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Abstract

This paper focuses on investigating Stein’s invariant shrinkage estimators for large sample covariance
matrices and precision matrices in high-dimensional settings. We consider models that have nearly arbi-
trary population covariance matrices, including those with potential spikes. By imposing mild technical
assumptions, we establish the asymptotic limits of the shrinkers for a wide range of loss functions. A key
contribution of this work, enabling the derivation of the limits of the shrinkers, is a novel result concern-
ing the asymptotic distributions of the non-spiked eigenvectors of the sample covariance matrices, which
can be of independent interest.

1 Introduction

Estimating large covariance matrices and their inverses, the precision matrices, is fundamental in modern data
analysis. It is well-known that in the high-dimensional regime when the data dimension p is comparable to or
even larger than the sample size n, the sample covariance matrices and their inverses are poor estimators [71].
To obtain consistent estimators, many structural assumptions have been imposed, such as sparse or banded
structures. Based on these assumptions, many regularization methods have been developed to obtain better
estimators. We refer the readers to [20, 36, 62] for a more comprehensive review.

Although these structural assumptions are useful for many applications, they may not be applicable in
general scenarios. In this paper, we consider the estimation of the population covariance matrix Σ and its
inverse, denoted by Ω, through Stein’s (orthogonally or rotationally) invariant estimators [64, 65] without
imposing (almost) any specific structural assumption. Given a p×n data matrix Y and its sample covariance

matrix Q = Y Y ⊤/n, we say Σ̃ ≡ Σ̃(Q) and Ω̃ ≡ Ω̃(Q) are invariant estimators for Σ and Ω, respectively, if
they satisfy that

UΣ̃(Q)U⊤ = Σ̃(UQU⊤), UΩ̃(Q)U⊤ = Ω̃(UQU⊤), (1.1)

for any p × p orthogonal matrix U. For an illustration, we take the covariance matrix estimation as an
example. Denote the eigenvalues and corresponding eigenvectors of Q by λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 and
{ui}pi=1. Stein [64, 65] showed that the optimal invariant estimator for Σ satisfy

Σ̃ =

p∑

i=1

ϕiuiu
⊤
i , (1.2)

where ϕi ≡ ϕi(Q,Σ,L), i = 1, . . . , p, commonly referred to as shrinkers, are some nonlinear functionals
depending on the choice of the loss function L, the sample covariance matrixQ, and the population covariance
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matrix Σ. For many loss functions L, the random quantities ϕi’s have closed forms (see Appendix A) so
that the estimation problem reduces to finding efficient estimators or estimable convergent limits for ϕi’s.
As demonstrated in Appendix A, ϕi usually takes the following form:

ϕi = u⊤
i ℓ(Σ)ui, 1 ≤ i ≤ min{p, n}, (1.3)

where ℓ(x) is a function depending on L, or the following form when p > n:

ϕi =
1

p− n
Tr
[
U⊤
0 ℓ(Σ)U0

]
, n+ 1 ≤ i ≤ p. (1.4)

Here, U0 represents the eigenmatrix associated with the zero eigenvalues of Q. In the classical setting when
p is fixed, Stein derived consistent estimators for (1.3) under various loss functions; we refer the readers
to [63] in this regard.

In the current paper, we investigate this problem in the high-dimensional regime when p is comparable
to n in the sense that there exists a constant τ ∈ (0, 1) such that

τ 6 cn :=
p

n
6 τ−1. (1.5)

Note that we allow for p > n so that the inverse of the sample covariance matrix Q may not exist in general.
We also treat our models with general and possibly spiked population covariance matrices Σ (up to some
mild technical assumptions). This substantially generalizes Johnstone’s spiked covariance matrix model [41],
where the non-spiked eigenvalues are assumed to be unity (see (1.6) below).

In the general model setup and under the condition (1.5), we provide analytical and closed-form formulas
to characterize the convergent limits of (1.3) and (1.4) for both the spiked and non-spiked eigenvectors ui.
These limits can be further estimated consistently and adaptively for various choices of loss functions (or
equivalently, the function ℓ). One crucial step involves studying the asymptotic distributions for the sample
eigenvectors ui, which can be of significant independent interest. In what follows, we first discuss some
related works on the shrinkers’ estimation for the regime (1.5) in Section 1.1. Then, we review some relevant
literature about the eigenvector distributions of some classical random matrix models in Section 1.2. Finally,
we provide an overview of the contributions of this paper and highlight some main novelties in Section 1.3.

1.1 Related works on shrinker estimation

We now provide a brief review of some previous results concerning the estimation of the shrinkers ϕi in the
high-dimensional regime. In [32], the authors considered Johnstone’s spiked covariance matrix model with

Σ =

r∑

i=1

σ̃iviv
⊤
i + I, (1.6)

where r ∈ N is the rank of signals. By replacing Stein’s original estimator (1.2) with the stronger rank-aware
assumption ϕi ≡ 1 for r + 1 ≤ i ≤ p (see equation (1.13) therein), [32] provided analytical and closed-form
convergent limits for the shrinkers ϕj , 1 ≤ j ≤ r, under various choices of loss functions when p ≤ n.
These convergent limits can be consistently estimated using the first r eigenvalues and eigenvectors of Q. An
important insight conveyed by [32] is that the selection of the loss function can have a significant impact on
the estimation of shrinkers. Nevertheless, the assumption ϕi ≡ 1 for i > r is crucial for their theory, which
fails when I in (1.6) is replaced by a general positive definite covariance matrix Σ0. To address this issue,
under Stein’s setup (1.2) and using Frobenius norm as the loss function, Bun [18] derived the convergent
limits for shrinkers associated with the spikes of a general covariance matrix Σ and provide an adaptive
estimation of these limits.

On the other hand, the derivation of the convergent limits for shrinkers associated with non-spiked
eigenvectors becomes much more challenging and is substantially different from [18, 32]. In this context,
adaptive estimations for the shrinkers still can be provided, see e.g., [49, 50, 52, 53], but theoretically, they
are consistent only in an averaged sense. The main challenge lies in the fact that a key theoretical input is
the limiting eigenvector empirical spectral distribution derived in [49], which is insufficient for deriving the
convergent limits and providing consistent estimators for individual shrinkers.
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Inspired by these earlier works, in this paper, we will rigorously prove the convergent limits for all the
(spiked or non-spiked) shrinkers associated with general spiked covariance matrix models in (2.2) below for
various loss functions. Roughly speaking, our generalized model extends (1.6) by replacing I with an (almost)
arbitrary positive definite covariance matrix, introducing a more realistic modeling approach. Note that the
framework in [32] is not applicable in this setting. We will also provide consistent estimators for individual
shrinkers by approximating these convergent limits with sample quantities. From a technical viewpoint, our
current paper improves all previous results in the existing literature.

1.2 Related works on eigenvector distributions of sample covariance matrices

Next, we briefly review some previous results concerning eigenvector distributions of random matrices, with a
focus on the sample covariance matrices. On the global level, the eigenvector empirical spectral distribution
(VESD) has been extensively investigated under various assumptions on the population covariance matrices,
as explored in studies such as [3, 66, 67, 69]. Notably, these papers demonstrated that the limiting VESD is
closely linked to the Marchenko-Pastur (MP) law [56]. Building upon these results, investigations into the
distributions of the linear spectral statistics (LSS) of the eigenvectors have been conducted under various
settings in [3, 69]. Specifically, it has been established that the LSS of the eigenvectors exhibit asymptotic
Gaussian behavior under almost arbitrary population covariance Σ.

On the local level, an important result was established in [15] when Σ = I, demonstrating that the
projection of any eigenvector onto an arbitrary deterministic unit vector converges in law to a standard
normal distribution after a proper normalization. In particular, this implies that all the eigenvector entries
are asymptotically Gaussian. Furthermore, in [15], the concept of quantum unique ergodicity (QUE) for
eigenvectors was also established based on these findings. Similar results were obtained for the non-outlier
eigenvectors under Johnstone’s spiked covariance matrix model (1.6) in [13], while the distributions of outlier
eigenvectors were studied in [5,7,60]. For the case of a general diagonal population covariance matrix Σ, the
universality of eigenvector distributions was established both in the bulk and near the edge in [26]. However,
the explicit distribution remains unknown.

Motivated by our specific applications in shrinkage estimation, our goal is to derive the explicit distribu-
tions for all eigenvectors of the non-spiked model, as well as the non-outlier eigenvectors of the spiked model,
considering the assumption of a general population covariance matrix Σ. These results have been lacking in
the existing literature, as indicated by the aforementioned overview. To achieve this, we draw inspiration
from recent advancements in the analysis of eigenvectors of Wigner matrices, as presented in [10,11,15,44,57].

1.3 An overview of our results and technical novelties

In this subsection, we present an overview of our results and highlight the main novelties of our work.
Our main contributions can be divided into two parts: the convergent limit of each individual shrinker for
various loss functions under the general spiked covariance model (see Section 2.2); the asymptotic eigenvector
distributions for sample covariance matrices with general covariance structures (see Section 2.3).

For the convergence of shrinkers, under a general spiked covariance matrix model, we present explicit and
closed-form formulas that characterize the convergent limit of each individual shrinker under various loss
functions. The precise statement of this result can be found in Theorem 2.4. Notably, these formulas remain
applicable even in the singular case with p > n. Corollary 2.5 provides simplified versions of these formulas
for specific choices of the loss function. Leveraging these theoretical findings, we establish the asymptotic
risks associated with shrinkage estimation of covariance and precision matrices under various loss functions in
Corollary 2.6. To facilitate practical implementation, we also introduce adaptive and consistent estimators
for the convergent limits of the shrinkers, as outlined in Theorem 3.2. An R package RMT4DS

1 has been
developed to implement our methods.

Now, we will delve into the technical details concerning the derivation of the convergent limits of (1.3); the
derivation of the limit of (1.4) is considerably simpler. The proofs for the spiked and non-spiked shrinkers
exhibit notable differences. In the case of spiked shrinkers, we employ a decomposition of (1.3) into two
components: a low-rank part and a high-rank part, as illustrated in equation (4.2) below. The low-rank
portion can be effectively approximated by leveraging the convergence limits of the outlier eigenvalues and

1An online demo for the package can be found at https://xcding1212.github.io/RMT4DS.html
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eigenvectors, as demonstrated in Lemma B.7. On the other hand, the high-rank component takes the form
of
∑p

j=r+1 wj(u
⊤
i vj)

2, 1 6 i 6 r, where wj are some deterministic weights and vj are the eigenvectors of

Σ. The existing literature (e.g., [27,45]) provides a ”rough” delocalization bound like (u⊤
i vj)

2 ≤ n−1+ε with
high probability, for any small constant ε > 0. However, this bound is insufficient for our specific purpose.
To address this issue, consider the resolvent (or Green’s function) of Q defined as G(z) = (Q − z)−1 for
z ∈ C. Then, we will conduct a higher order resolvent expansion to obtain that (c.f. Lemma B.8)

|u⊤
i vj |2 = w′

ijGij(ai)Gji(ai) + O(n−3/2+ε) with high probability,

where ai is the convergent limit of the i-th outlier eigenvalue of Q and w′
ij denotes certain deterministic

weights. Now, our focus narrows down to estimating the random variable given by
∑p

j=r+1 w
′
ijGji(ai)Gij(ai).

In the special case where w′
ij ≡ 1, Bun [18] has provided an estimation of this quantity utilizing a concen-

tration inequality. However, in this paper, we employ a variational approach that simplifies the estimation
process and enables the computation of the limit for any sequence of weights w′

ij ; see (C.6) for further details.
On the other hand, for the non-spiked shrinkers ϕi, r + 1 ≤ i ≤ min{p, n}, the above approach fails.

Instead, we need to directly evaluate
∑p

j=1 wj(u
⊤
i vj)

2 by establishing what is known as a QUE estimate.
In the case where Σ = I, this form has been investigated in [13] utilizing the methodology developed
in [15]. In this work, we establish the QUE for the non-spiked eigenvectors of Q under an almost arbitrary
population covariance matrix Σ. The key lies in establishing the asymptotic distributions for all non-outlier
eigenvectors (c.f. Theorem 2.8), from which the QUE estimate can be derived (c.f. Theorem 2.12). The proof
of the eigenvector distributions in this work builds upon and extends the eigenvector moment flow (EMF)
approach introduced in [15], which involves three main steps. In the first step, we establish the local laws for
the resolvent of Q. In the second step, we study the EMF for the rectangular matrix Dyson Brownian motion
(DBM) of Q defined as Qt := (Y +Bt)(Y +Bt)

⊤/n, where Y represents the data matrix and Bt is a matrix
consisting of i.i.d. Brownian motions of variance t. We demonstrate the relaxation of the EMF dynamics to
equilibrium when t ≫ n−1/3, from which we can establish the Gaussian normality for the eigenvectors of
Qt. Finally, in the last step, we show that the eigenvector distributions of Q are close to those of Qt, which
is achieved through a standard Green’s function comparison argument. For a more detailed discussion of
the above strategy, we direct readers to Section 4. Notably, this approach has been recently employed to
establish the asymptotic distributions of eigenvalues and eigenvectors for various random matrix ensembles
featuring general population covariance or variance profiles, as evidenced in works such as [10,11,16,31,57].

In our setting, Step 1 has already been accomplished in [45]. Moving on to Step 2, following the idea of [15],
we establish in Theorem 4.5 that a general functional ft(ξ), encoding the joint moments of the projections
of the eigenvectors of Qt, relaxes to equilibrium with high probability on the time scale t ≫ n−1/3. This
equilibrium characterizes the joint moments of a multivariate normal distribution, which concludes Step 2
by the moment method (c.f. Lemma 4.1). We remark that the proof of Theorem 4.5 relies on a probabilistic
description of ft(ξ) as the solution to a system of coupled SDEs representing a specific interacting particle
system (c.f. Lemma 4.10). Since the current paper is motivated by applications in shrinker estimation, we
specifically focus on investigating the joint distribution of eigenvectors projected onto a single direction, as
illustrated in (4.7). Nevertheless, as discussed in Remark 2.9, our results can be extended to scenarios where
different eigenvectors are projected onto multiple distinct directions. In such cases, it becomes necessary to
consider a more complex interacting particle system.

One technical innovation of our proof is the comparison argument in Step 3 (see Lemma 4.2). In the
existing literature (e.g., [13, 44]), the comparison is typically made between two random matrices, say W
and WG

t , where WG
t has the same covariance structure or variance profile as W , but with entries that are

Gaussian divisible (roughly speaking, we will setW = Y and WG
t =

√
1− tY +Bt). However, this argument

is applicable in our context only when the population covariance matrix Σ is diagonal, as demonstrated
in [26]. To address this issue, we introduce a new comparison approach by introducing an additional inter-
mediate matrix Wt as defined in (4.8). The matrix Wt possesses the same covariance structure as WG

t while
incorporating the randomness in W . Moreover, for a fixed t, we can carefully choose Wt in such a way that
it has the same law as W . Then, to conclude Step 3, we will introduce a novel interpolation between Wt

and WG
t . Specifically, we define a continuous sequence of matrices W s

t , s ∈ [0, 1] (see (4.10) for the precise
definition). These matrices are specifically selected so that W 0

t follows the distribution of Wt, while W
1
t

follows the distribution of WG
t . Notably, unlike previous comparison arguments in the literature, during the

transition from W 0
t to W 1

t , only the deterministic covariance structure of the interpolating matrices varies
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with s. Finally, the comparison is conducted by controlling the derivative of the relevant quantities with
respect to s. For a more comprehensive explanation, readers can refer to the discussion below (4.9).

Outline of the paper. In this paper, we focus on the spiked covariance matrix model with a general population
covariance. In Section 2, we introduce this model and state our main results, which are divided into two
parts: in Section 2.2, we present the asymptotics of shrinkers; in Section 2.3, we provide results concerning
the eigenvector distributions. In Section 3, we introduce adaptive and consistent estimators for the shrinkers
and conduct numerical simulations to demonstrate the superior performance of our estimators. In Section
4, we discuss our proof strategy and highlight the technical novelties. All the technical proofs of the main
results are given in Appendices B–F. For the convenience of readers, in Appendix A, we summarize some
commonly used loss functions and the related shrinkers.

Notations. To facilitate the presentation, we introduce some necessary notations that will be used in this
paper. We are interested in the asymptotic regime with p, n→ ∞. When we refer to a constant, it will not
depend on p or n. Unless otherwise specified, we will use C to denote generic large positive constants, whose
values may change from line to line. Similarly, we will use ε, δ, τ , c etc. to denote generic small positive
constants. For any two sequences an and bn depending on n, an = O(bn), or an . bn means that |an| ≤ C|bn|
for some constant C > 0, whereas an = o(bn) or |an| ≪ |bn| means that |an|/|bn| → 0 as n→ ∞. We say that
an ≍ bn if an = O(bn) and bn = O(an). Moreover, for a sequence of random variables xn and non-negative
quantities an, we use xn = OP(an) to mean that xn/an is stochastically bounded and use xn = oP(an) to
mean that xn/an converges to zero in probability. Denote by C+ := {z ∈ C : Im z > 0} the upper half
complex plane and R+ := {x ∈ R : x > 0} the positive real line. For an event Ξ, we let 1Ξ or 1(Ξ) denote its
indicator function. We use {ek} to denote the standard basis of certain Euclidean space, whose dimension
will be clear from the context. For any a, b ∈ Z, we denote [[a, b]] := [a, b] ∩ Z and abbreviate [[a]] := [[1, a]].
Given two (complex) vectors u and v, we denote their inner product by 〈u,v〉 := u∗v. We use ‖v‖q, q ≥ 1,
to denote the ℓq-norm of v. Given a matrix B = (Bij), we use ‖B‖ and ‖B‖HS , and ‖B‖max := maxi,j |Bij |
to denote the operator, Hilbert-Schmidt, and maximum norms, respectively. We also use Buv := u∗Bv to
denote the “generalized entries” of B.

Acknowledgments. The authors want to thank Jun Yin for many helpful discussions. XCD is partially
supported by NSF DMS-2114379 and DMS-2306439. YL and FY are partially supported by the National
Key R&D Program of China (No. 2023YFA1010400).

2 Main results

2.1 The model and main assumptions

In this paper, we consider the non-spiked population covariance matrix Σ0, which is a deterministic p × p
positive definite matrix. Suppose it has a spectral decomposition

Σ0 =

p∑

i=1

σiviv
⊤
i = V Λ0V

⊤, Λ0 = diag{σ1, · · · , σp}, (2.1)

where Λ0 is the diagonal matrix of eigenvalues 0 < σp 6 · · · 6 σ2 6 σ1 < ∞ arranged in the descending
order, and V denotes the eigenmatrix, i.e., the collection of the eigenvectors {vi}. In the statistical literature,
people are also interested in finite rank deformations of Σ0 by adding a fixed number of spikes to Λ0.
Following [19, 27, 29], we define the spiked population covariance matrix Σ as

Σ =

p∑

i=1

σ̃iviv
⊤
i ≡ V ΛV ⊤, Λ = diag{σ̃1, · · · , σ̃p}. (2.2)

Here, for the sequence of eigenvalues 0 < σ̃p 6 · · · 6 σ̃2 6 σ̃1 <∞, we assume that there exists a fixed r ∈ N

and a non-negative sequence {di}ri=1 such that

σ̃i :=

{
(1 + di)σi, i 6 r

σi, i > r + 1
. (2.3)
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In other words, the first r eigenvalues σ̃i, i ∈ [[r]], are the spiked eigenvalues with spiked strengths character-
ized by di. Accordingly, we define the non-spiked and spiked sample covariance matrices considered in this
paper as

Q1 := Σ
1/2
0 XX⊤Σ1/2

0 , Q̃1 := Σ1/2XX⊤Σ1/2, (2.4)

where X ∈ R
p×n is a p × n random data matrix with i.i.d. entries of mean zero and variance n−1. In our

proof, we will also frequently use their companions:

Q2 := X⊤Σ0X, Q̃2 := X⊤ΣX. (2.5)

Note Q1 (resp. Q̃1) has the same nonzero eigenvalues as Q2 (resp. Q̃2). In this paper, we will often regard
the non-spiked model as a special case of the spiked one with r = 0.

In this paper, we study the asymptotic behavior of the models Q1 and Q̃1 using the Stieltjes transform
method. Given any n× n symmetric matrix M , we denote its empirical spectral density (ESD) as

µM :=
1

n

n∑

i=1

δλi(M),

where λi(M), i ∈ [[n]], denote the eigenvalues of M . Given a probability measure ν on R, we define its
Stieltjes transform as

mν(z) :=

∫

R

1

x− z
ν(dx), z ∈ C+. (2.6)

When z = x ∈ R, we adopt the convention that mν(x) := limη↓0mν(x + iη). It is well-known that the
Stieltjes transform of the ESD of Q2 has the same asymptotics as the so-called deformed Marchenko-Pastur
(MP) law ̺ ≡ ̺Σ0,n [56]. It may include a Dirac delta mass δ0 at zero, for example, when p > n or when
σi = 0 for some i. Furthermore, ̺ on R+ can be determined by its Stieltjes transform m(z). More precisely,
define the function h : C → C as

h(x) ≡ h(x,Σ0) := − 1

x
+

1

n

p∑

i=1

1

x+ σ−1
i

. (2.7)

(As a convention, we let (x+ σ−1
i )−1 = 0 when σi = 0.) For any fixed z ∈ C+, there exists a unique solution

m ≡ m(z,Σ0) ∈ C+ to the self-consistent equation

z = h(m,Σ0), with Imm > 0; (2.8)

see [45, Lemma 2.2] or the book [2] for more details. Then, we can determine the MP density ̺ from m as

̺(E) = π−1 lim
η↓0

Imm(E + iη), E > 0. (2.9)

We summarize some basic facts about the support of ̺ in the following lemma.

Lemma 2.1 (Lemma 2.5 of [45] and Lemma 2.4 of [28]). The support of ̺ is a disjoint union of connected
components on R+ :

R+ ∩ supp ̺ = R+ ∩
q⋃

k=1

[a2k, a2k−1], (2.10)

where q is an integer that depends only on the ESD of Σ0, and we shall call a1 > a2 > · · · > a2q ≥ 0 the

spectral edges of ̺. Here, {ak}2qk=1 can be characterized as follows: there exists a real sequence {bk}2qk=1 such
that (x,m) = (ak, bk) are real solutions to the equations

x = h(m), and h′(m) = 0.

Following the convention in the random matrix theory literature, we denote the rightmost and leftmost
edges by λ+ := a1 and λ− := a2q, respectively. For any 1 ≤ k ≤ q, we define

nk :=
∑

l≤k

n

∫

(a2l,a2l−1]

̺(x)dx, (2.11)

6



which is the classical number of eigenvalues in (a2k, λ+]. As a convention, we set n0 = 0. It has been shown
in [45, Lemma A.1] that nk ∈ N for k ∈ [[q]]. We now introduce the quantiles γk of ̺, which are indeed the
classical locations for the eigenvalues of Q2.

Definition 2.2. We define the classical eigenvalue locations (or the quantiles) γk ≡ γk(n) of the deformed
Marchenco-Pastur law ̺ as the unique solution to the equation

∫ ∞

γk

̺(x)dx =
k − 1/2

n
, k ∈ [[K]], (2.12)

where we have abbreviated K := n ∧ p. Note that γk is well-defined since the nk’s are integers. As a
convention, we set γk = 0 for k ∈ [[K+ 1, n ∨ p]].

Now, we are ready to state the main assumptions for our results.

Assumption 2.3. We assume the following assumptions hold.

(i) On dimensionality. There exists a small constant τ ∈ (0, 1) such that (1.5) holds and

|cn − 1| ≥ τ. (2.13)

(ii) On X in (2.4). For X = (xij), suppose that xij , i ∈ [[p]], j ∈ [[n]], are i.i.d. real random variables with
Exij = 0 and Ex2ij = n−1. In addition, we assume that the entries of X have arbitrarily high moments:
for each fixed k ∈ N, there exists a constant Ck > 0 such that

E|√nxij |k 6 Ck. (2.14)

Finally, we assume that the entries of X have vanishing third moments, i.e., Ex3ij = 0.

(iii) On Σ0 in (2.1). There exists a small constant τ1 ∈ (0, 1) such that

τ1 6 σp 6 · · · 6 σ2 6 σ1 6 τ−1
1 . (2.15)

Moreover, for the two sequences of {ak} and {bk} given in Lemma 2.1, we assume that

ak > τ1, min
l 6=k

|ak − al| > τ1, min
i

|σ−1
i + bk| > τ1. (2.16)

Finally, for any small constant τ2 ∈ (0, 1), there exists a constant ς ≡ ςτ1,τ2 > 0 such that

̺(x) ≥ ς for x ∈ [a2k + τ2, a2k−1 − τ2], k ∈ [[q]]. (2.17)

(iv) On the spikes in (2.3). There exists a fixed integer r and a constant ̟ ∈ (0, 1) such that

σ̃i > −b−1
1 +̟ for i ∈ [[r]]; σi < −b−1

1 −̟ for i ∈ [[r + 1, p]]. (2.18)

Moreover, the spikes are distinct in the sense that mini6=j∈[[r]] |σ̃i − σ̃j | > ̟. We also assume that the
largest spike σ̃1 is bounded from above by ̟−1.

Let us now provide a brief discussion on the above assumption. Condition (1.5) of part (i) means that we
are considering the high-dimensional regime in this paper. We remark that in related works such as [32,50,52],
it is required that cn converges to a fixed constant c ∈ (0,∞) as n → ∞. In comparison, our assumption
(1.5) is more flexible and purely data-dependent. The condition (2.13) is introduced to avoid the occurrence
of the “hard edge” phenomenon in the deformed MP law ρ, that is, λ− → 0 as cn → 1. In fact, by the
properties of the MP law [56], it is known that

λ+ ≤ σ1(1 +
√
cn)

2, λ− ≥ σp(1 −
√
cn)

2. (2.19)

The condition (2.13) is relatively mild since when cn = 1 + o(1), we can always omit certain samples to
ensure that p/n ≥ 1 + τ . Additionally, it is worth mentioning that even when cn = 1 + o(1), all our results
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remain valid for eigenvectors with indices up to (1− τ)p, which correspond to the eigenvalues away from the
hard edge λ−.

Part (ii) imposes some moment conditions on the entries ofX . We remark that the high moment condition
(2.14) can be relaxed to a certain extent—we may only assume that (2.14) holds for k 6 C with C being an
absolute constant (e.g., C = 8). Additionally, the vanishing third-moment condition is not essential, and it
can be eliminated using an alternative approach distinct from our current proof. However, due to limitations
in length, we will not explore this direction in the present paper, leaving it for future investigation.

For part (iii), the condition (2.15) is seen to be mild. The conditions (2.16) and (2.17) are some technical
regularity conditions imposed on the ESD of Σ0. The edge regularity condition (2.16) has previously appeared
(in slightly different forms) in several works on sample covariance matrices [6,33,40,45,54,58], and it ensures
a regular square-root behavior of the density ̺ near the spectral edges ak. The bulk regularity condition
(2.17) was introduced in [45], and it imposes a lower bound on the asymptotic density of eigenvalues away
from the edges. Both of these conditions are satisfied by “generic” population covariance matrices Σ0; see
e.g., the discussions in [45, Examples 2.8 and 2.9].

Finally, condition (2.18) in part (iv) means that σ̃i, i ∈ [[r]], are the supercritical spikes concerning the
BBP transition [4] of the largest few eigenvalues of Q̃1. In particular, they will give rise to outlier sample
eigenvalues beyond the right edge λ+ of supp ̺; see e.g., Theorem 3.6 of [29]. It is possible to extend our
results to the more general case with the sharper condition: for a small constant ε > 0,

σ̃i > −b−1
1 + n−1/3+ε, i ∈ [[r]].

(It is known that −b−1
1 +O(n−1/3) is the critical regime for BBP transition.) We can also allow for degenerate

spikes and spikes σ̃i ≡ σ̃i(n) that diverge with n as n → ∞. However, for brevity, we do not pursue such
generalizations in this paper.

2.2 Asymptotics of optimal shrinkage estimators

In this subsection, we state the main statistical results on the analytical formulas and asymptotic risks for
the optimal shrinkage estimators. Our first result concerns the asymptotics of the shrinkers. To state it, we
now introduce more notations. For h defined in (2.7) and i ∈ [[r]], we denote

ai = h(−σ̃−1
i ), bi = h′(−σ̃−1

i )/h(−σ̃−1
i ). (2.20)

(We will see in Lemma B.7 that ai is the classical location (i.e., convergent limit) of the i-th outlier eigenvalue

λi(Q̃1).) As noted in (1.3) and (1.4), the optimal shrinkers usually depend on the loss function L via some
continuous function ℓ(x) on (0,∞). Given such a function ℓ, for t > 0 small, and x > 0, we define

σi,t(x) :=
σi

1 + tℓ(σi)/x
, i ∈ [[p]]. (2.21)

We further define m̃t(z, x) as in (2.8) by replacing {σi}pi=1 with {σi,t(x)}pi=1, that is, m̃t(z, x) solves the
following self-consistent equation:

z = − 1

m̃t(z, x)
+

1

n

p∑

i=1

1

m̃t(z, x) + σ−1
i (1 + tℓ(σi)/x)

. (2.22)

Note when t = 0, we have σi,0(x) = σi and m̃0(z, x) = m(z). We then denote the partial derivative of
m̃t(z, x) in t as

ṁ0(z, x) = ∂tm̃t(z, x)|t=0 . (2.23)

By differentiating the equation (2.22) with respect to z and t at t = 0, we obtain that

m′(z)

m(z)2
− 1

n

p∑

i=1

m′(z)

[m(z) + σ−1
i ]2

= 1,
ṁ0(z, x)

m(z)2
− 1

n

p∑

i=1

ṁ0(z, x) + ℓ(σi)/(σix)

[m(z) + σ−1
i ]2

= 0. (2.24)
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From these two equations, we can derive the following explicit expression for ṁ0(z, x):

ṁ0(z, x) =
m′(z)

nx

p∑

i=1

ℓ(σi)/σi

[m(z) + σ−1
i ]2

. (2.25)

By abbreviating ṁ0(ai) ≡ ṁ0(ai, ai), we now define

ψi ≡ ψi(ℓ) := bi

(
ℓ(σ̃i)

σ̃i
+ aiṁ0(ai)

)
, i ∈ [[r]], (2.26)

and the function

ϑ(x) ≡ ϑ(ℓ, x) :=
1

p

p∑

j=r+1

ℓ(σ̃j)φ(vj ,vj , x), (2.27)

where for any two vectors w1,w2 ∈ Rp, we denote

φ(w1,w2, x) :=

{
cnw

⊤
1

[
Σ
(
x|1 +m(x)Σ|2

)−1
]
w2, x > 0

(
1− c−1

n

)−1
w⊤

1 (1 +m(0)Σ)
−1

w2, x = 0 and cn > 1
. (2.28)

Here, we adopt the convention that φ(w1,w2, x) := limη↓0 φ(w1,w2, x+ iη) for x ∈ R.
In this paper, we denote the eigenvalues of the non-spiked sample covariance matrix Q1 by λ1 ≥ λ2 ≥

· · · ≥ λp and those of the spiked version Q̃1 by λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃p. To facilitate the presentation and with
a slight abuse of notation, we will use the notation {ui}pi=1 to represent the sample eigenvectors of either
Q1 or Q̃1. Additionally, we denote by U0 = (uK+1, . . . ,up) ∈ Rp×(p−n) the eigenmatrix associated with the

zero eigenvalues of Q1 or Q̃1. The specific model being referred to will be evident from the context. Now,
we are ready to state the main results. First, we provide the convergent limits of the shrinkers.

Theorem 2.4. Suppose Assumption 2.3 holds. Recall that γi are the quantiles of ̺ defined in Definition 2.2.
For any continuous function ℓ(x) defined on (0,∞), the following estimates hold:

E
∣∣u⊤

i ℓ(Σ)ui − ψi(ℓ)
∣∣ = o(1), i ∈ [[r]]; (2.29)

E
∣∣u⊤

i ℓ(Σ)ui − ϑ(ℓ, γi−r)
∣∣ = o(1), i ∈ [[r + 1,K]]; (2.30)

E
∣∣(p− n)−1 Tr

[
U⊤
0 ℓ(Σ)U0

]
− ϑ(ℓ, 0)

∣∣ = o(1), i ∈ [[K + 1, p]]. (2.31)

The above results (2.30) and (2.31) also extend to the non-spiked model with r = 0.

Theorem 2.4 provides a closed-form, analytic, and deterministic formula for the convergent limits of the
shrinkage estimators. As summarized in Appendix A, commonly used loss functions include ℓ(x) = x, x2,
x−1, x−2, log x, etc. Our result gives the asymptotics of the shrinkers with exact dependence on the loss
functions, the population eigenvalues, the classical eigenvalue locations, and the aspect ratio cn. In Section
3.1, we will provide numerical algorithms to estimate the aforementioned quantities consistently with sample
quantities. Shrinkage estimators for other random matrix models have also been studied to some extent;
see e.g., [9, 19, 39, 55]. We believe that our strategies and arguments can be extended and applied to these
models with some modifications. We will explore this direction in future studies.

In the special case with ℓ(x) = x (corresponding to the loss functions of Frobenius, minimal variance,
disutility, and inverse Stein norms), the formulas of ϑ or ψi will be significantly simplified, as shown in the
following result.

Corollary 2.5. Suppose Assumption 2.3 holds. Define functions ξ(x) and ζ(x) as

ξ(x) ..=

{
1

x|m(x)|2 , x > 0
1

(cn−1)m(0) , x = 0
, ζ(x) ..=

m′(x)

|m(x)|2 .

Then, the following estimates hold:

E
∣∣u⊤

i Σui − biζ(ai)
∣∣ = o(1), i ∈ [[r]]; (2.32)

E
∣∣u⊤

i Σui − ξ(γi−r)
∣∣ = o(1), i ∈ [[r + 1,K]]; (2.33)

E
∣∣(p− n)−1 Tr

[
U⊤
0 ΣU0

]
− ξ(0)

∣∣ = o(1), i ∈ [[K+ 1, p]]. (2.34)

The above results (2.33) and (2.34) also extend to the non-spiked model with r = 0.
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Compared with Theorem 2.4, we have simpler and more implementable formulas in the case of ℓ(x) = x.
Notably, the unobserved quantities depend only on the Stieltjes transform m(z) and the classical eigenvalue
locations ai or γi. As we will see in Section 3.1 and Appendix B, m(z) can be well approximated by the
Stieltjes transform of the ESD of Q2 or Q̃2 due to the local laws of their resolvents, and ai and γi can
be efficiently estimated by their sample counterparts using the convergence of outlier eigenvalues and the
rigidity of non-outlier eigenvalues. These estimations only rely on the sample eigenvalues of Q2 or Q̃2, which
significantly simplifies our numerical algorithms.

Before concluding this section, we establish the asymptotic risks (or generalization errors) for Stein’s
estimator under 12 commonly used loss functions as summarized in Appendix A.

Corollary 2.6. Suppose Assumption 2.3 holds. Recall (2.26) and (2.27). Given a function ℓ, define θi(ℓ) :=
ψi(ℓ) for i ∈ [[r]], θi(ℓ) := ϑ(ℓ, γi−r) for i ∈ [[r + 1,K]], and θi(ℓ) := ϑ(ℓ, 0) for i ∈ [[K + 1, p]]. Let Σ̃ denote
the optimal invariant estimators for Σ as defined in (1.2). For the loss functions L(·, ·) given in Table 1
below, the following estimates hold with probability 1− o(1).

(i) For θi ≡ θi(ℓ) with ℓ(x) = x, we have that with probability 1− o(1),

LFro(Σ, Σ̃) =

√√√√1

p

p∑

i=1

(σ2
i − θ2i ) + o(1), LinStein(Σ, Σ̃) =

1

p

p∑

i=1

log
θi
σi

+ o(1),

Ldisu(Σ, Σ̃) = 1−
∑p

i=1 θ
−1
i∑p

i=1 σ
−1
i

+ o(1), LMV(Σ, Σ̃) = p

(
1∑p

i=1 θ
−1
i

− 1∑p
i=1 σ

−1
i

)
+ o(1),

where Fro, inStein, disu, and MV are the shorthand notations for the Frobenius, inverse Stein, disu-
tility, and minimum variance norms, respectively.

(ii) For θi ≡ θi(ℓ) with ℓ(x) = x−1, we have that with probability 1− o(1),

LinFro(Σ, Σ̃) =

√√√√1

p

p∑

i=1

(
σ−2
i − θ2i

)
+ o(1), LStein(Σ, Σ̃) =

1

p

p∑

i=1

log(σiθi) + o(1),

LwFro(Σ, Σ̃) = 1−
∑p

i=1 θ
−1
i∑p

i=1 σi
+ o(1),

where inFro, Stein, and wFro are the shorthand notations for the inverse Frobenius, Stein, and weighted
Frobenius norms, respectively.

(iii) For θi ≡ θi(ℓ) with ℓ(x) =
√
x, we have that with probability 1− o(1),

LFre(Σ, Σ̃) =

√√√√1

p

p∑

i=1

(σi − θ2i ) + o(1),

where Fre means the Fréchet norm.

(iv) For θi ≡ θi(ℓ) with ℓ(x) = log x, we have that with probability 1− o(1),

LLE(Σ, Σ̃) =

√√√√1

p

p∑

i=1

[(log σi)2 − θ2i ] + o(1),

where LE means the Log-Euclidean norm.

(v) Define θi,k ≡ θi(ℓk), k = 1, 2, 3, 4, with ℓ1(x) = x−2, ℓ2(x) = x−1, ℓ3(x) = x, and ℓ4(x) = x2. Then,
we have that with probability 1− o(1),

LQu(Σ, Σ̃) =

√√√√1− 1

p

p∑

i=1

(θi,2)2

θi,1
+ o(1), LinQu(Σ, Σ̃) =

√√√√1− 1

p

p∑

i=1

(θi,3)2

θi,4
+ o(1),

LsymStein(Σ, Σ̃) = 2

(
1

p

p∑

i=1

√
θi,2θi,3 − 1

)
+ o(1),
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where Qu, inQu, and symStein are the shorthand notations for the quadratic, inverse quadratic, and
symmetrized Stein norms, respectively.

2.3 Eigenvector distributions for sample covariance matrices

In this subsection, we present the theoretical results regarding the asymptotic distributions of the non-outlier
eigenvectors of (non-spiked or spiked) sample covariance matrices. For simplicity of presentation, we adopt
the notion of “asymptotic equality in distribution”, as defined in [5, Definition 2.2].

Definition 2.7. Two sequences of random vectors xn,yn ∈ Rk are asymptotically equal in distribution,
denoted by xn ≃ yn, if they are tight (i.e., for any ε > 0, there exists a Cε > 0 such that supn P(‖xn‖ >
Cε) 6 ε) and satisfy

lim
n→∞

[Eh(xn)− Eh(yn)] = 0,

for any bounded smooth function h : Rk → R.

Theorem 2.8 (Eigenvector distribution). Suppose Assumption 2.3 holds. Given a deterministic unit vector
v ∈ Rp and any fixed integer L, take a subset of indices {ik+ r}Lk=1 ⊂ [[r + 1,K]] for the spiked model. Define
the L× L diagonal matrix

ΞL := diag {φ(v,v, γi1), · · · , φ(v,v, γiL)} , (2.35)

where φ is defined in (2.28) and {γik}Lk=1 are defined in Definition 2.2. Then, we have that

(p|〈v,ui1+r〉|2, . . . , p|〈v,uiL+r〉|2) ≃ (|N1|2, . . . , |NL|2), (2.36)

where {Nk}Lk=1 are independent centered Gaussian random variables with variances φ(v,v, γik ). Equivalently,
we can express (2.36) as

√
p



ξ1〈v,ui1+r〉

...
ξL〈v,uiL+r〉


 ≃ N (0,ΞL), (2.37)

where ξ1, . . . , ξL ∈ {±1} are i.i.d. uniformly random signs independent of X. The above result also extends
to the non-spiked model with r = 0.

Theorem 2.8 provides a characterization of the joint distribution of the projections 〈v,uik〉 (referred to as
“generalized components”) of the non-outlier eigenvectors from the non-spiked or spiked sample covariance
matrices. It demonstrates that the generalized components of different eigenvectors are asymptotically
independent Gaussian variables, and their variances can be explicitly computed. Given that eigenvectors are
defined only up to a phase, we express the distributions of eigenvectors using the forms presented in (2.36) or
(2.37). As a specific example, when Σ = Ip, we can verify that φ(v,v, γik) = 1 by using the explicit form of
m(z) solved from (2.8). This reduces to the result in [13, Theorem 2.20]. We provide numerical illustrations
of Theorem 2.8 in Figure 2.1.

Remark 2.9. For the sake of statistical applications and to maintain simplicity in our presentation, we have
focused on a scenario where the sample eigenvectors are projected onto the same direction v. However, as
discussed in Remark D.3 below, our results can be extended to situations where different sample eigenvectors
are projected onto multiple distinct directions. More precisely, our method can be generalized to show that
for deterministic unit vectors vik ∈ Rp, k ∈ [[L]],

√
p



ξ1〈vi1 ,ui1+r〉

...
ξL〈viL ,uiL+r〉


 ≃ N (0,Ξ′

L), with Ξ′
L := diag {φ(vi1 ,vi1 , γi1), · · · , φ(viL ,viL , γiL)} . (2.38)

Such a result has recently been established for Wigner matrices in [57], and we believe similar arguments
can be applied to our setting. However, since (2.38) falls beyond the scope of the current paper, we intend
to pursue it in future research.
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Figure 2.1. Variances of the generalized components of non-outlier eigenvectors. We demonstrate the validity of
Theorem 2.8 by comparing the empirical variances with the formula presented in (2.35). We consider Q1 in (2.4)
with p = 300 and n = 600. The random matrix X consists of i.i.d. N (0, 1) entries. In the left panel, we take the ESD
of Σ0 to be µΣ0 = 0.5δ3 + 0.5δ1. In the right panel, we take µΣ0 = p−1

∑p
i=1

δ1+i/p. The empirical results are based
on 1,000 repetitions and v = v1, the leading eigenvector of Σ0. The theoretical variances are evaluated through the
estimated φ, which will be discussed in detail in Section 3 (see Theorem 3.2). To facilitate implementation, users can
directly use the function MP

−
vector

−
dist provided in our R package RMT4DS.

Remark 2.10. In the current paper, our focus regarding the spiked model has been on the distribution of
its non-outlier eigenvectors. As for the outlier eigenvectors, we only examine their first-order asymptotics
(see Lemmas B.7 and B.8), which suffice for our statistical applications. It is important to note that the
derivation of their asymptotic distributions relies on a totally different approach from that for Theorem 2.8,
which will be explained in more detail in Section 4.1. In the case where Σ0 = I, the distributions of outlier
eigenvectors have been extensively studied in [5]. Unlike Theorem 2.8, the results in [5] demonstrate that
the distribution of the generalized components of outlier eigenvectors generally involves a linear combination
of Gaussian and Chi-square random variables. Nevertheless, we believe that by following the approach in [5]
and utilizing some tools developed in our paper, we can derive the distribution of all outlier eigenvectors
for general Σ0. Finally, we remark that the methods presented in our paper can be applied to study the
eigenvector distribution in other important statistical models, such as those discussed in [37, 38]. Exploring
these directions will be the focus of our future work.

Remark 2.11. Motivated by the applications in covariance matrix estimation, we have focused on demon-
strating the eigenvector distributions for the sample covariance matrices defined in (2.4), specifically the
distribution of the left singular vectors of the data matrix. However, in applications such as spectral clus-
tering, there is also interest in the right singular vectors. Fortunately, by virtue of symmetry, our arguments
can be readily extended to study the eigenvectors of Q2 and Q̃2 in (2.5) with minor modifications. For the
sake of simplicity, we will not explore this direction in the present paper.

During the proof of Theorem 2.8, we can derive the following concentration inequality for the weighted
average of the generalized components of eigenvectors, known as the quantum unique ergodicity estimate
[10, 15]. This result plays a key role in the proof of Theorem 2.4.

Theorem 2.12 (Quantum unique ergodicity). Let {wj}pj=1 be a deterministic sequence of real values such
that |wj | ≤ 1 for all j ∈ [[p]]. Recall that {vj}pj=1 are the eigenvectors of Σ. Then, there exists a constant
d > 0 such that for any ε > 0 and each i ∈ [[r + 1,K]], the following estimate holds:

P

(∣∣∣
p∑

j=1

wj |〈ui,vj〉|2 − p−1

p∑

j=1

wjφ(vj ,vj , γi−r)
∣∣∣ > ε

)
6 n−d/ε2. (2.39)

The above result also extends to the non-spiked model with r = 0.

In the literature, Theorem 2.12 is sometimes called a “weak” form of QUE since both the probability
bound and the rate in estimate (2.39) are non-optimal. Recently, a stronger notion of QUE called the
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eigenstate thermalization hypothesis has also been established for Wigner matrices [1,21–25]. We conjecture
that a similar form should also hold for sample covariance matrices, in the sense that

p∑

j=1

wj |〈ui,vj〉|2 = p−1

p∑

j=1

wjφ(vj ,vj , γi−r) + O≺(n
−1/2).

We plan to explore this direction in future works.

3 Adaptive and consistent estimators for shrinkers

In Section 2.2, we have provided the formulas for the convergent limits of the shrinkers ϕi. However,
in practical applications, the quantities involved in (2.20)–(2.28) are typically unknown and need to be
estimated. In this section, we propose adaptive and consistent estimators for these quantities, which in turn
provide consistent estimators for the shrinkers ϕi. Our focus will be on the possibly spiked model, which
encompasses the non-spiked model as a special case with r = 0.

3.1 Data-driven estimators for the shrinkers

As one can see, estimating the quantities in (2.20)–(2.28) requires consistent estimation of the spectrum of
the non-spiked eigenvalues of Σ. In the literature, this problem has been addressed for non-spiked sample
covariance matrices in [42,46] based on the sample eigenvalues ofQ1. For the spiked sample covariance matrix
model, we know that the non-outlier eigenvalues of Q̃1 stick to those of Q1 as indicated by equation (B.23)
below. Consequently, we can substitute the non-outlier eigenvalues λ̃i, i ∈ [[r + 1, p]], into the algorithms
from [42, 46] to obtain estimators for the eigenvalues of Σ0, denoted as

σ̂1 > σ̂2 > · · · > σ̂p > 0. (3.1)

In particular, they provide consistent estimation of the spectrum of the non-spiked eigenvalues σ̃j = σj ,
j ≥ r+1. To facilitate ease of use for users, these algorithms can be implemented using the functions MPEst
(for the method in [42]) or MomentEst (for the method in [46]) in our R package. Next, we turn to the
estimation of the quantities associated with the spikes of Σ. For i ∈ [[r]], we let

âi = λ̃i, b̂i = (âim̂
′
i)

−1, ̂̃σi = −(m̂i)
−1, (3.2)

where m̂i and m̂
′
i are defined as

m̂i
..=

1

n

n∑

j=r+1

1

λ̃j − âi
, m̂′

i
..=

1

n

n∑

j=r+1

1

(λ̃j − âi)2
. (3.3)

For a small constant ε > 0, we define

K+
ε := max

j
{j : σ̂j ≥ ε} , K−

ε := min
j

{
j : σ̂j ≤ −m̂−1

r − ε
}
. (3.4)

Then, we introduce the following estimator of ṁ0(ai):

m̂′
i,0(ε) =

m̂′
i

nâi

p∧K+
ε∑

j=(r+1)∨K−
ε

ℓ(σ̂j)σ̂j
(1 + m̂iσ̂j)2

.

Note all the above quantities can be computed adaptively using the observed sample covariance matrix
Q̃1. Moreover, the next result shows that they are consistent estimators for the relevant quantities.

Lemma 3.1. Under Assumption 2.3, the ESD µ̂ of {σ̂i} converges weakly to µΣ0 , that is, for each x ≥ 0,

|µ̂((−∞, x])− µΣ0((−∞, x])| = oP(1). (3.5)

For any continuous function ℓ defined on (0,∞), there exists a small constant ε0 > 0 such that for any
i ∈ [[r]] and ε ≤ ε0,

âi = ai + oP(1), b̂i = bi + oP(1), ̂̃σi = σ̃i + oP(1), m̂′
i,0(ε) = ṁ0(ai) + oP(1). (3.6)
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With the above lemma, we can propose a consistent estimator for ψi in (2.26) as

ψ̂i(ℓ, ε) := b̂i

(
ℓ(̂̃σi)

̂̃σi

+ âim̂
′
i,0(ε)

)
, i ∈ [[r]]. (3.7)

Next, we propose a consistent estimator for ϑ in (2.27). Corresponding to φ in (2.28), we define

φ̂j(x) =

{
cnσ̂j(x|1 + m̂(x)σ̂j |2)−1, r + 1 6 j 6 p, x > 0

(1− c−1
n )−1(1 + m̂0σ̂j)

−1, r + 1 6 j 6 p, x = 0
, (3.8)

where m̂(x) and m̂0 are defined as follows with η = n−1/2:

m̂(x) ..=
1

n

n∑

j=r+1

1

λ̃j − x− iη
, x > 0; m̂0 := Re

(
1

n

n∑

j=r+1

1

λ̃j − iη

)
. (3.9)

With the above notations, we then define that for i ∈ [[r + 1,K]] and small ε > 0,

ϑ̂i(ℓ, ε) :=
1

p

p∧K+
ε∑

j=r+1

ℓ(σ̂j)φ̂j(λ̃i)1
(∣∣∣1 + m̂(λ̃i)σ̂j

∣∣∣ ≥ ε
)
, ϑ̂0(ℓ, ε) :=

1

p

p∧K+
ε∑

j=r+1

ℓ(σ̂j)φ̂j(0). (3.10)

Now, we are prepared to present the consistency result for our proposed estimators of the shrinkers.

Theorem 3.2. Under Assumption 2.3, for any continuous function ℓ defined on (0,∞), there exists a small
constant ε0 > 0 such that for any ε ≤ ε0,

ψ̂i(ℓ, ε) = ψi(ℓ) + oP(1), i ∈ [[r]]; (3.11)

ϑ̂i(ℓ, ε) = ϑ(ℓ, γi−r) + oP(1), i ∈ [[r + 1,K]]; ϑ̂0(ℓ, ε) = ϑ(ℓ, 0) + oP(1). (3.12)

Combining Theorem 3.2 and Theorem 2.4, we see that ϑ̂i, ϑ̂0, and ψ̂i can be used to consistently estimate
the shrinkers and their associated asymptotic risks for various loss functions (see Corollary 2.6). These
estimators are constructed in a data-driven manner and can be implemented easily. In Section 3.2, we
conduct extensive numerical simulations to demonstrate the effectiveness of our proposed estimators. Also
notice that by employing (3.8), we are able to estimate the variances in (2.35) for the eigenvector distribution
stated in Theorem 2.8.

When ℓ(x) = x, we can provide more straightforward estimators for the simplified formulas presented in
Corollary 2.5. With the notations in (3.3) and (3.9), we define

ζ̂i ..=
m̂′

i

|m̂i|2
, i ∈ [[r]]; ξ̂i ..=

{
1

λ̃i|m̂(λ̃i)|2
, i ∈ [[r + 1,K]]

1
(cn−1)m̂0

, i ∈ [[K+ 1, p]]
.

Notably, all these estimators do not involve the estimated non-outlier eigenvalues σ̂i in (3.1).

Lemma 3.3. Under Assumption 2.3, we have that

b̂iζ̂i = biζ(ai) + oP(1), i ∈ [[r]]; (3.13)

ξ̂i = ξ(γi−r) + oP(1), i ∈ [[r + 1,K]]; ξ̂0 = ξ(0) + oP(1). (3.14)

Remark 3.4. In the construction of the estimators for shrinkers, we assume that the number of spikes r is
known. However, in practical applications, this assumption is often unrealistic. Fortunately, it has been
demonstrated in [29, 31, 43, 59] that r can be estimated consistently using the eigenvalues {λ̃i} under item
(iv) of Assumption 2.3. To facilitate the convenience of our readers, we have included a function called
GetRank in the RMT4DS package, which can be used to estimate r.
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3.2 Numerical simulations

In this section, we employ Monte-Carlo simulations to demonstrate the effectiveness of our proposed estima-
tors for the loss functions corresponding to ℓ(x) = x or ℓ(x) = x−1.

3.2.1 Setup

In the simulations, we generate X with i.i.d. Gaussian random variables that satisfy item (ii) of Assumption
2.3. As for the population covariance matrix Σ, we consider the following four alternatives:

(i) Σ takes the form (2.2), where V is an orthogonal matrix generated from the R function randortho,
and Λ is defined as

Λ = diag{9, 3, · · · , 3︸ ︷︷ ︸
p/2 − 1

, 1, · · · , 1︸ ︷︷ ︸
p/2

}.

(ii) Σ takes the form (2.2), where V is an orthogonal matrix generated from the R function randortho, and
Λ is defined as Λ = diag{9, g2, · · · , gp}, where {gk} represents real numbers evenly distributed within
the interval [1, 2].

(iii) Σ is a spiked matrix with a single spike equal to 9, and Σ0 is a Toeplitz matrix with (Σ0)ij = 0.4|i−j|

for i, j ∈ [[p]].

(iv) Σ takes the form (2.2), where V is an orthogonal matrix generated from the R function randortho,
and Λ is defined as

Λ = diag{15, 8, · · · , 8︸ ︷︷ ︸
p/2 − 1

, 1, · · · , 1︸ ︷︷ ︸
p/2

}.

We would like to highlight that in our simulations, the support of the MP law ̺ consists of a single component
(i.e., q = 1 in (2.10)) for settings (i)–(iii), and two bulk components (i.e., q = 2 in (2.10)) for setting (iv).

Regarding the loss functions, we consider those associated with ℓ(x) = x and ℓ(x) = x−1. As stated in
Corollary 2.6 (or Lemma A.1 below), ℓ(x) = x corresponds to the Frobenius, inverse Stein, disutility, and
minimum variance loss functions, while ℓ(x) = x−1 corresponds to the Stein, weighted Frobenius, and inverse
Frobenius loss functions.

3.2.2 Performance of our estimators

We proceed to evaluate the performance of our estimators for the shrinkers ϕi. To compute the quantity
in (3.9), we select η ≍ n−1/2. In order to facilitate visual interpretation, we present our results for ℓ(x) in
Figure 3.1 and for ℓ(x) = x−1 in Figure 3.2. It is evident that the estimators outlined in Theorem 3.2 and
Lemma 3.3 yield accurate predictions for the shrinkers across all simulation scenarios, encompassing different
loss functions associated with ℓ(x) = x or ℓ(x) = x−1.
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Figure 3.1. Performance of our estimators for all ϕi, i ∈ [[p]], for ℓ(x) = x. From left to right, we provide the results
for the simulation settings (i)–(iv) as outlined in Section 3.2.1. In the simulations, we set p = 300 and n = 600, and
we have used the consistent estimators presented in Lemma 3.3.
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Figure 3.2. Performance of our estimators for all ϕi, i ∈ [[p]], for ℓ(x) = x−1. From left to right, we provide the
results for the simulation settings (i)–(iv) as outlined in Section 3.2.1. In the simulations, we set p = 300 and n = 600.

3.2.3 Comparison with other methods

Next, we compare our proposed estimators with the existing methods for estimating shrinkers proposed by
Ledoit and Wolf. For ℓ(x) = x, we compare our method (Estimator) with the recently proposed quadratic-
inverse shrinkage estimator (QIS) [53]2 and the QuEST method based on numerically solving equation
(2.8) [51].3 For ℓ(x) = x−1, the only existing method is the LIS method proposed in [53].4 Since all these
methods focus on non-spiked models, we remove the spikes from the four settings described in Section 3.2.1
for comparison.

First, we visually compare the plots of different estimators of the shrinkers in Figures 3.3 and 3.4. Our
proposed estimators demonstrate superior accuracy in all settings and for both forms of ℓ(x). The per-
formance of the other estimators depends on the specific underlying population covariance matrix and the
chosen loss function. Second, in Figure 3.5, we assess the accuracy of different estimators in predicting the
generalization errors, as stated in Corollary 2.6. Our proposed estimators provide the most accurate predic-
tions. It is worth noting that the competing methods perform well when ℓ(x) = x, but their performance
deteriorates when ℓ(x) = x−1.
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Figure 3.3. Comparison of different methods for ℓ(x) = x. From left to right, we provide the results for the
simulation settings (i)–(iv) as outlined in Section 3.2.1. In the simulations, we set p = 300 and n = 600.

2The R codes can be found at https://github.com/MikeWolf007/covShrinkage/blob/main/qis.R
3The QuEST method can be implemented using the R package nlshrink.
4The R codes can be found at https://github.com/MikeWolf007/covShrinkage/blob/main/lis.R
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Figure 3.4. Comparison of different methods for ℓ(x) = x−1. From left to right, we provide the results for the
simulation settings (i)–(iv) as outlined in Section 3.2.1. In the simulations, we set p = 300 and n = 600.

5

10

15

20

200 400 600

p

R
is

k Truth
QuEST
QIS
Estimator

10

20

30

40

50

200 400 600

p

R
is

k Truth
LIS
Estimator

10

20

30

40

200 400 600

p

R
is

k Truth
QuEST
QIS
Estimator

0

20

40

60

80

200 400 600

p

R
is

k Truth
LIS
Estimator

Figure 3.5. Comparison of different methods for predicting the risks under simulation settings (i) and (iv) as
outlined in Section 3.2.1. From left to right, the comparisons are made for four cases: setting (i) with the Frobenius
norm (ℓ(x) = x), setting (i) with the Stein norm (ℓ(x) = x−1), setting (iv) with the Frobenius norm, and setting (iv)
with the Stein norm. In the simulations, we set p = 300 and n = 600. To enhance visualization, the reported risks
are multiplied by p.

4 Proof strategy and key technical ingredients

4.1 Outline of the proof strategy

In this subsection, we outline the proof strategy. We focus on the more challenging term in (1.3), while the
term in (1.4) is considerably simpler to deal with. We rewrite (1.3) as

u⊤
i ℓ(Σ)ui =

p∑

j=1

ℓ(σ̃j)|〈ui,vj〉|2, i ∈ [[K]], (4.1)

where recall that {vi}pi=1 and {ui}pi=1 are the eigenvectors of the population and sample covariance matrices
Σ and Q̃1, respectively. The analysis of outlier and non-outlier eigenvectors in the spiked model relies on
different strategies. The study of outlier eigenvectors is based on a standard perturbation argument. Under
item (iv) of Assumption 2.3, the outlier eigenvalues are well separated from the bulk of the spectrum (see
Lemma B.7 below). Therefore, using Cauchy’s integral formula, the generalized components of the outlier
eigenvectors can be represented as a contour integral of the generalized components of the resolvents, which
can be well approximated using the anisotropic local law (c.f. Section B.1).

Specifically, for i ∈ [[r]], we decompose (4.1) as

u⊤
i ℓ(Σ)ui =

r∑

j=1

ℓ(σ̃j)|〈ui,vj〉|2 +
p∑

j=r+1

ℓ(σ̃j)|〈ui,vj〉|2. (4.2)

On one hand, according to Lemma B.7 below, the first term on the right-hand side (RHS) of (4.2) is
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dominated by the term ℓ(σ̃i)|〈ui,vi〉|2 since |〈ui,vj〉|2 is negligible for j 6= i. The term ℓ(σ̃i)|〈ui,vi〉|2 can
be further estimated using the asymptotic behavior of λ̃i and |〈ui,vi〉|2 described in Lemma B.7. On the
other hand, for the second term on the RHS of (4.2), since there are p− r terms in the summation, existing
delocalization results in the literature—|〈ui,vj〉|2 ≺ n−1, j ∈ [[r + 1, p]]—are no longer sufficient for our
proof. Instead, we need to derive higher-order asymptotics for |〈ui,vj〉|2. In (B.26) below, we will show that
with high probability,

|〈ui,vj〉|2 =
bid

2
i

σ̃2
i σ̃j

Gij(ai)Gji(ai) + O(n−3/2+ε), j ∈ [[r + 1, p]],

where G(z) represents the resolvent associated with the non-spiked model (see Remark B.4 below for the
precise definition). By estimating the first term on the RHS using a variational argument and the local laws
of G(z), we obtain the asymptotic limit for the second term on the RHS of (4.2) and complete the proof.
Further details can be found in the discussion below (C.3).

Next, we describe the strategy for studying the non-outlier eigenvectors, which differs significantly from
the approach used for the outlier eigenvectors and is essentially non-perturbative. Let {ui}pi=1 = {V ⊤ui}pi=1

be the eigenvectors of Λ1/2V ⊤XX⊤V Λ1/2. By noting that u⊤
i ℓ(Σ)ui = u⊤

i ℓ(Λ)ui, we can focus on the
model W := Λ1/2V ⊤X and study the asymptotic properties of its singular vectors. Let XG be a p × n
Gaussian random matrix that is independent of X . Its entries are i.i.d. centered Gaussian random variables
with variance n−1. For t > 0, we define a matrix Dyson Brownian motion W (t) as

W (t) :=W (0) +
√
tXG. (4.3)

The matrix W (0) might not be precisely equal to W (although in the proof below, we will consider it as a
perturbation of W ). To account for this, we introduce a new notation for the initial condition, denoting it as
W (0) := D

1/2
0 V ⊤X, where D0 will be chosen later and is a diagonal matrix with eigenvalues that satisfy the

conditions for {σ̃i} in Assumption 2.3. In other words, D0 consists of a non-spiked part D00 with eigenvalues
satisfying item (iii) of Assumption 2.3, while the spikes of D0 satisfy item (iv) of Assumption 2.3. Then, we
denote the sample covariance matrix of W (t) by

Q(t) ..= W (t)W (t)⊤ , (4.4)

and let {λi(t)}pi=1 and {ui(t)}pi=1 be the associated eigenvalues and eigenvectors of Q(t), respectively. As
shown in [30, 31], the non-outlier eigenvalues of Q(t) follow a rectangular Dyson Brownian motion, whose
limiting density ̺t is given by the rectangular free convolution of the ESD of D00 with the MP law at
time t. Similar to Definition 2.2, we denote by {γk(t)}pk=1 the classical eigenvalue locations for ̺t. (For
the definitions of ̺t and γk(t), we refer readers to the discussion around (B.33) in the appendix, where Λ0

corresponds to D00.) Corresponding to (2.28), for x > 0 and vectors v,w ∈ Rp, we define the function

ϕ0(v,w, x) ≡ ϕ(v,w, x,D0) := cnv
⊤D0(x|1 +m(x,D00)D0|2)−1w, (4.5)

where m(x,D00) is defined as in (2.8) with Σ0 replaced by D00.
Our proof strategy for the non-outlier eigenvectors consists of two steps. In the first step, we establish

the eigenvector distribution for Q(t) on a small time scale t ≍ n−1/3+c, where c is a small positive constant.
In the second step, we introduce a novel comparison argument to show that the eigenvector distribution of
Q(t) at time t ≍ n−1/3+c is asymptotically equal to the distribution at t = 0. These two steps together
establish the asymptotic distribution of the eigenvectors of the original matrix Q(0) = WW⊤ for properly
chosen D0. For the first step, we will prove the following counterpart of Theorem 2.8 for t ≍ n−1/3+c.

Lemma 4.1. Suppose Assumption 2.3 holds (when Λ = D0). Take n−1/3+ε ≤ t ≤ n−1/6−ε for an arbitrary
constant ε ∈ (0, 1/12). Given a deterministic unit vector v ∈ Rp and a subset of indices {ik + r}Lk=1 ⊂
[[r + 1,K]] for a fixed integer L, define the L× L diagonal matrix

ΞL(t) := diag {ϕ0(v,v, γi1 (t)), · · · , ϕ0(v,v, γiL (t))} . (4.6)

Then, we have that

√
p



ξ1〈v,ui1+r(t)〉

...
ξL〈v,uiL+r(t)〉


 ≃ N (0,ΞL(t)), (4.7)
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where ξ1, . . . , ξL ∈ {±1} are i.i.d. uniformly random signs independent of W (t).

The proof of Lemma 4.1 will be outlined in Section 4.2. It is based on a careful analysis of the eigenvector
moment flow for Q(t), and the main result of the analysis is summarized in Theorem 4.5.

For the second step, we will establish the following comparison result, which shows that the distributions
of the non-outlier eigenvectors of W (t) coincide with those of W when we carefully select D0. Note that the
proof of Theorem 2.8 is completed by combining Lemma 4.2 with Lemma 4.1.

Lemma 4.2. Suppose Assumption 2.3 holds. Fix a time t = n−1/3+c for a small constant c ∈ (0, 1/6). We
choose D0 = Λ− t. For a fixed integer L, let θ : RL → R be a smooth function satisfying that

∂kθ(x) ≤ C(1 + ‖x‖2)C

for a constant C > 0 and all k ∈ NL satisfying ‖k‖1 ≤ 5. Then, given any deterministic unit vector v ∈ Rp

and an arbitrary subset of indices {ik + r}Lk=1 ⊂ [[r + 1,K]], there exists a constant ν > 0 such that

E
(
θ
(
p|〈v,ui1+r(t)〉|2, . . . , p|〈v,uiL+r(t)〉|2

))
= E

(
θ
(
p|〈v,ui1+r〉|2, . . . , p|〈v,uiL+r〉|2

))
+O(n−ν),

where {ui(t)}pi=1 and {ui}pi=1 are the eigenvectors of Q(t) and WW⊤, respectively.

The proof of Lemma 4.2 will be outlined in Section 4.3. In the proof, we introduce the auxiliary matrix

Wt := D
1/2
t V ⊤X, with Dt := D0 + t. (4.8)

We choose the non-spiked parts of D0 and Dt as D00 = Λ0 − t and Dt0 = D00 + t, respectively. We denote
the sample covariance matrix of Wt as Qt := WtW⊤

t and its eigenvectors as {wi(t)}pi=1. We aim to prove
that for any t ≍ n−1/3+c,

E
(
θ
(
p|〈v,ui1+r(t)〉|2, . . . , p|〈v,uiL+r(t)〉|2

))
= E

(
θ
(
p|〈v,wi1+r(t)〉|2, · · · , p|〈v,wiL+r(t)〉|2

))
+o(1). (4.9)

This completes the proof of Lemma 4.2 by taking t = t, in which case we have Wt =W as D0 = Λ− t.
To prove (4.9), we will utilize a functional integral representation formula in terms of the resolvents, as

presented in Lemma 4.11, and a novel comparison argument in Lemma 4.12 below. Now, we discuss briefly
the new comparison strategy. In the literature (e.g., [13, 26, 44]), when establishing the universality for the
singular vector distributions of Wt, people typically compare the representation formula for Wt directly
with that for D

1/2
t V ⊤XG. Let Y G be an independent copy of XG. Due to the rotational invariance of the

distribution of XG, D
1/2
t V ⊤XG has the same law as D

1/2
0 V ⊤XG +

√
tY G, whose non-outlier eigenvector

distributions have been provided in Lemma 4.1. In the previous comparison approach between Wt and
D

1/2
t V ⊤XG, people often applied the Lindeberg replacement (or other interpolations) to replace the entries

of X step by step with the entries of XG in the representation formula, controlling the error at each step using
the local laws of the related resolvents. However, this approach fails for our setting—a direct application of
the comparison idea (as in [26, 44]) leads to uncontrollable errors. To address this issue, we propose a novel
interpolation method that establishes a connection between Wt and W (t) as s varies from 0 to 1:

W s
t := D

1/2
t

[
U0X+ (U1 − U0)(χs ⊙ X)

]
, with X :=

(
X
XG

)
. (4.10)

Here, χs represents a continuous sequence of 2p×n Bernoulli random matrices with i.i.d. Bernoulli(s) random
entries, ⊙ represents the Hadamard product, U0 := (V ⊤,0p×p), and U

1 := ((D0/Dt)
1/2V ⊤, (t/Dt)

1/2V ⊤).
Under this choice, we can verify that W 0

t = Wt, andW
1
t has the same law asW (t), leveraging the rotational

invariance of the distribution of XG. As a result, our analysis will focus on the deterministic covariance
structure rather than the random components X and XG.

4.2 Eigenvector moment flow and proof of Lemma 4.1

The objective of this section is to prove Lemma 4.1 by analyzing the eigenvector moment flow (EMF) of
Q(t) in (4.4), building upon the idea in [15]. We first introduce some new notations before discussing the
key ideas for the proof.
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For any deterministic unit vector v ∈ Rp as in Lemma 4.1, we define zk(t) ..=
√
p〈v ,uk(t)〉. Moreover,

we use the notation λ(s) ≡ (λi(s))16i6p and denote the filtration of σ-algebras up to time t by

Ft = σ (W (0), (λ(s))06s6t) . (4.11)

Inspired by [15, 31], we consider observables of the form

ft(ξ) ..= E

(
K∏

k=i0

zk(t)
2ξ(k)

∣∣∣∣Ft

)
K∏

k=i0

1

(2ξ(k)− 1)!!
, (4.12)

where we set i0 = 1 for the non-spiked model and i0 = r + 1 for the spiked model. Here, ξ .. [[i0,K]] →
N represents a fixed configuration, and we can interpret ξ(j) as the number of particles at site j. This
interpretation allows us to view the EMF as an interacting particle system later. The factor (2ξ(k) −
1)!! corresponds precisely to the ξ(k)-th moment of a standard Gaussian random variable, and we adopt
the convention that (−1)!! = 1. Clearly, ft(ξ) is a functional encoding joint moments of the generalized
components of the non-outlier eigenvectors.

Before delving into the analysis of ft(ξ), let us provide some heuristics as to why the asymptotic variance
takes the form presented in (4.6). For simplicity, we consider the single-particle case where ξ = δk0 for some
k0 ∈ [[i0,K]]. In this scenario, we have ft(ξ) = E

(
|zk0(t)|2

∣∣Ft

)
. For z = E + iη ∈ C+, using the spectral

decomposition of W (t)W (t)⊤, we find that on the local scale of order η,

p Im
(
v⊤ (W (t)W (t)⊤ − z

)−1
v
)

ImTr (W (t)W (t)⊤ − z)
−1 ≈ local average of |zk(t)|2 for λk(t)− E = O(η). (4.13)

Drawing inspiration from the results for Wigner matrices [15], we expect that the random variables zk(t)
are asymptotically independent, and that the distributions of zk(t) and zk′(t) are close to each other when
|k − k′| ≪ n. Guided by this intuition, we expect that that ft(ξ) should closely resemble the averaged
quantity in (4.13) due to the law of large numbers, as long as we choose n−1 ≪ η ≪ 1.

Next, we show that the left-hand side (LHS) of (4.13) can be effectively approximated by ϕ0 as defined
in (4.5). First, using the local laws presented in Lemma B.9 and Remark B.10 below, the LHS of (4.13) has
a deterministic limit, denoted as

ϕt(v,v, z) ≡ ϕ(v,v, z,Dt) := − Im
(
v⊤[z(1 +m(z,Dt0)Dt)]

−1v
)

|z|−2η(1 − c−1
n ) + c−1

n Imm(z,Dt0)
, (4.14)

for z = E + iη, where Dt0 := D00 + t denotes the non-spiked part of Dt. By setting t = 0, E = x, and
η ↓ 0, we obtain the formula in (4.5) with w = v. (This is also why we use the same notation ϕ in (4.5)
and (4.14).) Moreover, by the eigenvalue rigidity property of W (t)W (t)⊤ stated in Lemma B.9 below, we
know that λk(t) is well-approximated by γk(t) with high probability. Therefore, by choosing E = γk0(t) and
η = o(1), according to the above discussion, we expect that when t = o(1),

E|zk0(t)|2 ≈ ϕt(v,v, γk0 (t) + iη) ≈ ϕt(v,v, γk0 (t)) ≈ ϕ0(v,v, γk0 (t)).

This gives the desired result for the single-particle case. For general configuration, using the above argument
we heuristically expect that

ft(ξ) ≈
K∏

k=i0

ϕ0(v,v, γk(t))
ξ(k). (4.15)

In general, establishing the asymptotic distribution of {|zk(t)|2}Kk=i0
can be accomplished by demonstrating

that its finite-dimensional moments asymptotically match those of a random vector composed of independent
Chi-squared random variables with the desired variances. To make the above heuristics rigorous, we will
work with the following smoothed version of ϕ0(·) in the actual proof.

Definition 4.3. Given the deterministic unit vector v ∈ Rp, let ϕ0 be defined as in (4.5). Let s(x) be a
smooth, non-negative function supported in [−1, 1] such that

∫
R
s(x)dx = 1. For any constant ε > 0, we

define sε(x) ..= nεs(nεx) and the function φ(x, ε) as the convolution

φ(x, ε) := sε ∗ ϕ0(v,v, x). (4.16)
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Then, for any fixed configuration ξ : [[i0, p]] 7→ N, we define

gt(ξ, ε) ..=

K∏

k=i0

φ(λk(t), ε)
ξ(k). (4.17)

Remark 4.4. We remark that the function gt is defined in terms of ϕ0 and λk(t) rather than ϕt and γk(t).
The usage of λk(t) instead of γk(t) is due to certain technical considerations, which will become apparent in
the technical derivation (E.40) below. Using the definition of φ and the estimate (B.18) in the appendix, it
can be readily observed that for any small constant τ > 0,

∣∣∂sxφij(x, ε)
∣∣ = O(nsε), ∀ s ∈ {0, 1, 2}, x ∈ [τ, τ−1]. (4.18)

The following EMF result shows that ft(ξ) converges to the equilibrium gt(ξ, ε) at a time scale of n−1/3+c

as long as we choose ε sufficiently small.

Theorem 4.5. Under the setting of Lemma 4.1, choose Ti = Cin
−1/3+c for some constants 0 < C1 < C2 and

c ∈ (0, 1/6). Then, for any fixed L ∈ N and ν > 0, there exist (small) positive constants ε0, ε1 > 0 such that

P

(
sup

T1≤t≤T2

max
|ξ|=L

|ft(ξ)− gt(ξ, ε1)| ≥ n−ε0

)
≤ n−ν ,

where |ξ| :=∑K

j=i0
ξ(j) denotes the total number of particles.

Lemma 4.6. Under the setting of Lemma 4.1, take n−1/3+ε ≤ t ≤ n−1/6−ε for an arbitrary constant ε ∈
(0, 1/12). Then, for any fixed m ∈ N, there exist (small) positive constants ε0, ε1, ν > 0 such that

P

(
max
|ξ|=m

∣∣∣gt(ξ, ε1)−
K∏

k=i0

ϕ0(v,v, γk(t))
ξ(k)
∣∣∣ ≥ n−ε0

)
≤ n−ν .

Proof. The function gt(ξ, ε1) represents a smoothed version of the product
∏K

k=i0
ϕ0(v,v, λk(t))

ξ(k). The
proof then follows from the standard fact concerning convolutions with approximate identities and the rigidity
of λk(t), as stated in Lemma B.9 below (specifically, refer to (B.37)).

We are now ready to prove Lemma 4.1 by combining the results in Theorem 4.5 and Lemma 4.6.

Proof of Lemma 4.1. Let ξ be a configuration supported on {ik+r}Lk=1 ⊂ [[r + 1,K]]. Note that the functional
ft(ξ) in (4.12) encodes the joint moments of the random variables p|〈v,ui1+r(t)〉|2, . . . , p|〈v,uiL+r(t)〉|2. By
employing Theorem 4.5 and Lemma 4.6, we establish that these joint moments match the corresponding
finite-dimensional joint moments of |N1|2, . . . , |NL|2, where N1, . . . ,NL are i.i.d. centered Gaussian random
variables having the desired variances ϕ0(v,v, γi1 (t)), . . . , ϕ0(v,v, γiL (t)). This concludes the proof using
the standard method of moments.

Remark 4.7. In Theorem 4.5, we have chosen t ≍ n−1/3+c, which yields an almost sharp speed of convergence
to local equilibrium for the edge eigenvalues and eigenvectors (see e.g., [15, 31, 48]). However, this rate is
suboptimal for the convergence of bulk eigenvalues and eigenvectors. Indeed, it has been demonstrated
in [10, 15] that the bulk eigenvectors of Wigner matrices converge to local equilibrium once t ≫ n−1, and
we anticipate that similar results extend to sample covariance matrices as well. Since this aspect is not the
primary focus of the current paper, we will refrain from delving into this direction here.

The proof of Theorem 4.5 can be found in Appendix E. The main ingredient is a probabilistic description
of the EMF of ft(ξ) as a multi-particle random walk in a random environment. The random environment
is described by the well-studied Dyson Brownian motion of the eigenvalues. Let B(t) = (Bij(t)) be a p× n
matrix where Bij , i ∈ [[p]] and j ∈ [[n]], are independent standard Brownian motions. For any t ≥ 0, W (t) in
(4.3) can be rewritten as

W (t) =W (0) + n−1/2Bt. (4.19)

We refer to this type of dynamics as a rectangular DBM. Under (4.19), Lemma 4.9 provides the stochastic
differential equations (SDEs) that describe the evolution of eigenvalues and eigenvectors of Q(t). Note that
λk(t) ≡ 0 when k ∈ [[K+ 1, p]]. To account for this, we introduce the following equivalence relation.
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Definition 4.8 (Equivalence relation). We define the following equivalence relation on [[1, p]]: k ∼ l if and
only if k = l or k, l > K+ 1. In particular, when p 6 n, k ∼ l simply means k = l.

Lemma 4.9. The eigenvalues {λk(t)}pk=1 and eigenvectors {uk(t)}pk=1 of Q(t) satisfy the following SDEs:

dλk(t) = 2
√
λk(t)

dBkk(t)√
n

+

(
1 +

1

n

∑

l:l 6∼k

λk(t) + λl(t)

λk(t)− λl(t)

)
dt, (4.20)

duk(t) =
1√
n

∑

l:l 6∼k

√
λk(t) dBlk(t) +

√
λl(t) dBkl(t)

λk(t)− λl(t)
ul(t)−

1

2n

∑

l:l 6∼k

λk(t) + λl(t)

(λk(t)− λl(t))2
uk(t) dt , (4.21)

where k ∈ [[p]] and Bij, i, j ∈ [[p]], are independent standard Brownian motions. (Note that B has the same
distribution as B, although they generally correspond to different matrix Brownian motions.) We will refer
to (4.20) and (4.21) as DBM and eigenvector flow, respectively. Their initial conditions at t = 0 are given
by {λ̃k}pk=1 and {uk}pk=1.

Proof. See [17] for the derivations. Here, we adopt the formulation presented in [15, Appendix C].

We extend the definition (4.12) to

ft(ξ) ..= E

(
p∏

k=1

zk(t)
2ξ(k)

∣∣∣∣Ft

)
p∏

k=1

1

(2ξ(k)− 1)!!
(4.22)

for the particle configuration ξ : [[p]] → N. For ξ = (ξ(1), . . . , ξ(p)), we introduce the notation

ξk→l ..= ξ + 1(ξ(k) > 1)(el − ek), (4.23)

which denotes the particle configuration obtained by moving one particle from site k to site l, given that
ξ(k) ≥ 1. The following lemma defines the main object of study—the eigenvector moment flow. Its proof
will be presented in Appendix D.

Lemma 4.10. Suppose the SDEs (4.20) and (4.21) in Lemma 4.9 hold. Let ft(ξ) be defined as in (4.22).
Define the generator B(t) as

B(t)f(ξ) ..=
1

2

∑

l 6∼k

Υkl(t) 2ξ(k)(1 + 2ξ(l))
(
f(ξk→l)− f(ξ)

)
, (4.24)

where the matrix Υ is defined as

Υkl(t) ..= 1(k 6∼ l)
λk(t) + λl(t)

2n(λk(t)− λl(t))2
. (4.25)

Then, ft(ξ) satisfies the equation
∂tft(ξ) = B(t)ft(ξ) . (4.26)

The proof of Theorem 4.5 is based on a careful analysis of the equation (4.26). For more details, readers
can refer to Appendix E.

4.3 Green’s function comparison and proof of Lemma 4.2

As discussed below Lemma 4.2, in order to complete the proof, it suffices to prove the comparison estimate
(4.9). Inspired by the works [13, 26, 44], we first establish a functional integral representation formula for
the generalized components of the non-outlier eigenvectors, expressed in terms of the resolvents of either the
non-spiked or spiked model.

We first introduce some new notations. For any E2 ≥ E1 > 0, let fE1,E2,η(x) denote an indicator function
of the interval [E1, E2] smoothed on the scale η. More precisely, fE1,E2,η is a smooth function satisfying the
following properties: (1) fE1,E2,η(x) ≡ 1 for x ∈ [E1, E2], (2) f(x) ≡ 0 for x /∈ [E1 − η,E2 + η], and (3)

sup
x∈R

|f′E1,E2,η(x)| . η−1, sup
x∈R

|f′′E1,E2,η(x)| . η−2. (4.27)
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For any positive integer k ∈ N, let qk : R → R+ be a smooth cutoff function such that

qk(x) ≡ 1, if |x− k| 6 1

3
; qk(x) ≡ 0, if |x− k| > 2

3
; sup

x∈R

|q′k(x)| . 1. (4.28)

For any k ∈ [[r + 1,K]], if γk ∈ [a2j , a2j−1], then we define

∆k := [(nj + 1− k) ∧ (k − nj−1)]
−1/3n−2/3, (4.29)

where recall that nj is defined in (2.11) and the choice of ∆k is due to the rigidity of eigenvalues in (B.37)
below. Now, for any constants ε, δ1, δ2 > 0 and E ∈ R, we define

E−
k (ε, δ1) := E − n−2ε+δ1∆k, E+(ε) ..= λ+ + 2n−2/3+ε, ηk(ε) := ∆kn

−2ε, η̃k(ε) := ∆kn
−3ε, (4.30)

and the intervals (recall that γk(t) are defined above (4.5))

Ik ≡ Ik(t, δ2) ..= [γk(t)− nδ2∆k, γk(t) + nδ2∆k]. (4.31)

Corresponding to the function fE1,E2,η defined above, we abbreviate

fk(x) ≡ fk(x, ε, δ1) := fE−

k (ε,δ1),E+(ε),η̃k(ε)
(x). (4.32)

Finally, for any E ∈ R, we define

x1k(E, t) := v⊤(Q(t)− E − iηk)
−1v, x0k(E, t) := v⊤(Qt − E − iηk)

−1v, (4.33)

where recall that Q(t) and Qt were defined in (4.4) and (4.8), respectively.
Now, we are ready to state the key functional representation formula for the generalized components of

non-outlier eigenvectors. The proof of this formula will be presented in Appendix F.1.

Lemma 4.11. Under the setting of Lemma 4.2, for any t ≍ n−1/3+c, there exists a small constant ε > 0 such
that the following estimate holds for sufficiently small constants δ1 ≡ δ1(ε), δ2 ≡ δ2(ε, δ1), and ν > 0:

Eθ
(
p|〈v,ui1+r(t)〉|2, . . . , p|〈v,uiL+r(t)〉|2

)
= Eθ

( p
π

∫

Ii1

[
Imx1i1(E, t)

]
qi1 [Tr fi1(Q(t))] dE, . . . ,

p

π

∫

IiL

[
Imx1iL(E, t)

]
qiL [Tr fiL(Q(t))] dE

)
+O(n−ν).

A similar estimate holds for {p|〈v,wik+r(t)〉|2}Lk=1, {x0ik(E, t)}Lk=1, and Qt.

With Lemma 4.11, proving (4.9) boils down to showing that the two representation formulas involving the
resolvents of Q(t) and Qt are asymptotically equal to each other. As discussed below (4.9), this is achieved
through a novel comparison argument based on the interpolation (4.10). Correspondingly, we define the
family of interpolating sample covariance matrices as

Qs
t =W s

t (W
s
t )

⊤, with Q1
t

d
= Q(t), Q0

t = Qt. (4.34)

Here, “
d
=” means “equal in distribution”. Let xsk(E, t) be defined as in (4.33) using Qs

t . The following lemma
provides the Green’s function comparison result, which, together with Lemma 4.11, concludes the proof of
(4.9).

Lemma 4.12. Under the setting of Lemma 4.2, define W s
t as in (4.10) for some semi-orthogonal matrices

U0, U1 ∈ Rp×2p. Suppose there exist constants C, c′ > 0 such that

[
(U0 − U1)⊤(U0 − U1)

]1/2
jj

≤ Cn−c′ , j ∈ [[2p]]. (4.35)

Then, there exists a constant ν > 0 such that

Eθ
(
Ui1(Q

0
t ), . . . ,UiL(Q

0
t )
)
= Eθ

(
Ui1(Q

1
t ), . . . ,UiL(Q

1
t )
)
+O(n−ν), (4.36)

where we used the simplified notation

Uk(Q
s
t ) :=

p

π

∫

Ik

[Imxsk(E, t)] qk (Tr fk(Q
s
t )) dE, k ∈ [[r + 1,K]].
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To establish (4.36), we will control the derivative of Eθ (Ui1+r(Q
s
t ), . . . ,UiL+r(Q

s
t )) with respect to s.

More details can be found in Appendix F.2. Now, we are ready to conclude the proof of Lemma 4.2 by
combining the above two lemmas.

Proof of Lemma 4.2. When t ≍ n−1/3+c, it is straightforward to check that the condition (4.35) holds with
c′ = 1/3−c for U0 and U1 defined below (4.10). Then, by applying Lemma 4.11 and Lemma 4.12, we obtain
(4.9), which further concludes the proof of Lemma 4.2 by setting t = t and D0 = Λ− t.
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Ann. Henri Poincaré, 14:1837–1926, 2013.
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A Summary of loss functions and shrinkers

According to [32, 52], some special loss functions have been used frequently in the literature owing to their
significance in applications. For the convenience of readers, we list them in Table 1. Hereafter, we consistently
denote the loss functions by L(·, ·) : Rp×p × Rp×p → [0,∞).

For the loss functions considered in Table 1, the analytical forms of the shrinkers ϕi can be computed
explicitly. We summarize them in Lemma A.1 below.

Lemma A.1. For the loss functions in Table 1, the optimal shrinkers ϕi, i ∈ [[K]], are given as follows.

(i) For the Frobenius, inverse Stein, disutility, and minimum variance norms, we have that ϕi = u⊤
i Σui.

(ii) For Stein, weighted Frobenius, and inverse Frobenius norms, we have that ϕi = (u⊤
i Σ

−1ui)
−1.

(iii) For the symmetrized Stein norm, we have that ϕi =

√
u⊤

i Σui

u⊤

i Σ−1ui
.

(iv) For the Log-Euclidean norm, we have that ϕi = exp(u⊤
i log(Σ)ui).

27



Loss function L(Σ, Σ̂) Loss function L(Σ, Σ̂)

Frobenius ‖Σ− Σ̂‖F /√p Inverse Quadratic ‖Σ̂−1Σ− I‖F/√p

Disutility Tr[(Σ̂−1 − Σ−1)2Σ]/Tr(Σ−1) Quadratic ‖Σ−1Σ̂− I‖F/√p

Inverse Stein
(
Tr[Σ̂−1Σ− I]− log[det(Σ̂−1Σ)]

)
/p Fréchet ‖Σ̂1/2 − Σ1/2‖F /√p

Minimum Variance pTr[Σ̂−1ΣΣ̂−1]
/(

Tr[Σ̂−1]
)2

− p/Tr(Σ−1) Log-Euclidean ‖ log(Σ̂)− log(Σ)‖F /√p

Stein
(
Tr[Σ̂Σ−1 − I]− log[det(Σ̂Σ−1)]

)
/p Symmetrized Stein Tr[Σ̂Σ−1 + Σ̂−1Σ− 2I]/p

Weighted Frobenius Tr[(Σ̂− Σ)2Σ−1]/Tr(Σ) Inverse Frobenius ‖Σ−1 − Σ̂−1‖F/√p

Table 1. Summary of commonly used loss functions for the population covariance matrix Σ and its estimator Σ̂.

(v) For the Fréchet norm, we have that ϕi = (u⊤
i Σ

1/2ui)
2.

(vi) For the quadratic norm, we have that ϕi =
u⊤

i Σ−1ui

u⊤

i Σ−2ui
.

(vii) For the inverse quadratic norm, we have that ϕi =
u⊤

i Σ2ui

u⊤

i Σui
.

When cn > 1, the above results remain valid for i ∈ [[K + 1, p]] by replacing the factors u⊤
i ℓ(Σ)ui (for

ℓ(x) = x, x−1, log x,
√
x, x−2, x2) with Tr[U⊤

0 ℓ(Σ)U0]/(p− n).

Proof. The proof follows from straightforward calculations; see [32, 52].

For the above loss functions, we have the following decomposition of their associated risks. Recall the
the optimal invariant estimator Σ̃ in (1.2) and define the diagonal matrix

Φ := diag {ϕ1, · · · , ϕp} .

Lemma A.2. For the loss functions in Table 1 and their optimal solutions {ϕi} given in Lemma A.1, we
have the following identities.

(i) For the Frobenius norm, we have that

‖Σ− Σ̃‖2F = ‖Σ‖2F − ‖Φ‖2F .

(ii) For the inverse Frobenius norm, we have that

‖Σ−1 − Σ̃−1‖2F = ‖Σ−1‖2F − ‖Φ−1‖2F .

(iii) For the weighted Frobenius norm, we have that

Tr
[
(Σ̃− Σ)2Σ−1

]
= Tr(Σ)− Tr(Φ).

(iv) For the disutility norm, we have that

Tr
[
(Σ̃−1 − Σ−1)2Σ

]
= Tr(Σ−1)− Tr(Φ−1).

(v) For the inverse Stein norm, we have that

Tr
[
Σ̃−1Σ− I

]
− log[det(Σ̃−1Σ)] = log

(
det(Φ)

det(Σ)

)
.
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(vi) For the Stein norm, we have that

Tr
[
Σ̃Σ−1 − I

]
− log[det(Σ̃Σ−1)] = log

(
det(Σ)

det(Φ)

)
.

(vii) For the Fréchet norm, we have that

∥∥Σ̃1/2 − Σ1/2
∥∥2
F
= Tr(Σ)− Tr(Φ).

(viii) For the minimal variance norm, we have that

pTr[Σ̃−1ΣΣ̃−1]
/(

Tr[Σ̃−1]
)2

= p/Tr(Φ−1).

(ix) For the quadratic norm, we have that

∥∥Σ−1Σ̃− I
∥∥2
F
= p−

K∑

i=1

(u⊤
i Σ

−1ui)
2

u⊤
i Σ

−2ui
− [Tr(U⊤

0 Σ−1U0)]
2

Tr(U⊤
0 Σ−2U0)

.

(x) For the inverse quadratic norm, we have that

∥∥Σ̃−1Σ− I
∥∥2
F
= p−

K∑

i=1

(u⊤
i Σui)

2

u⊤
i Σ

2ui
− [Tr(U⊤

0 ΣU0)]
2

Tr(U⊤
0 Σ2U0)

.

(xi) For the Log-Euclidean norm, we have that

∥∥ log(Σ̃)− log(Σ)
∥∥2
F
= ‖ log(Σ)‖2F − ‖ log(Φ)‖2F .

(xii) For the symmetrized Stein norm, we have that

1

2
Tr
[
Σ̃Σ−1 + Σ̃−1Σ− 2I

]
=

K∑

i=1

√
(u⊤

i Σ
−1ui) · (u⊤

i Σui) +
√
Tr(U⊤

0 Σ−1U0) · Tr(U⊤
0 ΣU0)− p.

Proof. The proof follows from straightforward calculations using Lemma A.1. We omit the details.

B Some preliminary results

In this section, we present some results that will be used in the technical proofs of the main results. For ease
of presentation, in this paper, we consistently use the following notion of stochastic domination introduced
in [34]. It simplifies the presentation of the results and their proofs by systematizing statements of the form
“ξ is bounded by ζ with high probability up to a small power of n”.

Definition B.1 (Stochastic domination). (i) Let

ξ =
(
ξ(n)(u) : n ∈ N, u ∈ U (n)

)
, ζ =

(
ζ(n)(u) : n ∈ N, u ∈ U (n)

)
,

be two families of non-negative random variables, where U (n) is a possibly n-dependent parameter set. We
say ξ is stochastically dominated by ζ, uniformly in u, if for any fixed (small) τ > 0 and (large) D > 0,

P

( ⋃

u∈U(n)

{
ξ(n)(u) > nτζ(n)(u)

})
≤ n−D

for large enough n ≥ n0(τ,D), and we will use the notation ξ ≺ ζ. If for some complex family ξ we have
|ξ| ≺ ζ, then we will also write ξ ≺ ζ or ξ = O≺(ζ).
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(ii) As a convention, for two deterministic non-negative quantities ξ and ζ, we will write ξ ≺ ζ if and only
if ξ ≤ nτ ζ for any constant τ > 0.

(iii) We say that an event Ξ holds with high probability (w.h.p.) if for any constant D > 0, P(Ξ) ≥ 1− n−D

for large enough n. More generally, we say that an event Ω holds w.h.p. in Ξ if for any constant D > 0,
P(Ξ \ Ω) ≤ n−D for large enough n.

We denote the resolvents of the sample covariance matrices in (2.4) and (2.5) by

Ga(z) := (Qa − z)
−1
, G̃a(z) :=

(
Q̃a − z

)−1
, a ∈ {1, 2}. (B.1)

For our proofs, it is more convenient to work with the following linearized block matrix H, whose inverse G

is also called the resolvent (of H):

H(z) :=

(
−Σ−1

0 X
X⊤ −zIn

)
, G(z) := H(z)−1. (B.2)

By Schur’s complement formula (see e.g., Lemma 4.4 of [45]), we have that

G(z) :=

(
zΣ

1/2
0 G1(z)Σ

1/2
0 Σ0XG2

G2X
⊤Σ0 G2

)
. (B.3)

Hence, a control of the resolvent G yields directly a control of both G1 and G2. For notational convenience,
we will consistently use the following notations of index sets

I1 := [[1, p]], I2 := [[p+ 1, p+ n]], I := I1 ∪ I2 = [[1, p+ n]]. (B.4)

Then, we label the indices of the blocks of H according to X = (Xiµ : i ∈ I1, µ ∈ I2). In what follows, we
often omit the dependence on z and simply write H,G, etc. Finally, we adopt the following convention for
matrix multiplication: for matrices of the form A := (Ast : s ∈ l(A), t ∈ r(A)) and B := (Bst : s ∈ l(B), t ∈
r(B)), whose entries are indexed by some subsets l(A), r(A), l(B), r(B) ⊂ N, the matrix multiplication AB is
understood as

(AB)st :=
∑

k∈r(A)∩l(B)

AskBkt (B.5)

for s ∈ l(A) and t ∈ r(B).

B.1 Local laws for sample covariance matrices

In this subsection, we present a key input for our proofs, namely the local laws for the resolvent G [45].
Recall the Stieltjes transform of the deformed Marchenco-Pastur law m(z) defined in (2.8). We introduce
the following (deterministic) matrix limit of G defined as

ΠG(z) :=

(
−Σ0(1 +m(z)Σ0)

−1 0
0 m(z)In

)
. (B.6)

Moreover, for an arbitrarily small constant τ ∈ (0, 1), we define the spectral parameter domain

D ≡ D(τ, n) :=
{
z = E + iη ∈ C+ : τ 6 E 6 τ−1, n−1+τ 6 η 6 τ−1

}
, (B.7)

a spectral domain outside the support of ̺,

Do ≡ Do(τ, n) :=
{
z = E + iη ∈ C+ : τ ≤ E ≤ τ−1, 0 < η ≤ τ−1, dist(E, supp(̺)) > n−2/3+τ

}
,

and a spectral domain around the origin,

D0 ≡ D0(n) :=
{
z = E + iη ∈ C : |z| ≤ (logn)−1

}
,

Define mn(z) := n−1 TrG2(z). The following lemma states the local laws for G(z) and mn(z).
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Lemma B.2 (Theorems 3.6 and 3.7 of [45]). Suppose (i)–(iii) of Assumption 2.3 hold. Then, the following
estimates hold uniformly in z = E + iη ∈ D:

◮ Anisotropic local law: For any two deterministic unit vectors u,v ∈ Rp+n, we have

∣∣u⊤G(z)v − u⊤ΠG(z)v
∣∣ ≺ Ψ(z), (B.8)

where Ψ is an error control parameter defined as

Ψ(z) :=

√
Imm(z)

nη
+

1

nη
.

◮ Averaged local law: We have

|mn(z)−m(z)| ≺ 1

nη
. (B.9)

In addition, outside the support of ̺, we have a stronger anisotropic local law uniformly in z = E+iη ∈ Do:

∣∣u⊤G(z)v − u⊤ΠG(z)v
∣∣ ≺ n−1/2(κ+ η)−1/4, (B.10)

for any two deterministic unit vectors u,v ∈ R
p+n, where κ is defined as κ := dist(E, supp ̺).

Similar to (B.2) and (B.6), we define the (linearized) resolvent G̃ for the spiked model and the corre-
sponding deterministic limit as

G̃(z) :=

(
−Σ−1 X
X⊤ −zIn

)−1

, Π̃G(z) :=

(
−Σ(1 +m(z)Σ)−1 0

0 m(z)In

)
. (B.11)

Lemma B.3 (Theorem C.4 of [70]). Suppose Assumption 2.3 holds and cn ≥ 1 + τ . Then, the following

anisotropic local law holds for G and G̃ uniformly in z = E + iη ∈ D0:

∣∣u⊤G(z)v − u⊤ΠG(z)v
∣∣ ≺ n−1/2,

∣∣u⊤G̃(z)v − u⊤Π̃G(z)v
∣∣ ≺ n−1/2. (B.12)

Remark B.4. In the proofs, it is slightly more convenient to use the following version of Lemma B.2. Recall
the eigenmatrix V ∈ Rp×p defined in (2.1). Let

V :=

(
V 0
0 In

)
∈ R

(n+p)×(n+p).

We then rotate H and G in (B.2) as

H(z) := V⊤H(z)V, G(z) := H(z)−1. (B.13)

Under this definition, with (B.3), we have that

H =

(
−Λ−1

0 V ⊤X
X⊤V −z

)
, G =

(
zΛ

1/2
0 G1Λ

1/2
0 Λ0V

⊤XG2

G2X
⊤V Λ0 G2

)
. (B.14)

where the resolvents G1 and G2 are defined as

G1(z) := (Λ
1/2
0 V ⊤XX⊤V Λ

1/2
0 − z)−1, G2(z) := G2(z). (B.15)

In this case, it is easy to see that Lemmas B.2 and B.3 hold for G(z) if we replace ΠG(z) by

Π(z) =

(
−Λ0(1 +m(z)Λ0)

−1 0
0 m(z)

)
. (B.16)

The main advantage of Π over ΠG is that Π is a diagonal matrix. Similarly, we can define G̃1, G̃2, G̃, and Π̃
by replacing Λ0 with Λ in the above definitions.
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The following lemma outlines some basic estimates regarding m(z) and Imm(z). Notably, it shows that
the entries of Π in (B.16) are of order 1. These estimates will be used tacitly in the subsequent proofs.

Lemma B.5. Suppose items (i) and (iii) of Assumption 2.3 hold. Then, for any small constant c > 0, the
following estimates hold uniformly for z satisfying c ≤ |z| ≤ c−1:

|m(z)| ≍ 1, Imm(z) ≍
{√

κ+ η, if E ∈ supp(̺)
η√
κ+η

, if E /∈ supp(̺)
, (B.17)

p

min
j=1

|1 +m(z)σj | & 1. (B.18)

For sufficiently small constant c > 0, the following estimate holds uniformly for z satisfying |z| ≤ c:

|zm(z)| ≍
{
1, if cn ≤ 1− τ

|z|, if cn ≥ 1 + τ
. (B.19)

Proof. The estimates in (B.17) are proved in Lemma 4.10 and equation (A.7) of [45]. The estimate (B.18) is
proved in Lemma A.6 of [28]. Finally, the estimate (B.19) follows from the fact that the deformed MP law
has support within [λ−, λ+] with a delta mass (1− cn)δ0 when cn < 1.

As an important consequence of the averaged local laws in Lemma B.2, we have the following rigidity
estimate of the eigenvalues λj ≡ λj(Q2).

Lemma B.6 (Theorem 3.12 of [45]). Under the assumptions of Lemma B.2, for γj ∈ [a2k, a2k−1], we have

|λj − γj | ≺ [(nk + 1− j) ∧ (j − nk−1)]
−1/3n−2/3, (B.20)

where we recall the notations in (2.11) and Definition 2.2.

B.2 Eigenvalues and eigenvectors of the spiked covariance model

In this subsection, we present a collection of useful results regarding the eigenvalues and eigenvectors of the
spiked model Q̃1 in (2.4). Recall that λ̃i and λi represent the eigenvalues of Q̃1 and Q1, respectively, while
ai and bi are defined in (2.20). Furthermore, we emphasize that the ui mentioned in Lemmas B.7 and B.8
below refers to the eigenvectors of Q̃1, rather than Q1. First, Lemma B.7 gives the first-order limits of the
outlier eigenvalues and eigenvectors, along with nearly optimal convergence rates.

Lemma B.7 (Theorems 3.2 and 3.3 of [27]). Suppose Assumption 2.3 holds. For any i ∈ [[r]], we have that
∣∣∣λ̃i − ai

∣∣∣ ≺ n−1/2. (B.21)

Moreover, for the corresponding outlier eigenvectors, we have that for any i, j ∈ [[r]],

|〈ui,vj〉|2 −
bi

σ̃i
δij ≺ n−1/2. (B.22)

Next, we state some estimates for the non-outlier eigenvalues and eigenvectors.

Lemma B.8. Suppose Assumption 2.3 holds. For i ∈ [[K− r]], we have the eigenvalue sticking estimate:

|λ̃i+r − λi| ≺ n−1, (B.23)

and the eigenvector delocalization estimate:

|〈ui+r,v〉|2 ≺ n−1 (B.24)

for any deterministic unit vector v ∈ Rp. When cn > 1, we have that

‖U⊤
0 v‖22 ≺ 1. (B.25)

Finally, for i ∈ [[r]] and j ∈ [[r + 1, p]], we have that

|〈ui,vj〉|2 −
ci

σj
Gij(ai)Gji(ai) ≺ n−3/2, with ci :=

d2i bi
σ̃2
i

. (B.26)
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Proof. The results (B.23) and (B.24) have been proved in Theorems 3.7 and 3.14 of [29] for i 6 τp with
τ ∈ (0, 1) being a small constant. The reason for considering a subset of indices is that only the edge
regularity condition around λ+ = a1 was assumed in [29]. However, with the stronger regularity conditions
in (2.16) and (2.17), we can extend (B.23) and (B.24) to all i ∈ [[K− r]] following the proof in [29]. We omit
the details. As for (B.25), we have the trivial bound

‖U⊤
0 v‖22 ≤ η Im[v⊤G̃1(iη)v],

which follows from the spectral decomposition of G̃1. The RHS can be written as

v⊤G̃1(iη)v =
(
v⊤Σ−1/2,0⊤

n

) G̃(iη)

iη

(
Σ−1/2v

0n

)
.

Then, (B.25) follows immediately from the local law on G̃ in (B.12) by taking η = (logn)−1.

It remains to prove (B.26). The proof relies on a representation of |〈ui,vj〉|2 in terms of contour integrals
of the resolvent G (see e.g., [13,18,27,29]). We only sketch the proof since many arguments below are similar
to those in [18, 27]. Let {ui}pi=1 = {V ⊤ui}pi=1 be the left singular eigenvectors of Λ1/2V ⊤X . Due to the
relation

〈vj ,ui〉 = (v⊤
j V )ui = e⊤j ui, (B.27)

it suffices to focus on the entries ui(j) of ui in the following proof. Let Γi denote the boundary of Bρ(ai),
which represents a disk of radius ρ centered at ai. Here, we choose ρ to be sufficiently small so that B2ρ(ai)
does not contain λ+ or any other outlier ak, k ∈ [[r]] \ {i}. Then, by (B.21) and item (iv) of Assumption

2.3, we know that with high probability, Γi only encloses λ̃i and no other eigenvalues of G(z). By applying
Cauchy’s integral formula, we obtain that

|ui(j)|2 = − 1

2πi

∮

Γi

(G̃1)jj(z)dz = − lim
δ↓0

1

2πi

∮

Γi

(G̃δ
1)jj(z)dz, (B.28)

where G̃δ
1 is defined by introducing a perturbation to the j-th eigenvalue of Λ:

G̃δ
1(z) :=

(
Λ
1/2
δ V ⊤XX⊤V Λ

1/2
δ − z

)−1
, with Λδ := Λ + δσ̃jeje

⊤
j .

To compute the right-hand side (RHS) of (B.28), we utilize the Woodbury matrix identity to express G̃δ
1 in

terms of G1. Using the fact that G1 contains no pole inside Γi, we then obtain the following expression:

〈ui, ej〉2 = lim
δ↓0

1 + δ

δ2
1

2πi

∮

Γi

[
Dr,j(δ)

−1 + 1 + zE⊤
r,jG1(z)Er,j

]−1

r+1,r+1

dz

z
. (B.29)

where we introduce the matrices

Er,j := (e1, · · · , er, ej) ∈ R
p×(r+1), Dr,j(δ) := diag {d1, d2, · · · , dr, δ} ∈ R

(r+1)×(r+1).

For a detailed derivation of (B.29), we refer readers to Lemma 5.7 and equations (7.5) and (7.6) of [27].
Denote Λ0,j := diag{σ1, · · · , σr, σj}, and

∆j(z) := −Υj(z)− zE⊤
r,jG1(z)Er,j , Υj(z) := (1 +m(z)Λ0,j)

−1
. (B.30)

By the local law (B.10) and the estimate on Imm(z) in (B.17), we have that uniformly in z ∈ Γi,

‖∆j(z)‖ ≺ n−1/2. (B.31)

Denote Ξj(z) := D−1
r,j + 1 − Υj(z). By item (iv) of Assumption 2.3 and the choice of ρ, we have that

‖Ξj(z)
−1‖ . 1 uniformly in z ∈ Γi. Then, applying Taylor expansion to

(
D−1

r,j + 1+ zE⊤
r,jG1(z)Er,j

)−1
= (Ξj(z)−∆j(z))

−1
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till order three, we can expand (B.29) as

〈ui, ej〉2 = s1 + s2 + s3 + s4,

where si, i = 1, 2, 3, 4, are defined as

s1 := lim
δ↓0

1 + δ

δ2
1

2πi

∮

Γi

1

1 + δ−1 − (1 +m(z)σj)−1

dz

z
,

s2 := lim
δ↓0

1 + δ

δ2
1

2πi

∮

Γi

(∆(z))r+1,r+1

[1 + δ−1 − (1 +m(z)σj)−1]2
dz

z
,

s3 := lim
δ↓0

1 + δ

δ2
1

2πi

∮

Γi

[
Ξ−1
j (z)∆(z)Ξ−1

j (z)∆(z)Ξ−1
j (z)

]
r+1,r+1

dz

z
,

s4 := lim
δ↓0

1 + δ

δ2
1

2πi

∮

Γi

[(
Ξ−1
j (z)∆(z)

)3
(Ξj(z)−∆(z))

−1
]
r+1,r+1

dz

z
.

Using (B.31), it is easy to see that
|s4| ≺ n−3/2.

For s1 and s2, by following a similar argument as in [27, Proposition 7.2] or [18, Lemma 4.31], we can show
that for sufficiently small δ, the functions z−1, [1 + δ−1 − (1 + m(z)σj)

−1]−1, and (∆(z))r+1,r+1 are all
holomorphic on and inside Γi with high probability. Hence, applying Cauchy’s integral theorem, we get that

s1 = s2 = 0 with high probability. (B.32)

To estimate the leading term s3, we employ a modified proof strategy similar to that of [18, Lemma 4.32].
By definition, we can write that

[
Ξ−1
j (z)∆(z)Ξ−1

j (z)∆(z)Ξ−1
j (z)

]
r+1,r+1

=
1

[1 + δ−1 − (1 +m(z)σj)−1]
2

r+1∑

k=1

∆r+1,k∆k,r+1Ξj(k, k)
−1,

where we have introduced the abbreviation ∆ ≡ ∆(z) and used Ξj(k, k) to denote the k-th diagonal entry
of Ξj(z). We decompose the sum into a diagonal part with k = r + 1 and an off-diagonal part with k ∈ [[r]]:

r+1∑

k=1

∆r+1,k∆k,r+1Ξj(k, k)
−1 = Ed + Eo,

where Ed and Eo are defined as

Ed := ∆2
r+1,r+1Ξj(r + 1, r + 1), Eo := z2

r∑

k=1

(e⊤j G1(z)ek)(e
⊤
k G1(z)ej)

1 + d−1
k − (1 +m(z)σk)−1

.

By the discussion above (B.32), we have that for sufficiently small δ, Ed is holomorphic on and inside Γi

with high probability. This implies that

1

2πi

∮

Γi

Ed

[1 + δ−1 − (1 +m(z)σj)−1]2
dz

z
= 0 with high probability.

For the off-diagonal part Eo, using (B.14), we can rewrite it as

Eo =
1

σj

r∑

k=1

1

σk

Gjk(z)Gkj(z)

1 + d−1
k − (1 +m(z)σk)−1

.

Under item (iv) of Assumption 2.3, using the definition of m(z) in (2.8) and the definition of ai in (2.20),
we find that for k ∈ [[r]] \ {i},

1 + d−1
k − (1 +m(ai)σk)

−1 = 1 + d−1
k − (1− σk/σ̃i)

−1
& 1.
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Consequently, due to the continuity ofm(z) near ai, we can choose ρ sufficiently small such that 1+d−1
k −(1+

m(z)σk)
−1 has no zero on and inside Γi. Then, by Cauchy’s integral theorem, we have that for k ∈ [[r]] \ {i},

∮

Γi

Gjk(z)Gkj(z)

[1 + δ−1 − (1 +m(z)σj)−1]
2 [

1 + d−1
k − (1 +m(z)σk)−1

] dz
z

= 0

with high probability. Finally, we only need to consider the k = i term in Eo. Applying the parametrization
z = h(ζ), we obtain that with high probability,

1 + δ

δ2
1

2πi

∮

Γi

Eo

[1 + δ−1 − (1 +m(z)σj)−1]
2

dz

z
=

(1 + δ)di
2πiσ̃iσjσi

∮

γi

h′(ζ)Gji(h(ζ))Gij(h(ζ))

h(ζ) [1 + δ − δ(1 + ζσj)−1]
2

1 + ζσi

ζ + σ̃−1
i

dζ,

= (1 + δ)
d2i bi
σ̃2
i σj

Gji(ai)Gij(ai)

[1 + δ − δ(1 − σj/σ̃i)−1]
2 ,

where we used the relation m(h(ζ)) = ζ as in (2.8) in the first step, and the residual theorem at ζ = −σ̃−1
i

in the second step. Finally, taking δ → 0 and using the dominated convergence theorem, we conclude that

s3 =
d2i bi
σ̃2
i σj

Gji(ai)Gij(ai),

which completes the proof of (B.26).

B.3 Local laws for the rectangular matrix Dyson Brownian motion

In this subsection, we consider the rectangular matrix DBM of the non-spiked model:

W0(t) :=W0 +
√
tXG, with W0 := Λ

1/2
0 V ⊤X,

where XG is defined above (4.3). In this subsection, we present the local laws for its resolvent, which will
be utilized in our proof. From these local laws, we can also derive the local laws for the resolvent of the
(spiked) rectangular matrix DBM defined in (4.3) and (4.4).

Let us begin by introducing some notations. We define Λt := Λ0 + t and mt(z) := m(z,Λt) as given by
(2.8). In other words, mt(z) is the unique solution to the equation

z = − 1

mt
+

1

n
Tr

Λt

1 +mtΛt
(B.33)

subject to the condition that Immt(z) ≥ 0 whenever Im z ≥ 0. Subsequently, we denote the density function
associated with mt as ̺t, and refer to the spectral edges and quantiles of ̺t as ak(t) and γk(t), following
the definitions in Lemma 2.1 and in Definition 2.2. Using the stability of the self-consistent equation (B.33)
established in [45], it is not hard to check that

sup
x∈R

|̺t(x) − ̺(x)| = o(1) (B.34)

when t = o(1). Then, we define G1,t, G2,t, Gt, and Πt as described in Remark B.4, with the replacements of
W0, Λ0, and m(z) by W0(t), Λt, and mt(z), respectively. Let {λk(t)}pk=1 and {uk(t)}pk=1 denote the eigen-
values and corresponding eigenvectors of W0(t)W0(t)

⊤. Finally, we introduce the error control parameter

Ψt(z) :=

√
Immt(z)

nη
+

1

nη
,

Now, we are ready to state the main result of this subsection.

Lemma B.9. Suppose (i)–(iii) of Assumption 2.3 hold. Fix a time T ≍ n−1/3+c for some constant c ∈ (0, 1/6).
The following estimates hold uniformly in z ∈ D and t ∈ [0, T ].
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(i) The support of ̺t has the same number of connected components as ̺t, and the spectral edges ak(t) of
̺t are perturbations of those of ̺: max2qk=1 |ak(t)−ak| = o(1). In particular, it implies that |λ±,t−λ±| =
o(1), where λ+,t := a1(t) and λ−,t := a2q(t) denote the rightmost and leftmost spectral edges of ̺t,
respectively. The number of quantiles within each component remains unchanged, that is, nk(t) defined
as in (2.11) is constant in t.

(ii) For any deterministic unit vectors u,v ∈ Rp+n, we have the anisotropic local law (recall Lemma B.2)

∣∣u⊤Gt(z)v − u⊤Πt(z)v
∣∣ ≺ Ψt(z). (B.35)

For mn,t := n−1 TrG2,t, the following averaged local law holds:

|mn,t(z)−mt(z)| ≺
1

nη
. (B.36)

(iii) For γj(t) ∈ [a2k(t), a2k−1(t)], we have that (recall Lemma B.6)

|λj(t)− γj(t)| ≺ [(nk(t) + 1− j) ∧ (j − nk−1(t))]
−1/3n−2/3. (B.37)

(iv) For k ∈ [[K]] and any deterministic unit vector v ∈ Rp, we have that (recall Lemma B.8)

|〈uk(t),v〉|2 ≺ n−1. (B.38)

Proof. Under the edge regularity condition (2.16), it is easy to see that ak(t) and nk(t) are continuous in t
when t = o(1). This establishes part (i) of the lemma, taking into account the fact that nk(t) takes integer
values. For the other parts, we notice that W0(t) can be expressed as

W0(t) = Λ
1/2
t U

(
X
XG

)
, (B.39)

where U ∈ Rp×2p is a semi-orthogonal matrix defined as

U :=
(
(Λ0/Λt)

1/2V ⊤, (t/Λt)
1/2Ip

)
.

This is the random matrix model studied in [45]. Furthermore, (B.34) and part (i) together validate the
regularity conditions in (2.16) and (2.17) for Λt. Then, for each fixed t, (ii) is proved in Theorems 3.6 and
3.7 of [45], (iii) is proved in Theorem 3.12 of [45], and (iv) follows easily from (ii) and (iii) as explained, for
example, in [12, Theorem 2.8]. Finally, by utilizing a standard ε-net argument, we can extend these results
uniformly to all t ∈ [0, T ].

Remark B.10. The estimate (B.36) provides an averaged local law for mn,t. In the following proof, we will
also need an averaged local law for mn,t(z) := p−1 TrG1,t, whose classical limit is given by

m1,t(z) := −1

p
Tr

1

z(1 +mt(z)Λt)
.

From (B.33), we can observe that

m1,t(z) =
c−1
n − 1

z
+ c−1

n mt(z). (B.40)

On the other hand, since W0(t)W0(t)
⊤ share the non-zero same eigenvalues as W0(t)

⊤W0(t), we have a
similar relation between mn,t(z) and mn,t(z):

mn,t(z) =
c−1
n − 1

z
+ c−1

n mn,t(z). (B.41)

Under these two equations, we can directly deduce from (B.36) that

|mn,t(z)−m1,t(z)| ≺ (nη)−1. (B.42)
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Next, we consider the rectangular matrix DBM of the spiked model:

W (t) :=W +
√
tXG, with W := Λ1/2V ⊤X,

where Λ contains a non-spiked component Λ0 and r spikes as in (2.3). Let Λ̃t := Λ + t, and we again
denote Λt = Λ0 + t and mt(z) = m(z,Λt). Then, we define G̃t and Π̃t as described in Remark B.4, with
the replacements of W0, Λ0, and m(z) by W (t), Λ̃t, and mt(z), respectively. Let {λ̃k(t)}pk=1 denote the
eigenvalues of W (t)W (t)⊤. We define a smaller spectral parameter domain than (B.7) for arbitrarily small
constants c, τ ∈ (0, 1):

D′ ≡ D′(c, τ, t, n) :=
{
z = E + iη ∈ C+ : λ− − c 6 E 6 λ+ + c, n−1+τ 6 η 6 τ−1

}
, (B.43)

We show that a similar local law as in (B.35) holds for G̃t − Π̃t.

Lemma B.11. Suppose Assumption 2.3 holds. Fix a time T ≍ n−1/3+c for some constant c ∈ (0, 1/6). Then,
there exists a constant c > 0 such that the following local law holds uniformly for z ∈ D′ and t ∈ [0, T ],
considering any deterministic unit vectors u,v ∈ Rp+n:

∣∣u⊤G̃t(z)v − u⊤Π̃t(z)v
∣∣ ≺ Ψt(z). (B.44)

Moreover, for i ∈ [[K − r]], we have the eigenvalue sticking estimate:

|λ̃i+r(t)− λi(t)| ≺ n−1. (B.45)

Proof. For the proof of (B.44), the only concern arises for z around the r outlier locations. However, by
confining ourselves to a narrower spectral domain D′ around supp(̺t), we ensure that z stays at a distance
of order Ω(1) from the outliers. As a result, (B.44) is essentially a consequence of the local law (B.35). The
proof of (B.45) is the same as that of (B.23). We omit the details.

C Proof of the main results

C.1 Proof of the results in Section 2.2

In this subsection, we provide the proofs of Theorem 2.4, Corollary 2.5, and Corollary 2.6 using the local
laws presented in Appendix B and Theorem 2.12.

Proof of Theorem 2.4. Applying Theorem 2.12 with ωj = ℓ(σj) and noticing p−1
∑r

j=1 ℓ(σj)φ(vj ,vj , γi−r) =

O(p−1), we can deduce that

P

(∣∣u⊤
i ℓ(Σ)ui − ϑ(ℓ, γi−r)

∣∣ > n−d/4
)
≤ n−d/2, i ∈ [[r + 1,K]],

for a constant d > 0. By combining this estimate with the trivial bound
∣∣u⊤

i ℓ(Σ)ui − ϑ(ℓ, γi−r)
∣∣ . 1, we

conclude (2.30). To show (2.31), let Γ0 ≡ Γ0(n) be the contour centered at 0 with radius ρn = (log n)−1/2.
By the rigidity estimate (B.20), the eigenvalue sticking (B.23), and the lower bound (2.19), we know that with
high probability, Γ0 only encloses the p− n zero eigenvalues of Q1. Then, with the spectral decomposition
of G̃1 (recall (B.1)), we obtain that with high probability,

Tr
[
U⊤
0 ℓ(Σ)U0

]
= − 1

2πi

∮

Γ0

Tr
[
G̃1(z)ℓ(Σ)

]
dz.

Applying the anisotropic law in Lemma B.3 and using Cauchy’s integral theorem at z = 0, we obtain that

Tr
[
U⊤
0 ℓ(Σ)U0

]
=

1

2πi

∮

Γ0

Tr
[
(1 +m(z)Σ)−1ℓ(Σ)

] dz
z

+O≺(n
−1/2)

=

p∑

j=1

ℓ(σ̃j)

1 +m(0)σ̃j
+O≺(n

−1/2).
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This yields (2.31) by noticing that

ϑ(ℓ, 0) =
1

p− n

p∑

j=r+1

ℓ(σ̃j)

1 +m(0)σ̃j
=

1

p− n

p∑

j=1

ℓ(σ̃j)

1 +m(0)σ̃j
+O(n−1).

Now, we focus on the proof of (2.29). Recall the decomposition (4.2):

u⊤
i ℓ(Σ)ui =

r∑

j=1

ℓ(σ̃j)|〈ui,vj〉|2 +
p∑

j=r+1

ℓ(σ̃j)|〈ui,vj〉|2 := w1i + w2i, i ∈ [[r]]. (C.1)

Using (B.22), we obtain that

w1i =
ℓ(σ̃i)

σ̃i
bi +O≺(n

−1/2). (C.2)

The remaining part of the proof is devoted to estimating w2i. Since σ̃j = σj for j > r, by (B.26), we have

w2i = ci

p∑

j=r+1

ℓ(σj)

σj
Gij(ai)Gji(ai) + O≺(n

−1/2)

= ci

p∑

j=1

ℓ(σj)

σj
Gij(ai)Gji(ai)− ci

r∑

j=1

ℓ(σj)

σj
Gij(ai)Gji(ai) + O≺(n

−1/2).

Applying (B.10) to estimate the second sum on the RHS and recalling the notations in Remark B.4, we can
rewrite the above equation as

w2i = cia
2
iσi

p∑

j=1

ℓ(σj)(G1)ij(ai)(G1)ji(ai)−
ciσiℓ(σi)

[1 +m(ai)σi]2
+O≺(n

−1/2). (C.3)

It remains to estimate the quantity

Li =

p∑

j=1

ℓ(σj)(G1)ij(ai)(G1)ji(ai). (C.4)

For a small t > 0, we define a new resolvent:

G(t, z) :=
(
Λ
1/2
0 V ⊤XX⊤V Λ

1/2
0 − z − tL

)−1

, (C.5)

where L is a diagonal matrix defined as L = diag{ℓ(σ1), · · · , ℓ(σp)}. Under this definition, we notice that

Li =
∂Gii(t, ai)

∂t

∣∣∣∣
t=0

. (C.6)

To estimate (C.6), it suffices to establish a local law on Gii(t, ai) for any small t > 0. We rewrite G(t, ai) as

G(t, ai) = A(t)−1/2G(t, ai)A(t)
−1/2,

where A(t) := I + tL/ai and

G(t, z) :=
(
Λ(t)1/2V ⊤XX⊤V Λ(t)1/2 − z

)−1

with Λ(t) := A(t)−1Λ0.

Now, define m̃t(z, ai) ≡ m(z,Λ(t)) as in (2.22) with x = ai. As t → 0, we can utilize the local law (B.10) to
G(t, z) at z = ai, and substitute Λ0 and m(z) with Λ(t) and m̃t(z, ai), respectively. This leads to that

Gii(t, ai) = − Aii(t)
−1

ai[1 + m̃t(ai, ai)Λii(t)]
+ O≺(n

−1/2) (C.7)
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for all t = o(1). We now take t = n−1/4. Using the eigenvalue rigidity (B.20) for λ1 and the fact that ai is
an outlier of ̺, we get from the definition (C.5) that ‖G(t, ai)‖ . 1 with high probability. With this bound,
we readily derive that with high probability,

Li −
Gii(t, ai)− Gii(0, ai)

t
= O(t). (C.8)

Combining (C.6), (C.7) and (C.8), we obtain that

Li = − ∂

∂t

Aii(t)
−1

ai[1 + m̃t(ai, ai)Λii(t)]

∣∣∣∣
t=0

+O≺(t+ n−1/2/t)

=
1

[1 +m(ai)σi]2

(
ṁ0(ai)σi

ai
+
ℓ(σi)

a2i

)
+O≺(n

−1/4).

Plugging it back into (C.3) gives an estimate for w2i. Combining this estimate with (C.2), we obtain that

u⊤
i ℓ(Σ)ui = bi

(
ℓ(σ̃i)

σ̃i
+ aiṁ0(ai)

)
+O≺(n

−1/4),

where we used that ci = d2i bi/σ̃
2
i and m(ai) = −σ̃−1

i . This concludes (2.29).

Proof of Corollary 2.5. By Theorem 2.4, it suffices to simplify the formulas of ϑ(x) ≡ ϑ(ℓ, x) and ψi ≡ ψi(ℓ)
when ℓ(x) = x. When x = 0, we notice that

ϑ(0) =
1

p(1− c−1
n )

p∑

j=r+1

σ̃j
1 +m(0)σ̃j

=
1

cn − 1

1

n

p∑

j=1

σj
1 +m(0)σj

+O(n−1).

By (2.8), we have the identity

1

m(0)
=

1

n

p∑

j=1

σj
1 +m(0)σj

.

This proves (2.34). Next, when i ∈ [[r + 1,K]], we have γi−r > 0 and

ϑ(γi−r) =
cn

pγi−r

p∑

j=r+1

σ̃2
j

|1 +m(γi−r)σ̃j |2
=

1

nγi−r

p∑

j=1

σ2
j

|1 +m(γi−r)σj |2
+O(n−1). (C.9)

By taking the imaginary parts of both sides of (2.8), we obtain that

1

n

p∑

j=1

σ2
j

|1 +m(γi−r)σj |2
=

1

|m(γi−r)|2
.

Plugging it into (C.9) concludes the proof of (2.33). It remains to prove (2.32). We write ψi as

ψi = bi
(
1 + aiṁ0(ai)

)
. (C.10)

By setting ℓ(σi) = σi and z = x = ai, we can simplify (2.25) using the first equation in (2.24), which yields
that

ṁ0(ai) =
1

ai

(
m′(ai)

|m(ai)|2
− 1

)
.

Substituting this expression into (C.10) concludes (2.32).

Proof of Corollary 2.6. This corollary follows directly from Lemma A.1, Lemma A.2, and Theorem 2.4.
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C.2 Proof of the results in Section 2.3

First, we provide the proof of Theorem 2.8 by using Lemma 4.1 and Lemma 4.2.

Proof of Theorem 2.8. Recall that for D0 = Λ − t and Dt = D0 + t, we choose their non-spiked parts as
D00 = Λ0 − t and Dt0 = D00 + t, respectively. Then, we define mt = m(z,Dt0) as in (B.33) and denote
the density function associated with mt as ̺t. The quantiles γk(t) of ̺t are defined as in Definition 2.2.
Given that t = o(1), it is straightforward to show that the eigenvalues of D00 and D0 satisfy (iii) and (iv)
in Assumption 2.3. (In particular, the regularity conditions in (2.16) and (2.17) can be verified using (B.34)
and part (i) of Lemma B.9.) Then, combining Lemma 4.1 and Lemma 4.2, we obtain that

√
p



ξ1〈v,ui1+r〉

...
ξL〈v,uiL+r〉


 ≃ N (0,ΞL(t)), (C.11)

where ΞL(t) is defined in (4.6) with v = V ⊤v (recall that ui = V ⊤ui). Since Dt = Λ, by comparing
equations (B.33) and (2.8), we see that ̺t = ̺. Hence, we have γik(t) = γik for k ∈ [[L]]. Moreover, using the
stability of the self-consistent equation (2.8) (see Appendix A of [45]), it is easy to check that

m(x,D00) = m(x) + O(
√
t). (C.12)

Then, using the definition (4.5), we conclude that

‖ΞL(t)− ΞL‖ .
√
t.

This establishes (2.37) together with (C.11).

Recall that the proof of Lemma 4.1 is based on Theorem 4.5 and Lemma 4.6. Using these two results,
we can show that the LHS of (4.7) converge to the RHS also in the sense of convergence of moments. Then,
by applying Lemma 4.2 and following the above proof of Theorem 2.8, we can deduce that (2.37) holds in
terms of matching moments, that is, for any fixed k = (k1, . . . , kL) ∈ N

L, there exists a constant c > 0 such
that

E

L∏

j=1

(
p|〈v,uij+r〉|2

)kj
=

L∏

j=1

E
(
|Nj |2kj

)
+O(n−c). (C.13)

Now, we proceed to establish Theorem 2.12 by utilizing this estimate. Our approach follows a similar
argument employed for Wigner matrices in [10, 15].

Proof of Theorem 2.12. Due to (B.27), it suffices to prove the following estimate for ui:

P

(∣∣∣
p∑

j=1

wj |ui(j)|2 − p−1

p∑

j=1

wjφj(γi−r)
∣∣∣ > ε

)
6 n−d/ε2, (C.14)

where the function φj(x) is defined as

φj(x) := φ(vj ,vj , x) =
cnσ̃j

x|1 +m(x)σ̃j |2
, x > 0.

Applying Markov’s inequality, we can derive (C.14) from the following estimate:

p−2
E

∣∣∣
p∑

j=1

wj

(
p |ui(j)|2 − φj(γi−r)

) ∣∣∣
2

≤ n−d. (C.15)

We observe that the LHS of (C.15) can be bounded by

max
j 6=k∈[[p]]

E

(
p |ui(j)|2 − φj(γi−r)

)(
p |ui(k)|2 − φk(γi−r)

)
+ p−1 p

max
j=1

E

(
p |ui(j)|2 − φj(γi−r)

)2
. (C.16)
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Using (C.13) with v = vj and kj ∈ {1, 2}, we can conclude that

pE |ui(j)|2 = φj(γi−r) + O(n−c), p2E |ui(j)|4 = 3φj(γi−r)
2 +O(n−c). (C.17)

With these two estimates, we can bound the second term in (C.16) as

p−1
E

(
p |ui(j)|2 − φj(γi−r)

)2
= O(p−1), j ∈ [[p]]. (C.18)

It remains to control the first term in (C.16). We now apply (C.13) with L = 1, i1 = i − r, k1 = 2, and
v = (ξ1vj + ξ2vk)/

√
2, where ξ1 and ξ2 are two uniformly random signs independent of X . This gives that

p2E |ui(j)|4 + p2E |ui(k)|4 + 6p2E
(
|ui(j)|2 |ui(k)|2

)
= 3

(
φj(γi−r)

2 + φk(γi−r)
2 + 2φj(γi−r)φk(γi−r)

)
.

Together with (C.17), this equation implies that

p2E
(
|ui(j)|2 |ui(k)|2

)
= φj(γi−r)φk(γi−r) + O(n−c). (C.19)

Combining (C.17) and (C.19), we conclude that

E

(
p |ui(j)|2 − φj(γi−r)

)(
p |ui(k)|2 − φk(γi−r)

)
. n−c. (C.20)

Plugging (C.18) and (C.20) into (C.16), we obtain (C.15), which further concludes (C.14).

C.3 Proof of the results in Section 3

Proof of Lemma 3.1. The estimate (3.5) can be derived from [42, Section 5] or [46, Section 3], along with
the eigenvalue sticking estimate (B.23). The first estimate in (3.6) follows directly from (B.21).

To prove the second estimate in (3.6), we apply the inverse function theorem to (2.8) and use that
m(ai) = −σ̃−1

i , which yields the relation

h′(−σ̃−1
i ) = [m′(ai)]

−1
. (C.21)

Next, considering the contour Γi defined below (B.27), we apply Cauchy’s integral formula to obtain that

m′(ai) =
1

2πi

∮

Γi

m(z)

(z − ai)2
dz =

1

2πi

∮

Γi

mn(z)

(z − ai)2
dz +O≺(n

−1/2) = m′
n(ai) + O≺(n

−1/2). (C.22)

In the second step, we utilized the local law (B.10), and in the third step, we used the fact that, with high
probability, mn has no pole inside Γi due to the rigidity estimate (B.20). Since r is fixed, using (B.21) and
(B.23), we get that

m′
n(ai) =

1

n

n∑

j=1

1

(λj − ai)2
=

1

n

n∑

j=r+1

1

(λ̃j − ai)2
+O≺(n

−1) = m̂′
i +O≺(n

−1/2). (C.23)

Plugging (C.23) and (C.22) into (C.21) concludes the second estimate in (3.6). With a similar argument,
employing (B.10) and (B.21), we can deduce that

−σ̃−1
i = m(ai) = mn(ai) + O≺(n

−1/2) = m̂i +O≺(n
−1/2). (C.24)

This verifies the third estimate in (3.6).
For the last estimate in (3.6), we first notice that by (2.15) and (3.5),

K+
ε = p− o(p) (C.25)
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for small enough ε > 0. Since m is a real increasing function outside supp(̺), we have b1 = m(λ+) < m(ai) <
0. Combining this with condition (2.18), we obtain minpj=r+1 |1+m(ai)σj | & 1, which, together with (C.24),
implies minpj=r+1 |1 + m̂iσj | & 1 with high probability. Then, from (3.5), we see that

K−
ε = o(p). (C.26)

On the other hand, by employing the weak convergence in (3.5), along with (B.18) and (C.24)–(C.26), we
obtain that for small δ > 0,

1

n

p∑

j=1

ℓ(σj)σj
[1 +m(ai)σj ]2

=
1

n

⌈(1−δ)p⌉∑

j=r+1

ℓ(σj)σj
(1 +m(ai)σj)2 + δ

+O(δ)

=
1

n

⌈(1−δ)p⌉∑

j=r+1

ℓ(σ̂j)σ̂j
(1 + m̂iσ̂j)2 + δ

+ oP(1) + O(δ)

=
1

n

p∧K+
ε∑

j=(r+1)∨K−
ε

ℓ(σ̂j)σ̂j
(1 + m̂iσ̂j)2 + δ

+ oP(1) + O(δ)

=
1

n

p∧K+
ε∑

j=(r+1)∨K−
ε

ℓ(σ̂j)σ̂j
(1 + m̂iσ̂j)2

+ oP(1) + O(δ).

As δ is arbitrary, we conclude from this estimate that

1

n

p∑

j=1

ℓ(σj)σj
[1 +m(ai)σj ]2

=
1

n

p∧K+
ε∑

j=(r+1)∨K−

ε

ℓ(σ̂j)σ̂j
(1 + m̂iσ̂j)2

+ oP(1). (C.27)

Now, plugging (B.21), (C.22)–(C.24), and (C.27) into (2.25), we obtain that

ṁ0(ai) =
m′(ai)

nai

p∑

j=1

ℓ(σj)σj
[1 +m(ai)σj ]2

=
m̂′

i

nâi

p∧K+
ε∑

j=(r+1)∨K−
ε

ℓ(σ̂j)σ̂j
(1 + m̂iσ̂j)2

+ oP(1). (C.28)

This concludes the last estimate in (3.6).

Proof of Theorem 3.2. The estimate (3.11) follows immediately from Lemma 3.1. For the estimate (3.12),
utilizing the eigenvalue rigidity estimate (B.20) and the eigenvalue sticking estimate (B.23), we obtain that

|λ̃i − γi−r| ≺ n−2/3, i ∈ [[r + 1,K]]. (C.29)

Using (B.23) again, we can derive the following expression for m̂(λ̃i) when η = n−1/2:

m̂(λ̃i) =
1

n

n∑

j=r+1:|j−i|≥n1/4

1

λ̃j − λ̃i − iη
+

1

n

n∑

j=r+1:|j−i|<n1/4

1

λ̃j − λ̃i − iη

=
1

n

n−r∑

j=1:|j+r−i|≥n1/4

1

λj − λ̃i − iη
+

1

n

n−r∑

j=1:|j+r−i|<n1/4

1

λj − λ̃i − iη
+O≺(n

−1/4)

=
1

n

n−r∑

j=1

1

λj − λ̃i − iη
+O≺(n

−1/4) = mn(λ̃i + iη) + O≺(n
−1/4). (C.30)

In the second step, we utilize the trivial bound |λj − λ̃i − iη|−1 ≤ η−1 when |j + r − i| < n1/4, and when
|j + r − i| ≥ n1/4, we have |λj − λ̃i| & n−1/4 with high probability due to the eigenvalue rigidity (B.20).
When combined with the averaged local law (B.9), the two estimates (C.29) and (C.30) imply that

m̂(λ̃i) = m(λ̃i + iη) + O≺(n
−1/4) = m(γi−r) + O≺(n

−1/4), (C.31)
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where in the second step we used the following bound for any constant C > 0:

|m(z1)−m(z2)| . |z1 − z2|1/2 ∀ z1, z2 ∈ C+, C
−1 ≤ |z1|, |z2| ≤ C. (C.32)

(This estimate can be proven by employing the Stieltjes transform form ofm(z) and the square root behaviors
of ̺ around the spectral edges.) Similarly, using Lemma B.3, we can derive that

m̂0 = Rem(iη) + O≺(n
−1/2) = m(0) + O≺(n

−1/2). (C.33)

With the estimates (C.29), (C.31), and (C.33) at hand, the proof of (3.12) is then similar to that of the last
estimate in (3.6), and we omit the details.

Proof of Lemma 3.3. The estimate (3.13) follows from (3.6) and (C.22)–(C.24). The estimate (3.14) can be
derived from (C.29), (C.31), and (C.33).

D Eigenvector moment flow and proof of Lemma 4.10

In this section, we study the dynamics of the eigenvalues and eigenvectors of the rectangular DBM and
establish Lemma 4.10. We first introduce some new notations. We denote the processes of eigenvalues and
eigenvectors as λ(·) ..= (λ(t))t>0 and U(·) = (U(t))t>0, respectively, where λ(t) = (λ1(t), . . . , λp(t)) and

U(t) = (u1(t), . . . ,up(t)). We further denote by E
U(0)
λ(·) (·) the expectation with respect to the process U(·)

conditioned on the eigenvalue process λ(·) and the initial state U(0) of the eigenvector process. Let L(t) be
the generator associated with the process U(t) (or equivalently the dynamics given by (4.21)) conditioned

on λ(·) and U(0). In other words, for any smooth functions f : Rp2 → R, we have the equation

d

dt
E
U(0)
λ(·) f

(
U(t)

)
= E

U(0)
λ(·) (L(t)f)

(
U(t)

)
, (D.1)

where (L(t)f)(U(t)) represents the action of the generator on the function f evaluated at U(t). Finally, we
define the λ(·)-measurable p× p matrices Υ(t) = (Υkl(t)) with entries introduced in (4.25).

Lemma D.1. The generator L(t) associated with the eigenvector flow (4.21) conditioned on λ(·) and U(0) is

L(t) =

p∑

k,l=1

1

2
Υkl(t)(Xkl)

2 , (D.2)

where Xkl is defined as

Xkl
..=

p∑

j=1

(
uk(j)

∂

∂ul(j)
− ul(j)

∂

∂uk(j)

)
. (D.3)

Proof. This result can be proved in the same way as Lemma 2.4 in [15], employing (4.21) and Itô’s formula.
The details are omitted.

Now, we will follow the argument presented in [15, Section 3.1] to show that L(t) acting on ft(ξ) in
(4.22) can be interpreted as a multi-particle random walk in random environments described by the DBM
of eigenvalues. This establishes the desired eigenvector moment flow in Lemma 4.10. Now, we will derive a
more general form of EMF that encompasses Lemma 4.10 as a special case. Let v1, . . . ,vM be a deterministic
sequence of orthonormal vectors in R

p, where M is a fixed integer. For (k, i) ∈ [[p]] × [[M ]], we define the
variables zik

..=
√
p〈vi ,uk〉 and abbreviate Z = (zik

.. (k, i) ∈ [[p]]× [[M ]]). We further define the collection of
“particle configurations”

Sn
..=

{
ξ ∈ Z

[[p]]×[[M ]] ..
M∑

i=1

ξik ∈ 2Z for all k ∈ [[p]]

}
. (D.4)
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The special basis elements eik, (k, i) ∈ [[p]]× [[M ]], for the configurations in Sn are defined as (eik)
j
l
..= δklδij .

For each ξ ∈ Sn, we assign a polynomial Pξ of the variables in Z, defined as follows:

Pξ
..=

p∏

k=1

M∏

i=1

(zik)
ξik (D.5)

if ξik > 0 for all (k, i) ∈ [[p]] × [[M ]], and Pξ = 0 otherwise. With the above notations, we can derive the
following key result through direct calculations.

Lemma D.2. For k, l ∈ [[p]] and i ∈ [[M ]], define the operator Ai
kl

.. Sn → Sn through

Ai
klξ

..= ξ − eik + eil . (D.6)

Then, we have that

L(t)Pξ =
∑

k,l

Υkl(t)
∑

i

[
ξik(ξ

i
k − 1)PAi

klA
i
klξ

− ξik(ξ
i
l + 1)Pξ

]

+
∑

k,l

Υkl(t)
∑

i6=j

[
ξikξ

j
kPAi

klA
j
klξ

− ξikξ
j
l PAi

klA
j
lkξ

]
. (D.7)

Proof. For any differentiable function f(Z) of Z, by applying the chain rule to zik =
√
p
∑p

j=1 vi(j)uk(j),
we obtain that

p∑

j=1

uk(j)
∂

∂ul(j)
f =

M∑

i=1

zik
∂

∂zil
f . (D.8)

On the other hand, using the definition in (D.5), we obtain that

zik
∂

∂zil
Pξ = ξilPξ+eik−eil

. (D.9)

Now, using the above two identities, we can derive the following equation for k 6∼ l:

(Xkl)
2Pξ =

∑

i

[
ξik(ξ

i
k − 1)Pξ+2eil−2eik

+ ξil (ξ
i
l − 1)Pξ+2eik−2eil

−
(
ξik(ξ

i
l + 1) + ξil (ξ

i
k + 1)

)
Pξ

]

+
∑

i6=j

[
ξil ξ

j
l Pξ+eik+ejk−eil−ejl

+ ξikξ
j
kPξ+eil+ejl−eik−ejk

− ξilξ
j
kPξ+eik+ejl−eil−ejk

− ξikξ
j
l Pξ+eil+ejk−eik−ejl

]
.

Finally, utilizing the symmetry Υkl(t) = Υlk(t), this equation yields that

L(t)Pξ =
∑

k,l

Υkl(t)
∑

i

[
ξik(ξ

i
k − 1)Pξ+2eil−2eik

− ξik(ξ
i
l + 1)Pξ

]

+
∑

k,l

Υkl(t)
∑

i6=j

[
ξikξ

j
kPξ+eil+ejl−eik−ejk

− ξikξ
j
l Pξ+eil+ejk−eik−ejl

]
.

We then complete the proof by substituting the definition (D.6) into this equation.

Remark D.3. In light of Lemma D.2, the generator L(t) acting on Pξ can interpreted as a colored multi-
particle random walk in random environments. In this process, particles move on the lattice [[p]], with each
particle carrying a color from the set [[M ]]. The particles at each site in [[p]] are unordered. The particle
configuration is encoded by ξ ∈ Sn, where ξ

i
k represents the number of particles of color i at site k. The

operator Ai
kl describes the jump of a particle with color i from site k to site l. Thus, on the RHS of (D.7),

the first term corresponds to moving two particles of the same color from site k to site l, the third term
represents moving two particles of different colors from site k to site l, and the last term involves exchanging
two particles of different colors between site k and site l. The second term on the right-hand side of (D.7)
ensures that L acts as the generator of a continuous-time Markov process. Note that under the dynamics
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described by (D.7), every site k always contains an even number of particles, and the total number of particles
of a given color remains conserved. By applying the techniques developed in Appendix E below, we can
extend our analysis to the more intricate case of a colored EMF, leading to the derivation of the more general
results presented in (2.38). However, in the interest of simplicity, we do not delve into these details within
the scope of this paper and defer their exploration to future work.

Proof of Lemma 4.10. Note that f(ξ) can be written as ft(ξ) ..= E
U(0)
λ(·) Qξ(U(t)) , where Qξ is defined as

Qξ
..= Pξ

K∏

k=i0

1

(2ξ(k)− 1)!!
, with Pξ =

K∏

k=i0

zk(t)
2ξ(k) .

Then, Lemma 4.10 is a simple consequence of Lemmas D.1 and D.2 by taking M = 1 and ξ1k = 2ξ(k).

E Proof of Theorem 4.5

This section is dedicated to proving a key technical result of this paper—Theorem 4.5. As demonstrated in
Lemma 4.10 and Appendix D, the EMF ft(ξ) can be viewed as a multi-particle random walk in a random
environment with generator (D.2). Through a careful analysis of the EMF, we will show that ft(ξ) relaxes
to the “equilibrium state” gt(ξ, ε1) on the time scale t ≫ n−1/3. Towards the end of this section, we will
also briefly discuss how to extend our arguments to the scenario where the eigenvectors are projected onto
multiple distinct directions.

The following proposition is an analog of Proposition 3.2 in [15]. Recall that a measure π on the
configuration space is said to be reversible with respect to a generator L if, for any functions f and g,
the following equality holds: ∑

ξ

π(ξ)g(ξ)Lf(ξ) =
∑

ξ

π(ξ)f(ξ)Lg(ξ).

We then define the Dirichlet form with respect to the reversible measure π as

Dπ(f) = −
∑

ξ

π(ξ)f(ξ)Lf(ξ).

Proposition E.1 (Proposition 3.2 of [15]). Define the measure π on the configuration space by assigning the
following weight to each ξ = (ξ1, · · · , ξp):

π(ξ) =

p∏

i=1

L(ξi), L(k) :=

k∏

i=1

(1− (2i)−1). (E.1)

Then, π is a reversible measure for B defined in (4.24), yielding that

−
∑

ξ

π(ξ)g(ξ)Bf(ξ) =
1

2

∑

ξ

π(ξ)
∑

l 6∼k

Υklξ(k)(1 + 2ξ(l))
(
f(ξk→l)− f(ξ)

)(
g(ξk→l)− g(ξ)

)
.

In addition, the reversibility of π remains valid for the generator B
′ obtained by replacing Υ in B with any

other symmetric matrix Υ′, i.e., Υ′
kl = Υ′

lk.

Without loss of generality, in the following proof, we will focus on the case where

i0 = 1 and cn < 1. (E.2)

In simpler terms, we assume that our model is free from outliers or trivial eigenvalues at 0. In fact, under
Assumption 2.3, the outlier eigenvalues λ̃i, i ∈ [[r]], and the trivial eigenvalues at 0 are away from {λ̃i}Ki=i0
with a distance of order 1. Leveraging the finite speed of propagation estimate established in Lemma C.14
of [31], we can show that the influence of the eigenvalues/eigenvectors corresponding to the outliers and the
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trivial zero eigenvalues on ft(ξ) is exponentially small. Consequently, the proof of the general case without
assuming (1.6) can be concluded by following the arguments outlined in Remarks B.15 and C.2 of [31].

Given a small constant δ > 0, we introduce non-negative cutoff functions θ−,δ supported on [λ−/3,∞)
and θ+,δ supported on (−∞, 3λ+], satisfying the following properties:

θ−,δ(x) =

{
0, x < λ−/3

1, x > 2λ−/3
, θ+,δ =

{
0, x > 3λ+

1, x 6 2λ+
; (E.3)

the derivatives of θ− and θ+ satisfy that for all x ∈ R,

0 ≤ θ′−,δ(x) . nδθ−,δ(x) + exp(−nδ/2), |θ′′−,δ(x)| . n2δθ−,δ(x) + exp(−nδ/2),

0 ≤ −θ′+,δ(x) . nδθ+,δ(x) + exp(−nδ/2), |θ′′+,δ(x)| . n2δθ+,δ(x) + exp(−nδ/2).
(E.4)

As an example, we can consider the function θ−,δ defined as

θ−,δ(x) =
1

2
exp

(
nδ(x− λ−/2)

)
for λ−/2− n−δ/3 ≤ x ≤ λ−/2.

Then, we properly choose the value of θ−,δ on [λ−/3, λ−/2− n−δ/3] and [λ−/2, 2λ−/3] such that (E.3) and
(E.4) hold. We can choose the function θ+,δ in a similar way. We are now prepared to prove Theorem 4.5.

Proof of Theorem 4.5. Let ε > 0 be a sufficiently small constant. We choose gt(ξ, ε) as defined in (4.17),
along with the cutoff functions θ±,ε. Next, we introduce the function

Ft ≡ Ft(L, q, ε) := θ−,ε(λK(t))θ+,ε(λ1(t))
∑

|ξ|=L

π(ξ)f̃t(ξ, ε)
q, (E.5)

where q ∈ 2N is an even integer, π is defined in (E.1), and

f̃t(ξ, ε) := ft(ξ)− gt(ξ, ε).

To conclude the proof, it suffices to show that for any fixed K ∈ N and p ∈ 2N, there exist constants
0 < ε < ε̃ such that the following estimate holds with high probability:

sup
t∈[T1/2,T2]

Ft(K, p, ε̃) . n−εp+K . (E.6)

Given constants 0 < ε′ < ε, L ∈ N, and q ∈ 2N, we define the function At(L, q, ε, ε
′) := log(Ft(L, q, ε) +

n−ε′q+L). Then, the estimate (E.6) can be derived from the following technical lemma on At, the proof of
which is deferred to Section E.1.

Lemma E.2. Fix any L ∈ N. Under the assumptions of Theorem 4.5, suppose there exist constants ε̃ > 0,
ε ∈ (0,min{ε̃, 1/12}), and a fixed integer p0 ∈ 2N, such that (E.6) holds with high probability, uniformly
in t ∈ [T1/2, T2], for K = L − 1 and any fixed even integer p ≥ p0. Then, there exists a constant ε′′ ∈
(0,min{ε, 3c/8}) and a fixed q0 ∈ 2N such that the function At(L, q, ε, ε

′) satisfies the following SDE for any
fixed 0 < ε′ ≤ ε′′ and q ≥ q0:

dAt(L, q, ε, ε
′) = S(t)dt+ σ(t)dB(t), (E.7)

where B(t) denotes a standard Brownian motion, S(t) can be expressed as

S(t) = −C(t) Ft

Ft + n−ε′q+L
− s+(t) + E(t),

and the following estimates hold with high probability, uniformly in t ∈ [T1/2, T2]: σ(t) = O(n−1/2+2ε),
C(t) & n1/3−c/4, s+(t) ≥ 0, and E(t) = O(n2ε).
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We now proceed to prove (E.6) by utilizing Lemma E.2. First, we note that (E.6) trivially holds for
K = 0 since Ft(0, p, ε0) = 0. Now, suppose (E.6) holds for K = L − 1 and any fixed even integer p ≥ p0.
Then, by applying Lemma E.2, we can deduce that the equation (E.7) holds for some constant ε′ > 0 and
q ≥ q0. By applying the Burkholder-Davis-Gundy inequality to the diffusion term in (E.7), we obtain that
the following event holds with high probability:

{
At ≤ As − α

∫ t

s

Ft′

Ft′ + n−ε′q+L
dt′ +O

(
n−1/3+2ε+c

)
∀t, s ∈ [T1/2, T2]

}
, (E.8)

where α = cn1/3−c/4 for a small constant c > 0. Note that, according to the definition of At, we have the
deterministic rough bound As ≤ C logn for a constant C > 0. Therefore, the above event implies that

{
At ≤ min(AT1/2, C logn)− α

∫ t

T1/2

Fs

Fs + n−ε′q+L
ds+ o(1) ∀t ∈ [T1/2, T2]

}
(E.9)

holds with high probability. Now, we define the following stopping time (with the convention inf ∅ = T2):

t̃ := (T1/2) ∨ inf{t ∈ [T1/2, T2] : At ≤ log(2n−ε′q+L)}.

Noticing that Ft/(Ft + n−ε′q+L) ≥ 1/2 for t ∈ [T1/2, t̃], on the event (E.9), we have

At̃ ≤ min(AT1/2, C logn)− α

2
(t̃− T1/2) + o(1) w.h.p.

Since αT1/2 & n3c/4 ≫ log n, this estimate implies that

t̃ ≤ T1 w.h.p. (E.10)

Now, we apply this fact to (E.8) with s = t̃ and conclude that

sup
t∈[T1,T2]

At ≤ At̃ + 1 w.h.p. (E.11)

Together with the definition of Ft, this implies that with high probability, supt∈[T1,T2] Ft ≤ (2e− 1)n−ε′q+L,
which completes the induction argument and establishes (E.6).

Now, given (E.6) with K = L and 0 < ε < ε̃, we choose ε1 = ε̃ and ε0 = ε/2 and let p be sufficiently
large so that −εp+ L < −ε0p. This allows us to obtain the following inequality:

Ft(L, p, ε1) = θ−,ε1(λK(t))θ+,ε1 (λ1(t))
∑

|ξ|=L

π(ξ)f̃t(ξ, ε1)
p ≪ n−ε0p w.h.p.

By utilizing the rigidity estimate (B.37) for λ1(t) and λK(t), and considering the definitions of θ±,ε1 , we can
deduce that θ−,ε1(λK(t)) = θ+,ε1(λ1(t)) = 1 with high probability. Consequently, taking into account the
fact that π(ξ) are all of order 1, the above estimate implies that

f̃t(ξ, ε1)
p ≤ n−ε0p w.h.p.

for any configuration ξ with |ξ| = L. This concludes the proof of Theorem 4.5.

E.1 Proof of Lemma E.2

In this subsection, we present the proof of Lemma E.2. By Itô’s formula, we have

dAt =
dFt

Ft + n−ε′q+L
− d[F ]t

2(Ft + n−ε′q+L)2
,
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where the second term on the RHS is negative. Hence, it suffices to prove that the following equation holds
for t ∈ [T1/2, T2]:

dFt

Ft + n−ε′q+L
= −C(t) Ft

Ft + n−ε′q+L
dt− s+(t)dt+ E(t)dt+ σ(t)dB(t), (E.12)

where s+(t) ≥ 0 and C(t), E(t), σ(t) satisfy the desired estimates stated in Lemma E.2.

For simplicity of notation, in the following proof, we will abbreviate F ≡ Ft, f ≡ ft, g ≡ gt, f̃ ≡ f̃t,
λk ≡ λk(t), uk ≡ uk(t), φ(λk(t), ε) ≡ φ(λk), θ− ≡ θ−,ε(λK), θ+ ≡ θ+,ε(λ1), and mn ≡ mn,t, mn ≡ mn,t

(where we adopt the notations in Appendix B.3 with Λ0 = D00 and Λt = D00 + t). Using (4.20) and Itô’s
formula, we get that

dφ(λk) = φ′(λk)dλk + φ′′(λk)
2λk
n

dt, (E.13)

dg(ξ) =
∑

k

(
∂λk

g(ξ)
)
dλk +

∑

k

(
∂2λk

g(ξ)
)2λk
n

dt, (E.14)

dθ− = θ′−dλK + θ′′−
2λK
n

dt, dθ+ = θ′+dλ1 + θ′′+
2λ1
n

dt. (E.15)

Note that by the definition of g in (4.17) and the estimate (4.18), we have

θ−θ+∂λk
g(ξ) = O(nε), θ−θ+∂

2
λk
g(ξ) = O(n2ε). (E.16)

Now, applying Itô’s formula to F defined in (E.5) and using (E.13)–(E.15), we can derive that

dF =
∑

ξ

π(ξ)f̃(ξ)q
(
θ−θ

′
+dλ1 + θ−θ

′′
+

2λ1
n

dt+ θ′−θ+dλK + θ′′−θ+
2λK
n

dt

)
(E.17)

+ θ−θ+
∑

ξ

π(ξ)

(
qf̃(ξ)q−1(df(ξ)− dg(ξ)) + q(q− 1)f̃(ξ)q−2

∑

k

(
∂λk

g(ξ)
)2 2λk

n
dt

)
(E.18)

−
∑

ξ

π(ξ)
(
qf̃(ξ)q−1

)(
∂λK

g(ξ)θ′−θ+
4λK
n

+ ∂λ1g(ξ)θ−θ
′
+

4λ1
n

)
dt. (E.19)

Here, we have used the convention that
∑

ξ ≡∑ξ:|ξ|=L . Next, we will control these terms one by one.

First, considering the term (E.17), we utilize (E.3) and (E.4) with δ = ε, along with the SDE (4.20), to
obtain that

θ−θ
′
+dλ1 + θ−θ

′′
+

2λ1
n

dt = θ−θ
′
+2
√
λ1

dB11√
n

+ θ−θ
′
+

(
1 +

1

n

∑

k 6=1

λ1 + λk
λ1 − λk

)
dt

+O
(
n−1+2εθ−θ+ + exp(−nε/2)

)
dt.

(E.20)

It then follows from (E.20) and the bound (E.4) that

∑

ξ

π(ξ)f̃ (ξ)q

F + n−ε′q+L

(
θ−θ

′
+dλ1 + θ−θ

′′
+

2λ1
n

dt

)
= O(n−1+2ε)dt+O(n−1/2+ε)dB11 − s

(1)
+ (t)dt, (E.21)

where s
(1)
+ (t) represents a positive term arising from the second term on the RHS of (E.20). Using a similar

argument, we can also show that

∑

ξ

π(ξ)f̃(ξ)q

F + n−ε′q+L

(
θ′−θ+dλK + θ′′−θ+

2λK
n

dt

)

= O(n−1+2ε)dt+O(n−1/2+ε)dBKK +
θ′−θ+

∑
ξ π(ξ)f̃ (ξ)

q

F + n−ε′q+L

(
1 +

1

n

∑

k 6=K

λK + λk
λK − λk

)
dt

= O(n−1+2ε)dt+O(n−1/2+ε)dBKK − s
(2)
+ (t)dt+

(
1 +

p− K

n

)
θ′−θ+

∑
ξ π(ξ)f̃ (ξ)

q

F + n−ε′q+L
dt,
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where s
(2)
+ (t) represents another positive term. We can exploit the rigidity of λK given by (B.37) and the

fact that |λ−,t − λ−| = o(1) (as stated in (i) of Lemma B.9) to conclude that θ′− = 0 with high probability,
uniformly in t ∈ [T1/2, T2]. Consequently, we obtain a bound similar to (E.21):

∑

ξ

π(ξ)f̃ (ξ)q

F + n−ε′q+L

(
θ′−θ+dλK + θ′′−θ+

2λK
n

dt

)
= E(2)(t)dt+O(n−1/2+ε)dBKK − s

(2)
+ (t)dt, (E.22)

where E(2)(t) is a variable satisfying E(2)(t) = O(n−1+2ε) with high probability, uniformly in t ∈ [T1/2, T2].
Next, we control (E.19). For any 0 < l < q, we have the trivial bound

|f̃(ξ)|q−l . nlεf̃(ξ)q + n−(q−l)ε. (E.23)

Utilizing (E.23) and the estimates (E.16) and (E.4), we get that

∑

ξ

π(ξ)qf̃ (ξ)q−1

F + n−ε′q+L

(
∂λK

g(ξ)θ′−θ+
4λK
n

+ ∂λ1g(ξ)θ
′
+θ−

4λ1
n

)
dt = O(n−1+3ε)dt. (E.24)

Similarly, the second term of (E.18) can be bounded by

q(q− 1)θ−θ+
∑

ξ

π(ξ)f̃(ξ)q−2

F + n−ε′q+L

∑

k

(∂λk
g(ξ))

2 2λk
n

dt = O(n−1+4ε)dt. (E.25)

Combing (E.21), (E.22), (E.24), and (E.25), we obtain that

dF

F + n−ε′q+L
=

qθ−θ+
F + n−ε′q+L

∑

ξ

π(ξ)f̃ (ξ)q−1(df(ξ)− dg(ξ))

+ E1(t)dt+O(n−1/2+ε)dB11 +O(n−1/2+ε)dBKK − (s
(1)
+ (t) + s

(2)
+ (t))dt,

(E.26)

where E1(t) is a variable satisfying E1(t) = O(n−1+4ε) with high probability, uniformly in t ∈ [T1/2, T2].
Now, to conclude (E.12), it remains to estimate the first term on the RHS of (E.26). By (4.26), we

express the term as

θ−θ+
∑

ξ

π(ξ)f̃ (ξ)q−1df(ξ) = θ−θ+
∑

ξ

π(ξ)f̃ (ξ)q−1
∑

k 6∼l

Υkl(t) ξ(k)(1 + 2ξ(l))
(
f(ξk→l)− f(ξ)

)
dt. (E.27)

On the other hand, using (4.20) and (E.14), we obtain:

θ−θ+
∑

ξ

π(ξ)f̃ (ξ)q−1dg(ξ) = θ−θ+
∑

ξ

π(ξ)f̃ (ξ)q−1 (E.28)

×
∑

k

[
∂λk

g(ξ)
∑

l:l 6∼k

λk + λl
n(λk − λl)

dt+ ∂λk
g(ξ)dt+ ∂2λk

g(ξ)
2λk
n

dt+ (∂λk
g(ξ))2

√
λk

dBkk√
n

]
.

The diffusion part of the above equation has the same law as

θ−θ+

[∑

k

∣∣∣∣
∑

ξ

(
π(ξ)f̃ (ξ)q−1 (∂λk

g(ξ))
2
√
λk√
n

)∣∣∣∣
2]1/2

dB,

where B is a standard Brownian motion. Note that the coefficient satisfies that

θ−θ+

[∑

k

∣∣∣∣
∑

ξ

π(ξ)f̃(ξ)q−1 (∂λk
g(ξ))

2
√
λk√
n

∣∣∣∣
2]1/2

= O(n−1/2+ε) · θ−θ+
∑

ξ

π(ξ)|f̃ (ξ)|q−1. (E.29)
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Here, we have used (E.16) and the facts that π(ξ) ≍ 1 and ∂λk
g(ξ) is non-zero for at most L many k’s.

Plugging (E.27)–(E.29) into (E.26) and using (E.23) and (E.16), we can deduce that

dF

F + n−ε′q+L
=
∑

ξ

qθ−θ+π(ξ)f̃ (ξ)q−1

F + n−ε′q+L

∑

k 6∼l

(
Υkl ξ(k)(1 + 2ξ(l))

(
f(ξk→l)− f(ξ)

)
− (λk + λl)∂λk

g(ξ)

n(λk − λl)

)
dt

+ E2(t)dt+O(n−1/2+2ε)dB̃ − (s
(1)
+ (t) + s

(2)
+ (t))dt, (E.30)

where B̃ is another standard Brownian motion and E2(t) is a variable satisfying E2(t) = O(n2ε) with high
probability, uniformly in t ∈ [T1/2, T2].

Taking η = n−2/3+c/2, we define

Tkl ≡ Tkl(η) ..= 1(k 6∼ l)
(λk − λl)

2

(λk − λl)2 + η2
, Tc

kl := 1(k 6∼ l)− Tkl.

Then, we decompose the first term on the RHS of (E.30) as

q(F + n−ε′q+L)−1
∑

ξ

π(ξ)f̃(ξ)q−1 (A1 +A2 +A3) dt, (E.31)

where A1, A2, and A3 are defined as

A1 := θ−θ+
∑

k 6∼l

ΥklTklξ(k)(1 + 2ξ(l))
(
f(ξk→l)− f(ξ)

)
, (E.32)

A2 := −θ−θ+
∑

k 6∼l

Tkl
(λk + λl)∂λk

g(ξ)

n(λk − λl)
, (E.33)

A3 := θ−θ+
∑

k 6∼l

Tc
kl

[
Υklξ(k)(1 + 2ξ(l))

(
f(ξk→l)− f(ξ)

)
− (λk + λl)∂λk

g(ξ)

n(λk − λl)

]
. (E.34)

The remaining part of the proof focuses on controlling the above three terms one by one. Specifically, we
will demonstrate that A1 contributes to the dominant drift term in (E.12).

The term A2. We start with the term A2:

A2 = θ−θ+
∑

k 6∼l

∂λk
g(ξ)

n

λ2l − λ2k
(λl − λk)2 + η2

= θ−θ+


∑

k

2cnλk∂λk
g(ξ) ·Remn(λk + iη) +

∑

k 6∼l

Tkl
∂λk

g(ξ)

n


 ,

where in the second step we used the spectral decomposition of mn:

Remn(λk + iη) = Re
1

p

∑

l

1

λl − (λk + iη)
=

1

p

∑

l:l 6∼k

λl − λk
(λl − λk)2 + η2

.

Since ∂λk
g(ξ) is non-zero for at most L many k’s, using (E.16), the rigidity of λk in (B.37), the trivial bound

Tkl < 1 and the local law (B.35), we obtain that A2 = O(nε) with high probability. Together with (E.23),
it implies that

q

F + n−ε′q+L

∑

ξ

π(ξ)f̃(ξ)q−1A2 = O(n2ε) w.h.p. (E.35)

The term A3. For the term A3, we will establish that

q

F +N−ε′q+L

∑

ξ

π(ξ)f̃ (ξ)q−1A3 = E3(t)− s
(3)
+ (t), (E.36)
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where s
(3)
+ (t) ≥ 0 and E3(t) represents a variable that satisfies E3(t) = O(n−2/3+4ε+c) with high probability,

uniformly in t ∈ [T1/2, T2]. By utilizing Proposition E.1, we can express the LHS of (E.36) as

qθ−θ+
F + n−ε′q+L

∑

ξ

π(ξ)

[
1

2

∑

k 6∼l

Tc
klΥklξ(k)(1 + 2ξ(l))

(
f(ξk→l)− f(ξ)

)(
f̃(ξ)q−1 − f̃(ξk→l)q−1

)

− f̃(ξ)q−1
∑

k 6∼l

Tc
kl

(λk + λl)∂λk
g(ξ)

n(λk − λl)

]
. (E.37)

We proceed to control the two terms in (E.37). To simplify the presentation, for k 6∼ l and a configuration
ξ, we define the equivalence class of configurations [ξ] ≡ [ξ]k,l as follows: ξ

′ ∈ [ξ] if and only if |ξ′| = |ξ| and
supp(ξ′ − ξ) ⊂ {ek, el}. Given [ξ] and 0 ≤ ℓ ≤ ξ(k) + ξ(l), we define ξℓ ∈ [ξ] to be the configuration with
ξℓ(k) = ℓ. Moreover, for any ℓ ∈ [[ξ(k) + ξ(l)]], we define the following functions:

hξℓ,k,l := π(ξℓ)ξℓ(k)(1 + 2ξℓ(l)) = π(ξℓ−1)ξℓ−1(l)(1 + 2ξℓ−1(k)),

ĥξℓ,k,l := π(ξℓ)ξℓ(k) = π(ξℓ̂)ξℓ̂(l), with ℓ̂ = ξ(k) + ξ(l)− ℓ.

Then, using the definition (4.17) and the anti-symmetry of the coefficient (λk + λl)/(λk − λl), we can further
rewrite (E.37) as

qθ−θ+
F + n−ε′q+L

∑

k 6∼l

1

2
Tc

kl

∑

[ξ]

ξ(k)+ξ(l)∑

ℓ=1

[
Υklhξℓ,k,l

(
f(ξℓ−1)− f(ξℓ)

)(
f̃(ξℓ)q−1 − f̃(ξℓ−1)q−1

)

− ĥξℓ,k,l
λk + λl

n(λk − λl)

(
g(ξℓ)

φ′(λk, ε)

φ(λk, ε)
f̃(ξℓ)q−1 − g(ξℓ̂)

φ′(λl, ε)

φ(λl, ε)
f̃(ξℓ̂)q−1

)]
. (E.38)

Using the definitions of θ± and (4.18), we obtain that

θ−θ+g(ξ
ℓ)
φ′(λk, ε)

φ(λk, ε)
= θ−θ+

g(ξℓ)

φ(λk, ε)

φ(λk, ε)− φ(λl, ε)

λk − λl
+O

(
n2ε(λk − λl)

)

= θ−θ+g(ξ
ℓ̂)
φ′(λl, ε)

φ(λl, ε)
+ O

(
n2ε(λk − λl)

)
.

By substituting this estimate into (E.38) and using (E.23) again, we deduce that

(E.38) =
qθ−θ+

F + n−ε′q+L

∑

k 6∼l

1

2
Tc

klΥkl

∑

[ξ]

ξ(k)+ξ(l)∑

ℓ=1

[
hξℓ,k,l

(
f(ξℓ−1)− f(ξℓ)

)(
f̃(ξℓ)q−1 − f̃(ξℓ−1)q−1

)

− 2ĥξℓ,k,l
g(ξℓ)

φ(λk, ε)

(
φ(λk, ε)− φ(λl, ε)

)(
f̃(ξℓ)q−1 − f̃(ξℓ̂)q−1

)]
+O(n−1+3ε).

Note f̃(ξℓ)q−1 − f̃(ξℓ̂)q−1 can be expressed as a telescoping sum of terms of the form f̃(ξℓ
′

)q−1 − f̃(ξℓ
′−1)q−1

for some ℓ′ between ℓ and ℓ̂. Therefore, there exist a sequence of deterministic coefficients cξ,ℓ,k,l of order
O(1) such that we can rewrite the above equation as

(E.38) =
qθ−θ+

F + n−ε′q+L

∑

k 6∼l

1

2
Tc

klΥkl

∑

[ξ]

ξ(k)+ξ(l)∑

ℓ=1

hξℓ,k,l

[(
f(ξℓ−1)− f(ξℓ)

)
+ cξ,ℓ,k,l

g(ξℓ)

φ(λk, ε)

(
φ(λl, ε)− φ(λk, ε)

)]

×
(
f̃(ξℓ)q−1 − f̃(ξℓ−1)q−1

)
+O(n−1+3ε)

=
qθ−θ+

F + n−ε′q+L

∑

k 6∼l

1

2
Tc

klΥkl

∑

[ξ]

ξ(k)+ξ(l)∑

ℓ=1

hξℓ,k,l

[(
f(ξℓ−1)− f(ξℓ)

)
+ cξ,ℓ,k,l

(
g(ξℓ−1)− g(ξℓ)

)]

×
(
f̃(ξℓ)q−1 − f̃(ξℓ−1)q−1

)
+O(n−1+3ε). (E.39)
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By definition, we have f(ξℓ−1)−f(ξℓ) = g(ξℓ−1)−g(ξℓ)+ f̃(ξℓ−1)− f̃(ξℓ). Observe that if |f(ξℓ−1)−f(ξℓ)| ≥
|g(ξℓ−1)− g(ξℓ)| logn, then the corresponding term in (E.39) is negative, i.e.,

[(
f(ξℓ−1)− f(ξℓ)

)
+ cξ,ℓ,k,l

(
g(ξℓ−1)− g(ξℓ)

)] (
f̃(ξℓ)q−1 − f̃(ξℓ−1)q−1

)
< 0.

Otherwise, based on (E.16), we can get that

θ−θ+Υkl

[(
f(ξℓ−1)− f(ξℓ)

)
+ cξ,ℓ,k,l

(
g(ξℓ−1)− g(ξℓ)

)] (
f̃(ξℓ)q−1 − f̃(ξℓ−1)q−1

)

= O
(
n−1+2ε(logn)2

)
· θ−θ+

(
f̃(ξℓ)q−2 + f̃(ξℓ−1)q−2

)
. (E.40)

(We remark that this is the step where it is convenient to define gt in terms of λk(t) as in (4.17).) By
combining these facts, we find that

(E.39) = E3(t)− s
(3)
+ (t),

where s
(3)
+ (t) ≥ 0 and the variable E3(t) satisfies the following bound:

|E3(t)| . n−1+3ε +
qθ−θ+

F + n−ε′q+L

∑

ξ

π(ξ)f̃ (ξ)q−2n
2ε(logn)2

n

∑

k 6∼l

ξ(k)η2

(λk − λl)2 + η2

= n−1+3ε +
qθ−θ+

F + n−ε′q+L

∑

ξ

π(ξ)f̃ (ξ)q−2n2ε(logn)2
∑

k

ξ(k)η Immn(λk + iη)

. n−1+3ε + n4ε(log n)2η ≤ n−2/3+4ε+c w.h.p. (E.41)

Here, in the second step, we used the spectral decomposition of mn, and in the third step, we applied the
local law (B.35) to mn(λk + iη) along with the rigidity of λk given by (B.37). This concludes (E.36).

The term A1. Finally, we prove the following inequality for sufficiently large q:

q

F + n−ε′q+L

∑

ξ

π(ξ)f̃(ξ)q−1A1 ≤ −C(t) F

F + n−ε′q+L
+O≺(1), (E.42)

where C(t) is a positive variable satisfying C(t) & η−1/2 with high probability. With the definition of A1 in
(E.32), we can express the LHS of (E.42) as follows:

q

F + n−ε′q+L

∑

ξ

π(ξ)f̃ (ξ)q−1A1

=
qθ−θ+

2n(F + n−ε′q+L)

∑

ξ

π(ξ)f̃ (ξ)q−1
∑

k 6∼l

(λk + λl)ξ(k)(1 + 2ξ(l))

(λk − λl)2 + η2
(
f(ξk→l)− f(ξ)

)
. (E.43)

Recalling the definitions of f and ξk→l in (4.22) and (4.23), we can express f(ξk→l) as

f(ξk→l) = E

[
p|〈v,ul〉|2
1 + 2ξ(l)

∏

j

(p|v⊤uj |2)ξ(j)−1j=k

aξ(j)−1j=k

∣∣∣∣Ft

]
, (E.44)

where an := (2n− 1)!! for n ∈ N. Utilizing the spectral decomposition of G1,t(z) = (W (t)W (t)⊤ − z)−1 with
z = zk := λk + iη, we have

∑

l:l 6∼k

(λk + λl)|〈v,ul〉|2
(λl − λk)2 + η2

=
∑

l

2λk|〈v,ul〉|2
(λl − λk)2 + η2

− 2λk|〈v,uk〉|2
η2

+
∑

l:l 6∼k

(λl − λk)|〈v,ul〉|2
(λl − λk)2 + η2

=
2λk
η

Im
(
v⊤G1,t(zk)v

)
+Re

(
v⊤G1,t(zk)v

)
+O≺(n

−1η−2)

=
2λk
η

Im
(
v⊤Π̃t(zk)v

)
+O≺

(
η−1Ψt(zk)

)
.
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Here, in the second step, we applied the delocalization estimate (B.38) to |〈v,uk〉|2, and in the third step,

we applied the local law (B.35) to v⊤G1,t(zk)v with Π̃t(z) := −[z(1 +mt(z))Λt]
−1. Similarly, by observing

that ξ(l) is nonzero for at most L many l’s, and using the spectral decomposition of mn and the local law
(B.42), we obtain that

1

p

∑

l:l 6∼k

(λk + λl)(1 + 2ξ(l))

(λl − λk)2 + η2
=

2λk
η

Imm1,t(zk) + O≺(n
−1η−2).

Plugging the above three equations into (E.43) and applying the delocalization estimate (B.38) to the factors
p|〈v,uj〉|2 in f(ξ) and (E.44), we obtain that

(E.43) =
cnqθ−θ+

F + n−ε′q+L

∑

ξ

π(ξ)f̃(ξ)q−1
∑

k

λkξ(k)

η

×
[
Im
(
v⊤Π̃t(zk)v

)
f(ξ − ek)− Imm1,t(zk)f(ξ) + O≺ (Ψt(zk))

]
. (E.45)

By the induction hypothesis, when K = L− 1, the estimate (E.6) holds with high probability for large even
integer p ≥ p0, implying that

|f̃(ξ − ek)| . n−ε+(L−1)/p w.h.p. ⇒ |f̃(ξ − ek)| ≺ n−ε. (E.46)

On the other hand, by (B.17) and (B.40), we have

Imm1,t(zk) ≍ Immt(zk) & min

{√
κk + η,

η√
κk + η

}
&

√
η w.h.p., (E.47)

where κk is defined as κk := dist(λk, supp(̺t)), and we have used the fact that κk ≺ n−2/3 according to the
rigidity estimate (B.37). With (E.47), for η = n−2/3+c/2, we obtain that

Ψt(zk)

Imm1,t(zk)
.

(
1

nη Imm1,t(zk)

)1/2

+
1

nη Imm1,t(zk)
.

(
1

nη3/2

)1/2

+
1

nη3/2
. n−3c/8. (E.48)

With the estimates (E.46) and (E.48), we can simplify (E.45) as follows:

(E.43) =
cnqθ−θ+

F + n−ε′q+L

∑

ξ

π(ξ)f̃ (ξ)q−1
∑

k

λkξ(k)
Imm1,t(zk)

η

×
(
ϕt(zk)g(ξ − ek)− f(ξ) + O≺

(
n−ε + n−3c/8

))
, (E.49)

where ϕt(zk) ≡ ϕt(v,v, zk) = Im(v⊤Π̃t(zk)v)/Imm1,t(zk) as defined in (4.14). By using (B.18), (C.12),
(C.32), and the definition of φ(λk, ε), we can check that

ϕt(v,v, zk)− φ(λk , ε) = [ϕt(v,v, zk)− ϕ0(v,v, λk)] + [ϕ0(v,v, λk)− φ(λk, ε)]

.
√
t+ η + n−ε ≤ 2n−ε, (E.50)

where in the last step, we used the fact that
√
t+ η . n−1/6+c/2+n−1/3+c/4 ≤ n−ε for c < 1/6 and ε < 1/12.

Plugging (E.50) into (E.49), and in light of the definition of g(ξ) in (4.17), we find that

(E.43) =
cnqθ−θ+

F + n−ε′q+L

∑

ξ

π(ξ)
∑

k

λkξ(k)
Imm1,t(zk)

η

(
g(ξ)− f(ξ) + O≺

(
n−ε + n−3c/8

))
f̃(ξ)q−1

=
−cnqθ−θ+
F + n−ε′q+L

∑

ξ

π(ξ)
∑

k

λkξ(k)
Imm1,t(zk)

η

[
f̃(ξ)q +O≺

(
n−τ

(
f̃(ξ)q + n−qδ

))]

≤ −cη−1/2F

F + n−ε′q+L
+O≺

(
n−qδ−τ+Lη−1

F + n−ε′q+L

)
=

−cη−1/2F

F + n−ε′q+L
+O≺ (1)

for a constant c > 0. In the second step, we used (E.23) with ε replaced by a constant ε′ < δ < min{ε, 3c/8},
and we denote τ := min{ε, 3c/8}− δ; in the third step, we used

√
η . Imm1,t(zk) . 1 by (E.47) and (B.17);

in the last step, we choose q to be sufficiently large (depending on δ − ε′) such that n−qδ−τη−1 ≤ n−ε′q.
This proves (E.42) and completes the proof of Lemma E.2.
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F Proof of the results in Section 4.3

F.1 Proof of Lemma 4.11

In this subsection, we prove Lemma 4.11 using the strategies outlined in [13, 44]. A key component of the
proof relies on the level repulsion estimate. In the existing literature, the level repulsion estimate for sample
covariance matrices has only been established around the edge [13] or inside the bulk via the universality of
bulk eigenvalue statistics [61]. However, for our specific applications, we require the level repulsion estimate
to hold over the entire spectrum. Recall the definition of Wt from (4.8), and denote the eigenvalues of
Qt = WtW⊤

t as {λ̄k(t)}. Given an interval I ⊂ R+, we define the counting function

Nt(I) = |{i ∈ [[1,K]] : λ̄i(t) ∈ I}|.

Similarly, we define the counting function Nt for the eigenvalues {λk(t)} of the matrix DBM defined in (4.4):

Nt(I) = |{i ∈ [[1,K]] : λi(t) ∈ I}|.

Recall that γk(t) represents the quantiles of ̺t as defined below (B.33), and ∆k is defined in (4.29).

Proposition F.1 (Level repulsion). Under the setting of Lemma 4.2, consider a fixed t ≍ n−1/3+c. There
exists a small constant δ0 ∈ (0, 2/3) such that the following statements hold. Define the disjoint union of
intervals I+δ0 (t) as

I+δ0(t) := ∪q
k=1[a2k(t)− n−δ0 , a2k−1(t) + n−δ0 ],

and define kE := argmin{|γk(t) − E| : k ∈ [[K]]} for E ∈ I+δ0 . Then, for every constant δ ∈ (0, δ0], we can
find a constant ε ≡ ε(δ) > 0 such that

P
(
Nt

(
[E −∆kEn

−δ, E +∆kEn
−δ]
)
> 2
)
6 n−δ−ε, ∀E ∈ I+δ0 . (F.1)

The same estimate also applies to Nt.

Proof. An analogous level repulsion estimate inside the bulk has been established for the matrix DBM of
Wigner ensembles in [47, Theorem 5.1] and [11, Lemma B.1], with the key inputs being the local laws and
the eigenvalue rigidity estimate. With the help of our Lemmas B.9 and B.11, we can readily extend the
arguments from [11, 47] to our rectangular matrix DBM Q(t) defined in (4.4). Specifically, by following the
reasoning presented in [47, Theorem 5.1], we can establish that (F.1) holds for E ∈ ∪q

k=1[a2k + κ, a2k−1− κ],
where κ is an arbitrarily small positive constant. Furthermore, as explained in the proof of [11, Lemma B.1],
the argument in [47, Theorem 5.1] can be extended a little bit to show that there exists a sufficiently small
constant ε > 0 so that (F.1) holds for E ∈ ∪q

k=1[a2k + n−ε, a2k−1 − n−ε]. Since the extension from Wigner
ensembles to sample covariance ensembles is standard, we omit the complete details here.

To establish (F.1) for E around the spectral edges, specifically for E ∈ ∪q
k=1([a2k − n−δ0 , a2k + n−ε] ∪

[a2k−1 − n−ε, a2k−1 + n−δ0 ]), we can refer to [13, Proposition 6.3]. Although this result is stated for the
special case with Λ0 = I in [13], the same argument can be extended to our more general setting. More
precisely, as explained in Lemma 6.4 of [13], we can show that (F.1) holds for the Gaussian ensemble when
X is a Gaussian random matrix. (The proof of [13, Lemma 6.4] relies on an analysis of the joint eigenvalue
probability density, employing a method developed in the proof of [14, Theorem 3.2]. While [14, Theorem
3.2] is presented for the Gaussian β ensemble, the same proof carries over almost verbatim to our setting,
where the eigenvalues follow a Laguerre β ensemble.) Next, as explained in the proof of [13, Lemma 6.5], we
can establish the level repulsion estimate (F.1) for Q(t) through a Green’s function comparison argument
between the case with GaussianX and that with a non-GaussianX inW (0). Once again, since this extension
is standard and straightforward, we omit the complete details here. This concludes the proof of (F.1) for E
near the spectral edges.

By (F.1), we know that the level repulsion estimate applies to the eigenvalues of QG
t := WG

t (WG
t )⊤ with

WG
t := D

1/2
t V ⊤XG. To further prove this estimate for Nt, we can once again employ the Green’s function

comparison argument between QG
t and Qt, as explained in Lemma 6.5 of [13]. We omit the details here.

With Proposition F.1, we now proceed to complete the proof of Lemma 4.11 by employing the method
developed in [13, 44].
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Proof of Lemma 4.11. We only present the proof for Q(t), while the proof for Qt is the same. To simplify
the presentation, we prove Lemma 4.11 in the special case where θ = θ(p|〈v,ui+r(t)〉|2). For brevity, we
will use the abbreviations ui ≡ ui(t), Q ≡ Q(t), and G̃1(z) ≡ G̃1,t(z) := (Q(t)− z)−1 for a fixed t ≍ n−1/3+c.
Recall the definition of ∆i in (4.29) and the definition of ηi in (4.30). We now present the first ingredient of
the proof.

Lemma F.2. Under the assumptions of Lemma 4.11, there exists a small constant ε > 0 such that the
following estimate holds for sufficiently small constants δ1 ≡ δ1(ε), δ2 ≡ δ2(ε, δ1), and ν > 0:

Eθ(p|〈v,ui+r(t)〉|2) = Eθ

(
p

π

∫

Ii

Im
[
v⊤G̃1(E + iηi)v

]
χi(E)dE

)
+O(n−ν), i ∈ [[1,K− r]],

where Ii is defined in (4.31) and χi(E) := 1(λi+1 < E−
i 6 λi). Here, E−

i = E − nδ1ηi is defined in (4.30),
and we adopt the convention λK+1 = 0.

Proof. Our proof follows a similar approach to that of [44, Lemma 3.1], [13, Lemma 7.1], and [26, Lemma
3.2]. The only difference is that we utilize the level repulsion estimate from Proposition F.1 over the entire
spectrum, whereas the aforementioned works rely on the level repulsion estimate either near the edges or
inside the bulks. We omit the detailed exposition here.

For the second ingredient of the proof, we show that the indicator function χi(E) can be approximated
by the smooth functions qi(x) and fi(x) defined in (4.28) and (4.32) up to a negligible error.

Lemma F.3. Under the assumptions of Lemma 4.11, there exists a small constant ε > 0 such that the
following estimate holds for sufficiently small constants δ1 ≡ δ1(ε), δ2 ≡ δ2(ε, δ1), and ν > 0:

Eθ

(
p

π

∫

Ii

Im
[
v⊤G̃1(E + iηi)v

]
χi(E)dE

)
= Eθ

(
p

π

∫

Ii

Im
[
v⊤G̃1(E + iηi)v

]
qi(Tr fi(Q))dE

)
+O(n−ν),

where i ∈ [[1,K− r]].

Proof. Using the rigidity of eigenvalues in (B.37), we can obtain that with high probability,

p

∫

Ii

Im
[
v⊤G̃1(E + iηi)v

]
χi(E)dE = p

∫

Ii

Im
[
v⊤G̃1(E + iηi)v

]
1(N([E−

i , E
+]) = i)dE

= p

∫

Ii

Im
[
v⊤G̃1(E + iηi)v

]
qi[Tr(χE(Q))]dE,

where E+ is defined in (4.30) and we denote χE(x) := 1(x ∈ [E−
i , E

+]). Next, by utilizing Proposition F.1
and following the proof of (4.11) in [26], we can show that

Eθ

(
p

π

∫

Ii

Im
[
v⊤G̃1(E + iηi)v

]
qi[Tr(χE(Q))]dE

)
= Eθ

(
p

π

∫

Ii

Im
[
v⊤G̃1(E + iηi)v

]
qi(Tr fi(Q))dE

)
+O(n−ν).

Combining the above two equations completes the proof.

We observe that Lemmas F.2 and F.3 together establish Lemma 4.11 when L = 1. The proof for the
general case of L > 1 is analogous, as explained in Section 4 of [44]. We omit the details here.

F.2 Proof of Lemma 4.12

In this subsection, we prove Lemma 4.12 using a continuous comparison argument developed in [45, Section
7]. Recall the sequence of interpolating matrices W s

t ∈ Rp×n defined in (4.10). For the sake of simplicity,
we denote Y s ≡ Y s

t := D
−1/2
t W s

t , i.e.,

Y s
iµ =

2p∑

j=1

U1
ijχ

s
jµXjµ +

2p∑

j=1

U0
ij(1 − χs

jµ)Xjµ, i ∈ I1, µ ∈ I2,
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where {χs
jµ}j∈[[2p]],µ∈[[n]] are i.i.d. Bernoulli(s) random variables. Alternatively, we can express Y s as

Y s =

2p∑

j=1

n∑

µ=1

Zs
(jµ), with Zs

(jµ) := Xjµ∆
s
(jµ), ∆s

(jµ) := χs
jµ

(
U1ejµ

)
+ (1− χs

jµ)
(
U0ejµ

)
. (F.2)

Here, ejµ := eje
⊤
µ represents a 2p × n matrix with only one non-zero entry at the (j, µ)-th position. Fur-

thermore, given a matrix Γ ∈ Rp×n, we define

Y s,Γ
(jµ) :=

∑

(i,ν) 6=(j,µ)

Zs
(iν) + Γ. (F.3)

In particular, using this notation, we have Y s − Y s,0
(jµ) = Zs

(jµ). Similar to (B.13) and (B.14), we will use the

following linearized resolvent:

Gs
t (z) :=

(
−D−1

t Y s

(Y s)⊤ −z

)−1

=

(
zD

1/2
t Gs

1,t(z)D
1/2
t DtY

sGs
2,t

Gs
2,t(Y

s)⊤Dt Gs
2,t

)
, (F.4)

where Gs
1,t := (D

1/2
t Y s(Y s)⊤D1/2

t − z)−1 and Gs
2,t := ((Y s)⊤DtY

s − z)−1. For s ∈ {0, 1}, the local laws for
the resolvent Gs have already been established in Lemma B.2 (when s = 0) and Lemma B.11 (when s = 1).
These local laws can also be extended to all s ∈ (0, 1), as summarized in the following lemma.

Lemma F.4. Suppose the assumptions of Lemma 4.12 hold. Define Π̃t and Ψt as in Appendix B.3 with
Λ = D0 and Λ0 = D00. Then, there exists a constant c > 0 such that the following local law holds uniformly
in z ∈ D′(c, τ, t, n) for any constant τ > 0 and deterministic unit vectors u,v ∈ Rp+n:

∣∣∣u⊤Gs
t (z)v − u⊤Π̃t(z)v

∣∣∣ ≺ Ψt(z). (F.5)

We now prove this lemma using the continuous comparison argument presented in [45,68]. In the interest
of brevity, we will provide a sketch of the key points, highlighting the main differences in the argument. For
a more comprehensive understanding, readers can refer to Section 6 of [68].

Proof of Lemma F.4. For any η ≥ N−1+τ and a sufficiently small constant δ ∈ (0, 1/100), we define

ηl := ηN δl for l = 0, ...,K − 1, ηK := 1, (F.6)

where K ≡ K(η) := max
{
l ∈ N : ηN δ(l−1) < 1

}
. Since z 7→ Gs

t (z) − Π̃t(z) is Lipschitz continuous in
D′ ≡ D′(c, τ, t, n) with Lipschitz constant of order O(η−2) = O(n2), it suffices to show that (F.5) holds
for all z in a discrete but suitably dense subset S ⊂ D′. Specifically, we choose S to be an n−10-net of D′

such that |S| . n20 and

E + iη ∈ S ⇒ E + iηl ∈ S for l = 1, . . . ,K(η).

Similar to [68, Section 6], our proof relies on an induction argument based on two scale-dependent properties,
denoted as (Ad) and (Cd), formulated on the subsets Sd

..=
{
z ∈ S .. Im z > n−δd

}
, d ∈ N.

(Ad) For all z ∈ Sd, we have that for any deterministic unit vectors u,v ∈ R
p+n,

∣∣u⊤Gs
t (z)v − u⊤Π̃t(z)v

∣∣ ≺ 1. (F.7)

(Cd) For all z ∈ Sd, we have that for any deterministic unit vectors u,v ∈ Rp+n,

∣∣u⊤Gs
t (z)v − u⊤Π̃t(z)v

∣∣ ≺ n24δΨ(z). (F.8)

It is clear that property (Cd) implies property (Ad) if δ is chosen sufficiently small (depending on τ) such
that n24δΨ(z) ≪ 1. On the other hand, if we can show that property (Ad−1) implies property (Cd) for all
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d 6 δ−1, then we can conclude that (F.8) holds for all z ∈ S by induction on d. By polarization, it suffices
to prove that when property (Ad−1) holds, we have

∣∣v⊤Gs
t (z)v − v⊤Π̃t(z)v

∣∣ ≺ n24δΨ(z), (F.9)

for all z ∈ Sd and any deterministic unit vector v ∈ Cp+n. In fact, we can derive the more general bound
(F.8) by applying (F.9) to the vectors u+ v and u+ iv, respectively.

By utilizing Markov’s inequality, showing (F.9) requires proving that for any fixed large q ∈ 2N and
d 6 δ−1, there exists a constant C > 0 such that

|EFv, q(Y s)| ≤ C(n24δΨ)q (F.10)

uniformly for all z ∈ Sd. Here, F
v,q(Y s) is defined as

Fv, q(Y s) ≡ Fv, q(Y s, z) :=
∣∣v⊤Gs

tv − v⊤Π̃tv
∣∣q. (F.11)

To establish (F.10), we follow the arguments presented in Sections 6.1 and 6.2 of [68]. First, we see that
(F.5) and consequently (F.10) hold when s = 0 by Lemma B.11. Second, similar to [45, Lemma 7.9], we can
employ the fundamental theorem of calculus to obtain that

EFv,q(Y 1)− EFv,q(Y 0) =

∫ 1

0

ds

2p∑

j=1

n∑

µ=1

[
EFv,q

(
Y

s,Z1
(jµ)

(jµ)

)
− EFv,q

(
Y

s,Z0
(jµ)

(jµ)

)]
, (F.12)

where we use the notation introduced in (F.3) with Γ = Z0
(jµ) or Z

1
(jµ). Under the property (Ad−1), we claim

the following estimate:

2p∑

j=1

n∑

µ=1

[
EFv,q

(
Y

s,Z1
(jµ)

(jµ)

)
− EFv,q

(
Y

s,Z0
(jµ)

(jµ)

)]
. (n24δΨ)q + |EFv,q(Y s)|. (F.13)

By substituting this estimate into (F.12) and applying a standard Grönwall’s argument, we conclude (F.10).
The remainder of the proof focuses on establishing (F.13). To simplify the presentation, until the end of

this proof, we slightly abuse the notation and define

G(Y ) ≡ G(Y, z) :=

(
−D−1

t Y
Y ⊤ −z

)−1

(F.14)

for given random matrix Y . By the definition (F.3), for any given Γ,Γ′ ∈ R
p×n and M ∈ N, we have the

following resolvent expansion:

G
(
Y s,Γ′

(jµ)

)
−G

(
Y s,Γ
(jµ)

)
=

M∑

k=1

G
(
Y s,Γ
(jµ)

)[( 0 Γ− Γ′

(Γ− Γ′)⊤ 0

)
G
(
Y s,Γ
(jµ)

)]k

+G
(
Y s,Γ′

(jµ)

)[( 0 Γ− Γ′

(Γ− Γ′)⊤ 0

)
G
(
Y s,Γ
(jµ)

)]M+1

.

(F.15)

By employing this expansion with Γ = Zs
(jµ) and choosing a sufficiently large M , we can utilize property

(Ad−1) forG
s
t and the rough bound ‖G(Y s,Γ′

(jµ) )‖ ≺ η−1 to verify the following inequalities for any deterministic

unit vectors u,v ∈ Rp+n:

∣∣∣∣u
⊤G
(
Y

s,Z1
(jµ)

(jµ)

)
v

∣∣∣∣ ≺ 1,

∣∣∣∣u
⊤G
(
Y

s,Z0
(jµ)

(jµ)

)
v

∣∣∣∣ ≺ 1,
∣∣∣u⊤G

(
Y s,0
(jµ)

)
v

∣∣∣ ≺ 1. (F.16)

To simplify the notation, for fixed s ∈ (0, 1), we further define

f(jµ)(λ0, λ1)
..= Fv,q

(
Y

s,λ0U
0ejµ+λ1U

1ejµ

(jµ)

)
, (F.17)
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and denote its derivatives as

f
(k,l)
(jµ) = ∂kλ0

∂lλ1
f(jµ)(λ0, λ1), k, l ∈ N.

By applying the Taylor expansion and using the estimate (F.16), we derive that

EFv,q
(
Y

s,Z0
(jµ)

(jµ)

)
− EFv,q

(
Y s,0
(jµ)

)
=

4q∑

ℓ=2

1

ℓ!
Ef

(ℓ,0)
(jµ) (0, 0)E(Xjµ)

ℓ +O≺(Ψ
q), (F.18)

EFv,q
(
Y

s,Z1
(jµ)

(jµ)

)
− EFv,q

(
Y s,0
(jµ)

)
=

4q∑

ℓ=2

1

ℓ!
Ef

(0,ℓ)
(jµ) (0, 0)E(Xjµ)

ℓ +O≺(Ψ
q), (F.19)

where we have utilized the mean zero condition EXjµ = 0 and the independence between Y s,0
(jµ) and Xjµ.

Now, to establish (F.13), we only need to prove that

∑

j,µ

E(Xjµ)
ℓ
(
Ef

(ℓ,0)
(jµ) (0, 0)− Ef

(0,ℓ)
(jµ) (0, 0)

)
. (n24δΨ)q + |EFv,q(Y s)|. (F.20)

Similar to (F.18) and (F.19), we can utilize the Taylor expansion and the estimate (F.16) to derive that

Ef
(k,̃k)
(jµ) (0, 0) = Ef

(k,̃k)
(jµ)

(
χs
jµXjµ, (1− χs

jµ)Xjµ

)
(F.21)

− s

4q−k−k̃∑

l=2

1

l!
Ef

(k+l,̃k)
(jµ) (0, 0)E(Xjµ)

l − (1− s)

4q−k−k̃∑

l̃=2

1

l̃!
Ef

(k,̃k+l̃)
(jµ) (0, 0)E(Xjµ)

l̃ +O≺(Ψ
q−k−k̃)

for any fixed k and k̃. In the derivation, we also used the fact that χs
jµ(1−χs

jµ) = 0. By repeatedly applying
(F.21), we can further obtain that

Ef
(ℓ,0)
(jµ) (0, 0) =

4q−ℓ∑

k,̃k:k+k̃=0

Ck,̃k
(jµ)

∑

j,µ

Ef
(ℓ+k,̃k)
(jµ)

(
χs
jµXjµ, (1− χs

jµ)Xjµ

)
+O≺(Ψ

q−ℓ),

Ef
(0,ℓ)
(jµ) (0, 0) =

4q−ℓ∑

k,̃k:k+k̃=0

Ck,̃k
(jµ)

∑

j,µ

Ef
(k,ℓ+k̃)
(jµ)

(
χs
jµXjµ, (1− χs

jµ)Xjµ

)
+O≺(Ψ

q−ℓ),

where Ck,̃k
(jµ) represents deterministic coefficients satisfying that C0,0

(jµ) = 1,

Ck,̃k
(jµ) = O(n−(k+k̃)/2), and k = 1 or k̃ = 1 =⇒ Ck,̃k

(jµ) = 0. (F.22)

Now, to conclude (F.20), it suffices to control Ef
(ℓ+k,̃k)
(jµ)

(
χs
jµXjµ, (1− χs

jµ)Xjµ

)
−Ef

(k,ℓ+k̃)
(jµ)

(
χs
jµXjµ, (1− χs

jµ)Xjµ

)
.

For the terms in (F.21), we express them as

Ef
(k,̃k)
(jµ)

(
χs
jµXjµ, (1− χs

jµ)Xjµ

)
= E

[(
PU0

jµ

)k(
PU1

jµ

)k̃
Fv,q

]
(Y s) , (F.23)

where we adopt the following notation given any p× 2p matrix U :

PU
jµ := (U⊤∇Y )jµ =

p∑

i=1

Uij
∂

∂Y s
iµ

. (F.24)

Note that PU
jµ acting on any resolvent entry yields

PU
jµGab = −GaujGµb −GaµGujb, a, b ∈ I, (F.25)
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where uj = Uej represents the j-th column vector of U . With the above notations, we observe that to

establish (F.20), it is sufficient to prove that for any ℓ, k, k̃ satisfying k 6= 1, k̃ 6= 1, ℓ ≥ 2, and ℓ+ k+ k̃ ≤ 4q,

n−(k+k̃+ℓ)/2
∑

j,µ

Cℓ
(jµ)E

{[(
PU0

jµ

)ℓ+k(
PU1

jµ

)k̃
Fv, q

]
(Y s)−

[(
PU0

jµ

)k(
PU1

jµ

)ℓ+k̃

Fv, q
]
(Y s)

}
(F.26)

. (n24δΨ)q + |EFv,q(Y s)|.

Here, we introduce the notation Cℓ
(jµ) := nℓ/2E (Xjµ)

ℓ, which is of order O(1) by (2.14). The remaining part

of the proof is dedicated to verifying (F.26). To accomplish this, we divide the proof into two cases.

Case 1: ℓ+k+ k̃ = 2. In this case, we must have ℓ = 2, k = k̃ = 0. Using the fact that U0(U0)⊤ = U1(U1)⊤ =
I, we can easily check that

∑

j,µ

(
PU1

jµ

)2
Fv, q(Y s) =

∑

j,µ

(
PU0

jµ

)2
Fv, q(Y s) =

∑

iµ

∂2

∂(Y s
iµ)

2
Fv, q(Y s).

This equation clearly implies (F.26) when ℓ+ k+ k̃ = 2.

Case 2: 3 ≤ ℓ+ k+ k̃ ≤ 4q. We denote Ũ = U1−U0. It is evident that in order to establish (F.26), it suffices

to prove the following estimate for every (k1, k2) ∈ N2 satisfying 2 ≤ k1 + k2 = k+ k̃+ ℓ− 1 ≤ 4q− 1:

n−(k1+k2+1)/2
∑

j,µ

Cℓ
(jµ)E

∣∣∣
[(
PU0

jµ

)k1
(
PU1

jµ

)k2

P Ũ
jµF

v, q
](
Y s
)∣∣∣ . (n24δΨ)q + |EFv,q(Y s)|. (F.27)

For the proof of (F.27), we need to delve into the detailed structure of the derivatives. To this end, in view
of (F.24) and (F.25), we introduce the following algebraic objects, which are employed in [45, 68].

Definition F.5 (Words). Given j ∈ I1 and µ ∈ I2, let W be the set consisting of words of even length formed
from the four letters {j0, j1, j̃,µ}. The length of a word w ∈ W is denoted by 2l(w) ∈ 2N. We use bold
symbols to represent the letters in words. For instance,

w = t1s2t2s3 · · · tlsl+1 (F.28)

denotes a word of length 2l. Define Wl := {w ∈ W : l(w) = l} as the set of words of length 2l such that the
following property holds for a word as in (F.28):

tisi+1 ∈ {j0µ,µj0, j1µ,µj1, j̃µ,µj̃}, i ∈ [[l]].

Next, we assign a value [·] to each letter as follows: [j0] = u0
j , [j1] = u1

j , [̃j] = ũj, [µ] := eµ, where

u0
j := U0ej, u

1
j := U1ej, ũj := Ũej/‖Ũej‖2. It is important to distinguish between the abstract letter and

its corresponding value, which is treated as a (generalized) summation index. For the word w in (F.28) and
vectors u,v ∈ Cp+n, we assign a random variable Au,v,j,µ(w) as follows: if l(w) = 0, we define

Au,v,j,µ(w) :=
(
G(Y s)− Π̃t

)
uv

;

if l(w) ≥ 1, we define

Au,v,j,µ(w) := Gu[t1](Y
s)G[s2][t2](Y

s) · · ·G[sl][tl](Y
s)G[sl+1]v(Y

s). (F.29)

Finally, given any w ∈ Wl of the form (F.28), we denote n0(w) := #{i ∈ [[l]] : ti = j0 or si+1 = j0},
n1(w) := #{i ∈ [[l]] : ti = j1 or si+1 = j1}, and ñ(w) := #{i ∈ [[l]] : ti = j̃ or si+1 = j̃}.

From (F.15) and (F.25), we observe that the above notations are defined such that for every l ∈ N, the
following equality holds:

(
PU0

jµ

)l(
G(Y s)− Π̃t

)
uv

= (−1)ll!
∑

w∈Wl:n0(w)=l

Au,v,j,µ(w).

59



A similar equation holds if we replace 0 with 1. By denoting αj := ‖Ũej‖2, we have that

P Ũ
jµ

(
G(Y s)− Π̃t

)
uv

= −αj

∑

w∈{̃jµ,µ̃j}

Au,v,j,µ(w).

Using the above two identities, we can derive that

(
PU0

jµ

)k1
(
PU1

jµ

)k2

P Ũ
jµF

v, q(Y s) =
∑

l1,...,lq≥0:
l1+···+lq=k1+k2+1

∗∑

w1∈Wl1
,...,wq∈Wlq

c(w1, . . . , wq)αj

×
q/2∏

t=1

[
Av,v,j,µ(wt)Av,v,j,µ(wt+q/2)

]
. (F.30)

Here, c(w1, . . . , wq) represents certain deterministic coefficients of order O(1), and
∑∗

w1∈Wl1
,...,wq∈Wlq

denotes

the summation over a sequence of words w1, . . . , wq satisfying the following conditions:

q∑

t=1

n0(wt) = k1,

q∑

t=1

n1(wt) = k2,

q∑

t=1

ñ(wt) = 1. (F.31)

Without loss of generality, suppose there are p non-zero length words in (F.30) for some 1 ≤ p ≤ q ∧ (k1 +
k2 + 1), and these words are w1, . . . , wp. Then, we can identify and separate the words of length 0 from the
product in (F.30), denoted as w0. Now, to show (F.27), it suffices to prove that for any 1 ≤ p ≤ q∧(k1+k2+1)
and a sequence of words satisfying (F.31), the following estimate holds:

n−(k1+k2+1)/2
∑

j,µ

αjE

∣∣∣∣∣Av,v,j,µ(w0)
q−p

p∏

r=1

Av,v,j,µ(wr)

∣∣∣∣∣ . (n24δΨ)q + |EFv,q(Y s)|. (F.32)

The proof of (F.32) follows a similar approach to that of (6.32) in [68]. As we assume EX3
iµ = 0 according

to (ii) of Assumption 2.3, we only need to consider the case when ℓ > 4. (It is in this particular case that
the vanishing third-moment condition is relevant and utilized.) For j ∈ I1 and µ ∈ I2, we define

Rj :=
∣∣Gvu0

j

∣∣+
∣∣Gs

vu1
j

∣∣+
∣∣Gvαũj

∣∣, Rµ :=
∣∣Gvµ

∣∣.

Similar to Lemma 6.16 in [68], we can establish the following rough bound using property (Ad−1):

|Av,v,i,µ(w)| ≺ n2δ(l(w)+1),

Additionally, we can get the following bounds: for l(w) ≥ 2,

|Av,v,i,µ(w)| ≺ (R2
i +R2

µ)n
2δ(l(w)−1),

and for l(w) = 1,
|Av,v,i,µ(w)| ≺ RiRµ.

With these estimates, we can follow the arguments presented between (6.39) and (6.42) in [68] to complete
the proof of (F.32). (It is worth noting that for this proof, the condition (4.35), which implies αj ≤ Cn−c′ ,
is not necessary.) Since the argument is almost the same, we omit the details here. This concludes the proof
of Lemma F.4.

With the above results, we proceed to complete the proof of Lemma 4.12 by using the following lemma.

Lemma F.6. Under the assumptions of Lemma 4.12, the following estimate holds for every s ∈ [0, 1]:

Eθ (Ui1(Q
s
t ), . . . ,UiL(Q

s
t )) = Eθ

(
U i1(Q

s
t ), . . . ,U iL(Q

s
t )
)
+O(n−ν),
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for a constant ν > 0, where Uk(Q
s
t ), k ∈ [[K− r]], are defined as

Uk(Q
s
t ) :=

p

π

∫

Ik

[Imxsk(E)] qk (y
s
k(E)) dE

Here, the functions ysk(E), k ∈ [[K − r]], are defined as

ysik(E) ..=
1

2π

∫

R2

iσf′′ik(e)χ(σ)Tr Gs
2,t(e + iσ)1

(
|σ| > η̃kn

−Cε
)
de dσ

+
1

2π

∫

R2

(
ifik(e)χ

′(σ)− σf′ik (e)χ
′(σ)

)
TrGs

2,t(e+ iσ) de dσ , (F.33)

where η̃k is defined in (4.30), C > 0 is an absolute constant, and χ is a smooth cutoff function with support
in [−1, 1], satisfying χ(σ) = 1 for |σ| ≤ 1/2, and having bounded derivatives up to arbitrarily high order.

Proof. The proof follows the same lines of the arguments presented between (5.9) and (5.11) in [44], utilizing
Lemma F.4 and the Helffer-Sjöstrand formula (see [8, Proposition 1.13.4]). Further details are omitted.

Proof of Lemma 4.12. For s ∈ [0, 1], we introduce the function

F (Y s) ≡ F (Qs
t ) := θ

(
U i1(Q

s
t ), . . . ,U iL(Q

s
t )
)
. (F.34)

According to Lemma F.6, it suffices to show that

EF (Y 1)− EF (Y 0) = O(n−ν)

for a constant ν > 0. Similar to (F.12), we have

EF (Y 1)− EF (Y 0) =

∫ 1

0

ds
∑

j,µ

[
EF
(
Y

s,Z1
(jµ)

(jµ)

)
− EF

(
Y

s,Z0
(jµ)

(jµ)

)]
.

Hence, it remains to prove
∑

j,µ

[
EF
(
Y

s,Z1
(jµ)

(jµ)

)
− EF

(
Y

s,Z0
(jµ)

(jµ)

)]
= O(n−ν), s ∈ [0, 1]. (F.35)

The proof of this estimate is similar to the above proof of Lemma F.4. In fact, the proof here is slightly
easier since we have the local law (F.5) at hand, and there is no need to use an induction argument based
on the two scale-dependent properties (Ad) and (Cd). Furthermore, by employing the argument presented
in the proof of [35, Lemma 15.5], we can deduce the following estimate for G(Y s) from Lemma F.4 when
the value of η is less than n−1: for any constant σ > 0 and deterministic unit vectors u,v ∈ Rp+n,

sup
η≥n−1−σ

sup
λ−−c≤E≤λ++c

∣∣(Gs
t − Π̃t)uv(E + iη)

∣∣ ≺ nσ. (F.36)

Notice that as Fv,q in (F.11), F is also a function of the resolvent G(Y s). Similar to (F.17), we abbreviate

f(jµ)(λ0, λ1)
..= F

(
Y

s,λ0U
0ejµ+λ1U

1ejµ

(jµ)

)
, (F.37)

To analyze this further, we perform Taylor expansions of f(jµ)(Xjµ, 0) and f(jµ)(0,Xjµ) around f(jµ)(0, 0).
Then, we compare the two Taylor expansions and estimate their differences using the resolvent expansion
(F.15), the derivatives as in (F.25), and the local laws (F.5) and (F.36). Following the argument below
(F.17) (or the argument in [35, Section 16]), we can derive an estimate similar to (F.32):

∣∣Ef(jµ)(Xjµ, 0)− Ef(jµ)(0,Xjµ)
∣∣ . n−2

∑

j,µ

αjEjµ + n−1. (F.38)

Here, Ejµ are positive variables of order O(nCε), where C > 0 is an absolute constant that does no depend
on ε. In the derivation, we used the vanishing third-moment condition, and the factor n−2 arises from the
fourth or higher-order moments of Xjµ. The factor αj has the same origin as that in the LHS of (F.32). We

omit the details here. Since αj ≤ Cn−c′ by the condition (4.35), we deduce from (F.38) that
∣∣Ef(jµ)(Xjµ, 0)− Ef(jµ)(0,Xjµ)

∣∣ . n−c′+Cε.

This concludes the proof by choosing ε sufficiently small, depending on c′ and C.
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