = 0.67a). We define the positive displacement u as the

compression relative to maximum height (i.e., u = hc,max − hc). The outer hexagons are

fixed in the out-of-plane direction at their centroids to prevent the rigid body translation of

the entire structure upon compression or tension. In Fig. 2a, we show a resulting bifurcation

diagram as a function of u/a and γ. The color intensity of the bifurcation diagram represents

the total potential energy stored in the origami, which is given by

Utotal =

Nelem,bar∑
i

Ui,bar +

Nelem,tor∑
i

Ui,tor. (2)

Here, Nelem,bar and Nelem,tor are the total number of axial bar and torsional spring elements,

respectively, and Ui,bar and Ui,tor are their strain energy (see Supplementary Note 1.5 for

more detail).

We observe that the potential energy well, denoted as a light grey solid line, splits into

two under compression, the profile of which corresponds to the relationship between the

height and deployment ratio shown in Fig. 1d. The bifurcation behavior in Fig. 2a can be

categorized as a supercritical pitchfork bifurcation, where we have one stable equilibrium

path before the bifurcation (in the current case, u < 0), which bifurcates into two sta-

ble equilibria with one unstable equilibrium path in between (dark grey dashed line). In
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Fig. 2a, the upper and lower equilibrium paths are folding and unfolding equilibrium paths,

respectively, corresponding to the ‘F-path’ and ‘U-path’ in the previous section.

Along each path, we conduct the uniaxial compression test by fabricating prototypes with

a polyethylene terephthalate (PET) sheet. The PET sheets are cut by a laser cutter and

then heat-processed to control the initial posture (See the Methods section, Supplementary

Note 3, Supplementary Figures 5 and 6, and Supplementary Movie 2 for more details on

the fabrication). Here, we use the Resch origami prototype initially configured to an 80%

of the maximum height (i.e., hc,0 = 0.8hc,max) determined based on the quasi-static unfold-

ing simulation result (shown in Fig. 1d). Note that at 80% height, we have two possible

configurations: folding configuration (γ < γcr) and unfolding configuration (γ > γcr). Pre-

scribing them along the F- or U-path ensures the deformation to follow the designated path,

facilitating the evaluation of static response along each path.

The force-displacement curves as the compression test results are shown in Fig. 2b, where

‘F-path’ and ‘U-path’ are denoted as red and blue dashed lines, respectively. The first part

of the deformation regime (u/a < 0.8hc,max ≈ 0.54) is where the crease folding dominates the

deformation; the grey-shaded region beyond the flat stage (u/a > 0.54) can be considered

a highly non-rigid regime where the displacement exceeds the initial maximum height of

the Resch origami and the deformation is dominated by the facet deformation. (For more

details on the quasi-static uniaxial compression test setup and procedure, see the Methods

section and Supplementary Note 4, Supplementary Figure 8, and Supplementary Movie 3.)

As can be seen, two paths show qualitatively distinct force-displacement landscapes. The

folding path shows a monotonically increasing weakly strain-softening response followed by

the sudden increase of the force after u/a ≈ 0.54 due to the facet contact. Note that the

force starts to rise a while after u/a ≈ 0.54, which we believe is due to the facet bending

before the densification dominates the mechanical behavior. Contrarily, the force in the

unfolding path case first increases, decreases to negative force, and then increases again to

Pz > 0 regime. This suggests that the folding path is monostable, and the unfolding path is

bistable. We can confirm such multi-stability in Fig. 2c, where potential energy profiles are

shown as a function of u/a. We can clearly see two minima (red triangle symbols) of the

unfolding case, unlike the folding case with only one minimum at u/a = 0.

In Fig. 2d and e, we show the postures of the Resch origami during the compression along

the folding and unfolding path, respectively. With the folding configuration, we can see that
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the Resch origami deforms from a hemispherical convex shape into a flat-surface profile

within the crease folding regime [Fig. 2d, sub-panel (i) into (ii)]. After this flat stage, the

Resch pattern becomes a concave profile in the facet deformation regime where the structure

“locks” due to the facet contact amongst those comprising the triangular startucks, as shown

in Fig. 2d, sub-panel (iii). On the other hand, the unfolding configuration tends towards the

flat deployed state first. Once the structure reaches flat state (u = hc,0) [Fig. 2e, sub-panel

(ii)], the origami halts deployment while the center hexagon continues to be pushed down

further. Beyond this flat stage, the Resch origami becomes a concave shape (but intrinsically

different from that of folding configuration), reaching and passing over the potential energy

barrier between the first and the second stable points. Note that the flat state and the

concave shape shown in Fig. 2e, sub-panel (ii) and (iii) corresponds to the local maximum

and minimum potential energy shown in Fig. 2c. This is well described by the different

postures between flat and concave postures. While the creases are almost all flattened for

the flat state, the concave state contains some creases being slightly folded in the same

direction as the initial state shown in sub-panel (i).

C. Folding and unfolding under impact

Given the bifurcation behavior and static response, we now investigate the response of

the Resch origami subject to dynamic loads. Specifically, we conduct a drop test with the

aforementioned folding and unfolding configurations (i.e., configured at hc = 0.8hc,max) of

the Resch origami subject to abrupt out-of-plane loads. As shown in Fig. 3a, the drop tower

consists of three major components: (i) electromagnet-based release system, (ii) impactor,

and (iii) Resch origami. The impactor is initially held with a pair of electromagnets, and

released along the vertically fixed shaft when the electromagnets are switched off. The height

at which the impactor is released is varied, such that the impactor collides with the center

hexagon of the Resch pattern at a predefined impact speed (For more details on the drop test

setup and procedure, see the Methods section and Supplementary Note 5, Supplementary

Figure 9, and Supplementary Movie 4).

Figure 3b and 3c show the height of the impactor for the impact speed of 0.5 and 3.0

m/s, respectively. Here, dashed lines with shaded regions are experimental results, and

solid lines are numerical simulation results. The numerical simulation is conducted using
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the bar-hinge-mass model to capture the dynamic behavior of the origami that occurs in a

relatively short period of time. Consequently, the right-hand-side of Eq. (1) for the impact

test reads,

Fext = Fi,g + Fi,collision, (3)

where the gravitational force Fi,g and external force due to collision Fi,collision are taken into

account. Here, Fcollision is determined based on the visco-elastic Hertzian model [52] between

an elastic sphere and plane [53–56] (please refer to Supplementary Note 1.7 for more details).

At low impact speed, we can see that both folding and unfolding configurations show

bouncing back motion, which triggers the oscillatory height profile in Fig. 3b. Particularly,

the unfolding configuration does not deform beyond the crease folding regime indicated in

the force-displacement curve in Fig. 2b, resulting in the motion around the first stable point.

On the contrary, the higher impact speed case in Fig. 3c shows distinctive impactor motion

between folding and unfolding configurations. The folding configuration shows an oscillatory

trajectory due to a rebound similar to the low-speed case. In the unfolding configuration,

however, the impactor subducts into the Resch origami and settles down without going

through the major oscillatory response. Such behavior suggests the transition from the first

stable state into the second stable state through large deformation (see Fig. 2c), unlike the

relatively small amplitude of dynamics in the low-speed case where only the first stable state

contributes to the dynamic response.

To unveil the mechanism of impact mitigation by the Resch origami, we visually examine

the folding sequence of the Resch origami upon impact at vimpact = 3.0 m/s. Figure 3d and

3e show the snapshots of the Resch origami posture at the critical moments of the impact

from the experiment, in the folding configuration and unfolding configuration, respectively.

The corresponding moments from the numerical simulation are also shown in Fig. 3f and

3g (see Supplementary Note 7 for more details of the numerical methods and parameters).

Each snapshot from the experiment corresponds to the time (i) t = 0.306, (ii) 0.326, (iii)

0.455 s, as marked in Fig. 3c.

At the moment of impact [t = 0.306 s; Fig. 3d-g, sub-panel (i)], the Resch origami is still

at its zero-energy state (therefore the impactor height is zero). In the folding configuration

case, the impactor reaches its minimum height at t = 0.326 s [see Fig. 3d and 3f, sub-panel

(ii)], and the Resch origami becomes subtly concave as opposed to its convex zero-energy
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state posture. Such a concave profile is already out of the rigid-foldable regime of the Resch

origami, which suggests the contribution of the panel deformation to the energy absorption

process in addition to the crease folding (the height resides around h/a = 1.26, which is well

beyond the rigid foldable limit). At t = 0.455 s, the Resch origami returns to its zero-energy

state in the folding configuration, while the impactor reaches its maximum rebound height.

Contrarily, the impactor in the unfolding configuration does not show evident rebounding

motions after the initial contact with the Resch pattern. Shortly after the impact, we

observe the development of the Resch pattern into the flat unfolding state as shown in the

sub-panel (ii) in Fig. 3e and 3g. Eventually, the prototype settles down to a state beyond

the Resch origami at the second stable state [compare the deformation shapes between

Fig. 2e, sub-panel (iii) and Fig. 3g, sub-panel (iii); see also Supplementary Movie 4 and 5

for the behavior of Resch pattern in the experiment and simulation, respectively]. This is

also confirmed by the negative height profile of the impactor; the asymptotic height of the

impactor is h ≈ −41.5 mm (i.e., h/a = −1.36) in the unfolding Resch pattern’s profile,

which is past the position of the second stable point (u/a ≈ 0.73) in the energy profile

marked by a triangle in Fig. 2c. We believe that the deviation of asymptotic height from

the second stable point is due to the mass of the impactor, which causes the equilibrium to

shift. This can also be confirmed from the simulation result, where the asymptotic height

resides around h/a = 1.37.

D. Dynamic bifurcation

In this section, we consider a dynamically bifurcating configuration of the Resch origami.

Recall that, in Fig. 1d, we identified the maximum height of the Resch origami resides around

γ = 0.51, which corresponds to the critical point in the bifurcation diagram in Fig. 2a. Based

on this identified critical point, in the previous sections, we examined the behavior of the

Resch origami along two different paths (i.e., folding and unfolding) by preconfiguring the

Resch origami at 80% of the maximum height; two configurations are revealed to show very

distinctive behavior in both static and dynamic regimes. Here, we investigate a dynamically

bifurcating Resch origami by preconfiguring it at the bifurcating point (i.e., the maximum

height configuration, hc = hc,max).

Figure 4a-4c shows the height profiles of the impactor colliding with the Resch origami
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at vimpact = 2.0, 2.5, and 3.0 m/s, respectively. At a lower speed of the collision (see

Fig. 4a), the impactor rebounds back to h > 0 after the collision, which is a signature of

the folding type of the response. However, when the impact speed increases, for instance,

to vimpact = 2.5 m/s, the Resch origami shows a versatile response to the impactor collision.

Interestingly, the Resch origami shows both folding and unfolding motion in response to the

collision at 2.5 m/s, as distinctive impactor trajectories suggest in Fig. 4b. When folded,

the impactor shows the aforementioned signature of the folding response, the oscillatory

rebound trajectory, denoted by the blue dashed line in Fig. 4b. Indicated by the purple

dashed line is the case where the Resch origami unfolds, but does not pass through the

energy barrier before the second stable state. Similar to the vimpact = 0.5 m/s case with

unfolding configuration shown in Fig. 3b, the impactor trajectory shows an oscillatory profile

with lower rebound height than the folding case. Lastly, the snap-through trajectory shows

a rather sudden stop of the impactor without evident oscillatory motions, as denoted by the

red dashed line in Fig. 4b. For such cases, the Resch origami resides in the second stable

state, unlike the previous two scenarios. Thus, we see three major responses at the impact

speed of interest. Now, if we further increase the impact speed up to 3.0 m/s, we only see

the snap-through response as the dominant deformation mode, as shown in Fig. 4c. The

impactor trajectory clearly shows the hallmark of the snap-through, where the impactor does

not bounce back. As such, the Resch origami configured at the bifurcation point switches

its deformation mode subject to the impact, depending on its speed.

In Fig. 4d, we show the number of occurrences of folding and unfolding modes out of 15

trials for each impact speed. At low impact speed (vimpact = 0.5 to 1.5 m/s), we only see

folding mode response. For the trials in vimpact = 2.0 m/s case, we can still see the folding

mode as the dominant response mode, except for the one trial where the Resch origami

unfolds. At the critical impact speed of 2.5 m/s, we can see five folding and ten unfolding

mode response trials, respectively. Among the ten unfolding situations, eight cases undergo

the snap-through mechanism. This observation suggests the switching into the dominance

of the snap-through mode, resulting in fourteen out of fifteen cases (93.3%) at vimpact = 3.0

m/s.

To investigate this self-adaptive mechanism of bifurcation depending on the impact speed,

we revisit the deformation sequence of the Resch origami under impact in Fig. 4e, where the

folding and unfolding trials of vimpact = 2.5 m/s case are shown. As briefly mentioned in the
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previous section, the first phase of the deformation sequence is the contact phase [Fig. 4e,

sub-panel (i)]. The impactor then continues to fall while pushing the center hexagon of the

Resch origami as Fig. 4e, sub-panel (ii) shows, where the top and bottom rows show folding

and unfolding trials, respectively. We refer to this second step as a subduction phase. Note

that the outer hexagon translates neither inward nor outward during the subduction phase.

We can confirm this by examining the red and blue vertical arrows indicating the centroid

of the outer hexagons. As shown in Fig. 4e, sub-panel (ii), the arrows from the top and

bottom rows overlap, implying that the outer hexagons are at the same position for folding

and unfolding cases. The third step is the activation step for the outer hexagons, which either

contract or expand, radially translating into or away from the center hexagon. If we track the

centroid arrows, we can see that the locations of the center hexagons do not coincide between

folding and unfolding cases. This deformation sequence suggests that the outer hexagons

do not immediately respond to the impact, but activate after substantial deformation of the

center hexagon. This is plausible because the central hexagon is surrounded by the outer

hexagons through folded—thus highly compliant—startucks, incurring relative rotation and

translation with respect to each other.

To explore the effect of this delayed activation of outer hexagons upon impact, we show

the direction of the radial force exerted on the outer hexagons as a function of the center

hexagon’s out-of-plane displacement in Fig. 4f. The radial force is obtained by conducting a

quasi-static numerical simulation of the Resch origami, with outer hexagons being fixed in all

translational directions at their centroid (see Methods section and Supplementary Note 7 for

the detail). By imposing such constrained centroid conditions, we simulate the subduction

phase where the outer hexagons are at rest. In Fig. 4f, we can see that the direction of radial

force changes at different levels of subduction. Specifically, the radial force is negative below

subduction displacement u/a ≈ 0.67, indicating that the outer hexagons are experiencing

the inward radial force, which is folding direction. After u/a ≈ 0.67, the radial force becomes

positive, where the outward force is exerted on the outer hexagons. This suggests that Resch

origami follows different deformation modes depending on the subduction displacement,

which is affected by the magnitude of the impulsive force (i.e., velocity) upon collision.

We note in passing that this threshold subduction displacement roughly corresponds to the

maximum height of the Resch origami, suggesting the switching occurs near the flat state

of the Resch origami. Furthermore, recall that in the bifurcation diagram in Fig. 2a, the
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unstable equilibrium path runs between the ‘F-path’ and ‘U-path.’ The unstable path first

shows a slight deviation from γcr (see violet dashed line in Fig. 2a) towards the U-path at

0.0 < u/a < 0.59. Contrarily, for u/a > 0.59, the unstable path is significantly indented

towards F-path. This suggests that Resch origami under the subduction phase tends to fall

into F-path (U-path) potential energy well for small (large) subduction displacement.

To exemplify the folding and unfolding case, we extract subduction displacement of

vimpact = 2.0 and 3.0 cases from empirical data. The grey vertical dashed lines with shaded

regions in Fig. 4f labeled (i) and (ii) are the average of the folding and unfolding trials from

2.0 and 3.0 m/s impact speed scenarios, respectively [corresponding to schematic diagrams

in sub-panels (i) and (ii)]. We can clearly see that vimpact = 2.0 m/s case experiences an

inward radial force with u/a = 0.57±0.051 subduction, and outward radial force for 3.0 m/s

case with u/a = 0.98± 0.066 subduction. This well suggests the contribution of subduction

displacement and the associated direction of radial forces to the bifurcation of Resch origami

deformation mode as a function of impact speed.

Such dynamic bifurcation offers unique behavior compared to the conventional material,

as shown in Fig. 4g. Here, we estimate the coefficient of restitution (COR) based on the

impact velocity and restitution velocity of the impactor as follows:

COR =

∣∣∣∣ vr
vimpact

∣∣∣∣ . (4)

where vimpact and vr represent the velocity at the moment of impact and bounce back,

respectively. The COR is collected for the bifurcation configuration of Resch origami. We

also measure COR for extruded polystyrene foam (EPS; also known as styrofoam), one of

the common energy absorption materials, for reference. Here, the EPS sample is fabricated

by slicing the EPS into specific thickness (18 mm), such that it has the same mass and

projected area as the fully unfolded Resch origami (see Methods section and Supplementary

Note 3 for the detail of the EPS sample fabrication). While the EPS sample in grey cross

symbols shows the almost plateau COR profile throughout the given velocity range, the

Resch origami COR generally decreases as the impact speed increases for the bifurcating

configuration in the folding mode (blue square symbol), hinting at better energy absorption

in the higher impact speed scenarios. Moreover, switching from folding mode to unfolding

mode around vimpact = 2.5 m/s (from blue data set to purple data set) further reduces

the COR for improved energy absorption. Remarkably, when the snap-through mechanism
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is triggered (red data set), the COR values significantly decrease, approaching near zero

restitution (for other impact mitigation performance indices, see Supplementary Note 8 and

Supplementary Figure 10). This manifests the efficacy of the multi-modal Resch origami

structure for a broad range of impact conditions.

E. Meter-scale Resch origami tessellation for impact mitigation

We further evaluate the versatility of the Resch-patterned origami by fabricating a meter-

scale Resch origami tessellation prototype. Figure 5a shows a pendulum-based experimental

setup with Resch origami tessellation, mimicking a pedestrian impact with an automotive

bumper. The system consists of two pendulums: one with Resch tessellation (rectangular

tessellation with 11× 6 hexagons as shown in Fig. 5b with a scale bar) and the other with

a 3D-printed mannequin leg (for the details of the test setup, Resch origami tessellation

and mannequin leg fabrication, please refer to Methods section, Supplementary Note 6,

Supplementary Figure 7 and 10, and Supplementary Movie 2). Given that the behavior of

our interest is adaptive bifurcation depending on impact speed, we consider low- and high-

speed cases. The impact speed is controlled by the initial mannequin angle ψ
(0)
mannequin (see

Fig. 5a for the definition of the pendulum angle), which is set to 40.9◦ and 57.8◦ for low

and high impact speed cases, respectively. The other pendulum with the Resch origami

tessellation is initially at rest in vertical position (i.e., ψ
(0)
Resch = 0◦). Similar to the orbital

Resch origami, we consider three different configurations: folding, unfolding, and bifurcat-

ing configuration by adjusting the width of the pendulum where the Resch tessellation is

mounted. As a general rule, narrower widths tend to induce folding behavior, while wider

widths are inclined to unfolding behavior; the intermediate case corresponds to the bifur-

cating configuration. Specifically, they are set to a deployment ratio based on the width

as γW = 1
Ncol

W−W (0)

W (1)−W (0) ≈ 0.35, 0.50, and 0.55, for folding, bifurcating, and unfolding con-

figurations, respectively. Here, Ncol = 11 is the number of columns of the tessellation, W

is the width between the centroid of hexagons at the leftmost and the rightmost columns,

and the superscripts (0) and (1) denoted folded and deployed state. We note in passing

that the bifurcating configurations reside at similar values in both orbital and rectangular

tessellation, as indicated by γ ≈ 0.51 and γW ≈ 0.50.

We confirm that, for a narrow configuration, the Resch tessellation only exhibits the
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folding response. Contrarily, the widest configuration only shows an unfolding response (see

Supplementary Movie 6 and 7 for the response of folding and unfolding configurations).

Notably, the bifurcating configuration shows switching from folding to unfolding mode as the

impact speed increases. Figure 5c details such deformation sequence of the bifurcating Resch

tessellation at low- and high-speed impact scenarios (top and bottom rows, respectively). At

the low impact speed, we can see that the center section of the tessellation contracts upon

the collision with the mannequin leg, as shown in Fig. 5c, sub-panel (ii). After the kinetic

energy of the mannequin is converted to the elastic strain energy of the Resch origami,

the Resch origami restores to its original convex profile (i.e., zero-energy state), causing

the mannequin to bounce back. In contrast, the high impact speed case does not show

the contraction of the center area of the Resch tessellation but instead expands due to the

unfolding reaction of the Resch origami [Fig. 5c, sub-panel (iv)]. Comparing Fig. 5c, sub-

panel (ii) and (iv), we can clearly see the different morphological appearances; particularly,

if we observe the distance from the top and bottom sides near the center of the Resch

tessellation, we witness the expansion of the tessellation in the high-speed case [sub-panel

(iv)], whereas the subtle contraction in the low-speed case [sub-panel (ii)]. Moreover, unlike

the restoration of Resch tessellation in a low-speed-impact folding case, the center region of

the Resch origami tessellation transitions into a second stable state, as shown in Fig. 5c, sub-

panel (v) (for more details on the bifurcating Resch origami deformation in the pendulum

system, see Supplementary Movie 8).

To quantitatively examine the Resch origami behavior and performance upon impact, we

show the pendulum acceleration relative to the Resch origami, for all three configurations

under low- and high-speed impact cases in Figure. 5d, sub-panel (i) and (ii), respectively. At

low impact speed [Fig. 5d, sub-panel (i)], we see that the unfolding configuration experiences

the largest magnitude of acceleration, followed by the bifurcating and, lastly, the folding

configuration. Thus, the folding configuration handles the low-speed impact most efficiently.

At high impact speed, conversely, the folding configuration undergoes the acceleration of the

largest magnitude, and the unfolding configuration shows the least magnitude. This implies

that the unfolding mode copes with the high speed impact better than the folding mode.

Such change in the aligning order of the acceleration can also be observed by extracting

the peak acceleration. Figure 5e shows the peak acceleration magnitude |apeak| for the three

configurations of the Resch alongside the EPS sample for low and high impact speed cases.
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At a glance, we notice the lower peak acceleration (almost half) compared to the EPS

sample. As mentioned earlier, we observe the intersection of the acceleration lines between

the folding and unfolding configurations (denoted by blue and red data sets), demonstrating

the efficacy of the folding (unfolding) mode for low (high) speed impact. More notably, the

acceleration line for the bifurcating sample resides between these two lines. As illustrated by

the inset images, the bifurcating sample selects the folding configuration for the low-speed

impact while taking the unfolding mode for the high-speed impact. This validates that

the Resch-patterned origami adaptively selects and morphs into the favorable deformation

mode to minimize the peak acceleration upon impact. Thus, the pendulum test on the

meter-scale Resch origami well suggests the potential applicability of the load-dependent

bifurcation mechanism of the Resch pattern, not only to a small orbital configuration but

also to a larger rectangular tiling that mimics a bumper system.

III. DISCUSSION

We have demonstrated the dynamically reconfigurable response of the Resch origami pat-

tern, achieved through in-situ adaptation depending on external stimuli. We first focused

on a simple orbital Resch origami structure through experimental and numerical means.

We used a modified bar-hinge-mass model to capture its folding/unfolding motion, static

response, and dynamic response to out-of-plane loads. The folding behavior and the bifurca-

tion diagram have identified two modes of deformation (folding and unfolding), which in turn

show highly distinctive force and potential energy landscapes in the uni-axial compression

test; folding mode hosts a monostable response with strain softening, and unfolding mode

offers a bistable response with snap-through. We have examined such distinctive mecha-

nisms of deformation by conducting the drop test with different impact speeds and initial

configurations of the Resch origami. While the folding configuration restores the original

posture and pushes the impactor back into the air due to its monostability, the unfolding

configuration has demonstrated the near-zero coefficient of restitution by going through the

snap-through of the Resch origami in high-speed impact cases. Furthermore, unlike the

mono-modal folding and unfolding configuration, the bifurcating configuration has exhib-

ited a noteworthy dual-modality, which enables velocity-dependent self-reconfiguration. At

low impact speed, the bifurcating configuration has shown a folding mode of deformation.
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Contrarily, we have observed that the Resch origami unfolds and then snaps through at a

higher speed of impact. This in-situ switching of deformation mode is induced by a peculiar

deformation sequence associated with the switching direction of radial force from contraction

to expansion.

In a simulated test of pedestrian impact, we confirm that the tessellation of the Resch

origami structure also exhibited such bifurcation-driven behavior, transitioning from folding

for low impact speed to unfolding for high speed. Additionally, the tessellated Resch origami

structure hinted at the self-adaptive feature of the Resch-inspired structure subjected to the

external load, where the switching from folding to unfolding mode automatically adjusts the

structure to experience reduced peak acceleration. We believe that such adaptive nature of

the Resch origami upon the dynamic load shall proffer an insight into opening a new avenue

to designing self-reconfiguring adaptive impact mitigation devices.

METHODS

Fabrication

Resch origami prototypes (both orbital and rectangular) were laser-cut from 0.254 mm

thick polyethylene terephthalate (PET) and hand-folded based on the crease pattern shown

in Fig. 1a. The initial posture of the orbital Resch origami is controlled by heat treatment

in a convection oven at 80◦C for three hours, using 3D-printed custom support structures

designed from simulated Resch origami posture. For the pendulum test, approximately

800 × 500 mm PET sheet was laser-cut and manually folded, resulting in the projected

dimension of approximately 550× 350 mm length and width.

The EPS samples are fabricated manually using hot wire, first by adjusting the thickness

of the EPS block to approximately 18 mm and then cut into a fully deployed Resch origami

profile for orbital Resch drop test. For the pendulum test, the EPS hexahedral block is

fabricated in a similar manner, resulting in the dimension of 600× 300× 50 mm in length,

width, and thickness. (For more details of each component and design, see Supplementary

Note 3 and Supplementary Figure 5, 6, and 7.)
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A. Experimental methods

To evaluate the orbital Resch origami’s response under compression and impact, we con-

ducted quasi-static compression tests and drop tests. In both setups, the central hexagon

is fixed at its centroid, allowing surrounding hexagons to move radially during deformation.

During compression tests, a linear stage attached to the centroid of the center hexagon ap-

plies controlled displacement along the out-of-plane direction, while a load cell and laser

sensor measure the resulting force and displacement. For the drop test, high-speed cam-

eras capture the trajectory of the hemispherical impactor, dropped along the vertical shaft,

which also fixes the center hexagon at its centroid. The trajectory of the impactor is then

extracted by tracking the markers attached to the impactor through the digital image cor-

relation (DIC). A pendulum-based impact test employs a two-pendulum system to simulate

a pedestrian impact. Similar to the drop test, the motion of the pendulums was tracked

using high-speed cameras and analyzed through DIC marker tracking. (For detailed descrip-

tions of specific components, assembly methods, and additional visualizations, please refer

to Supplementary Notes 3, 4, and 6.)

Numerical methods

We employ an origami model consisting of an axial bar, torsional hinge, and lumped mass

in this study (for more details on formulation, see Supplementary Note 1). Unlike previous

bar-hinge-mass models focusing kinematic behavior of origami [36, 57], the current study

aims to simulate dynamic impact events and the corresponding deformations occurring in a

short period of time (i.e., millisecond order). To this end, we extended the bar-hinge-mass

model by incorporating additional factors such as gravitational force and visco-elastic colli-

sion force. The formulated model is then implemented by developing an in-house computer

simulation code with Python and Fortran. Due to the stiff nature of Eq. (1), we employ

the adaptive Runge-Kutta-Prince-Dormand method of 8th order accuracy with 3rd and 5th

order error estimator [58], for the sake of better convergence. The maximum time step size

of ∆t = 10−5 s and relative and absolute error tolerance ϵ = 10−12 are used. All numerical

values are treated as double-precision float point numbers.
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[19] D. Melancon, B. Gorissen, C. J. Garćıa-Mora, C. Hoberman, and K. Bertoldi, Multistable

inflatable origami structures at the metre scale, Nature 592, 545 (2021).

[20] J. E. Suh, Y. Miyazawa, J. Yang, and J. H. Han, Self-Reconfiguring and Stiffening Origami

Tube, Advanced Engineering Materials 24, 2101202 (2022).

[21] N. Hu, B. Li, R. Bai, K. Xie, and G. Chen, A Torsion-Bending Antagonistic Bistable Actuator

Enables Untethered Crawling and Swimming of Miniature Robots, Research 6, 10.34133/re-

search.0116 (2023).

[22] H. Yasuda, Y. Miyazawa, E. G. Charalampidis, C. Chong, P. G. Kevrekidis, and J. Yang,

Origami-based impact mitigation via rarefaction solitary wave creation, Science Advances 5,

eaau2835 (2019), arXiv:1805.05909.

[23] D. F. Wang, Y. Q. Wang, Z. H. Qian, T. Tachi, and K. C. Chuang, A graded Miura-ori

phononic crystals lens, Physics Letters, Section A: General, Atomic and Solid State Physics

418, 10.1016/J.PHYSLETA.2021.127701 (2021).

22

https://doi.org/10.1038/s41467-022-29484-1
https://doi.org/10.1038/s41467-022-29484-1
https://doi.org/10.1016/j.apmt.2019.100537
https://doi.org/10.1038/s43246-021-00212-4
https://doi.org/10.1038/s43246-021-00212-4
https://doi.org/10.1103/PhysRevLett.128.208003
https://doi.org/10.1126/science.1252876
https://doi.org/10.1073/pnas.2013292117
https://doi.org/10.1073/pnas.2013292117
https://doi.org/10.1038/s41586-021-03407-4
https://doi.org/10.1002/adem.202101202
https://doi.org/10.34133/research.0116
https://doi.org/10.34133/research.0116
https://doi.org/10.1126/sciadv.aau2835
https://doi.org/10.1126/sciadv.aau2835
https://arxiv.org/abs/1805.05909
https://doi.org/10.1016/J.PHYSLETA.2021.127701


[24] Y. Miyazawa, C.-W. Chen, R. Chaunsali, T. S. Gormley, G. Yin, G. Theocharis, and J. Yang,

Topological state transfer in Kresling origami, Communications Materials 3, 62 (2022).

[25] M. Zhang, J. Yang, and R. Zhu, Origami-Based Bistable Metastructures for Low-Frequency

Vibration Control, Journal of Applied Mechanics 88, 10.1115/1.4049953 (2021).

[26] J. C. Ji, Q. Luo, and K. Ye, Vibration control based metamaterials and origami structures:

A state-of-the-art review, Mechanical Systems and Signal Processing 161, 107945 (2021).

[27] X. Yu and L. Wang, Nonlinear dynamics of coupled waves in Kresling origami metamaterials,

Journal of Sound and Vibration 577, 118263 (2024).

[28] S. Tomita, K. Shimanuki, S. Oyama, H. Nishigaki, T. Nakagawa, M. Tsutsui, Y. Emura,

M. Chino, H. Tanaka, Y. Itou, and K. Umemoto, Transition of deformation modes from bend-

ing to auxetic compression in origami-based metamaterials for head protection from impact,

Scientific Reports 13, 12221 (2023).

[29] Q. Yang, Z. Li, H. Hao, and W. Chen, Compressive mechanical properties and dynamic

behaviour of origami-inspired tri-directional auxetic metastructure, Engineering Structures

281, 115751 (2023).

[30] B. Kresling, Origami-structures in nature: lessons in designing “smart” materials, MRS Pro-

ceedings 1420, mrsf11 (2012).

[31] K. Miura and T. Tachi, Synthesis of rigid-foldable cylindrical polyhedra, J. ISIS-Symmetry,

Spec. Issues Festival-Congress Gmuend, Austria , 204 (2016).

[32] R. D. Resch and H. Christiansen, The design and analysis of kinematic folded-plate systems,

in Proceedings of the Symposium for folded plates and prismatic structures, International

association for shell structures (1970) pp. 1–36.

[33] R. D. Resch, The topological design of sculptural and architectural systems, in Proceedings

of the June 4-8, 1973, national computer conference and exposition on - AFIPS ’73 (ACM

Press, New York, New York, USA, 1973) p. 643.

[34] T. Tachi, Designing freeform origami tessellations by generalizing resch’s patterns, Journal of

Mechanical Design, Transactions of the ASME 135, 10.1115/1.4025389 (2013).

[35] F. Yang, M. Zhang, J. Ma, Z. You, Y. Yu, Y. Chen, and G. H. Paulino, Design of Single Degree-

of-Freedom Triangular Resch Patterns with Thick-panel Origami, Mechanism and Machine

Theory 169, 104650 (2022).

23

https://doi.org/10.1038/s43246-022-00280-0
https://doi.org/10.1115/1.4049953
https://doi.org/10.1016/J.YMSSP.2021.107945
https://doi.org/10.1016/j.jsv.2024.118263
https://doi.org/10.1038/s41598-023-39200-8
https://doi.org/10.1016/j.engstruct.2023.115751
https://doi.org/10.1016/j.engstruct.2023.115751
https://doi.org/10.1557/opl.2012.536
https://doi.org/10.1557/opl.2012.536
https://ci.nii.ac.jp/naid/10027135393/
https://ci.nii.ac.jp/naid/10027135393/
https://doi.org/10.1145/1499586.1499744
https://doi.org/10.1145/1499586.1499744
https://doi.org/10.1115/1.4025389
https://doi.org/10.1016/j.mechmachtheory.2021.104650
https://doi.org/10.1016/j.mechmachtheory.2021.104650


[36] Y. Yu, Y. Chen, and G. Paulino, Programming curvatures by unfolding of the triangular Resch

pattern, International Journal of Mechanical Sciences 238, 107861 (2023).

[37] M. A. E. Kshad, C. Popinigis, and H. E. Naguib, 3D printing of Ron-Resch-like origami cores

for compression and impact load damping, Smart Materials and Structures 28, 015027 (2019).

[38] A. Deng, B. Ji, X. Zhou, and Z. You, Geometric design and mechanical properties of foldcores

based on the generalized Resch patterns, Thin-Walled Structures 148, 106516 (2020).

[39] Z. Chen, T. Wu, G. Nian, Y. Shan, X. Liang, H. Jiang, and S. Qu, Ron resch origami pattern

inspired energy absorption structures, Journal of Applied Mechanics, Transactions ASME 86,

11005 (2019).

[40] I. Ario and M. Nakazawa, Non-linear dynamic behaviour of multi-folding microstructure sys-

tems based on origami skill, International Journal of Non-Linear Mechanics 45, 337 (2010).

[41] S. Farah, D. G. Anderson, and R. Langer, Physical and mechanical properties of PLA, and

their functions in widespread applications — A comprehensive review, Advanced Drug Deliv-

ery Reviews 107, 367 (2016).

[42] A. Gillman, K. Fuchi, and P. Buskohl, Truss-based nonlinear mechanical analysis for origami

structures exhibiting bifurcation and limit point instabilities, International Journal of Solids

and Structures 147, 80 (2018).

[43] S. Sadeghi and S. Li, Dynamic folding of origami by exploiting asymmetric bi-stability, Ex-

treme Mechanics Letters 40, 100958 (2020).

[44] L. Zhang, F. Pan, Y. Ma, K. Yang, S. Guo, and Y. Chen, Bistable reconfigurable origami meta-

materials with high load-bearing and low state-switching forces, Extreme Mechanics Letters

63, 102064 (2023).

[45] Y. Wang and K. Liu, Shape optimization of non-rigid origami leading to emerging bistability,

Mechanics Research Communications 132, 104165 (2023).

[46] Q. Zhang, J. Cai, X. Deng, Z. Qian, and J. Feng, Kinematic Solutions and Bifurcation Analysis

of Single Vertex Origami Pattern, Mechanics Research Communications 135, 104238 (2024).

[47] K. Liu and G. H. Paulino, Nonlinear mechanics of non-rigid origami: an efficient computa-

tional approach, Proceedings of the Royal Society A: Mathematical, Physical and Engineering

Sciences 473, 20170348 (2017).

[48] S. Dong and Y. Yu, Numerical and experimental studies on capturing behaviors of the inflat-

able manipulator inspired by fluidic origami structures, Engineering Structures 245, 112840

24

https://doi.org/10.1016/j.ijmecsci.2022.107861
https://doi.org/10.1088/1361-665X/aaec40
https://doi.org/10.1016/j.tws.2019.106516
https://doi.org/10.1115/1.4041415
https://doi.org/10.1115/1.4041415
https://doi.org/10.1016/j.ijnonlinmec.2009.11.010
https://doi.org/10.1016/j.addr.2016.06.012
https://doi.org/10.1016/j.addr.2016.06.012
https://doi.org/10.1016/j.ijsolstr.2018.05.011
https://doi.org/10.1016/j.ijsolstr.2018.05.011
https://doi.org/10.1016/j.eml.2020.100958
https://doi.org/10.1016/j.eml.2020.100958
https://doi.org/10.1016/j.eml.2023.102064
https://doi.org/10.1016/j.eml.2023.102064
https://doi.org/10.1016/j.mechrescom.2023.104165
https://doi.org/10.1016/j.mechrescom.2023.104238
https://doi.org/10.1098/rspa.2017.0348
https://doi.org/10.1098/rspa.2017.0348
https://doi.org/10.1016/j.engstruct.2021.112840
https://doi.org/10.1016/j.engstruct.2021.112840


(2021).

[49] S. Dong, X. Zhao, and Y. Yu, Dynamic unfolding process of origami tessellations, International

Journal of Solids and Structures 226-227, 10.1016/j.ijsolstr.2021.111075 (2021).

[50] Y. Xia, N. Kidambi, E. Filipov, and K. W. Wang, Deployment Dynamics of Miura Origami

Sheets, Journal of Computational and Nonlinear Dynamics 17, 10.1115/1.4054109 (2022).

[51] K. Liu and G. H. Paulino, Highly efficient nonlinear structural analysis of origami assemblages

using the MERLIN2 software, Origami 7 7, 1167 (2018).

[52] Y. Gonthier, J. McPhee, C. Lange, and J.-C. Piedbœuf, A Regularized Contact Model with

Asymmetric Damping and Dwell-Time Dependent Friction, Multibody System Dynamics 11,

209 (2004).

[53] W. Goldsmith, Impact: The Theory and Physical Behavior of Colliding Solids (Edward

Arnold, London, 1960).

[54] M. Machado, P. Moreira, P. Flores, and H. M. Lankarani, Compliant contact force models in

multibody dynamics: Evolution of the Hertz contact theory, Mechanism and Machine Theory

53, 99 (2012).
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FIG. 1. The schematic illustrations of the hexagon-triangle Resch origami and its

folding motion. (a) Folding pattern of the single-orbit hexagon-triangle Resch pattern. (b)

Definition of geometrical parameters. The geometry of the hexagon-triangle Resch pattern is

determined solely by the side length of the hexagon a. The lengths of minor and major crease b

and c within the startuck are determined as b =

√
3

3
a and c =

2
√
3

3
a, respectively. (c) Folding

motion of Resch origami. (d) Variation of normalized height hc/a as a function of deployment

ratio γ. Sub-labels are at (i) hc/a = 0.01, (ii) 0.67, (iii) 0.6, and (iv) 0.01, which correspond to

γ = 0.03, 0.51, 0.75, and 0.99, respectively.
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FIG. 2. Static response under out-of-plane compression. (a) Two deformation modes

depicted as a bifurcation diagram. Light grey solid lines, stable branch; black dashed line, unstable

branch. Violet dashed horizontal line denotes the γcr. (b) Force-displacement profile along the

folding (red) and unfolding path (blue). (c) Potential energy landscape of the folding and unfolding

cases shown in panel b, with local minima indicated by down-pointing triangles. Red dashed line,

the folding path from experiment; blue dashed, the unfolding path from experiment. The shaded

regions enclosing the dashed lines represent the standard deviation. The grey-shaded region beyond

u/a = 0.54 implies the non-rigid foldable region. Folding postures are shown for (d) folding and

(e) unfolding path.
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FIG. 3. Impactor trajectory upon collision with Resch origami. (a) Drop tower comprised

of (i) electromagnet release system, (ii) impactor, and (iii) single-orbit Resch origami. Height of the

impactor for the impact speed (b) 0.5 m/s, and (c) 3.0 m/s. Solid lines, simulation; dashed line,

average of experimental data; shaded region; standard deviation of experimental data. Snapshot

at (i) t = 0.306, (ii) 0.326, (iii) 0.455 s extracted from the experiment for (d) folding and (e)

unfolding configuration. Snapshots of (f) folding and (g) unfolding configuration from simulation.

Corresponding moments are marked in panel (c) with triangular symbols.
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FIG. 4. Dynamic bifurcation of Resch origami. The height of the impactor for the case of

(a) vimpact = 2.0 m/s, (b) 2.5 m/s, and (c) 3.0 m/s. The inset figures of each panel schematically

display the folding mode that Resch origami follows. (d) Histogram of folding, unfolding, and snap-

through as a function of impact speed. (e) Deformation sequence of the Resch origami, extracted

from the experiment undergoing (i) contact, (ii) subduction, and (iii) fold/unfold phases. (f)

Numerically estimated radial force exerted on the outer hexagons. Sub-panels correspond to the

subduction displacement in (i) vimpact = 2.0 and (ii) 3.0 m/s cases. (g) Coefficient of restitution as

a function of impact speed. Blue open-square symbol, folding mode; purple open-square symbol,

unfolding mode; red open-square symbol, snap-through mode; grey cross symbol, EPS.
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FIG. 5. Meter-scale Resch-patterned impact mitigation system. (a) Pendulum-based

experimental set-up. (b) Laser-cut rectangular Resch-patterned origami tessellation. (c) Snapshot

of Resch origami in bifurcating configuration. Release conditions are, ψ0 = 40.9◦ for low impact

speed and ψ0 = 57.8◦ for high impact speed. (d) Acceleration of mannequin relative to Resch tes-

sellation at (i) low-speed and (ii) high-speed impact case. Blue dashed lines, folding configuration

case; purple dashed lines, bifurcating configuration case; red dashed lines, unfolding configuration

case; (e) Peak acceleration. (f) Coefficient of restitution. Blue open circle symbol, folding configu-

ration; purple open square symbol, bifurcating configuration; red open plus sign symbol, unfolding

configuration; grey open X symbol, EPS.
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