
Gradient Guidance for Diffusion Models:

An Optimization Perspective

Yingqing Guo† Hui Yuan† Yukang Yang Minshuo Chen Mengdi Wang ∗

Princeton University

April 24, 2024

Abstract

Diffusion models have demonstrated empirical successes in various applications and can be

adapted to task-specific needs via guidance. This paper introduces a form of gradient guidance

for adapting or fine-tuning diffusion models towards user-specified optimization objectives. We

study the theoretic aspects of a guided score-based sampling process, linking the gradient-

guided diffusion model to first-order optimization. We show that adding gradient guidance

to the sampling process of a pre-trained diffusion model is essentially equivalent to solving a

regularized optimization problem, where the regularization term acts as a prior determined

by the pre-training data. Diffusion models are able to learn data’s latent subspace, however,

explicitly adding the gradient of an external objective function to the sample process would

jeopardize the structure in generated samples. To remedy this issue, we consider a modified

form of gradient guidance based on a forward prediction loss, which leverages the pre-trained

score function to preserve the latent structure in generated samples. We further consider an

iteratively fine-tuned version of gradient-guided diffusion where one can query gradients at newly

generated data points and update the score network using new samples. This process mimics a

first-order optimization iteration in expectation, for which we proved O(1/K) convergence rate

to the global optimum when the objective function is concave.

1 Introduction

Diffusion models have emerged as a significant advancement in the field of generative artificial

intelligence, offering state-of-the-art performance in image generation (Song and Ermon, 2019;

Song et al., 2020a; Dhariwal and Nichol, 2021). These models operate by gradually transforming

a random noise distribution into a structured output, by using a score function trained from large

amounts of data. Such a transforming process is typically modeled as a stochastic differential

equation, offering a mathematically grounded approach for sampling. One of the key advantages

of diffusion models is their ability to be guided or fine-tuned for specific tasks, which allows them

to excel in a wide range of applications (Kong et al., 2020; Ajay et al., 2022; Gruver et al., 2023).

Guidance-based diffusion, a nuanced extension of diffusion models, stands at the forefront of

controlled generation in generative AI. This approach involves steering the noise transformation

process of a diffusion model towards desired outcomes by incorporating additional “guidance sig-

nals”. This guidance can manifest in various forms, such as text prompts, class labels, or even

∗† Equal contribution. Emails: {yg6736, huiyuan, yy1325, minshuochen, mengdiw}@princeton.edu.

1

ar
X

iv
:2

40
4.

14
74

3v
1

 [
st

at
.M

L
]

 2
3

A
pr

 2
02

4

conditioning on specific attributes and rewards. The core principle behind this technique is to

influence the probabilistic pathway of the noise transformation process at each time step, thereby

steering the final output towards predefined criteria or objectives. This controlled generation capa-

bility opens up opportunities for generative AI in a broad range of tasks, such as in targeted image

synthesis, content creation with specific themes, or even in drug design where molecular structures

need to meet specifications.

A notable example is the classifier-based diffusion model introduced by Song et al. (2020c);

Dhariwal and Nichol (2021), which generates data conditioned on a class label, via guidance signals

that are computed from conditional likelihoods from a classifier. Building on this concept, Bansal

et al. (2023) extend the classifier-guidance method to a form of “universal guidance”. Such guidance

allows the generation process to be influenced by gradient obtained from some external loss function,

effectively tailoring the diffusion process to meet specific objectives (Chung et al., 2022a,b; Graikos

et al., 2022; Kawar et al., 2022; Lugmayr et al., 2022; Wang et al., 2022). Despite of numerous

empirical successes, there remain significant gaps in the theoretical understanding and guarantees

associated with guided diffusion models.

Problem and Challenges Suppose we have a pre-trained diffusion model that can generate new

samples faithfully from the pre-training data’s distribution and maintain the data’s latent struc-

ture. The goal is to adapt this diffusion model to generate new samples that optimize task-specific

objectives, while maintaining the learned structure in new samples. Compared to classic optimiza-

tion, the guided diffusion model offers new possibilities to optimize complex design variables such

as images, videos, proteins, and genomes (Black et al., 2023; Watson et al., 2023; Liu et al., 2024).

Interested readers may refer to recent surveys for a more comprehensive exposure (Yang et al.,

2023; Chen et al., 2024; Guo et al., 2023).

To adapt pre-trained diffusion models, existing practical methods largely rely on empirical

heuristics and hyperparameter tuning. There remain critical theoretical questions: (i) Why does

naively guiding diffusion models using gradient never work in practice? (ii) How to add a guidance

signal to improve the target objective without compromising the quality of the generated output?

(iii) Can one guarantee the properties of new samples generated by guided diffusion? (iv) What

are the limits of adaptability in these guided models? This paper aims to answer these questions

from an optimization perspective.

Scope of This Paper We investigate the role of guidance in diffusion models from an opti-

mization perspective. The goal is to generate samples that optimize a given objective function

f . Drawing inspiration from gradient-based optimization methods, we construct a guidance signal

based on the gradient vector, ∇f . Then we use the gradient signal, in addition to the pre-trained

score function, to guide the sampling process towards generating structured output with higher

function values. See Figure 1 for illustration our algorithmic framework. Our main results are

summarized as follows:

• We focus on structured data. Assume that pre-trained data belongs to a latent low-dimensional

subspace, thus the trained score function is capable of discerning and maintaining the latent

subspace structure of data during (unguided) generation. To guide the generation, we intro-

duce a gradient-like guidance based on a forward prediction loss (Definition 1). This gradient

guidance can be computed based on a pre-trained score network, and it provably preserve

any learned low-dimensional structure in the generated output (Lemma 1).

2

Noise

Pre-trained Diffusion
<latexit sha1_base64="OhVjuL2UuksxRGnetmEa4wL3BCw=">AAACCHicbVDLSsNAFL3xWeur6tLNYBFclUR8dFnQhcsK9gFtKJPJpB06mcSZiVBCfsAfcKt/4E7c+hf+gN/hpM3Cth64cDjnXu7heDFnStv2t7Wyura+sVnaKm/v7O7tVw4O2ypKJKEtEvFIdj2sKGeCtjTTnHZjSXHocdrxxje533miUrFIPOhJTN0QDwULGMHaSG4/xHpEME9vs8F4UKnaNXsKtEycglShQHNQ+en7EUlCKjThWKmeY8faTbHUjHCalfuJojEmYzykPUMFDqly02noDJ0axUdBJM0Ijabq34sUh0pNQs9s5iHVopeL/3m9RAd1N2UiTjQVZPYoSDjSEcobQD6TlGg+MQQTyUxWREZYYqJNT3NffJVHy8qmGGexhmXSPq85V7XL+4tqo15UVIJjOIEzcOAaGnAHTWgBgUd4gVd4s56td+vD+pytrljFzRHMwfr6BXxmmrU=</latexit>Dk

Guided Diffusion

Noise

Weighted Fine-tuning
via all past generated data

<latexit sha1_base64="y5+B4UdWOZ+PfrBSSs9ugb/X6ZI=">AAACJXicbVDLSsNAFJ3Ud31VXboZLIIglER8LUUXuqxgVWhKmUxu2qGTBzM3Ygn5BX/DH3Crf+BOBFfu/A4naRdqPTBw5tzHuRwvkUKjbX9Ylanpmdm5+YXq4tLyymptbf1ax6ni0OKxjNWtxzRIEUELBUq4TRSw0JNw4w3OivrNHSgt4ugKhwl0QtaLRCA4QyN1azu6m7nYB2Q53aUuwj2WSzMFfp6Vfx1k53nerdXthl2CThJnTOpkjGa39uX6MU9DiJBLpnXbsRPsZEyh4BLyqptqSBgfsB60DY1YCLqTleY53TaKT4NYmRchLdWfExkLtR6GnukMGfb131oh/ldrpxgcdzIRJSlCxEdGQSopxrSIh/pCAUc5NIRxJcytlPeZYhxNiL9cfF2clldNMM7fGCbJ9V7DOWwcXO7XT07HEc2TTbJFdohDjsgJuSBN0iKcPJAn8kxerEfr1Xqz3ketFWs8s0F+wfr8Bp3xpw0=</latexit>

s✓ + G

<latexit sha1_base64="HMa6LYaTUXy3E6aoJl84q96txDY=">AAACLXicbVDLSsNAFJ34rPUVdelmsAhuLIlIdVnUhcsK9gFNCJPJpB06mYSZiVBCfsPf8Afc6h+4EMSl/oaTNos+vDDD4Zx7ueceP2FUKsv6NFZW19Y3Nitb1e2d3b198+CwI+NUYNLGMYtFz0eSMMpJW1HFSC8RBEU+I11/dFvo3SciJI35oxonxI3QgNOQYqQ05ZmWEyE1xIhld7lnQQenif6CWMkSz8jZ6NzOPbNm1a1JwWVgl6AGymp55o8TxDiNCFeYISn7tpUoN0NCUcxIXnVSSRKER2hA+hpyFBHpZpPLcniqmQCGsdCPKzhhZycyFEk5jnzdWRiVi1pB/qf1UxVeuxnlSaoIx9NFYcqgimEREwyoIFixsQYIC6q9QjxEAmGlw5zbEsjCWl7VwdiLMSyDzkXdbtQbD5e15k0ZUQUcgxNwBmxwBZrgHrRAG2DwDF7BG3g3XowP48v4nrauGOXMEZgr4/cPq7yo5w==</latexit>D0 [· · · [Dk�1

Gradient-Guided Diffusion for Generative Optimization

<latexit sha1_base64="6pexyF+KX2Kl39GP0TBaRnShkjU=">AAACN3icbVDLSsNAFJ3UV42vqks3g63gxpIUfOCq6MZlBWuFpoTJ5LYOnUzCzEQpIf/ib/gDbnXryl1x6x84bSP4OjBwOOdc7p0TJJwp7TivVmlufmFxqbxsr6yurW9UNreuVZxKCm0a81jeBEQBZwLammkON4kEEgUcOsHwfOJ37kAqFosrPUqgF5GBYH1GiTaSXzn1AhgwkVEQGmRu1+59p4Y9z655d2Gs1Yzf+9nwwM1rtgci/Mr6lapTd6bAf4lbkCoq0PIrYy+MaRqZccqJUl3XSXQvI1IzyiG3vVRBQuiQDKBrqCARqF42/WOO94wS4n4szRMaT9XvExmJlBpFgUlGRN+q395E/M/rprp/0suYSFINgs4W9VOOdYwnheGQSaCajwwhVDJzK6a3RBJqOvi5JVST03LbFOP+ruEvuW7U3aP64WWj2jwrKiqjHbSL9pGLjlETXaAWaiOKHtATekYv1qP1Zo2t91m0ZBUz2+gHrI9PvamrMw==</latexit> w0
...

wk�1

(optional) update

<latexit sha1_base64="BoqCalhzOuziVXznzoDFT3GXjT4=">AAACGHicbVDLSsNAFJ3UV62vqstugkVwVZKCD1wVXOiygm2FtpTJ5KYdOnkwcyOWkIW/4Q+41T9wJ27d+QN+h9M0C9t6YODMuY9zOU4kuELL+jYKK6tr6xvFzdLW9s7uXnn/oK3CWDJosVCE8t6hCgQPoIUcBdxHEqjvCOg446tpvfMAUvEwuMNJBH2fDgPucUZRS4NypYfwiNmeRIKbJtlfecl1mg7KVatmZTCXiZ2TKsnRHJR/em7IYh8CZIIq1bWtCPsJlciZgLTUixVElI3pELqaBtQH1U8y89Q81opreqHUL0AzU/9OJNRXauI7utOnOFKLtan4X60bo3fRT3gQxQgBmxl5sTAxNKeJmC6XwFBMNKFMcn2ryUZUUoY6tzkXV01PS0s6GHsxhmXSrtfss9rpbb3auMwjKpIKOSInxCbnpEFuSJO0CCNP5IW8kjfj2Xg3PozPWWvByGcOyRyMr1+tIKHa</latexit>

G

<latexit sha1_base64="+a+XvKO9+e/Tk76tXPL9VPri6AY=">AAACIXicbVDJSgNBEO2Je9xGPXppjEJECDPidhQ9KHhRMEZIwtDTqUkaexa6a8QwzA/4G/6AV/0Db+JNvPsddpaDJj5o+vFeFVX1/EQKjY7zaRUmJqemZ2bnivMLi0vL9srqjY5TxaHKYxmrW59pkCKCKgqUcJsoYKEvoebfnfb82j0oLeLoGrsJNEPWjkQgOEMjefam9rIGdgAZLQ9+72I7pzu0gfCAOsjOcu/Cs0tOxemDjhN3SEpkiEvP/m60Yp6GECGXTOu66yTYzJhCwSXkxUaqIWH8jrWhbmjEQtDNrH9NTreM0qJBrMyLkPbV3x0ZC7Xuhr6pDBl29KjXE//z6ikGR81MREmKEPHBoCCVFGPai4a2hAKOsmsI40qYXSnvMMU4mgD/TGnp3mp50QTjjsYwTm52K+5BZf9qr3R8MoxolqyTDVImLjkkx+ScXJIq4eSRPJMX8mo9WW/Wu/UxKC1Yw5418gfW1w+f9KOx</latexit>

s✓(✓K) + GK
<latexit sha1_base64="AP2GAHoYKxMVT0aDSGkmNO0QvZU=">AAACA3icbVDLSsNAFJ34rPVVdelmsAiuSiJSXRbduKxgH9CGMpnctEMnD2ZuhBK69Afc6h+4E7d+iD/gdzhps7CtBwYO59zLPXO8RAqNtv1tra1vbG5tl3bKu3v7B4eVo+O2jlPFocVjGauuxzRIEUELBUroJgpY6EnoeOO73O88gdIijh5xkoAbsmEkAsEZGqmrB30cAbJBpWrX7BnoKnEKUiUFmoPKT9+PeRpChFwyrXuOnaCbMYWCS5iW+6mGhPExG0LP0IiFoN1slndKz43i0yBW5kVIZ+rfjYyFWk9Cz0yGDEd62cvF/7xeisGNm4koSREiPj8UpJJiTPPPU18o4CgnhjCuhMlK+YgpxtFUtHDF13m0adkU4yzXsEralzWnXqs/XFUbt0VFJXJKzsgFccg1aZB70iQtwokkL+SVvFnP1rv1YX3OR9esYueELMD6+gWPOJiW</latexit>s✓

Adapted Diffusion

Noise

<latexit sha1_base64="EZETYmX9nRyL1Nkln4gi+uYkcWE=">AAACCXicbVDLSsNAFJ3UV62vqks3g0VwVRKR6rLoxmUF+4A2hslk2g6dTMLMjVBCvsAfcKt/4E7c+hX+gN/hpM3Cth64cDjnXu7h+LHgGmz72yqtrW9sbpW3Kzu7e/sH1cOjjo4SRVmbRiJSPZ9oJrhkbeAgWC9WjIS+YF1/cpv73SemNI/kA0xj5oZkJPmQUwJGetReOoAxA+KlkyzzqjW7bs+AV4lTkBoq0PKqP4MgoknIJFBBtO47dgxuShRwKlhWGSSaxYROyIj1DZUkZNpNZ6kzfGaUAA8jZUYCnql/L1ISaj0NfbMZEhjrZS8X//P6CQyv3ZTLOAEm6fzRMBEYIpxXgAOuGAUxNYRQxU1WTMdEEQqmqIUvgc6jZRVTjLNcwyrpXNSdRr1xf1lr3hQVldEJOkXnyEFXqInuUAu1EUUKvaBX9GY9W+/Wh/U5Xy1Zxc0xWoD19Qvg5JuM</latexit>s✓k

Compute Gradient Guidance
<latexit sha1_base64="BoqCalhzOuziVXznzoDFT3GXjT4=">AAACGHicbVDLSsNAFJ3UV62vqstugkVwVZKCD1wVXOiygm2FtpTJ5KYdOnkwcyOWkIW/4Q+41T9wJ27d+QN+h9M0C9t6YODMuY9zOU4kuELL+jYKK6tr6xvFzdLW9s7uXnn/oK3CWDJosVCE8t6hCgQPoIUcBdxHEqjvCOg446tpvfMAUvEwuMNJBH2fDgPucUZRS4NypYfwiNmeRIKbJtlfecl1mg7KVatmZTCXiZ2TKsnRHJR/em7IYh8CZIIq1bWtCPsJlciZgLTUixVElI3pELqaBtQH1U8y89Q81opreqHUL0AzU/9OJNRXauI7utOnOFKLtan4X60bo3fRT3gQxQgBmxl5sTAxNKeJmC6XwFBMNKFMcn2ryUZUUoY6tzkXV01PS0s6GHsxhmXSrtfss9rpbb3auMwjKpIKOSInxCbnpEFuSJO0CCNP5IW8kjfj2Xg3PozPWWvByGcOyRyMr1+tIKHa</latexit>

G

Weights <latexit sha1_base64="qEXaESVr1fTBbnNbrKvEPvC+E8A=">AAACGHicbVDLSsNAFJ34rPVVddnNYBFclUSkuiyK4LKCfUAawmQybYdOHszcSEvMwt/wB9zqH7gTt+78Ab/DSduFbT0wcDjnXu6Z48WCKzDNb2NldW19Y7OwVdze2d3bLx0ctlSUSMqaNBKR7HhEMcFD1gQOgnViyUjgCdb2hte5335gUvEovIdxzJyA9EPe45SAltxSuTsgkHYDAgPPS2+yzB65Jn7EIxcct1Qxq+YEeJlYM1JBMzTc0k/Xj2gSsBCoIErZlhmDkxIJnAqWFbuJYjGhQ9JntqYhCZhy0sknMnyiFR/3IqlfCHii/t1ISaDUOPD0ZJ5WLXq5+J9nJ9C7dFIexgmwkE4P9RKBIcJ5I9jnklEQY00IlVxnxXRAJKGge5u74qs8WlbUxViLNSyT1lnVqlVrd+eV+tWsogIqo2N0iix0geroFjVQE1H0hF7QK3ozno1348P4nI6uGLOdIzQH4+sXngagnw==</latexit>

Ê[x0|xt]

<latexit sha1_base64="j/KiiU24Qs2OvaXioqDjIz7NBJQ=">AAACNHicbVDLSsNAFJ34tr6qLt0MFkEXlqSIuhRFcKlgVWhiuJlO28HJJMzciCXmU/wNf8CtfoDgTnTpNzipXfg6MHA4517umROlUhh03WdnZHRsfGJyaroyMzs3v1BdXDozSaYZb7JEJvoiAsOlULyJAiW/SDWHOJL8PLo6KP3za66NSNQp9lMexNBVoiMYoJXC6o6vIJIQ5jchFnS9Tzdp99LHJKV+DzD3Y8BeFOWHRdG6CV16S+1csHHZCKs1t+4OQP8Sb0hqZIjjsPrutxOWxVwhk2BMy3NTDHLQKJjkRcXPDE+BXUGXtyxVEHMT5IMPFnTNKm3aSbR9CulA/b6RQ2xMP47sZBnY/PZK8T+vlWFnN8iFSjPkin0d6mSSYkLLtmhbaM5Q9i0BpoXNSlkPNDC0nf640jZltKJii/F+1/CXnDXq3nZ9+2Srtrc/rGiKrJBVsk48skP2yBE5Jk3CyB15II/kybl3XpxX5+1rdMQZ7iyTH3A+PgFg86su</latexit>

rxt
(y � g>Ê[x0|xt])

2

Pre-trained Diffusion

Gradient Query
<latexit sha1_base64="8RbS992UirR97//cna4GH7idu+Q=">AAAB/HicbVBLSgNBFHwTfzH+oi7dNAbBVZgRiS6DblwmYD6QDKGn503SpOdDd48QQryAW72BO3HrXbyA57AnmYVJLGgoqt7jVZeXCK60bX9bhY3Nre2d4m5pb//g8Kh8fNJWcSoZtlgsYtn1qELBI2xprgV2E4k09AR2vPF95neeUCoeR496kqAb0mHEA86oNlJzOChX7Ko9B1knTk4qkKMxKP/0/ZilIUaaCapUz7ET7U6p1JwJnJX6qcKEsjEdYs/QiIao3Ok86IxcGMUnQSzNizSZq383pjRUahJ6ZjKkeqRWvUz8z+ulOrh1pzxKUo0RWxwKUkF0TLJfE59LZFpMDKFMcpOVsBGVlGnTzdIVX2XRZiVTjLNawzppX1WdWrXWvK7U7/KKinAG53AJDtxAHR6gAS1ggPACr/BmPVvv1of1uRgtWPnOKSzB+voF8EOVcw==</latexit>g

<latexit sha1_base64="D0sht2uGXguHU9h/RBQWcv/7Mqg=">AAAC0HicdVFLb9NAEF6bVwmvAEcuKyKkokAUV1UpB6RKHOBYUNNEio21Xo/jVdcP7Y5Lo9UKceXvceIP8DtYO0FKExhptd98M6P5ZiappdA4Hv/y/Bs3b92+s3e3d+/+g4eP+o+fnOuqURwmvJKVmiVMgxQlTFCghFmtgBWJhGly8b6NTy9BaVGVZ7isISrYohSZ4AwdFfd/hgXDXBUmtXQW4xcTSsiQKVV9te86PA8zxbgJrDnYTRnqOMQckHXc/nb4FT17jaESixxfDkOEK+wUGwWpNZ2vM/PB/q/4b6ld/RHdEIvDDSes3IztCszUxhj3B+PRuDO6C4I1GJC1ncb932Fa8aaAErlkWs+DcY2RYQoFl2B7YaOhZvyCLWDuYMkK0JHpRrH0hWNSmlXKvRJpx25WGFZovSwSl9kK1tuxlvxXbN5gdhwZUdYNQslXjbJGUqxoe0maCgUc5dIBxpVwWinPmbsVuntf65LqVprtucUE22vYBecHo+BodPTpcHByuF7RHnlGnpN9EpA35IR8JKdkQrj31ou93BP+Z//K/+Z/X6X63rrmKblm/o8/nPDnwA==</latexit>

dX t =


1

2
X t + s✓ (X t , T � t) + G (X t , t)

�
dt + dW t

Figure 1: Gradient-guided diffusion model for generative optimization, with or without

adaptive finetuning. A pre-trained diffusion model is guided with an additional gradient signal

from an external objectives function towards generating near-optimal solutions.

• We formalize a mathematical framework of using a gradient-guided diffusion model for gen-

erative optimization. While retaining the pre-trained score function, the generation process

is iteratively refined and guided using new gradient queries (Algorithm 1; Figure 1 without

fine-tuning). Under proper assumptions, we demonstrate that this adapted model generates

novel samples whose expectation converges to a solution that is regularized with respect to

the original problem (Theorem 2). The regularization ensures that the generated samples

remain proximal to the training data. In other words, gradient guidance cannot shift data

distribution unboundedly towards higher objective values, revealing a fundamental limit for

adapting pre-trained diffusion models.

• Furthermore, we explore an adaptive variant of gradient-guided diffusion, where both the

score function and gradient guidance are iteratively fine-tuned using self-generated samples

(Algorithm 2; Figure 1 with fine-tuning). Although slightly increasing the computational

demand, we provide evidence that this approach generates new samples whose expectation

converges to global optima, within the latent subspace, at a rate of O(1/K) (Theorems 3 and

4), where K denotes the number of iterations and gradient evaluations, matching classical

convergence theory of convex optimization.

Our findings suggest that this novel gradient guidance not only preserves the latent subspace

structure of the data but also ensures fast convergence towards the optimal solution. Numerical

experiments with a pre-trained U-network score function are provided in Section 7 to support these

theoretical findings.

2 Related Work

Our study is motivated by recent empirical progress of guidance-based diffusion model fine-tuning

for steering sample generation towards specific needs (Dhariwal and Nichol, 2021; Bansal et al.,

2023). Upon modeling the specific needs as a reward function, the relevant methods can be sum-

marized into two categories in the sequel.

3

Guided Generation and Fine-tuning Given an auxiliary reward function judging the sam-

ple property of interests, existing research explored diverse mechanisms to guide generation from

diffusion models. There are mainly two types of methods. The first type of method incorporates

an additive so-called “guidance” term into the score function of pre-trained diffusion models at

inference time. For example, classifier guidance (Song et al., 2020a; Dhariwal and Nichol, 2021)

defines the guidance term as the gradient of an externally trained classifier on noise corrupted

data. Classifier-free guidance (Ho and Salimans, 2022) simultaneously trains conditional and un-

conditional diffusion models, circumventing the training of an external classifier. After the training,

the score functions of the conditional and unconditional models are combined together to achieve

guided generation. Bansal et al. (2023) draw motivation from classifier guidance and generalize

the idea to a “universal guidance” for adapting unconditioned score functions to various external

rewards.

The second type of method attempts to directly fine-tune the weight parameters in a pre-

trained diffusion model by interacting with the target reward function. For example, Clark et al.

(2023) fine-tune diffusion models by directly backpropagating the gradient of the reward function.

Recently, a line of works utilizes Reinforcement Learning (RL) techniques for fine-tuning diffusion

models (Black et al., 2023; Fan et al., 2023). They formulate the sample generation process of

diffusion models as a finite-horizon Markov chain. The score function can be viewed as a policy,

the generated samples are the state of the Markov chain, and the target reward function defines

the terminal reward. In this way, fine-tuning diffusion models is equivalent to policy optimization

and allows the use of policy gradient methods.

Sampling and Statistical Theory of Diffusion Model In contrast to the fruitful empirical

advances, the theory of diffusion models is still limited. To the best of our knowledge, a theoretical

understanding of fine-tuning diffusion models is absent. Existing results mainly focus on the sam-

pling ability and statistical properties of unconditional diffusion models. In particular, for sampling

ability, a line of works shows that the distribution generated by a diffusion model is close to the

data distribution, as long as the score function is accurately estimated (De Bortoli et al., 2021;

Albergo et al., 2023; Block et al., 2020; Lee et al., 2022a; Chen et al., 2022; Lee et al., 2022b,a;

Chen et al., 2022; Lee et al., 2022b). The accuracy of the estimated score function is measured in

terms of an L∞ or L2-norm distance. More recently, Chen et al. (2023c,b); Benton et al. (2023)

develop refined and tighter analyses using Taylor expansions of the discretized backward process

and localization method. It is worth mentioning that the analysis in Chen et al. (2023c,b); Benton

et al. (2023) extends to broader sample generation processes such as deterministic ones based on

probabilistic ODEs. Going beyond distributions in Euclidean spaces, De Bortoli (2022) analyzes

diffusion models for sampling distribution supported on a low-dimensional manifold. Moreover,

Montanari and Wu (2023) consider sampling from symmetric spiked models, and El Alaoui et al.

(2023) study sampling from Gibbs distributions using diffusion processes.

Turning towards the statistical theory of diffusion models, Song et al. (2020b) and Liu et al.

(2022) provide asymptotic analyses, assuming a parametric form of the score function. Unfortu-

nately, asymptotic analysis does not lead to concrete sample complexities. Later, concurrent works,

Oko et al. (2023) and Chen et al. (2023a), establish sample complexity bounds of diffusion models

for estimating nonparametric data distributions. In high dimensions, their results highlight a curse

of dimensionality issue without further assumptions, which also appears in Wibisono et al. (2024)

considering kernel methods. More interestingly, these works demonstrate that diffusion models can

4

circumvent the curse of dimensionality issue if the data has low-dimensional structures. In the same

spirit, Mei and Wu (2023) investigate learning high-dimensional graphical models using diffusion

models, without the curse of dimensionality. For conditional diffusion models, Yuan et al. (2023);

Fu et al. (2024) establish sample complexity bounds for learning generic conditional distributions.

We refer readers to Chen et al. (2024) for an overview of contemporary theoretical progress.

Novelty of This Paper Despite the existing theoretical underpinnings of diffusion models, our

paper provides the first rigorous study of adapting and fine-tuning diffusion models using gradient

guidance from an optimization perspective. Specifically, we first understand why naive gradient

guidance does not lead to meaningful optimization performance. Built upon the insights gained

from the analysis, we propose gradient guidance that is proven to preserve generated data structures

and simultaneously achieve strong optimization guarantees on adapted variants of diffusion models.

We are aware of two recent works (Uehara et al., 2024; Marion et al., 2024) studying adapting

the output distribution of diffusion models to a target reward function. In particular, they define a

reward function with respect to the output distribution of the diffusion model. Given a pre-trained

diffusion model, for instance, Uehara et al. (2024) utilizes a KL-divergence regularizer penalizing

the deviation to the pre-trained model for preventing overfitting in fine-tuning. Through some

explicit computation, Uehara et al. (2024); Marion et al. (2024) identify the proper guidance term

to adapt the pre-trained model. Yet a sophisticated estimation procedure is needed to find the

guidance term in Uehara et al. (2024); our gradient guidance enjoys much simplicity and efficacy,

as we demonstrated in both theory and experiments.

3 Preliminaries: Diffusion Models

Score-based diffusion models capture the distribution of pre-training data by learning a sequence

of transformations to generate new samples from noise (Song et al., 2020c). A forward stochastic

process progressively adds noise to data, whose sample trajectories are used to train the score

function. To generate new samples, a backward denoising process starts from sampling pure noise

and gradually transforms the noise guided by the learned score function.

Forward Process The forward process of diffusion models initializes with X0 ∈ RD, a random

variable drawn from the pre-training data D. It introduces noise to via an Ornstein-Uhlenbeck

process, i.e.,

dXt = −1

2
q(t)Xt dt+

√
q(t) dWt for q(t) > 0, (1)

where (Wt)t≥0 is a standard Wiener process, and q(t) is a non-decreasing weighting function.

Xt represents the noise-corrupted data distribution at time t. Given X0 = x0, the conditional

distribution Xt|X0 = x0 is Gaussian, i.e., N (α(t)x0, h(t)ID) with α(t) = exp(−
∫ t
0

1
2q(s)ds) and

h(t) = 1 − α2(t). In practice, the forward process will terminate at a large time T so that the

marginal distribution of XT is close to N (0, ID). In our analysis, we take q(t) ≡ 1 without loss of

generality, where α(t) := exp(−t/2) and h(t) := 1− exp(−t).

Backward Process If reversing the time of the forward process, we can reconstruct the original

distribution of the data from pure noise. With (W t)t≥0 being another independent Wiener process,

5

the backward SDE below (Anderson, 1982) reverses the time in the forward SDE (1),

dX←t =


1
2
X←t +∇ log pT−t(X

←
t)︸ ︷︷ ︸

score


dt+ dW t. (2)

Here pt(·) denotes the marginal density of Xt in the forward process. In the forward SDE (2), the

score function ∇ log pt(·) plays a crucial role, but it has to be estimated from data.

Score Matching To learn the unknown score function ∇ log pt(·), it is common to train a score

network sθ(x, t) using samples generated by the forward process. Let D denote the data for training.

Then the score network is learned by minimizing the following loss:

mins∈S

∫ T

0
Ex0∈DExt|x0

[
∥∇xt log ϕt(xt|x0)− s(xt, t)∥2

]
dt, (3)

where S is a given function class, ED denotes the empirical expectation over training data D and

Ext|x0
denotes condition expectation over the forward process, ϕt(xt|x0) is the Gaussian transition

kernel, i.e., 1
(2πh(t))D/2 exp(−∥xt−α(t)x0∥2

2h(t)).

Generation and Guided Generation Given a pre-trained score function sθ, one generates new

samples by simulating the backward process (2) with the true score replaced by sθ. Further, one

can add additional guidance to the backward SDE to steer its output distribution towards specific

properties of interest. Module 1 formalizes the generation process and guided generation process

using a pre-trained diffusion model.

Module 1 Guided BackwardSample(sθ, G)

1: Input: Score sθ, guidance G default to be zero for unguided generation.

2: Hyper-parameter: T .

3: Initialized at X←t ∼ N (0, I), simulate the following SDE till time T :

dX←t =

[
1

2
X←t + sθ (X

←
t , T − t) + G (X←t , T − t)

]
dt+ dW t.

4: Output: Sample X←T .

Conditional Generation Suppose the goal is to generate X with a desired property Y = y

from the distribution P (X|Y = y). To this end, one needs the conditional score function

∇xt log pt(xt | y), as a replacement of the unconditioned score ∇xt log pt(xt). The Bayes rule gives

∇xt log pt(xt | y) = ∇ log pt(xt)︸ ︷︷ ︸
est. by sθ(xt,t)

+ ∇xt log pt(y | xt)︸ ︷︷ ︸
to be est. by guidance

. (4)

When a pre-trained score network sθ(xt, t) ≈ ∇ log pt(xt), the remaining task is to estimate

∇xt log pt(y | xt) and add it as a “guidance” G to the backward process (Module 1).

6

Classifier and Classifier-Free Guidance Classifier guidance (Song et al., 2020c; Dhariwal

and Nichol, 2021) is a approach for sampling from P (X|Y = y) when Y is a discrete label. This

method estimates ∇xt log pt(y | xt) by training auxiliary classifiers, denoted as p̂(y | xt, t), and then

computing the gradient of the classifier logits as the guidance, i.e., G(xt, t) = ∇xt log p̂(y | xt, t). An
alternative is the classifier-free guidance method (Ho and Salimans, 2022), which jointly trains a

conditional and an unconditional diffusion model, and combine the two score estimates via a form

of guidance to generate samples.

Notations For a random variable X, Px represents its distribution, and p(x) denotes its density

function. For X, Y jointly distributed, P (X | Y = y) denotes the conditional distribution, and p(x |
y) denotes its density function. We use the notation E[x | y] for the conditional expectation. Let D
be the pre-training data, and let ED be the empirical expectation over D. Let µ̄ and Σ̄ denote the

data’s empirical mean and covariance matrix, i.e., µ̄ := Ex∈D[x] and Σ̄ := Ex∈D
[
(x− µ̄)(x− µ̄)⊤

]
.

For a matrix A, we denote by Span(A) the subspace spanned by its column vectors. For a square

matrix A, we denote by A−1 its inverse or Moore–Penrose inverse. For any differentiable function

f : Rn → Rm, ∇f ∈ Rm×n denotes Jacobian matrix, i.e., (∇f)ij =
∂fi(x)
∂xj

.

4 A Primer on Gradient Guidance

Suppose we have a pre-trained diffusion model where the score network sθ(xt, t) provides a good

approximation to the true score function log p(xt). Then this diffusion model is viewed as an implicit

density estimator of the pre-training data’s distribution. Its backward process (2) generates samples

from this estimated distribution (Oko et al., 2023; Chen et al., 2023a).

Now suppose we want to generate novel samples with desired properties that can be measured

by a differentiable function f . We will refer to f as a reward or objective function later on, and it

is often user-specified. Motivated by the gradient methodology in optimization, a natural, intuitive

way for adding guidance is to steer the generated samples towards the steepest ascent direction of

f (Bansal et al., 2023; Clark et al., 2023). This motivates the following guided backward process

(Module 1):

dX←t =

[
1

2
X←t + sθ(X

←
t , T − t)+G(X←t , t)

]
dt+ dW t.

Here the guidance term G is what we focus on and wish to design. Specifically, we want to construct

this guidance term G based on the gradient ∇f of a general objective f .

4.1 Subspace Data and Score Decomposition

Real-world data often has rich intrinsic structures. These structures can be induced by local

regularities, global symmetries, and repetitive patterns (Tenenbaum et al., 2000; Roweis and Saul,

2000) and are often low-dimensional (Pope et al., 2021). The power of diffusion models is to

model the latent distribution and generate novel samples that preserve important characteristics

of real-world data. If we blindly improve f at the cost of losing these characteristics, the quality of

new samples would degrade dramatically. This quality degradation, also known as “reward over-

optimization”, is a common challenge for adapting diffusion models towards an external reward

(Yuan et al., 2023; Uehara et al., 2024).

7

We aim to design gradient guidance to improve objective function while mitigating the risk of

over-optimization. To this end, we focus on data that admits a low-dimensional latent subspace.

Let us make the following assumption.

Assumption 1 (Subspace Data). Data X ∈ RD can be represented as X = AU , where A ∈ RD×d

is an unknown matrix and the latent variable U ∈ Rd follows some distribution Pu with a density

pu. Here d ≪ D. We assume the empirical covariance of U is full rank.

Under Assumption 1, the score function ∇ log pt(x) decomposes to two orthogonal parts: an

on-support component belonging to the subspace; and an orthogonal component. We recall this

key result in Proposition 1.

Proposition 1 (Score Decomposition for Subspace Data (Chen et al. (2023a) Lem. 1, Thm. 3)).

Under Assumption 1, the score function ∇ log pt(x) decomposes as

∇ log pt(x) = A∇ log pLDt (A⊤x)︸ ︷︷ ︸
s∥(A⊤x,t): on-support score

− 1

h(t)

(
ID −AA⊤

)
x

︸ ︷︷ ︸
s⊥(x,t): ortho. score

. (5)

where pLDt (u′) =
∫
ϕt(u

′|u)pu(u) du with ϕt(·|u) being the density of N (α(t)u, h(t)Id) for the same

α(t) and h(t) in the forward process (1).

According to Chen et al. (2023a), pre-training a score function on subspace data takes advantage

of the decomposition given by (5) and learns the latent subspace. When the pre-trained score

network is used to generate new samples, the backward sampling process also decomposes into

two orthogonal processes due to (5). Analysis of this backward process proves that the generated

output would remain proximal to the latent subspace. This explains why diffusion models can learn

and preserve data’s underlying characteristics. We refer interested readers to Chen et al. (2023a)

for more discussions.

In the rest of this section, we investigate the principles for designing a guidance based on the

gradient of f that ensures generated samples (i) improve the value of f , and at the same time, (ii)

adhere to the subspace structure, i.e. generated samples being close to the subspace spanned by A.

4.2 Naive Gradient Does’t Work as Guidance

Motivated by the gradient optimization methodology, a natural, intuitive way for adding guidance

is to steer the generated samples towards the steepest ascent direction of f (Bansal et al., 2023;

Clark et al., 2023). Therefore, a tempting simple choice of the guidance G is the steepest ascent

direction, which we refer to as naive gradient guidance i.e.,

G(X←t , t) ∝ ∇f(X←t). (6)

This naive choice of guidance signal G would steer the movement of the original backward process

towards the direction that increases f .

However, the naive gradient guidance (6) is never adopted in practice; existing methods have

to resort to more sophisticated forms of guidance or more computationally demanding fine-tuning

methods; for example Bansal et al. (2023); Uehara et al. (2024); Marion et al. (2024). Introducing

gradient information indiscriminately into the backward SDE has the risk of potentially leading the

8

<latexit sha1_base64="bcQ/eNp79YODvDvdj6LzPoTKPj0=">AAAB/HicbVBLSgNBFHwTfzH+oi7dNAbBVZgRiS6DblwmYD6QDKGnp5M06fnQ/UYIQ7yAW72BO3HrXbyA57AnmYVJLGgoqt7jVZcXS6HRtr+twsbm1vZOcbe0t39weFQ+PmnrKFGMt1gkI9X1qOZShLyFAiXvxorTwJO8403uM7/zxJUWUfiI05i7AR2FYigYRSM1cVCu2FV7DrJOnJxUIEdjUP7p+xFLAh4ik1TrnmPH6KZUoWCSz0r9RPOYsgkd8Z6hIQ24dtN50Bm5MIpPhpEyL0QyV/9upDTQehp4ZjKgONarXib+5/USHN66qQjjBHnIFoeGiSQYkezXxBeKM5RTQyhTwmQlbEwVZWi6Wbri6yzarGSKcVZrWCftq6pTq9aa15X6XV5REc7gHC7BgRuowwM0oAUMOLzAK7xZz9a79WF9LkYLVr5zCkuwvn4BBQqVgA==</latexit>

t

Pre-trained

Random
Noise

Large
Reward
Region

Gradient Direction

Subspace

Naive Gradient
Guidance

Off Subspace

Figure 2: Directly adding the gradient of the objective function to the backward sampling

process sabotages the subspace structure. Left: When gradients are pointing out of the data subspace,

adding them directly to the backward SDE will make samples go off the subspace. Right: Numerical

experiments show that naive gradients lead to substantially larger off-subspace error compared to our gradient

guidance Gloss(Definition 1); see Section 7 for experiment details.

stochastic denoising process to divergence, and compromising the data structures learned during

pre-training.

Let us suppose the data distribution is supported on a low-dimensional subspace as in Assump-

tion 1. We explain why naive gradients do not work as guidance. With subspace data, the score

function would steer the distribution towards concentrating onto the latent subspace, due to its

special decomposition form given by Proposition 1. We refer interested readers to Chen et al.

(2023a) for detailed analysis of this phenomenon.

However, naive gradient vectors can be pointing towards any direction, not limited to within the

latent subspace. Thus directly adding gradient guidance to the backward process could jeopardize

the decomposition form of the score function, and it would also jeopardize the latent structure in

the generated output. See Figure 2 for illustration and experiment results. The failure of naive

gradient motivates us to seek robust alternatives.

4.3 Motivating Gradient Guidance from Conditional Score Function

We want to study how to add guidance to the sampling process utilizing the gradient of f . To

motivate our design of guidance, we start with the most elementary Gaussian probabilistic model.

Later we will drop this assumption and consider general data distributions and general f .

Assumption 2 (Gaussian model). Let data follow a Gaussian distribution, i.e., X ∼ N (µ,Σ),

and let f(x) = g⊤x be a linear function for some g ∈ RD. Let Y = f(X) + ϵ with independent,

identically distributed noise ϵ ∼ N (0, σ2) for some σ > 0.

To generate samples from P (X|Y = y), we need to train a diffusion model with a conditional

score function. By the Bayes’ rule, the conditional score function takes the form of a sum given by

∇xt log pt(xt | y) = ∇ log pt(xt)︸ ︷︷ ︸
est. by sθ(xt,t)

+ ∇xt log pt(y | xt)︸ ︷︷ ︸
to be est. by guidance

. (recall (4))

Now if we already have a pre-trained score function sθ, the remaining task is to estimate the second

9

term log pt(y | xt). Under the Gaussian assumption, we derive the following closed-form conditional

score. The proof is provided in Appendix B.1.

Lemma 1 (Conditional score gives a gradient-like guidance). Under Assumption 2, we have

∇xt log pt(y|xt) = β(t)
[
y − g⊤E[x0|xt]

]
·
(
α2(t)Σ + h(t)ID

)−1
Σg, (7)

where E[x0|xt] denotes the conditional expectation of x0 given xt in the forward process (1), α(t) =

e−t/2, h(t) = 1− e−t as in (1), and β(t) = α(t)/(σ2 + g⊤Σ−1
(
ID + α2(t)/h(t) · Σ

)−1
g).

Observe that, when Σ = I, (7) suggests the following form of guidance that is aligned with the

naive gradient, i.e., the steepest ascent direction:

G(xt, t) ∝
[
y − g⊤E[x0|xt]

]
· g.

However, even for Gaussian distributions, as long as Σ ̸= I, the term of (7) is no longer proportional

to g but becomes a pre-conditioned version of the gradient.

Figure 3: Plot of β(t), α(t), h(t) for

t ∈ [0, 10] when Σ = I.

Another observation is that this guidance scales with a

residual term y − g⊤E[x0 | xt]. In particular, the residual

term y − g⊤E[x0 | xt] tunes the strength of guidance. Recall

E[x0 | xt] denotes the posterior expectation of clean data x0
given xt in the forward process. Thus, in a backward view,

E[x0 | xt] coincides with the expected sample to be generated

conditioned on xt. In this sense, the quantity y − g⊤E[x0 | xt]
measures a look-ahead gap between the expected reward of

generated samples and the target value. A larger absolute

value of the residual means stronger guidance in the backward

generation process.

We plot the theoretical choice of β(t) and α(t), h(t) to t in

Figure 3. In practice, the choice of α(t), h(t) can vary and they are determined by the forward

process used for pre-training; and β(t) can be treated as a tuning parameter to adjust the strength

of guidance.

4.4 Construct Gradient Guidance to Preserve Latent Subspace

When the data distribution is supported on a latent subspace, directly adding gradient guidance

to the backward sampling process could jeopardize the data’s latent structure. We saw that this

would lead to over-optimization, as illustrated in Figure 2.

To remedy such an issue, we propose the following modification to the gradient guidance. This

modified gradient guidance takes advantage of a given score function.

Definition 1 (Gradient Guidance of Look-Ahead Loss). Given a gradient vector g, define the

gradient guidance of look-ahead loss as

Gloss(xt, t) := −β(t) · ∇xt

(
y − g⊤E[x0|xt]

)2
, (8)

where β(t) > 0, y ∈ R are tuning parameters, and E[x0|xt] is the conditional expectation of x0 given

xt in the forward process (1), i.e., dXt = −1
2q(t)Xt dt+

√
q(t) dWt.

10

The formula of (8) generalizes the intuition of a conditional score to work with any data dis-

tribution and objective function. The look-ahead loss (y − g⊤E[x0|xt])2 resembles the proximal

term commonly used in first-order proximal optimization methods. It is worth noting that Gloss
coincides with the forward universal guidance ∇xtℓ(y, f(Ê[x0|xt])) proposed by Bansal et al. (2023)

((8) in their paper) when ℓ is the square loss and f = g⊤x.

When the pre-training data distribution is Gaussian, the gradient guidance (8) is equivalent

to Lemma 1 equation (7). This equivalence is a side-product from the proof of Lemma 1 and we

provide a sketch here (see details in Appendix B.1). Given the probabilistic model Assumption 2,

∇xt log pt(y|xt), the quantity to be estimated by guidance, is the score of a Gaussian distribution

N
(
my(xt), σ

2
y(xt)

)
, with my(xt) and σ2

y(xt) being mean and variance of the conditional distribution

Y | Xt = xt respectively, i.e.,

∇xt log pt(y | xt) = −∇xt

[
1

2

(
y −my(xt)

σy(xt)

)2
]
−∇xt log σy(xt), (9)

with my(xt) = g⊤E[x0 | xt] and σy(xt) not depending on xt. Thus we see Gloss is equivalent to (7).

A key advantage of Gloss is that it enables preserving the subspace structure, for any data

distribution under Assumption 1. This result is formally stated in the following theorem, we

provide a proof sketch here and the full proof is in Appendix B.2.

Theorem 1 (Faithfulness of Gloss to the Low-Dimensional Subspace of Data). Under Assumption 1,

it holds for any data distribution and g ∈ RD that

Gloss(xt, t) ∈ Span(A). (10)

Proof Sketch We have

∇xt

(
y − g⊤E[x0|xt]

)2
∝ ∇xtE[x0|xt]⊤g.

Note here that ∇xtE[x0|xt] is the Jacobian matrix of E[x0|xt], which is a mapping from RD to RD.

We will show that the Jacobian ∇xtE[x0|xt] maps any vector g ∈ RD to Span(A).

To see this, we utilize the score decomposition result of Proposition 1 which is

∇ log pt(xt) = A∇ log pLDt (A⊤xt)−
1

h(t)

(
ID −AA⊤

)
xt. (recall (5))

Plugging (5) into the equality E[x0|xt] =
1

α(t)
(xt + h(t)∇ log pt(xt)) (Tweedie’s formula (Efron,

2011)), we have

E[x0|xt] =
1

α(t)

(
xt + h(t)

[
Am(A⊤xt)−

1

h(t)
xt

])
=

h(t)

α(t)
Am(A⊤xt), (11)

here we denote for short m(u) := ∇ log pLDt (u) + 1
h(t)u. From (11), we see that ∇xtE[x0|xt]⊤ maps

any vector to Span(A) because m(·) takes A⊤xt as input in the expression of E[x0|xt]. ■

We highlight that the faithfulness of Gloss holds for arbitrary data distribution supported on the

latent subspace. It takes advantage of the score function’s decomposition (5), having the effect of

automatically adapting g onto the latent low-dimensional subspace of data.

11

4.5 Estimation and Implementation of Gloss

Theorem 1 asserts that the gradient guidance given by Definition 1 provably preserves the subspace

structure of data. However, Gloss is not immediately available to compute and it involves the

unknown quantity E[x0|xt]. Next, we discuss the estimation and computation of Gloss based on a

pre-trained score function sθ in practice.

First, we need to estimate the quantity E[x0|xt]. It is the conditional expectation of x0 given

xt in the forward process, thus it depends on the pre-training data distribution. One can construct

estimate E[x0|xt] based on the pre-trained score network sθ, by using the Tweedie’s formula (Efron,

2011):

∇ log pt(xt) = −E
[
xt − α(t)x0

h(t)

∣∣xt
]
. (12)

Suppose we have a given pre-trained score network that approximates the ground truth, i.e.,

sθ(xt, t) ≈ ∇ log pt(xt). Then a natural estimator of Ê[x0|xt] is given by

Ê[x0|xt] :=
1

α(t)
(xt + h(t)sθ(xt, t)) , (13)

and we refer to it as the look-ahead estimator. The estimator (13) is widely adopted in practice

(Song et al., 2020a; Bansal et al., 2023). Here α(t) and h(t) are the noise scheduling used in the

forward process (1).

Thus, we have obtained an implementable version of the gradient guidance Gloss, given

by

Gloss(xt, t) = −β(t) · ∇xt

(
y − g⊤

(
1

α(t)
(xt + h(t)sθ(xt, t))

))2

, (14)

With a slight abuse of notation, we use Gloss to refer to this implementable formula (14) in the

remainder of this paper.

……
Square Loss

<latexit sha1_base64="MCfCyllmUav/6OdNRyRNfCVSfv8=">AAAB/3icbVDLSsNAFJ34rPVVdelmsAh1UxLxtSy6cVnBPqANZTKZNEMnkzBzI5TQhT/gVv/Anbj1U/wBv8NJm4VtPTBwOOde7pnjJYJrsO1va2V1bX1js7RV3t7Z3duvHBy2dZwqylo0FrHqekQzwSVrAQfBuoliJPIE63iju9zvPDGleSwfYZwwNyJDyQNOCeRSWIOzQaVq1+0p8DJxClJFBZqDyk/fj2kaMQlUEK17jp2AmxEFnAo2KfdTzRJCR2TIeoZKEjHtZtOsE3xqFB8HsTJPAp6qfzcyEmk9jjwzGREI9aKXi/95vRSCGzfjMkmBSTo7FKQCQ4zzj2OfK0ZBjA0hVHGTFdOQKELB1DN3xdd5tEnZFOMs1rBM2ud156p++XBRbdwWFZXQMTpBNeSga9RA96iJWoiiEL2gV/RmPVvv1of1ORtdsYqdIzQH6+sXnImWVg==</latexit>

h(t)
<latexit sha1_base64="Ogxow3Zrphfic4L4LQYhmBz4QaU=">AAACCXicbVDLSsNAFJ3UV62vqks3g0WoC0sivpZFNy4r2Ae0aZlMJu3QyYOZG6GEfIE/4Fb/wJ249Sv8Ab/DSZuFbT1w4XDOvdzDcSLBFZjmt1FYWV1b3yhulra2d3b3yvsHLRXGkrImDUUoOw5RTPCANYGDYJ1IMuI7grWd8V3mt5+YVDwMHmESMdsnw4B7nBLQUr9HRDQi/eTMSqtwOihXzJo5BV4mVk4qKEdjUP7puSGNfRYAFUSprmVGYCdEAqeCpaVerFhE6JgMWVfTgPhM2ck0dYpPtOJiL5R6AsBT9e9FQnylJr6jN30CI7XoZeJ/XjcG78ZOeBDFwAI6e+TFAkOIswqwyyWjICaaECq5zorpiEhCQRc198VVWbS0pIuxFmtYJq3zmnVVu3y4qNRv84qK6Agdoyqy0DWqo3vUQE1EkUQv6BW9Gc/Gu/FhfM5WC0Z+c4jmYHz9Agzbmmg=</latexit>

↵�1(t)
<latexit sha1_base64="MXp+DKiSlYDt69Es0RllC16jzLc=">AAAB/nicbVDLSsNAFL3xWeur6tJNsAiuSiK+lkU3LivaB7ShTCaTduhkEmZuxFIK/oBb/QN34tZf8Qf8DidtFrb1wMDhnHu5Z46fCK7Rcb6tpeWV1bX1wkZxc2t7Z7e0t9/Qcaooq9NYxKrlE80El6yOHAVrJYqRyBes6Q9uMr/5yJTmsXzAYcK8iPQkDzklaKT7py52S2Wn4kxgLxI3J2XIUeuWfjpBTNOISaSCaN12nQS9EVHIqWDjYifVLCF0QHqsbagkEdPeaBJ1bB8bJbDDWJkn0Z6ofzdGJNJ6GPlmMiLY1/NeJv7ntVMMr7wRl0mKTNLpoTAVNsZ29m874IpRFENDCFXcZLVpnyhC0bQzcyXQWbRx0RTjztewSBqnFfeicn53Vq5e5xUV4BCO4ARcuIQq3EIN6kChBy/wCm/Ws/VufVif09ElK985gBlYX7+msJZq</latexit>xt

Gradient

Compute
<latexit sha1_base64="qEXaESVr1fTBbnNbrKvEPvC+E8A=">AAACGHicbVDLSsNAFJ34rPVVddnNYBFclUSkuiyK4LKCfUAawmQybYdOHszcSEvMwt/wB9zqH7gTt+78Ab/DSduFbT0wcDjnXu6Z48WCKzDNb2NldW19Y7OwVdze2d3bLx0ctlSUSMqaNBKR7HhEMcFD1gQOgnViyUjgCdb2hte5335gUvEovIdxzJyA9EPe45SAltxSuTsgkHYDAgPPS2+yzB65Jn7EIxcct1Qxq+YEeJlYM1JBMzTc0k/Xj2gSsBCoIErZlhmDkxIJnAqWFbuJYjGhQ9JntqYhCZhy0sknMnyiFR/3IqlfCHii/t1ISaDUOPD0ZJ5WLXq5+J9nJ9C7dFIexgmwkE4P9RKBIcJ5I9jnklEQY00IlVxnxXRAJKGge5u74qs8WlbUxViLNSyT1lnVqlVrd+eV+tWsogIqo2N0iix0geroFjVQE1H0hF7QK3ozno1348P4nI6uGLOdIzQH4+sXngagnw==</latexit>

Ê[x0|xt]

Gradient w.r.t <latexit sha1_base64="MXp+DKiSlYDt69Es0RllC16jzLc=">AAAB/nicbVDLSsNAFL3xWeur6tJNsAiuSiK+lkU3LivaB7ShTCaTduhkEmZuxFIK/oBb/QN34tZf8Qf8DidtFrb1wMDhnHu5Z46fCK7Rcb6tpeWV1bX1wkZxc2t7Z7e0t9/Qcaooq9NYxKrlE80El6yOHAVrJYqRyBes6Q9uMr/5yJTmsXzAYcK8iPQkDzklaKT7py52S2Wn4kxgLxI3J2XIUeuWfjpBTNOISaSCaN12nQS9EVHIqWDjYifVLCF0QHqsbagkEdPeaBJ1bB8bJbDDWJkn0Z6ofzdGJNJ6GPlmMiLY1/NeJv7ntVMMr7wRl0mKTNLpoTAVNsZ29m874IpRFENDCFXcZLVpnyhC0bQzcyXQWbRx0RTjztewSBqnFfeicn53Vq5e5xUV4BCO4ARcuIQq3EIN6kChBy/wCm/Ws/VufVif09ElK985gBlYX7+msJZq</latexit>xt

+

<latexit sha1_base64="JjNjoyy08E2STahQ+0GXQtFmlqw=">AAACDnicbVDLSsNAFJ34rPWV6tJNsAgVpCTia1l047KCfUAbwmQyaYdOHszcqCXkH/wBt/oH7sStv+AP+B1O2ixs64ELh3Pu5R6OG3MmwTS/taXlldW19dJGeXNre2dXr+y1ZZQIQlsk4pHoulhSzkLaAgacdmNBceBy2nFHN7nfeaBCsii8h3FM7QAPQuYzgkFJjl6RTtqHIQWc1Z4cOIFjR6+adXMCY5FYBamiAk1H/+l7EUkCGgLhWMqeZcZgp1gAI5xm5X4iaYzJCA9oT9EQB1Ta6SR6ZhwpxTP8SKgJwZiofy9SHEg5Dly1GWAYynkvF//zegn4V3bKwjgBGpLpIz/hBkRG3oPhMUEJ8LEimAimshpkiAUmoNqa+eLJPFpWVsVY8zUskvZp3bqon9+dVRvXRUUldIAOUQ1Z6BI10C1qohYi6BG9oFf0pj1r79qH9jldXdKKm300A+3rF54PnFQ=</latexit>

s✓(xt, t)
<latexit sha1_base64="8RbS992UirR97//cna4GH7idu+Q=">AAAB/HicbVBLSgNBFHwTfzH+oi7dNAbBVZgRiS6DblwmYD6QDKGn503SpOdDd48QQryAW72BO3HrXbyA57AnmYVJLGgoqt7jVZeXCK60bX9bhY3Nre2d4m5pb//g8Kh8fNJWcSoZtlgsYtn1qELBI2xprgV2E4k09AR2vPF95neeUCoeR496kqAb0mHEA86oNlJzOChX7Ko9B1knTk4qkKMxKP/0/ZilIUaaCapUz7ET7U6p1JwJnJX6qcKEsjEdYs/QiIao3Ok86IxcGMUnQSzNizSZq383pjRUahJ6ZjKkeqRWvUz8z+ulOrh1pzxKUo0RWxwKUkF0TLJfE59LZFpMDKFMcpOVsBGVlGnTzdIVX2XRZiVTjLNawzppX1WdWrXWvK7U7/KKinAG53AJDtxAHR6gAS1ggPACr/BmPVvv1of1uRgtWPnOKSzB+voF8EOVcw==</latexit>g

<latexit sha1_base64="O0NxyODe2aaQyeBYzgsnxedhThE=">AAACJ3icbVDLSsNAFJ3UV62vqEs3g0VQwZKIr2VRBJcKVgtNDJPptB06eTBzI4aYf/A3/AG3+gfuRJdu/A4ntQtbPTBwOOde7pnjx4IrsKwPozQxOTU9U56tzM0vLC6ZyytXKkokZQ0aiUg2faKY4CFrAAfBmrFkJPAFu/b7J4V/fcuk4lF4CWnM3IB0Q97hlICWPHN7M8U7uHvjQBRjp0cgcwICPd/PTvO8dedZ+B7feeBu3ex6ZtWqWQPgv8Qekioa4twzv5x2RJOAhUAFUaplWzG4GZHAqWB5xUkUiwntky5raRqSgCk3G/wpxxtaaeNOJPULAQ/U3xsZCZRKA19PFoHVuFeI/3mtBDpHbsbDOAEW0p9DnURgiHBREG5zySiIVBNCJddZMe0RSSjoGkeutFURLa/oYuzxGv6Sq92afVDbv9ir1o+HFZXRGlpHm8hGh6iOztA5aiCKHtATekYvxqPxarwZ7z+jJWO4s4pGYHx+A16DpY8=</latexit>

(y � g>Ê[x0|xt])
2

Figure 4: Computation of Gradient Guid-

ance Gloss.

The gradient guidance (14) has a light-weighted

implementation. Suppose the pre-trained score func-

tion sθ is given in the form of a neural network with

pre-trained weights. Computing (14) involves calcu-

lating the squared loss
(
y − g⊤Ê[x0|xt]

)2
via a for-

ward pass of the network sθ and a backward pass

utilizing the auto-gradient feature of deep-leaning

frameworks such as PyTorch and TensorFlow. See

Figure 4 for illustration.

Note that the value of y in Gloss is a target reward

value, inherited from the conditional score analysis under a Gaussian model. In practice, we treat y

as a tuning parameter. In our theoretical analysis, we will specify the choices of y, β(t) and provide

guarantees for general optimization beyond the Gaussian model.

So far, we have finally obtained a gradient guidance (14) that is both implementable and faithful

to data’s latent subspace. The next step is to apply this gradient guidance and use it to adapt

the generation process of a pre-trained diffusion model. Let us find out what one can obtain using

gradient-guided diffusion models.

12

5 Gradient-Guided Diffusion Model as Regularized Optimizer

In this section, we study whether gradient guidance steers a pre-trained diffusion model to generate

samples of near-optimal objective values. We provide a positive answer and our results are

twofold: 1) We demonstrate that iteratively applying gradient guidance improves the generated

samples towards higher objective values; 2) The pre-trained diffusion model acts as a form of

regularization from an optimization perspective.

5.1 Gradient-Guided Generation with A Pre-trained Score

Assume access to a pre-trained score network sθ and gradient information of the objective function

f . Let us present our Algorithm 1 that adapts the pre-trained diffusion model and iteratively

updates the gradient guidance (14). The gradient guidance is able to steer the backward sampling

process towards generating new samples with higher values of f . See Figure 1 for illustration.

Algorithm 1 takes as input any pre-trained score function sθ(x, t) and adapts the backward

sampling process with gradient guidance. In each iteration, it evaluates ∇f(·) at samples generated

from the previous iteration (Line 5(i)), and then computes the gradient guidance Gloss using the

newly queried gradient (Line 5(ii)). Using the updated gradient guidance, the backward process

then generate new samples with improved objective values (Module 1). At the end of iterations, the

algorithm outputs an adapted version of the diffusion model, specified by (sθ, GK), which generates

samples with near-optimal objective values.

Algorithm 1 Gradient-Guided Diffusion for Generative Optimization

1: Input: Pre-trained score network sθ(·, ·), differentiable objective function f .

2: Tuning Parameter: Strength parameters β(t), {yk}K−1k=0 , number of iterations K, batch sizes {Bk}.
3: Initialization: G0 = NULL.

4: for k = 0, . . . ,K − 1 do

5: Generate: Sample zk,i ∼ Guided BackwardSample(sθ, Gk) using Module 1, for i ∈ [Bk].

6: Compute Guidance:

(i) Compute the sample mean z̄k := (1/Bk)
∑Bk

i=1 zk,i.

(ii) Query gradient gk = ∇f(z̄k).

(iii) Update gradient guidance Gk+1(·, ·) = Gloss(·, ·) via (8), using sθ, gradient vector gk, and param-

eters yk and β(t).

7: end for

8: Output: (sθ, GK).

It is worth highlighting that Algorithm 1 works with any pre-trained score network sθ(xt, t).

It retains the original score network and only updates the guidance term. The gradient guidance

changes the generation process by an additive term to the backward SDE, without having to re-train

the score network. Therefore, the algorithm is computationally efficient and easy to implement. We

experimented with Algorithm 1 using a pre-trained score network with about 15M parameters; see

Section 7 for details. In our experiment, a single run of the backward sampling process (Module 1)

takes 4.6s, and Algorithm 1 takes 76min overall. Thus it is a rather light-weighted algorithm to

implement and run.

13

5.2 Gradient-Guided Diffusion Converges to Regularized Optima

We analyze the convergence properties of Algorithm 1 and show that in final iterations, generated

samples center around a regularized solution of the optimization objective f . Our theorems allow

the pre-training data to have arbitrary distribution.

Assumption 3 (Concave smooth objective). The objective f : RD → R is concave and L-smooth

with respect to the (semi-)norm ∥·∥Σ̄−1, i.e., ∥∇f(x1)−∇f(x2)∥Σ̄ ≤ L ∥x1 − x2∥Σ̄−1 for any x1, x2.

While Algorithm 1 works with any pre-trained score network, we study its optimization prop-

erties focusing on the class of linear score functions given by

S =
{
s(x, t) = Ctx+ bt : Ct ∈ RD×D, bt ∈ RD

}
. (15)

Here (15) is a general linear function class. For comparison, a recent related paper Marion et al.

(2024) assumes a more restricted class with Ct ≡ I for when studying parameter optimization in

diffusion models. With a linear score function (15), pre-training a diffusion model is essentially the

same as using a Gaussian model to estimate the pre-training data distribution and then sampling

from this estimated Gaussian. In this case, the guidance Gloss is also linear in xt, therefore the final

output of the guided diffusion model also follows a Gaussian distribution; see (27) in Appendix C.

Recall we aim for an adapted diffusion model (sθ, GK) to generate samples with high values

of f . Thus, we focus on the mean of the generated distribution (taking T → ∞ in the backward

sampling process of (sθ, GK)), denoted by µK , and establish its optimization guarantee.

Theorem 2 (Convergence to Regularized Maxima in Mean). Let Assumption 3 hold, and let the

pre-training data D have arbitrary distribution with covariance matrix Σ̄ ≻ 0. Suppose the score

function sθ is pre-trained via minimizing the score matching loss (3) over the linear function class

(15). Let Alg. 1 take sθ(·, ·) and f as the input. For any λ > L, there exists {β(t)}, {yk}, {Bk}
such that, with probability ≥ 1 − δ , the mean of the output distribution µK converges to be near

x∗λ, and

f (x∗λ)− f(µK) = λ

(
L

λ

)K

O
(
D log

(
K

δ

))
, (16)

where D is the ambient dimension of data, and x∗λ is a regularized maximizer of f given by

x∗λ = argmax
x∈RD

{
f(x)− λ

2
∥x− µ̄∥2Σ̄−1

}
, (17)

where µ̄, Σ̄ are empirical mean and covariance of pre-training data D.

Proof Sketch Solving the score matching problem (3) with a linear function class (15) yields a

pre-trained score as follows

sθ(xt, t) = −
(
α2(t)Σ̄ + h(t)ID

)−1
(xt − α(t)µ̄) .

With proper choices of β(t), gradient guidance Gloss leads to the following output distribution at

the end of round k:

N
(
µ̄+

yk − g⊤k µ̄

σ2 + g⊤k Σ̄gk
Σ̄gk, Σ̄− Σ̄gkg

⊤
k Σ̄

σ2 + g⊤k Σ̄gk

)
.

14

Thus, we obtain the mean of the above distribution, i.e., µk+1 = µ̄ + ηkΣ̄∇f(z̄k), where z̄k is the

empirical mean of previous samples, ηk is a stepsize determined by yk. By a rearrangement, we

obtain a recursive formula

µk+1 = z̄k + ηkΣ̄
[
∇f(z̄k)− η−1k Σ̄−1 (z̄k − µ̄)

]
. (18)

We observe that (18) resembles a gradient ascent update from µk ≈ z̄k to µk+1 corresponding to

a regularzed optimization problem (17). In this regularized objective, the original objective f(x)

incorporates an additional proximal term with λ := 1/ηk. Therefore we can analyze the convergence

of µk by following the classical argument for gradient optimization. The full proof is provided in

Appendix C.1

Remarks. This view of regularized optimization gives the following insights on gradient-guided

diffusion models:

(i) The regularization term
λ

2
∥x− µ̄∥2Σ̄−1 in (17) is centered at the data’s mean µ̄. It penalizes

samples that are far away from the pre-training data. The norm ∥·∥Σ̄−1 suggests the regularization

is strong in the direction where the original data distribution has low variance. In other words,

it reveals that the pre-trained score function acts as a form of “prior” in the guided generation

process. This prior favors samples that are proximal to its pre-training data distribution, even

when additional guidance are present.

(ii) The regularization term cannot be made arbitrarily small. In particular, our theorem requires

that λ ≥ L. This demonstrates a limit of adapting diffusion models with guidance. As long as

the score function stays unchanged, one cannot extrapolate from the pre-training data unlimitedly

by solely adding gradient guidance. As a consequence, we cannot simply add gradient guidance

to a diffusion model in order to reach the global maxima of any objective function. If the goal is

to reach global optima, one has to update the pre-trained score network and refine it with newly

collected data, we explore this approach in Section 6.

(iii) The linear convergence rate (16) is determined jointly by the smoothness of the objective

function and strength of the regularization. We also pay a linear factor in the dimension D. In

the following subsection, we will show that the gradient guidance Gloss can reduce the dimension

dependence from D to d if the data admits a latent low-dimensional subspace.

5.3 Gradient Guidance for Optimization in Latent Spaces

Next we focus on data with latent subspace as in Assumption 1. In the next theorem, we show that

the generated distribution of our adapted model would converge, in expectation, to the maxima of

a regularized version of f within the subspace Span(A).

Theorem 3 (Convergence to Regularized Maxima in Latent Subspace in Mean). Let Assumptions

1 and 3 hold. Suppose we use the score function class (15) for pre-training and computing guidance.

Then Alg.1 gives an adapted diffusion model that generates new samples that belong to Span(A).

Further, for any λ > L, there exists β(t), {yk} and batch size Bk, such that with high probability

1− δ, the mean of the output distribution µK converges to be near x∗A,λ, and it holds

f
(
x∗A,λ

)
− f(µK) = λ

(
L

λ

)K

O
(
d log

(
K

δ

))
,

15

where x∗A,λ is an optimal solution of the regularized objective:

x∗A,λ = argmax
x∈Span(A)

{
f(x)− λ

2
∥x− µ̄∥2Σ̄−1

}
. (19)

Recall that the gradient guidance Gloss is faithful to the data’s latent subspace, as proved in

Theorem 1. As a result, the gradient-guided backward process maintains this latent subspace

structure in the generated output. Therefore, all the generated samples and optimization iterates

of Algorithm 1 belong to the latent subspace Span(A). In other words, the entire optimization

process happens in the latent low-dimensional subspace. This facilitates a coherent and more

efficient exploration in the solution space. Comparing to Theorem 2, the optimization gap in

Theorem 3 is substantially smaller, reduced from O (D) to O (d). It means that the optimization

process leverages the latent subspace and converges much faster.

Finally we note that Theorem 3 only establishes convergence in mean. The final output dis-

tribution of Algorithm 1, with a linear score function, is a Gaussian distribution supported on the

latent subspace; see Appendix C equation (27).

6 Gradient-Guided Diffusion with Adaptive Fine-Tuning for Global

Optimization

In the previous section, we have seen that adding guidance to a pre-trained diffusion model cannot

improve the objective function unlimitedly. The pre-trained score function would act as a form of

prior to keep the generated output proximal to the original data’s distribution. This leads to a

regularization term in the optimization formulation.

Further, we consider adaptively fine-tuning the pre-trained diffusion model for generating sam-

ples to attain the unregularized global optima. The idea is not only to update the guidance in the

backward sampling process but also to use generated samples to fine-tune the pre-trained score net-

work. Empirically, fine-tuning diffusion models utilizing self-generated samples has been explored

by Black et al. (2023); Clark et al. (2023).

6.1 Adaptive Fine-Tuning Algorithm with Gradient Guidance

We propose an adaptive version of the gradient-guided diffusion, where both the gradient guidance

and the score networks are iteratively updated utilizing self-generated samples. The full algorithm

is given in Algorithm 2.

We introduce a weighting scheme to fine-tune the score network using a mixture of pre-training

data and newly generated samples. In Round k, let D1, . . . ,Dk be sample batches generated from

the previous rounds. Let {wk,i}ki=0 be a set of weights. Conceptually, at Round k, we update the

model by minimizing the weighted score matching loss:

min
s∈S

∫ T

0

k∑

i=0

wk,iEx0∈DiExt|x0

[
∥∇xt log ϕt(xt|x0)− s(xt, t)∥22

]
dt, (20)

where D0 := D is the pre-training data. For illustration of this algorithm, please see also Figure 1.

In practice, to update the score network incorporating newly generated data, one does not have

to exactly solve (20) by re-training the full model from scratch. Instead, (20) can be viewed as a

16

guideline that motivates more computationally efficient ways for updating the pre-trained score.

It is a common practice to only fine-tune the weights of the old model by performing gradient

descent over a few batches of newly generated data, which is similar to the spirit of (20).

In our experiment, we implemented Algorithm 2 using a pre-trained U-net score function with

15M parameters and tested its performance on synthetic objectives. We implement the finetuning

step by making one single Adam step over the new data. In our experiment, the iterated fine-

tuning process of Algorithm 2 takes 91min overall, only slightly longer than the 76min taken by

Algorithm 1. For details on the experiment results, please see Section 7.

Algorithm 2 Gradient-Guided Diffusion with Adaptive Fine-tuning

1: Input: Pre-trained score sθ(·, ·), differentiable objective function f .

2: Tuning Parameter: strength parameter β(t), {yk}K−1k=0 , weights {{wk,i}ki=0}K−1k=0 , number of iterations

K, batch sizes {Bk}.
3: Initialize: sθ0 = sθ, G0 = NULL.

4: for k = 0, · · · ,K − 1 do

5: Generate: Sample a batch Dk = {zk,i}Bk

i=1 from Guided BackwardSample(sθk , Gk) (Module 1).

6: Compute Guidance:

(i) Compute sample mean z̄k = (1/Bk)
∑Bk

i=1 zk,i, and query gradient gk = ∇f(z̄k).

(ii) Update sθk to sθk+1
by minimizing the re-weighted objective (20).

(iii) Compute Gk+1(·, ·) = Gloss(·, ·) in (8), using sθk+1
and gk, with parameter yk, β(t).

7: end for

8: Output: (sθK , GK).

6.2 Guided Generation Finds Unregularized Global Optima

Finally, we analyze the optimization properties for gradient-guided diffusion model with iterative

finetuning. We establish that the process of Algorithm 2 yields a final output distribution whose

mean, denoted by µK , converges to the global optimum of f .

For simplicity of analysis, we study the following function class

S ′ =
{
s(x, t) = Ĉtx+ bt : bt ∈ RD

}
, (21)

where Ĉt is set to stay the same as in the pre-trained score and only bt gets updated during iterative

fine-tuning. Marion et al. (2024) studied a similar function class where Ĉt is freezed to be Ĉt ≡ I.

Theorem 4 (Convergence to Unregularized Maxima in Latent Subspace in Mean). Let Assump-

tions 1 and 3 hold, and assume there exists M > 0 such that
∥∥∥x∗A,λ

∥∥∥ < M for all λ ≥ 0. Suppose

we use the score function class (15) for pre-training sθ and the class (21) for finetuning it. Then

Algorithm 2 gives an adapted diffusion model that generates new samples belonging to Span(A).

Further, there exists {β(t)}, {yk} , {Bk} and {wk,i}, such that with probability 1− δ,

f∗A − f(µK) = O
(
dL2 logK

K
· log

(
K

δ

))
, (22)

where f∗A = max{f(x)|x ∈ Span(A)}.

The proof idea is similar to the proof of Theorem 2. For simplicity, we analyze the case where

only the most recent sample batch Dk is merged with D0 for finetuning the score function. More

17

specifically, we let wk,i = 0 for 0 < i < k and wk,0 = 1− wk,k. Similar to the proof of Theorem 2,

we obtain a recurisve update rule given by

µk+1 = z̄k + ηkΣ̄
[
∇f(z̄k)− (1− wk,k) η

−1
k · Σ̄−1 (z̄k − µ̄)

]
, (23)

where z̄k ≈ µk is the empirical mean of previous samples. This update rule also closely resembles

the gradient ascent iteration for maximizing a regularized objective. A key difference here is that

we can control the weights wk,i to reduce the impact of D0 and make the regularization term vanish

to zero. Thus the mean µk eventually converges to the global maxima. For the detailed arguments

and proof of convergence, we refer readers to Appendix C.3.

Theorem 4 illustrates the effect of finetuning a diffusion model using self-generated data. For

comparison, Theorem 3 showed that without finetuning the diffusion model can only generate new

samples proximal to the pre-training distribution. Now if we allow finetuning using self-generated

samples, the diffusion model can iteratively refines itself and reaches global optima, while preserving

the latent subspace structure in its generated output.

Now let us we take on an optimization view. The convergence rate suggested by Theorem 4

matches with that of standard convex optimization, in terms of their dependence on K the number

of gradient evaluations. Further, if we compare the guided diffusion model with a standard gradient

solver, the optimality gap of our algorithm scales with the small intrinsic dimension O(d), while

standard gradient ascent converges much more slowly due to the large ambient dimension O(D).

This comparison highlights the merits of “generative optimization”. More specifically, diffusion

models leverage pre-training data to learn their intrinsic characteristics. Therefore, when we add

gradient guidance to the pre-trained score function and use it for generation, it means that we

are solving an optimization problem in its own intrinsic low-dimensional space. This leads to

substantially more efficient exploration and faster convergence. This theoretical insight explains

the practical successes of guided diffusion models on complex optimization problems, such as video

creation, image synthesis and protein AI, where traditional methods do not work at all.

7 Numerical Experiments

We experiment with our design of the gradient guidance as well as Algorithm 1 and Algorithm 2.

Going beyond our theoretical assumptions, we adopt a 15M-parameter U-Net as the score function

class for training and fine-tuning our diffusion model.

7.1 Experiment Setup

We set the data’s ambient dimension as D = 64 and the linear subspace dimension as d = 16. The

linear subspace is represented by an orthogonal matrix A ∈ RD×d. We randomly generate a matrix

A and fix it once generated. After that, we sample a data point X by first randomly sampling a

latent variable U ∼ N (0, Id) and computing X = AU . We independently sample a total of 65536

data points as our pre-training data set. The objective functions considered in our experiments are

f1(x) = 10− (θ⊤x−3)2 and f2(x) = 5−0.5∥x− b∥. Here, θ and b are randomly generated and fixed

afterward. Since our data assumes a low-dimensional subspace representation, it is convenient to

decompose θ into θ⊥ = (I − AA⊤)θ and θ∥ = AA⊤θ, representing the off-support and on-support

components. We refer to ∥θ⊥∥∥θ∥∥
as the off/on-support ratio. Analogously, for a generated sample, we

can also define its off/on-support ratio. Clearly, a small off/on-support ratio indicates close vicinity

to the subspace.

18

Score Network Pre-training We utilize a version of the U-Net (Ronneberger et al., 2015),

with 14.8M trainable parameters. Note that this is a complicated network going beyond the linear

score function class considered in our theories. Following the implementation of Denoising Diffusion

Probabilistic Models (DDPM, Ho et al. (2020)), we train the U-Net o estimate the score function

∇ log pt, via minimizing the score matching loss introduced in Eqn. (3). We discretize the backward

process to have 200 time steps as in Nichol and Dhariwal (2021), and the U-Net is trained using

our generated data set for 20 epochs. We use Adam as the optimizer, set the batch size as 32, and

set the learning rate to be 10−4. After the pre-training phase, we confirmed that the data subspace

structure is well learned, as the generated samples using the pre-trained diffusion model have an

average off/on-support ratio of 0.039.

Implementation of Algorithm 1 In each iteration of Algorithm 1, we need to compute the

gradient guidance Gloss. We set the targeted y value at the k-th iteration as yk = δ + g⊤k zk, where

δk specifies the increment per iteration. The choice on δk is instance-dependent and we set it

via tuning for near-optimal in different experiments. For comparing naive gradient with gradient

guidance in Figure 5, we set δ = 0.2 and 0.9, respectively for using naive gradient G and gradient

guidance Gloss. In Figure 6, we choose δ to be (a) 0.05, (b) 0.2, (c) 1, and (d) 1, corresponding

to each panel. We initialize Algorithm 1 with a batch of 32 samples generated by the pre-trained

model. Each sample determines an optimization trajectory. We repeat Algorithm 1 for 5 times

with different random seeds and report the error bars.

Implementation of Algorithm 2 Algorithm 2 differs from Algorithm 1 in that it allows addi-

tional fine-tuning of the pre-trained score network. We adopt a computationally lightweight fine-

tuning strategy: We only perform one Adam optimization step using the re-weighted loss given by

Eqn. (20) with a batch of 32 generated samples. We set the learning rate as 10−6. This simple

strategy already demonstrates good performances as shown in Figure 7. Other implementation

details are kept the same as those of Algorithm 1.

We run all experiments using one NVIDIA A100 GPU. Module 1 takes 4.6 seconds to generate

a sample. Algorithm 1 takes 76 minutes, and Algorithm 2 takes 91 minutes.

7.2 Results

We first demonstrate our gradient guidance Gloss preserves the subspace structure learned from the

pre-trained model. For comparison, we also tested the naive guidance G defined following Lemma 1

(with Σ = I). For a quick reference, we repeat the definition here:

G(xt, t) := β(t)
(
y − g⊤E[x0|xt]

)
g,

where β(t) > 0 and y ∈ R are tuning parameters, and E[x0|xt] is the conditional expectation of x0
given noise corrupted data xt. For implementation, we replace E[x0|xt] by its look-ahead estimator

Ê[x0|xt] based on the Tweedie’s formular.

Comparing G and Gloss on Preserving Subspace Structure Figure 5(a), (c) verify that the

naive gradient G performs much worse than Gloss in preserving the linear subspace structure. It is

consistent with our theoretical finding that the gradient guidance Gloss keeps the generated sample

close to the latent subspace, with substantially smaller off-support errors. When allowing adaptive

19

score fine-tuning in Algorithm 2, Figure 5(b), (d) show that the off-support error increases as the

model gets fine-tuned using self-generated data, due to increasing distribution shift. Even in this

case, the naive gradient G leads to much more severe off-support errors as compared to Gloss.

(a) Algorithm 1 (b) Algorithm 2 (c) 300-350 round of (a) (d) 1000-1200 round of (b)

Figure 5: Comparison between two types of gradient guidance G and Gloss. We plot the off/on

support ratio of the generated samples, denoted by roff = ∥x⊥∥
∥x∥∥ . The objective function is f1(x), with θ

having an off/on-support ratio of 9.

Algorithm 1 Converges to Regularized Optima We plot the convergence of Algorithm 1

in terms of the objective value in Figure 6. Figure 6 (a),(b) are for the objective function f1 =

10−(θ⊤x−3)2 as the objective function, while Figure 6(c),(d) are for the objective f2 = 5−0.5∥x−b∥.
We observe that the algorithm converges to reach some sub-optimal objective value, but there

remains a gap to the maximal value. This is consistent with our theory that the pre-trained model

essentially acts as a regularization in addition to the objective function. Adding gradient guidance

alone cannot reach global maxima. This coincides with our theoretical findings in Theorem 3.

(a) θ = Aβ∗ (b) ∥θ⊥∥
∥θ∥∥

= 9 (c) b = 4 · 1D (d) b ∼ N (4 · 1D, 9 · ID)

Figure 6: Convergence of Algorithm 1 under different objectives. Objectives are f1(x) for (a) and

(b), and f2(x) for (c) and (d). Parameters θ and b are specified as (a) θ = Aβ∗ with β∗ being sampled from

the unit ball in Rd; (b) the off/on-support ratio of θ being 9 (same as Figure 5); (c) and (d) choosing b as

a homogeneous vector or randomly from a Gaussian distribution. All the experiments adopt the gradient

guidance Gloss.

Algorithm 2 Converges to Global Optima Algorithm 2 converges to the maximal value

of the objective function f1 = 10 − (θ⊤x − 3)2 as shown in Figure 7(a). In Figure 7(b), we

visualize the distribution of generated samples of Algorithm 1 (blue) and 2 (red), respectively, as

the iteration evolves. We see that samples from Algorithm 1 mostly stay close to the pre-training

data distribution (area described by the dotted contour). In constrast, samples of Algorithm 2

move outside the contour, as the diffusion model gets finetuned using self-generated data.

20

(a) Convergence of Algorithm 2 (b) Distribution of generated samples

Figure 7: Convergence of Algorithm 2. Panel (a) plots the objective values achieved by Algorithm 2

as a function of iterations. Here θ is chosen the same as in Figure 6(b) with off/on-support ratio ∥θ⊥∥∥θ∥∥ = 9.

Panel (b) visualizes the distribution of the generated samples of Algorithm 2 (red) across the iterations. For

comparison, we also visualize the distribution of generated samples of Algorithm 1 (blue).

8 Conclusion

In this paper, we investigate the role and design of gradient guidance for adapting and fine-tuning

a pre-trained diffusion model from an optimization perspective. We propose a gradient guidance

based on a lookahead loss, as well as two variants of diffusion-based generative optimization algo-

rithm utilizing such guidance. We provide optimization guarantees for adapting/fine-tuning diffu-

sion models towards maximizing any target concave differentiable reward function. Our analysis

has also been extended to linear subspace data, where our gradient guidance and adaptive algo-

rithms provably preserve and leverage the latent subspace, thus they achieve faster convergence to

near-optimal solutions.

21

References

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum, Tommi Jaakkola, and Pulkit Agrawal.

Is conditional generative modeling all you need for decision-making? arXiv preprint

arXiv:2211.15657, 2022.

Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying

framework for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023.

Brian DO Anderson. Reverse-time diffusion equation models. Stochastic Processes and their Ap-

plications, 12(3):313–326, 1982.

Arpit Bansal, Hong-Min Chu, Avi Schwarzschild, Soumyadip Sengupta, Micah Goldblum, Jonas

Geiping, and Tom Goldstein. Universal guidance for diffusion models. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 843–852, 2023.

Joe Benton, Valentin De Bortoli, Arnaud Doucet, and George Deligiannidis. Linear convergence

bounds for diffusion models via stochastic localization. arXiv preprint arXiv:2308.03686, 2023.

Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion

models with reinforcement learning. arXiv preprint arXiv:2305.13301, 2023.

Adam Block, Youssef Mroueh, and Alexander Rakhlin. Generative modeling with denoising auto-

encoders and langevin sampling. arXiv preprint arXiv:2002.00107, 2020.

Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and

Trends® in Machine Learning, 8(3-4):231–357, 2015.

Minshuo Chen, Kaixuan Huang, Tuo Zhao, and Mengdi Wang. Score approximation, estima-

tion and distribution recovery of diffusion models on low-dimensional data. arXiv preprint

arXiv:2302.07194, 2023a.

Minshuo Chen, Song Mei, Jianqing Fan, and Mengdi Wang. An overview of diffusion models: Appli-

cations, guided generation, statistical rates and optimization. arXiv preprint arXiv:2404.07771,

2024.

Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru R Zhang. Sampling is as

easy as learning the score: theory for diffusion models with minimal data assumptions. arXiv

preprint arXiv:2209.11215, 2022.

Sitan Chen, Sinho Chewi, Holden Lee, Yuanzhi Li, Jianfeng Lu, and Adil Salim. The probability

flow ode is provably fast. arXiv preprint arXiv:2305.11798, 2023b.

Sitan Chen, Giannis Daras, and Alex Dimakis. Restoration-degradation beyond linear diffusions:

A non-asymptotic analysis for ddim-type samplers. In International Conference on Machine

Learning, pages 4462–4484. PMLR, 2023c.

Hyungjin Chung, Jeongsol Kim, Michael T Mccann, Marc L Klasky, and Jong Chul Ye. Diffusion

posterior sampling for general noisy inverse problems. arXiv preprint arXiv:2209.14687, 2022a.

22

Hyungjin Chung, Byeongsu Sim, Dohoon Ryu, and Jong Chul Ye. Improving diffusion models

for inverse problems using manifold constraints. Advances in Neural Information Processing

Systems, 35:25683–25696, 2022b.

Kevin Clark, Paul Vicol, Kevin Swersky, and David J Fleet. Directly fine-tuning diffusion models

on differentiable rewards. arXiv preprint arXiv:2309.17400, 2023.

Valentin De Bortoli. Convergence of denoising diffusion models under the manifold hypothesis.

arXiv preprint arXiv:2208.05314, 2022.

Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion schrödinger

bridge with applications to score-based generative modeling. Advances in Neural Information

Processing Systems, 34:17695–17709, 2021.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances

in neural information processing systems, 34:8780–8794, 2021.

Bradley Efron. Tweedie’s formula and selection bias. Journal of the American Statistical Associa-

tion, 106(496):1602–1614, 2011.

Ahmed El Alaoui, Andrea Montanari, and Mark Sellke. Sampling from mean-field gibbs measures

via diffusion processes. arXiv preprint arXiv:2310.08912, 2023.

Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,

Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Dpok: Reinforcement learning for

fine-tuning text-to-image diffusion models. arXiv preprint arXiv:2305.16381, 2023.

Hengyu Fu, Zhuoran Yang, Mengdi Wang, and Minshuo Chen. Unveil conditional diffusion models

with classifier-free guidance: A sharp statistical theory. arXiv preprint arXiv:2403.11968, 2024.

Alexandros Graikos, Nikolay Malkin, Nebojsa Jojic, and Dimitris Samaras. Diffusion models as

plug-and-play priors. Advances in Neural Information Processing Systems, 35:14715–14728, 2022.

Nate Gruver, Samuel Stanton, Nathan C Frey, Tim GJ Rudner, Isidro Hotzel, Julien Lafrance-

Vanasse, Arvind Rajpal, Kyunghyun Cho, and Andrew Gordon Wilson. Protein design with

guided discrete diffusion. arXiv preprint arXiv:2305.20009, 2023.

Zhiye Guo, Jian Liu, Yanli Wang, Mengrui Chen, Duolin Wang, Dong Xu, and Jianlin Cheng.

Diffusion models in bioinformatics: A new wave of deep learning revolution in action. arXiv

preprint arXiv:2302.10907, 2023.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,

2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in

neural information processing systems, 33:6840–6851, 2020.

Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. Denoising diffusion restoration

models. Advances in Neural Information Processing Systems, 35:23593–23606, 2022.

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile

diffusion model for audio synthesis. arXiv preprint arXiv:2009.09761, 2020.

23

Holden Lee, Jianfeng Lu, and Yixin Tan. Convergence for score-based generative modeling with

polynomial complexity. arXiv preprint arXiv:2206.06227, 2022a.

Holden Lee, Jianfeng Lu, and Yixin Tan. Convergence of score-based generative modeling for

general data distributions. arXiv preprint arXiv:2209.12381, 2022b.

Xingchao Liu, Lemeng Wu, Mao Ye, and Qiang Liu. Let us build bridges: Understanding and

extending diffusion generative models. arXiv preprint arXiv:2208.14699, 2022.

Yixin Liu, Kai Zhang, Yuan Li, Zhiling Yan, Chujie Gao, Ruoxi Chen, Zhengqing Yuan, Yue Huang,

Hanchi Sun, Jianfeng Gao, et al. Sora: A review on background, technology, limitations, and

opportunities of large vision models. arXiv preprint arXiv:2402.17177, 2024.

Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van Gool.

Repaint: Inpainting using denoising diffusion probabilistic models. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11461–11471, 2022.

Pierre Marion, Anna Korba, Peter Bartlett, Mathieu Blondel, Valentin De Bortoli, Arnaud Doucet,

Felipe Llinares-López, Courtney Paquette, and Quentin Berthet. Implicit diffusion: Efficient

optimization through stochastic sampling. arXiv preprint arXiv:2402.05468, 2024.

Song Mei and Yuchen Wu. Deep networks as denoising algorithms: Sample-efficient learning of

diffusion models in high-dimensional graphical models. arXiv preprint arXiv:2309.11420, 2023.

Andrea Montanari and Yuchen Wu. Posterior sampling from the spiked models via diffusion pro-

cesses. arXiv preprint arXiv:2304.11449, 2023.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.

In Proceedings of the International Conference on Machine Learning, pages 8162–8171. PMLR,

2021.

Kazusato Oko, Shunta Akiyama, and Taiji Suzuki. Diffusion models are minimax optimal distri-

bution estimators. arXiv preprint arXiv:2303.01861, 2023.

Phillip Pope, Chen Zhu, Ahmed Abdelkader, Micah Goldblum, and Tom Goldstein. The intrinsic

dimension of images and its impact on learning. arXiv preprint arXiv:2104.08894, 2021.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-

ical image segmentation. In Medical Image Computing and Computer-Assisted Intervention–

MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceed-

ings, Part III 18, pages 234–241. Springer, 2015.

Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear embed-

ding. science, 290(5500):2323–2326, 2000.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv

preprint arXiv:2010.02502, 2020a.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribu-

tion. Advances in Neural Information Processing Systems, 32, 2019.

24

Yang Song, Sahaj Garg, Jiaxin Shi, and Stefano Ermon. Sliced score matching: A scalable approach

to density and score estimation. In Uncertainty in Artificial Intelligence, pages 574–584. PMLR,

2020b.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben

Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint

arXiv:2011.13456, 2020c.

Joshua B Tenenbaum, Vin de Silva, and John C Langford. A global geometric framework for

nonlinear dimensionality reduction. science, 290(5500):2319–2323, 2000.

Masatoshi Uehara, Yulai Zhao, Kevin Black, Ehsan Hajiramezanali, Gabriele Scalia, Nathaniel Lee

Diamant, Alex M Tseng, Tommaso Biancalani, and Sergey Levine. Fine-tuning of continuous-

time diffusion models as entropy-regularized control. arXiv preprint arXiv:2402.15194, 2024.

Yinhuai Wang, Jiwen Yu, and Jian Zhang. Zero-shot image restoration using denoising diffusion

null-space model. arXiv preprint arXiv:2212.00490, 2022.

Joseph L Watson, David Juergens, Nathaniel R Bennett, Brian L Trippe, Jason Yim, Helen E

Eisenach, Woody Ahern, Andrew J Borst, Robert J Ragotte, Lukas F Milles, et al. De novo

design of protein structure and function with rfdiffusion. Nature, 620(7976):1089–1100, 2023.

Andre Wibisono, Yihong Wu, and Kaylee Yingxi Yang. Optimal score estimation via empirical

bayes smoothing. arXiv preprint arXiv:2402.07747, 2024.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang,

Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and

applications. ACM Computing Surveys, 56(4):1–39, 2023.

Hui Yuan, Kaixuan Huang, Chengzhuo Ni, Minshuo Chen, and Mengdi Wang. Reward-directed

conditional diffusion: Provable distribution estimation and reward improvement. arXiv preprint

arXiv:2307.07055, 2023.

25

A Characterization for Output Distribution of Backward Process

In this section, we provide analytical characterizations for the output distribution of the backward

process guided by Gloss when the pre-trained score is linear. We first give the result of score

matching as follows.

Lemma 2 (Pre-training with Linear Score Functions). Suppose for pre-training the score network,

the class in (20) is

S =
{
s(x, t) = Ctx+ bt : Ct ∈ RD×D, bt ∈ RD

}
, (recall (15))

If we freeze Ct in (15), that is, minimizing the score matching objective (20) over the class{
s(x, t) = Ctx+ bt : bt ∈ RD

}
gives

sθ(xt, t) = Ct (xt − α(t)x̄) ,

where x̄ =
(∑k

i=0wk,iEx∈Di [x]
)/(∑k

i=0wk,i

)
. Moreover, minimizing the score matching objective

(20) over the class (15) yields

sθ(xt, t) = −
(
α2(t)Σ̄ + h(t)ID

)−1
(xt − α(t)x̄) ,

where Σ̄ =
(∑k

i=0wk,iEx∈Dk

[
(x− x̄)(x− x̄)⊤

])/(∑k
i=0wk,i

)
are weighted data covariance.

Proof. Using the linear score network class S with freezing Ct, we cast the score matching loss (20)

into

∫ T

0

k∑

i=0

wk,iEx0∈DiExt∼N (α(t)x0,h(t)ID)

[
∥∇xt log ϕt(xt|x0)− s(xt, t)∥2

]
dt

=

∫ T

0

k∑

i=0

wk,iEx0∈DiExt∼N (α(t)x0,h(t)ID)

[∥∥∥∥−
1

h(t)
(xt − α(t)x0)− Ctxt − bt

∥∥∥∥
2
]
dt

=

∫ T

0

k∑

i=0

wk,iEx0∈DiExt∼N (α(t)x0,h(t)ID)

[∥∥∥∥
(
Ct +

1

h(t)
ID

)
(xt − α(t)x0) + (α(t)Ctx0 + bt)

∥∥∥∥
2
]
dt

(i)
=

∫ T

0

k∑

i=0

wk,iEx0∈Di

[
∥bt + α(t)Ctx0∥2

]
+ w

∫ T

0
trace

(
h(t)

(
Ct +

1

h(t)
ID

)⊤(
Ct +

1

h(t)
ID

))
dt,

where w =
∑k

i=0wk,i, equality (i) follows from computing the expectation over the conditional

Gaussian distribution of xt|x0. We note that bt should minimize
∑k

i=0wk,iEx0∈Di

[
∥bt + α(t)Ctx0∥2

]

for any t, which leads to

b̂t = −α(t)Ctx̄.

Now, we solve Ct for the second result. Substituting b̂t into the optimization objective (20) yields:

∫ T

0

k∑

i=0

wk,iEx0∈Di

[
∥α(t)Ctx̄− α(t)Ctx0∥2

]
+ w

∫ T

0
trace

(
h(t)

(
Ct +

1

h(t)
ID

)⊤(
Ct +

1

h(t)
ID

))
dt

=

∫ T

0
α2(t)

k∑

i=0

wk,iEx0∈Di

[
∥Ct(x0 − x̄)∥2

]
+ w

∫ T

0
trace

(
h(t)

(
C⊤t Ct +

1

h(t)
Ct +

1

h(t)
C⊤t +

1

h2(t)
ID

))
dt.

26

Taking the gradient for Ct, we get

2α2(t)Ct

k∑

i=0

wk,iEx0∈Di

[
(x0 − x̄)(x0 − x̄)⊤

]
+ 2wh(t)Ct + 2wID.

Setting the gradient above to 0, we get the solution for Ct as

Ĉt = −
(
α2(t)w−1

k∑

i=0

wk,iEx0∈Di

[
(x0 − x̄)(x0 − x̄)⊤

]
+ h(t)ID

)−1
.

Therefore, the proof is completed.

When wk,0 = 1, wk,i = 0, i ∈ [k], Lemma 2 reduces to the pre-traning score matching.

Corollary 1. Let D be the pre-training data. Minimizing the score matching objective (3) over the

function class (15) gives

sθ(xt, t) = −
(
α2(t)Σ̄ + h(t)ID

)−1
(xt − α(t)µ̄) . (24)

The following lemma characterizes the output distribution of the backward process guided by

Gloss when the pre-trained score is linear.

Lemma 3. If the pre-trained score sθ(xt, t) is (24), substituting the score function with sθ(xt, t) +

Gloss(xt, t) in the backward SDE (2) yields, when T → ∞,

X←T
d
= N

(
µ̄+

y − g⊤µ

σ2 + g⊤Σ̄g
Σ̄g, Σ̄− Σ̄gg⊤Σ̄

σ2 + g⊤Σ̄g

)
.

with β(t) assigned as β(t) =
1

2

(
σ2 + g⊤Σ̄−1

(
ID + α2(t)Σ̄/h(t)

)−1
g
)−1

. Moreover, if pre-training

data reside in Span(A) following Assumption 1, it holds X←T ∈ Span(A).

Proof. Consider X0
d
= N

(
µ̄, Σ̄

)
, Y = g⊤X0 + ϵ where ϵ ∼ N

(
0, σ2

)
. Let X0 be the initialization

of the forward process. Similar to the proof in Appendix B.1, we get

[
Xt

Y

]
d
= N

([
α(t)µ̄

g⊤µ̄

]
,

[
α2(t)Σ̄ + h(t)ID α(t)Σ̄g

α(t)g⊤Σ̄ σ2 + g⊤Σ̄g

])
.

Thus, we get sθ(xt, t) is exactly the score of marginal distribution of Xt, i.e., ∇ log pt(xt) = sθ(xt, t).

According to the proof in Appendix B.1, we get sθ(xt, t) + Gloss(xt, t) = ∇ log pt(xt | y). Thus, the
backward SDE turns out to be

dX←t =

[
1

2
X←t +∇ log pT−t(X

←
t | y)

]
dt+ dW t, X←0

d
= N (0, ID) . (25)

Since the initial distribution p0(x0 | y) of the forward process can also be obtained by (25) where

we replace the initial distribution as pT (xT | y). According to Girsanov theorem, we get the KL

divergence between the terminal distribution p←T of (25) and p0(x0 | y).

KL (p0 | p←T) = −Ep0

[
log

(
pT
φ

)]
,

27

where p0, pT are short hands for p0(x0 | y) and pT (xT | y), and φ(·) is the density for the standard

normal distribution N (0, ID). Since in the forward process, pT → φ when T → ∞, we have

KL (p0 | p←T) → 0 when T → ∞. We complete the first part of the lemma. As for the second

part, if data reside in Span(A) following Assumption 1, we have µ̄ = Aū and Σ̄ = AΣ̄uA
⊤, where

ū = Ex∈D,u=A⊤x[u], Σ̄u = Ex∈D,u=A⊤x[(u− ū) (u− ū)⊤]. Thus, the covariance matrix of X←T is

Σ̄− Σ̄gg⊤Σ̄

σ2 + g⊤Σ̄g
= A

[
Σ̄u − Σ̄uA

⊤gg⊤AΣ̄u

σ2 + g⊤Σ̄g

]
A⊤,

and due to X←T follows Gaussian distribution, we get X←T ∈ Span(A). Thus, the proof is completed.

B Omitted Proofs in Section 4

Contents

B.1 Proof of Lemma 1 . 28

B.2 Proof of Theorem 1 . 29

Throughout the proof, we omit the subscript xt of ∇ in score function ∇ log pt(xt) and condi-

tional score function ∇ log pt(xt|y).

B.1 Proof of Lemma 1

Proof. Recall {Xt}t≥0 is the stochastic process from the forward process. X0
d
= N (µ,Σ) , Y =

g⊤X0 + ϵ where ϵ ∼ N (0, σ2) is independent with X0. Since X0, Xt and Y are joint Gaussian,

we have Y | Xt also follows Gaussian distribution, denoted as N
(
my(xt), σ

2
y(xt)

)
.Then, the closed

form of ∇xt log pt(y | xt) can be derived as

∇xt log pt(y | xt) = −∇xt

[
1

2

(
y −my(xt)

σy(xt)

)2
]
−∇xt log σy(xt).

Due to the linearity of Y with regard to X0, my(xt) can be computed as

my(xt) = E[y | xt] = E[g⊤x0 + ϵ | xt] = E[g⊤x0 | xt] = g⊤E[x0 | xt]. (26)

To get the variance σ2
y(xt), we compute the joint distribution (Xt, Y). In the forward process, given

X0 = x0, Xt can be written as α(t)x0 + Zt for Zt
d
= N (0, h(t)ID) independent of x0. Due to the

linear function assumption, we have

[
Xt

Y

]
=

[
α(t)ID 0 ID
g⊤ 1 0

]

x0
ϵ

Zt


 .

Observing that the joint distribution of (x0, ϵ, zt) is Gaussian, we deduce

[
Xt

Y

]
d
= N

([
α(t)µ

g⊤µ

]
,

[
α2(t)Σ + h(t)ID α(t)Σg

α(t)g⊤Σ σ2 + g⊤Σg

])
.

28

Thus, we get σ2
y(xt) = σ2+g⊤Σg−α2(t)g⊤Σ

(
α2(t)Σ + h(t)ID

)−1
Σg. Together with the derivation

of the mean my(xt) (26), we get

∇xt log pt(y | xt) = − 1

2σ2
y(xt)

∇xt

[(
y − g⊤E[x0 | xt]

)2]

=
1

σ2
y(xt)

(
y − g⊤E[x0 | xt]

)
∇xtE[x0 | xt]g.

To get E[x0 | xt], we derive the joint distribution of (X0, Xt):

[
X0

Xt

]
d
= N

([
µ

α(t)µ

]
,

[
Σ α(t)Σ

α(t)Σ α2(t)Σ + h(t)ID

])
.

Thus, we get E[x0|xt] = µ+ α(t)
(
α2(t)Σ + h(t)ID

)−1
Σ (xt − α(t)µ). As a consequence, we have

∇xt log pt(y | xt) =
1

σ2
y(xt)

(
y − g⊤E[x0 | xt]

)
α(t)

(
α2(t)Σ + h(t)ID

)−1
Σg.

Together with the following equality by Woodbury identity, we get the result.

σ−2y (xt) =
(
σ2 + g⊤Σg − α2(t)g⊤Σ

(
α2(t)Σ + h(t)ID

)−1
Σg
)−1

=

[
σ2 + g⊤Σ−1

(
ID +

α2(t)

h(t)
Σ

)−1
g

]−1
.

B.2 Proof of Theorem 1

Proof. We expand the derivative in Gloss as

Gloss(xt, t) = 2β(t)(y − g⊤E[x0|xt]) (∇xtE[x0|xt])⊤ g.

It holds E[x0|xt] = 1
α(t)(xt + h(t)∇ log pt(xt)). Via the score decomposition under linear subspace

data in Chen et al. (2023a, Lemma 1), we have

∇ log pt(xt) = A∇ log pLDt (A⊤xt)−
1

h(t)

(
ID −AA⊤

)
xt,

where pLDt denotes the diffused latent distribution, i.e., pLDt (u′) =
∫
ϕt(u

′|u0)pu(u0) du0. Recall that
ϕt is the Gaussian transition kernel of the forward process and pu is the density of latent variable

u0 in Assumption 1.

To ease the derivation, we denote m(u) = ∇ log pLDt (u) + 1
h(t)u. It then holds that

E[x0|xt] =
1

α(t)

(
xt + h(t)

[
Am(A⊤xt)−

1

h(t)
xt

])

=
h(t)

α(t)
Am(A⊤xt).

29

As a consequence, we can verify that

∇xtE[x0|xt] =
h(t)

α(t)
A
[
∇m(A⊤xt)

]
A⊤,

where ∇m(A⊤xt) ∈ Rd×d is the Jacobian matrix of m at A⊤xt. Plugging the last display into Gloss,

we conclude that

Gloss(xt, t) = 2β(t)(y − g⊤E[x0|xt]) (∇xtE[x0|xt])⊤ g
= ℓt · g

for ℓt = 2β(t)(y − g⊤E[x0|xt]) and g′ = (∇xtE[x0|xt])⊤ g = h(t)
α(t)A

[
∇m(A⊤xt)

]⊤
A⊤g ∈ Span(A).

The proof is complete.

C Omitted Proofs in Sections 5 and 6

Contents

C.1 Proof of Theorem 2 . 30

C.2 Proof of Theorem 3 . 30

C.3 Proof of Theorem 4 . 33

C.4 Auxiliary Lemma . 34

C.1 Proof of Theorem 2

Proof. The proof is a special case of Theorem 3 in Appendix C.2, via setting the representation

matrix A = ID.

C.2 Proof of Theorem 3

Proof of Theorem 3. Define a filtration {Hk}K−1k=0 with Hk be the information accumulated after k

rounds of Alg.1.
H0 := σ(µ̄),

Hk := σ
(
Hk−1, σ

(
zk−1,1, . . . , zk−1,Bk−1

))
, k ∈ [K].

Define the expectation of samples generated at k-th round as

µk := E[zk,i | Hk−1], k ∈ [K − 1].

Applying Corollary 1, we get the pre-trained score as

sθ(xt, t) = −
(
α2(t)Σ̄ + h(t)ID

)−1
(xt − α(t)µ̄) ,

If we set yk as follows

yk = η ·
(
σ2 + g⊤k Σ̄gk

)
+ g⊤k µ̄,

where η = 1/λ. And we choose β(t) at k-round as β(t) =
1

2

(
σ2 + g⊤k−1Σ̄

−1 (ID + α2(t)Σ̄/h(t)
)−1

gk−1

)−1
.

Then, Lemma 3 provides the generated distribution in k-th round:

N
(
µ̄+ ηΣ̄gk−1, Σ̄− Σ̄gk−1g

⊤
k−1Σ̄

σ2 + g⊤k−1Σ̄gk−1

)
. (27)

30

Define the empirical covariance matrix of the latent variable U as Σ̄u = Ex∈D,u=A⊤x[(u− ū) (u− ū)⊤]

where ū = ED[u]. Then in the subspace setting, the empirical mean and covariance of data X can

be written as µ̄ = AA⊤µ̄ and Σ̄ = AΣ̄uA
⊤ respectively. The mean of the sample zk,i follows

µk = E[zk,i | Hk−1] = AA⊤µ̄+ η ·AΣ̄uA
⊤gk−1,

where gk−1 = ∇f (z̄k−1) and z̄k−1 = (1/B)
∑B

i zk−1,i. We rearrange the update rule to show a

gradient ascent formula as follows

µk = AA⊤µk−1 −AA⊤ (µk−1 − µ̄) + η ·AΣ̄uA
⊤∇f(µk−1) + η ·AΣ̄uA

⊤ (gk−1 −∇f(µk−1))

= AA⊤µk−1 −AΣ̄uA
⊤AΣ̄−1u A⊤ (µk−1 − µ̄) + η ·AΣ̄uA

⊤∇f(µk−1) + η ·AΣ̄uA
⊤ (gk−1 −∇f(µk−1))

= AA⊤µk−1 + η ·AΣ̄uA
⊤
[
∇f(µk−1)− λAΣ̄−1u A⊤ (µk−1 − µ̄)

]
+ η ·AΣ̄uA

⊤ (gk−1 −∇f(µk−1)) .

where λ = 1/η. Define h(x) := f(x)− λ/2 ∥x− µ̄∥2Σ̄−1 , we have

µk = AA⊤µk−1 + η · Σ̄∇h(µk−1) + η · Σ̄ (gk−1 −∇f(µk−1)) .

Recall the notation for the optimum: x⋆A,λ = argmaxx=Au h(x). We consider the distance of µk to

x⋆A,λ under the semi-norm ∥·∥Σ̄−1 .

∥∥µk − x⋆A,λ

∥∥
Σ̄−1 =

∥∥µk−1 − x⋆A,λ + ηΣ̄∇h(µk−1) + ηΣ̄ (gk−1 −∇f(µk−1))
∥∥
Σ̄−1

≤
∥∥µk−1 − x⋆A,λ + ηΣ̄∇h(µk−1)

∥∥
Σ̄−1︸ ︷︷ ︸

:=I1

+
∥∥ηΣ̄ (gk−1 −∇f(µk−1))

∥∥
Σ̄−1︸ ︷︷ ︸

:=I2

. (28)

We bound the second term I2 first. According to f is L-smooth with respect to ∥·∥Σ̄−1 , we have

I2 = η ∥gk−1 −∇f(µk−1)∥Σ̄ ≤ ηL ∥z̄k−1 − µk−1∥Σ̄−1 ,

Lemma 3 shows the distribution of zk−1,i. Therefore, according to concentration inequality for

Gaussian distribution, with the probability at least 1− δ/K, it holds

∥z̄k−1 − µk−1∥2Σ̄−1 ≤ 2 log

(
2K

δ

)
· trace

(
V(zk−1,i) · Σ̄−1

)

Bk−1
.

We have trace
(
V(zk−1,i) · Σ̄−1

)
≤ trace

(
Σ̄ · Σ̄−1

)
= d. Therefore, I2 is bounded by

I2 ≤ M0/
√

Bk−1,

where M0 := ηL
√
2 log

(
2K
δ

)
· d. Next, we consider the first term in (28). Since x∗A,λ is the optimum

of h within Span(A), the gradient ∇h(x∗A,λ) is in the orthogonal subspace, i.e., A⊤∇h(x∗A,λ) = 0,

thus Σ̄∇h(x∗A,λ) = 0. The first term in (28) can be written as

I21 =
∥∥(µk−1 − x⋆A,λ

)
+ ηΣ̄

(
∇h(µk−1)−∇h(x∗A,λ)

)∥∥2
Σ̄−1

=
∥∥µk−1 − x⋆A,λ

∥∥2
Σ̄−1 + η2

∥∥∇h(µk−1)−∇h(x∗A,λ)
∥∥2
Σ̄

+ 2
〈
µk−1 − x⋆A,λ, η

(
∇h(µk−1)−∇h(x∗A,λ)

)〉
.

31

Recall h is f adding a ∥·∥Σ̄−1 regularized term. We get h is (L + λ)-smooth with respect to semi

norm ∥·∥Σ̄−1 which is derived from f L-smooth. Also, h is λ-strongly concave with respect to semi

norm ∥·∥Σ̄−1 since f is concave. According to Lemma 4, we derive

〈
µk−1 − x⋆A,λ,∇h(µk−1)−∇h(x∗A,λ)

〉
≤ −λ(L+ λ)

L+ 2λ

∥∥µk−1 − x∗A,λ

∥∥2
Σ̄−1 −

1

L+ 2λ

∥∥∇h(µk−1)−∇h(x∗A,λ)
∥∥2
Σ̄
.

Plugin the formula of I1, we get

I21 ≤
(
1− 2ηλ(L+ λ)

L+ 2λ

)∥∥µk−1 − x⋆A,λ

∥∥2
Σ̄−1 +

(
η2 − 2η

L+ 2λ

)∥∥∇h(µk−1)−∇h(x∗A,λ)
∥∥2
Σ̄
.

Since η = 1/λ, it holds η2 − 2η

L+ 2λ
> 0. Due to h (L+ λ)-smoothness, we get

I21 ≤
(
1− 2ηλ(L+ λ)

L+ 2λ

)∥∥µk−1 − x⋆A,λ

∥∥2
Σ̄−1 +

(
η2 − 2η

L+ 2λ

)
(L+ λ)2

∥∥µk−1 − x⋆A,λ

∥∥2
Σ̄−1

= (1− η (L+ λ))2
∥∥µk−1 − x⋆A,λ

∥∥2
Σ̄−1 ,

thus, we get the bound of I1
I1 ≤ ζ

∥∥µk−1 − x⋆A,λ

∥∥
Σ̄−1 ,

where ζ := |1− η (L+ λ)|. Combing the upper bound of I1 and I2, we get with probability at least

1− δ/K, for 1 < k ≤ K,

∥∥µk − x⋆A,λ

∥∥
Σ̄−1 ≤ ζ

∥∥µk−1 − x⋆A,λ

∥∥
Σ̄−1 +

M0√
Bk−1

.

As for k = 1, by similar derivation, we can obtain
∥∥∥µ1 − x⋆A,λ

∥∥∥
Σ̄−1

≤ ζ
∥∥∥z0 − x⋆A,λ

∥∥∥
Σ̄−1

. By induc-

tion, we get with probability at least 1− ((K − 1)/K) δ,

∥∥µK − x⋆A,λ

∥∥
Σ̄−1 ≤ ζK

∥∥z0 − x⋆A,λ

∥∥
Σ̄−1 +M0

K−1∑

k=1

ζK−k−1√
Bk

.

Choose Bk ≥ ζ−4k(1− ζ)−2 for all k ∈ [K − 1], then we can get

∥∥µK − x⋆A,λ

∥∥
Σ̄−1 ≤ ζK

(∥∥z0 − x⋆A,λ

∥∥2
Σ̄−1 +M1 ·

√
d
)

(29)

where M1 := ηL

√
2 log

(
2K

δ

)
. Since h is (L+ λ)-smooth with respect to ∥·∥Σ̄−1 , it holds

|h(µK)− h(x∗A,λ)−
〈
∇h(x∗A,λ), µK − x∗A,λ

〉
| ≤ L+ λ

2

∥∥µK − x∗A,λ

∥∥2
Σ̄−1 .

Considering that ∇h(x∗A,λ) ⊥ Span(A) yields
〈
∇h(x∗A,λ), µK − x∗A,λ

〉
= 0, we obtain the following

by rearranging the equation above

f
(
x∗A,λ

)
− f(µK) ≤ λ

2

(∥∥x∗A,λ − µ̄
∥∥2
Σ̄−1 − ∥µK − µ̄∥2Σ̄−1

)
+

L+ λ

2

∥∥µK − x∗A,λ

∥∥2
Σ̄−1 (30)

≤
[
λ
∥∥µ̄− x∗A,λ

∥∥
Σ̄−1

∥∥µK − x∗A,λ

∥∥
Σ̄−1 + (L+ λ)

∥∥µK − x∗A,λ

∥∥2
Σ̄−1

]
.

32

Substitute (29) into above upper bound, with z0 = µ̄ we have

f
(
x∗A,λ

)
− f(µK) ≲ ζK · (L+ λ)

[∥∥µ̄− x∗A,λ

∥∥2
Σ̄−1 +M2

1d
]
.

Since
∥∥∥µ̄− x∗A,λ

∥∥∥
2

Σ̄−1
=
∥∥∥A⊤

(
µ̄− x∗A,λ

)∥∥∥
2

Σ̄−1
u

is the distance within Span(A), i.e., O(d). Recall

η = 1/λ, ζ = |1 − η (L+ λ)| = L/λ, λ > L, and M1 = ηL

√
2 log

(
2K

δ

)
. Therefore, we get the

final result:

f
(
x∗A,λ

)
− f(µK) ≲ λ

(
L

λ

)K

d log

(
K

δ

)
, w.p.1− δ.

C.3 Proof of Theorem 4

Proof. Define
H0 := σ(µ̄),

Hk := σ
(
Hk−1, σ

(
zk−1,1, . . . , zk−1,Bk−1

))
, k ∈ [K − 1],

µk := E[zk,i | Hk−1], k ∈ [K].

According to Lemma 2, with freezing Ct in class (15), the pre-trained score in Round k is sθk+1
(xt, t) =

−
(
α2(t)Σ̄ + h(t)ID

)
(xt − α(t)x̄k) where x̄k =

∑k
j=0wk,j z̄j and z̄j = Ex∈Dj [x]. By choosing yk, and

weights wk,j as

yk = ηk ·
(
σ2 + g⊤k AΣ̄uA

⊤gk

)
+ g⊤k AA

⊤x̄k,

wk,0 = 1− wk

wk,j = 0, 1 ≤ j < k,

wk,k = wk,

where ηk > 0, 0 < wk < 1 will be specified later. And we choose β(t) at Round k as β(t) =
1

2

(
σ2 + g⊤k−1Σ̄

−1 (ID + α2(t)Σ̄/h(t)
)−1

gk−1

)−1
. Lemma 3 gives the mean of distribution of zk+1,i

as

µk+1 = x̄k + ηkΣ̄gk, (31)

and the output distribution

N
(
x̄K−1 + ηk−1Σ̄gK−1, Σ̄− Σ̄gK−1g

⊤
K−1Σ̄

σ2 + g⊤K−1Σ̄gK−1

)
. (32)

Applying Lemma 3 yields zk,i ∈ Span(A), thus, x̄k = AA⊤x̄k and Σ̄ = AΣ̄uA
⊤, we get the update

rule reduced to

µk+1 = AA⊤ ((1− wk)µ̄+ wkz̄k) + ηk−1AΣ̄uA
⊤gk−1

= AA⊤z̄k + ηkAΣ̄uA
⊤
(
∇f(z̄k)− η−1k (1− wk)AΣ̄−1u A⊤ (z̄k − µ̄)

)
.

We set wk = 1− ηkλ and set ηk = η, where λ, η > 0 will be specified later. Therefore, we have

µk+1 = AA⊤z̄k + ηAΣ̄uA
⊤∇hλ(z̄k), (33)

33

where hλ(x) := f(x) − (λ/2) ∥x− µ̄∥2Σ̄−1 . Define x⋆A,λ = argmaxx=Au hλ(x). With some similar

steps in proof in Appendix C.2, by choosing Bk ≥ ζ−4k(1− ζ)−2, together with z0 = µ̄, we get

∥∥µK − x⋆A,λ

∥∥
Σ̄−1 ≲ ζK

(∥∥µ̄− x⋆A,λ

∥∥
Σ̄−1 +M1 ·

√
d
)
, w.p. 1− δ,

with η =
2

L+ 2λ
, ζ = |1− η(L+ λ)| and M1 = 2L

√
(1 + η2) log

(
2K

δ

)
. Also, we can get (30) as

in proof in Appendix C.2. We restate it here:

f
(
x∗A,λ

)
− f(z̃K) ≤ λ

2

(∥∥x∗A,λ − µ̄
∥∥2
Σ̄−1 − ∥µK − µ̄∥2Σ̄−1

)
+

L+ λ

2

∥∥µK − x∗A,λ

∥∥2
Σ̄−1 . (34)

Since f is concave,

f (x∗A)− f
(
x∗A,λ

)
≤
〈
∇f

(
x∗A,λ

)
, x∗A − x∗A,λ

〉
= λ

〈
Σ̄−1(x∗A,λ − µ̄), x∗A − x∗A,λ

〉
.

Adding (34), it holds

f
(
x∗A,λ

)
− f(µK) ≤ λ

2

(∥∥x∗A,λ − µ̄
∥∥2
Σ̄−1 −

∥∥x∗A,λ − x∗A
∥∥2
Σ̄−1 − ∥µK − µ̄∥2Σ̄−1

)
+

L+ λ

2

∥∥µK − x∗A,λ

∥∥2
Σ̄−1 .

Due to (33), we have, it holds w.p. 1− δ,

f
(
x∗A,λ

)
− f(µK) ≲

[
λ ∥x∗A − µ̄∥2Σ̄−1 + (L+ λ)ζK

(∥∥µ̄− x∗A,λ

∥∥2
Σ̄−1 +M1d

)]
.

We choose λ = L logK/(4K) and get

f
(
x∗A,λ

)
− f(µK) ≲

L logK

K
·
[
∥x∗A − µ̄∥2Σ̄−1 +

∥∥µ̄− x∗A,λ

∥∥2
Σ̄−1 +M1d

]
, w.p. 1− δ.

With assuming
∥∥∥x⋆A,λ

∥∥∥ is bounded, we derive

f
(
x∗A,λ

)
− f(µK) = O

(
dL2 logK

K
· log

(
K

δ

))
, w.p. 1− δ.

C.4 Auxiliary Lemma

The following is a standard result in convex optimization utilized in previous proofs.

Lemma 4. Let f be α-strongly concave and β-smooth with respect to the (semi) norm ∥·∥Σ−1, for

all x and y, it holds

−⟨∇f(x)−∇f(y), x− y⟩ ≥ αβ

α+ β
∥x− y∥2Σ−1 +

1

α+ β
∥∇f(x)−∇f(y)∥2Σ . (35)

Proof. See Bubeck et al. (2015, Lemma 3.11) for a proof.

34

	Introduction
	Related Work
	Preliminaries: Diffusion Models
	A Primer on Gradient Guidance
	Subspace Data and Score Decomposition
	Naive Gradient Does't Work as Guidance
	Motivating Gradient Guidance from Conditional Score Function
	Construct Gradient Guidance to Preserve Latent Subspace
	Estimation and Implementation of Gloss

	Gradient-Guided Diffusion Model as Regularized Optimizer
	Gradient-Guided Generation with A Pre-trained Score
	Gradient-Guided Diffusion Converges to Regularized Optima
	Gradient Guidance for Optimization in Latent Spaces

	Gradient-Guided Diffusion with Adaptive Fine-Tuning for Global Optimization
	Adaptive Fine-Tuning Algorithm with Gradient Guidance
	Guided Generation Finds Unregularized Global Optima

	Numerical Experiments
	Experiment Setup
	Results

	Conclusion
	Characterization for Output Distribution of Backward Process
	Omitted Proofs in sec:gradguidance
	Proof of Lemma 1
	Proof of Theorem 1

	Omitted Proofs in sec:reg opt,sec:update pre-score
	Proof of thm:fully linear
	Proof of Theorem 3
	Proof of Theorem 4
	Auxiliary Lemma

