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QUASIMORPHISMS ON FREE RACKS AND FREE QUANDLES

MASAMITSU AOKI

Abstract. We show that the second bounded cohomology of finitely gener-
ated free racks is infinite dimensional by constructing rack quasimorphisms
using homogenous group quasimorphisms. Similar construction works in the
case of free quandles. We show that Rolli’s generalization to free products also
works in the case of racks.

1. Introduction

A rack is a set together with a binary operation which comes from rack ing the
group operation and remaining the conjugacy [6]. From the viewpoint of knots and
braids, the axioms of a rack correspond to Reidemeister moves II and III. A quandle
is introduced by [8] and [11] independently. The additional axiom corresponds to
Reidemeister move I. Those algebraic objects are studied not only in knot theory,
but also in the theory of set-theoretic Yang-Baxter equations [4], pointed Hopf
algebra [1], and so on.

The study of bounded cohomology of groups started from Gromov’s pioneering
paper [7]. While the cohomology of a free group is trivial, its second bounded coho-
mology is known to be infinite-dimensional. One way to show this is by constructing
quasimorphisms on a given free group and relating the second bounded cohomology
to an infinite-dimensional space via these quasimorphisms (see, for example, [3]).

We can construct the cohomology of racks and quandles (see, for example, [12]).
The bounded cohomology and quasimorphisms of racks and quandles are introduced
by Kędra. In [10], it was observed that free quandles and free racks are unbounded
in the sense of rack metric on a connected component and that the second bounded
cohomology of an unbounded rack is nontrivial. These observations imply that the
second bounded cohomology of free racks and free quandles are nontrivial, while
the cohomology of free racks and free quandles are trivial ([5]), similar to the case
of free groups. Thus, our next question is whether its second bounded cohomology
is infinite dimensional.

In this article, we give an affirmative answer to this question.

Theorem 1. If 2 ≤ |S| < ∞, then the second bounded rack cohomology of a free
rack on S is infinite dimensional.

Most of the discussions including the above theorem can be directly applied
even in the case of free quandles. We will explain additional details for quandles if
necessary.

We conclude this article by generalizing Rolli’s method to construct quasimor-
phisms on the free product of groups to the free product of racks. In [13], Rolli

Date: April 24, 2024.

1

http://arxiv.org/abs/2404.14752v1


2 MASAMITSU AOKI

showed that the similar construction of Rolli quasimorphisms works for the free
product of groups. We show that the analogy holds for the free product of racks.

In the first two sections 2 and 3, we recall the definition of a rack and its
(bounded) cohomology, and collect several facts. In section 4 we recall the facts
about quasimorphisms on a free group and show that a homogenous quasimorphism
on a free group provides a quasimorphism on a free rack. Then we prove our main
theorem in section 5. We conclude this article by investigating the construction on
the free product of racks in section 6.

2. Racks

We start by recalling the definition and examples of a rack. A rack is a set X
together with a binary operation ⊳ : X ×X → X satisfying the following axioms:

(1) the rack identity: (x ⊳ y) ⊳ z = (x ⊳ z) ⊳ (y ⊳ z) for any x, y, z ∈ X , and
(2) a map ψy : X → X defined by ψy(x) = x ⊳ y is bijective for any y ∈ X .

A quandle is a rack (X, ⊳) satisfying
(3) x ⊳ x = x for any x ∈ X .

We write ψn
y (x) = x ⊳n y for any n.

A rack homomorphism between racks is a map f : X → Y with f(x ⊳ y) =
f(x) ⊳ f(y). In the case of quandles, it is called a quandle homomorphism.

Example 1. A set X together with the operation x ⊳ y = x is a rack, called the
trivial rack.

Example 2. Let G be a group. A ‘set’ G together with the operation g⊳h = h−1gh
is a rack, called the conjugacy rack of G.

These racks are also, in fact, quandles. Of course, there is an example of a rack
but not a quandle.

Example 3. Let n be a positive integer. The cyclic rack Cn of order n is the set
Z/nZ together with the operation x ⊳ y = x+1. When n ≥ 2, Cn is not a quandle.

The following constructions are the main subjects of our argument.

Example 4 ([6], [5]). Let S be a set. We write the free group on S by FG(S) and
its identity by 1. A free rack on S is a set FR(S) = S × FG(S) together with the
operation

(1) (s, g) ⊳ (t, h) = (s, gh−1th).

Each generator s ∈ S is identified with (s, 1) ∈ S × FG(S).

Example 5 ([8], [5]). A free quandle on S is a quandle FQ(S) defined to be the
quotient FR(S)/∼ where the equivalence ∼ is generated by

(2) (s, g) ∼ (s, g) ⊳ (s, g)

for all (s, g) ∈ FR(S). The operation descends to the quotient, that is,

(3) [s, g] ⊳ [t, h] = [s, gh−1tg].

By the definition of the equivalence, observe that (s, g) ∼ (t, h) if and only if
s = t and h = sng for some n. Each generator s ∈ S is identified with [s, 1] ∈ S ×
FG(S)/∼. As observed in [8], a free quandle FQ(S) is also viewed as the union of all
conjugacy classes of s ∈ S in FG(S), that is, FQ(S) =

⋃
s∈S { g−1sg | g ∈ FG(S) },

with the operation γ ⊳ η = η−1γη.
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There is a group associated with the given rack X . The adjoint group of X is a
group Ad(X) presented as

(4) 〈ex (x ∈ X) | exey = eyex⊳y〉 .

Since a rack homomorphism f : X → Y induces a group homomorphism f♯ : Ad(X) →
Ad(Y ), this gives rise to the functor Ad(−) from the category of racks to the cate-
gory of groups.

Example 6. The adjoint group of a free rack FR(S) is a free group FG(S).

The adjoint group Ad(X) acts on X by x · ey = x ⊳ y. A connected component

in X is an orbit of this action.

3. (Bounded) cohomology of racks

The cohomology group of racks is defined similarly to that of groups. Since we
will consider bounded cohomology and quasimorphisms, we restrict our attention
to the trivial real coefficient R.

For a rack X and non-negative integer n, let Cn(X ;R) be the set of functions
Xn → R. For n < 0, let Cn(X ;R) = 0. Here we understand X0 to be a one element
set. The coboundary operator δn : Cn(X ;R) → Cn+1(X ;R) is defined by

(5)
δf(x1, . . . , xn, xn+1) =

n+1∑

i=1

(−1)i [f(x1, . . . , xi−1, xi+1, . . . , xn+1)

−f(x1 ⊳ xi, . . . , xi−1 ⊳ xi, xi+1, . . . , xn+1)] .

In case of n ≤ 0, we define δn = 0. Thus we obtain a cochain complex C∗(X ;R) =
(Cn(X ;R), δn). The rack cohomology is the homology of this complex

(6) Hn(X ;R) = ker δn/ im δn+1.

Example 7. We demonstrate some calculations of coboundary operators in lower
degrees.

(7)

δ1f(x, y) = f(x)− f(x ⊳ y)

δ2f(x, y, z) = f(x, z)− f(x, y)− f(x ⊳ y, z) + f(x ⊳ z, y ⊳ z)

δ3f(x, y, z, w) = f(x, z, w)− f(x, y, z) + f(x, y, z)

− f(x ⊳ y, z, w) + f(x ⊳ z, y ⊳ z, w)− f(x ⊳ w, y ⊳ w, z ⊳ w)

The bounded cohomology of a rack is defined similarly to that of a group. For
a function f : Z → R, we write ‖f‖∞ = sup { |f(z)| | z ∈ Z }. For a rack X ,
let Cn

b (X ;R) be the submodule of functions Xn → R which is bounded with re-
spect to ‖·‖∞. The coboundary operators δn may be restricted to Cn

b (X ;R), and
C∗

b (X ;R) = (Cn
b (X ;R), δn) forms a cochain complex. The bounded rack cohomol-

ogy Hn
b (X ;R) is the cohomology of this complex. The inclusion Cn

b →֒ Cn induces
the maps cn : Hn

b (X ;R) → Hn(X ;R) called the comparison maps.
If X is a quandle, the quandle cochain complex of X is the quotient of the rack

cochain complex of X by the subcomplex D∗ defined by

(8) Dn = { f ∈ Cn | f(x) = 0 for each x such that xi = xi+1 for some i } .

for n ≥ 2 and Dn = 0 for n ≤ 1. The quandle cohomology of X is a cohomology
of this complex and the bounded quandle cohomology is the bounded cohomology
in this sense. Since we treat the (bounded) rack cohomology and the (bounded)
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quandle cohomology in parallel in our argument, we also write the (bounded) quan-
dle cochain group and the (bounded) quandle cohomology by the same notations
C∗, C∗

b , H
∗, H∗

b .

4. Quasimorphisms

In this section, we first recall quasimorphisms on groups and then show that
homogenous quasimorphisms on a free group provide quasimorphisms on a free
rack and a free quandle.

A group quasimorphism on a group G is a function φ : G→ R satisfying

(9) D(φ) := sup
g,h∈G

|φ(g) + φ(h)− φ(gh)| <∞.

The constant D(φ) is called the defect of φ. In terms of group cohomology, φ is a
group quasimorphism if and only if δφ is bounded.

A group quasimorphism φ : G→ R is homogenous if it satisfies φ(gn) = n · φ(g)
for any g ∈ G and n ∈ Z. It is known that a homogenous group quasimorphism is
constant on conjugacy classes, that is,

(10) φ(h−1gh) = φ(g)

for any g, h ∈ G.
Let S be a set with 2 ≤ |S|. The following quasimorphisms are known to be

homogenous.

Example 8 ([2], [3]). Suppose that S is symmetric, that is, s ∈ S ⇔ s−1 ∈ S. Let
w be a reduced word in S. A map φw : FG(S) → R defined by

(11)
φw(g) = # of copies of w in the reduced representative of g

−# of copies of w−1 in the reduced representative of g

is a group quasimorphism, called a Brooks or (big) counting (group) quasimorphism.

Example 9 ([13]). Each non-trivial element g ∈ FG has a unique shortest factor-
ization by powers

(12) g = sn1

1 sn2

2 · · · snl

l ,

where s1, . . . , sl ∈ S with si 6= si+1 and n1, . . . , nl ∈ Z− {0}. Let λ : Z → R be an
odd bounded real sequence, i.e. λ(−n) = −λ(n). A map φλ : F

G(S) → R defined
by

(13) φλ(g) =

l∑

i=1

λ(ni),

where the factorization g = sn1

1 sn2

2 · · · snl

l , called a Rolli (group) quasimorphism.

A rack quasimorphism on a rack X is a function φ : X → R satisfying

(14) sup
x,y∈X

|φ(x) − φ(x ⊳ y)| <∞.

When X is a quandle, such φ is called a quandle quasimorphism. As in the case of
group quasimorphisms, φ is a rack quasimorphism if and only if δφ is bounded by
the definition of the rack coboundary map. In the case of quandles, δφ(x, x) = 0
comes from the axiom 3.
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Lemma 1 (5.2 in [10]). If φ is a rack quasimorphism then δφ is a rack 2-cocycle.
The bounded rack 2-cohomology class [δφ]b is in the kernel of the comparison map.
If f is unbounded on a connected component then δφ is nontrivial.

From the above lemma, one way to obtain a nontrivial bounded rack 2-cohomology
class is to construct a rack quasimorphism that is unbounded on a connected com-
ponent. We may construct such rack quasimorphism on a free rack FR(S) using
a homogenous group quasimorphism on the free group FG(S). Recall that a free
rack FR(S) on S is a set S × FG(S) together with the operation

(15) (s, g) ⊳ (t, h) = (s, gh−1th).

Proposition 1. Let S be a set with 2 ≤ |S| < ∞, and φ : FG(S) → R a group

quasimorphism. If φ is homogenous, then a map φ̂ : FR → R defined by

(16) φ̂(s, g) = φ(g)

is a rack quasimorphism. Moreover, this is unbounded.

Proof. Since φ is homogenous, φ̂ is unbounded.

Next, we show that φ̂ is a rack quasimorphism. We have

(17)
|φ̂(s, g)− φ̂((s, g) ⊳ (t, h))| = |φ(g)− φ(gh−1th) + (φ(h−1th)− φ(h−1th))|

≤ D(φ) + |φ(t)| <∞

since |S| <∞ and then the values at generators φ(t) are finite. �

Example 10. In the case of Rolli group quasimorphisms φλ, we have D(φλ) =
3‖λ‖∞ and |φλ(t)| ≤ ‖λ‖∞. Thus We have

(18) |φ̂λ(s, g)− φ̂λ((s, g) ⊳ (t, h))| ≤ 4‖λ‖∞.

Remark 1. A similar construction works in the case of free quandle. By the
construction of a free quandle, each equivalence class [s, g] consists of elements in
FR(S) of the form

(19) (s, sng) for all n ∈ Z.

Thus we can choose the unique representative (s, g) such that the reduced word of
g has the prefix s±1

1 which cannot be cancelled with s. Using such expression, a

map φ̂ : FQ(S) → R defined by

(20) φ̂([s, g]) = φ(g)

is a quandle quasimorphism by the same argument in the case of free racks.

Remark 2. The construction of Rolli group quasimorphisms can be generalized
directly. With the analogy of the case of free groups, for (s, g) ∈ FR(S) with the
power factorization g = sn1

1 · · · snl

l , we have the ‘power factorization’

(21) (s, g) = (((s, 1) ⊳n1 (s1, 1)) ⊳ · · · ) ⊳
nl (sl, 1)

since the generators s ∈ FR(S) can be seen as (s, 1) in S×FG(S). Such factorization
is also unique [14]. Thus, for a bounded odd sequence λ, a map ψλ : F

R(S) → R

defined by

(22) ψλ(s, g) =

l∑

i=1

λ(ni)
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is a rack quasimorphism which coinsides to the rack quasimorphism φ̂λ obtained
from a Rolli group quasimorphism φλ.

We conclude this section with remarks about rather natural constructions, which
fail to obtain nontrivial rack quasimorphisms.

Remark 3. For a rack X and its adjoint group Ad(X), there is a map ηX : X →
Ad(X), x 7→ ex (this is not necessarily injective). Thus we might obtain a rack
quasimorphism by composing a group quasimorphism φ : Ad(X) → R with ηX .
However, this rack quasimorphism is trivial if φ is homogenous since ηX maps x⊳ y
to the conjugate e−1

y exey and a homogenous quasimorphism is constant on each
conjugacy class.

In particular, while the adjoint group of a free rack FR(S) is a free group FG(S),
we cannot obtain nontrivial rack quasimorphism by composing a homogenous group
quasimorphism on FG with η : FR → Ad(FR) = FG.

Remark 4. Kabaya [9] introduced a chain map κn : Cn(X) → Cn(Ad(X)) from
the natural map η : X → Ad(X). It is just κ1(x) = [ex], and

(23) κ2(x, y) = [ex|ey]− [ey|ex⊳y].

We might obtain rack quasimorphisms by pulling back group quasimorphisms via
induced cochain map κ∗ : Cn(Ad(X),R) → Cn(X,R). However, for the same rea-
son as the above remark, the pullback of a homogenous group quasimorphism by
κ∗ gives rise to a trivial rack quasimorphism.

Remark 5. A free quandle may also be constructed as the subset of a free group.
However, we can obtain only trivial quandle quasimorphisms by just restricting
group quasimorphisms on this subset since the operation here is conjugation.

5. Proof of Main Theorem

Since the space of homogenous quasimorphisms on a free group, Qh(FG), is
infinite dimensional, it is sufficient to show the following.

Proposition 2 (cf. Proposition 2.2 in [13]). If 2 ≤ |S| < ∞, then the linear map

Qh(FG(S)) → H2
b (F

R(S);R), φ 7→ [δ1φ̂]b is injective.

Proof. Linearity is clear by construction.

To show injectivity, assume [δ1φ̂]b = 0. That is, there exists a bounded func-

tion β ∈ C1
b (F

R;R) such that δβ = δφ̂. Thus, f = φ̂ − β : FR → R is a
rack homomorphism where R is endowed with a trivial rack structure. Since
f(x ⊳ y) = f(x) ⊳ f(y) = f(x), f is constant on each connected component. There-

fore, φ̂ = f + β is bounded. Since φ is homogenous, we have

(24) φ̂(s, gn) = φ(gn) = nφ(g)

for any s ∈ S, g ∈ FG(S) and n ∈ Z. Since φ̂ is bounded, this implies φ = 0. �

Remark 6. For a quandle quasimorphism φ on a quandle, δφ provides a quandle
2-cocycle since

(25) δφ(x, x) = φ(x) − φ(x ⊳ x) = 0.

The above argument does not affect our choice of the representatives. Therefore,
the same argument also works in the case of free quandles.
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6. Free Product

We can define the free product of racks (cf. [6]). For a family of racks Xs

(s ∈ S), the free product is a rack ∗ s∈S Xs consists of elements of the form (x, g)
where x ∈ Xt for some t ∈ S and g ∈ ∗ s∈S Ad(Xs) under the equivalence generated
by

(26) (x, gk) ∼ (y, k)

where x, y ∈ Xt, g ∈ Ad(Xt) with x · g = y in Xt and k ∈ ∗ Ad(Xs) for each t ∈ S.
The operation is

(27) (x, g) ⊳ (y, h) = (x, gh−1yh).

This is well-defined by the definition of the adjoint group.
Observe that for each t ∈ S, if x ∈ Xt and g = g0 · g1 · · · gn ∈ ∗ Ad(Xs) with

gi ∈ Ad(Xsi) (si 6= si+1), then the element (x, g) can be written in the form

(28) (x · g0, g1 · · · gn)

if g0 ∈ Ad(Xt). Therefore, we can assume that each element in ∗ Xs has the form

(29) (x, g1 · · · gn)

where x ∈ Xt and g1 ∈ Ad(Xs) with s 6= t. In such an expression the factorization
g = g1 · · · gn is unique whereas x varies within the defining relations of Xt.

Rolli [13] provided the method to construct group quasimorphisms on a free
product in the following method. Let Γ be the free product of a family of groups Γs

(s ∈ S), and λ be a uniformly bounded family of bounded odd functions λs : Γs →
R, that is, sups∈S ‖λs‖∞ < ∞ and ‘odd’ means λs(g

−1) = −λs(g). Each element
in Γ is uniquely written in the factorization g = g1 · · · gn with gi ∈ Γsi (si 6= si+1).
Then a map φGλ : Γ → R defined by

(30) φGλ (g) =

n∑

i=0

λsi (gi)

is a group quasimorphism.
Similar to the case of a free rack, we can obtain rack quasimorphisms on a free

product of racks from group quasimorphisms on a free product of groups.

Proposition 3. Let S be a set with |S| ≥ 2. For any uniformly bounded family
of bounded odd functions λ = (λs)s∈S , a map φRλ : X → R defined by

(31) φRλ (x, g) = φGλ (g)

is a rack quasimorphism.

Proof. Let (x, g), (y, h) ∈ X with g and h have the above factorizations. Then we
have

(32) δφRλ ((x, g), (y, h)) = φRλ (x, g)− φRλ (x, gh
−1yh) = φGλ (g)− φGλ (gh

−1yh).

The argument in Proposition 1 works as well in this context. Therefore

(33) |δφRλ ((x, g), (y, h))| ≤ 4 · sup ‖λs‖∞ <∞.

Therefore φRλ is a rack quasimorphism. �
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Let X = ∗ Xs be the free product of racks, and Γ = ∗ Γs is the free product of
the adjoint groups Γs = Ad(Xs). We write as V0(Γ) the space of uniformly bounded
families of bounded odd functions.

Proposition 4. If 2 ≤ |S| < ∞, then the linear map V0(Γ) → EH2
b (X ;R), λ 7→

[δ1φRλ ]b is injective.

Proof. Assume that [δφRλ ]b = 0. That is, there exists a bounded function β ∈
C1

b (X) such that δβ = δφRλ . Then φRλ is bounded since the map φRλ − β is a rack
homomorphism and the number of connected components in X is finite.

For any g ∈ Γs, h ∈ Γt (s 6= t), x ∈ Xu (u 6= s, t) and k ∈ Z− 0, we have

(34) φRλ (x, (gh
±1)k) = φGλ ((gh

±1)k) = k · (λs(g)± λt(h)) .

Since φRλ is bounded, λs(g)± λt(h) = 0 and then λ = 0. �

Example 11. The adjoint group of a cyclic rack Cn is Z (see [6]).
For the free product C2 ∗ C3, the space V0(Γ) is isomorphic to the direct product

of two copies of the space of bounded odd sequences Z → R, ℓ∞b (Z). Thus V0(Γ) ∼=
ℓ∞b (Z) × ℓ∞b (Z) is infinite-dimensional, and then EH2

b (C2 ∗ C3;R) is also infinite-
dimensional by Proposition 4.
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