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Dynamical properties of homogeneous Fermi-Fermi mixtures of dipolar and non-dipolar atoms
are studied at zero temperature, where dipoles are polarized by an external field. We calculate the
density-density correlation functions in a ring-diagram approximation and analyze the pole structure
to obtain eigenfrequencies of collective excitations. We first determine stability phase diagrams for
the mixtures available in experiments: 167Er - 173Yb, 167Er - 6Li, 161Dy - 173Yb, and 161Dy - 6Li
systems, and show that the mixtures with larger mass imbalance tend to be more unstable. We
then investigate the parameter dependence of an undamped zero sound with an anisotropic real
dispersion relation in the stable phase for the 161Dy - 173Yb mixture, and the speed of sound
exhibits a critical angle of possible propagation with respect to the dipole polarization direction,
above which the sound mode disappears in the particle-hole continuum. Since the sound mode is
a coherent superposition of density fluctuations of dipolar and non-dipolar atoms, the existence of
the sound mode, e.g., the value of the critical angle, is significantly affected by the inter-particle
interaction through the density-density correlation between dipolar and non-dipolar atoms. We
have also observed such an effect of the inter-particle interaction in the study of a linear response
of density fluctuations to an external perturbation.

I. INTRODUCTION

One-component polarized dipolar Fermi gases have
been realized experimentally using highly magnetic
atoms of 161Dy [1], 167Er [2], and 53Cr [3], respectively.
In the study of such dipolar Fermi gases at low tem-
peratures, the Fermi surface deformation is one of the
most important quantum many-body phenomena, which
was in fact observed in the experiment [4, 5]. The de-
formation was predicted theoretically prior to the ex-
periment as a genuine quantum phenomenon originating
from the exchange contribution of the anisotropic dipole-
dipole interaction between identical dipolar fermions [6,
7], and further theoretical studies have revealed so far
many interesting phenomena expected in such degener-
ate dipolar gases: an anisotropic zero sound propaga-
tion [8, 9], anisotropic superfluids [10, 11], biaxial ne-
matic phases [12], topological superfluid phases [13], and
density-wave phases [14, 15]. Experimental researches for
these phenomena, however, remain untouched because of
the weakness of effective magnetic dipole-dipole interac-
tions and the low number densities of these atomic gases
achieved after cooling processes in trap.
In recent years a new progress has been made in

experimental studies related to one-component polar-
ized dipolar Fermi gases, that is, the realization of
Fermi-Fermi gaseous mixtures of dipolar (magnetic) and
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non-dipolar (non-magnetic) atoms toward the investi-
gation of mutual effects on their quantum many-body
properties. To this end, it is essential to accomplish
the quantum degeneracy and the inter-particle Fesh-
bach resonance in the mixture, which have been real-
ized by stages using various pairs of dipolar and non-
dipolar Fermi atoms including the experimental stud-
ies of 161Dy-40K mixture by Inssbruck group [16–18],
53Cr-6Li by Firenze group [19, 20], and 167Er-6Li by
Kyoto group [21]. Incidentally, the quantum-degenerate
Bose-Bose mixture of 168Er and 174Yb atoms has also
been realized by Kyoto group [22], suggesting that the
quantum-degenerate mass-imbalanced Fermi-Fermi mix-
ture of 167Er and 173Yb atoms is expected to be realized
in near future.

The advantageous points for experimental and the-
oretical studies of these mixtures lies in the selectiv-
ity of the mass ratio, and in the controllability of the
number-density ratio and that of the inter-particle in-
teraction strength between different species via Feshbach
resonances. In the preceding paper [23] on the study of
collective excitations in homogeneous Fermi-Fermi mix-
tures of dipolar and non-dipolar atoms, we have found
two different types of collective modes at zero tempera-
ture: one is the undamped zero sound characterized by an
anisotropic dispersion relation and the other is an over-
damped mode with purely imaginary frequencies; The
zero sound may emerge to propagate within a restricted
range of angle: 0 ≤ θq ≤ θcq, where θq denotes the an-
gle between the dipole-polarization direction and the mo-
mentum of propagation h̄q, while the over-damped mode
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emerges complementarily in θcq ≤ θq ≤ π/2. Here θcq
is a critical angle at which the effective interaction in
density-density channel vanishes; The effective interac-
tion remains repulsive in 0 ≤ θq ≤ θcq to support the zero
sound, while it becomes attractive in θcq ≤ θq ≤ π/2. Fur-
thermore, the over-damped mode turns into unstable one
when the strength of inter-particle interaction exceeds
some critical value. Since these collective modes are co-
herent superposition of dipolar and non-dipolar density
fluctuations, these dynamical properties depend on the
parameters such as the s-wave scattering length as of
the inter-particle interaction, the mass ratio rm, and the
number-density ratio rn, in a complex manner. In the
present paper, we focus on the dynamical properties of
the undamped zero sound entirely, and figure out in de-
tail how its speed, critical angle, and amplitude depend
on the parameters mentioned above, by taking samples of
mixture of dipolar and non-dipolar atoms realized in ex-
periments. We determine the stability phase diagram in
the parameter space in advance, and then investigate dy-
namical properties of the zero sound in the stable phase.
We also investigate the linear response of density fluctu-
ations to an external perturbation. As a study of similar
subject, the zero sound and instability in dilute nuclear
matter are discussed in Fermi liquid theory [24].
This paper is organized as follows: In Sec. II, we

present the model of Fermi-Fermi mixtures of dipolar and
non-dipolar atoms, and formulate the density-density
correlation functions in a ring-diagram approximation.
In Sec. III, we draw the stability phase diagrams from
the pole structure of the correlation function in cases
of 167Er - 173Yb, 167Er - 6Li, 161Dy - 173Yb, 161Dy -
6Li mixtures. In Sec. IV, using the correlation func-
tions we calculate the dispersion relation and the speed
of the undamped zero sound numerically to figure out
their parameter dependence, and also investigate the in-
duced density fluctuations of 161Dy - 173Yb mixtures in
the linear response to an impulsive perturbation. Here
we stress that the role of the inter-particle interaction
and the number-density ratio are of particular interest.
Sec. V is devoted to summary.

II. FORMALISM

To study the homogeneous gaseous mixtures of dipo-
lar and non-dipolar Fermi atoms, we employ the model
Hamiltonian defined as follows:

Ĥ =
∑

k

ǫ01kc
†
1kc1k +

∑

k

ǫ02kc
†
2kc2k

+
1

2

∑

k,k′,q

Vdd(q)c
†
1kc

†
1k′+qc1k′c1k+q

+ g
∑

k,k′,q

c†1kc
†
2k′+qc2k′c1k+q, (1)

where ǫ0ik = h̄2
k2/2mi (i = 1 or 2) the kinetic energy

of dipolar or non-dipolar atoms. Accordingly, the anni-

hilation and creation operators c1k and c†1k are for the
dipolar Fermi atoms with the momentum h̄k, the mass

m1 and the dipole moment d; Similarly, c2k and c†2k are
for the non-dipolar Fermi atoms with the momentum h̄k
and the mass m2. The dipoles are assumed to be po-
larized along the z-axis by an external field. The term
including Vdd is the dipolar interaction in the Fourier
space, Vdd(q) =

4π
3 d2(3 cos2 θq−1), where θq is the angle

between the momentum h̄q and the dipole polarization
direction. The coupling constant g is for the inter-particle
interaction between dipolar and non-dipolar fermions,
which is given by g = 2πh̄2as/µ with as being the s-
wave scattering length and µ = m1m2/(m1 + m2) the
reduced mass. We take the volume of the system to be
unity in this paper.
To implement the perturbative treatment on the ba-

sis of Hartree-Fock (HF) ground state, it is necessary to
introduce the particle and hole operators, aik and bik,
defined by

cik = θ(ǫik − ǫiF )aik + θ(ǫiF − ǫik)b
†
i−k, (2)

c†ik = θ(ǫik − ǫiF )a
†
ik + θ(ǫiF − ǫik)bi−k, (3)

where ǫik denotes the HF single-particle energy for dipo-
lar (i = 1) or non-dipolar (i = 2) atoms, and ǫiF (i = 1, 2)
the corresponding Fermi energies. In terms of these par-
ticle and hole operators, the Hamiltonian (1) is rewritten
as

Ĥ = E0 +
∑

i=1,2

∑

k

ǫikθ(ǫik − ǫiF )a
†
ikaik

−
∑

i=1,2

∑

k

ǫikθ(ǫiF − ǫik)b
†
ikbik

+
1

2

∑

k,k′,q

Vdd(q)N
(

c†1kc
†
1k′+qc1k′c1k+q

)

+ g
∑

k,k′,q

N
(

c†1kc1k+qc
†
2k′+qc2p′

)

,

where E0 is the HF ground state energy and the sym-
bol N denotes the normal ordering for particle and hole
operators.
To find the collective excitations in density-fluctuation

channels, we will evaluate general density-density corre-
lation functions for the mixture defined as follows:

ih̄Πij(q, t) =
∑

k,k′

〈

T
[

c†Hik(t)cHik+q(t)c
†
Hjk′+q(0)cHjk′ (0)

]〉

(4)

where i, j = 1, 2 and the symbol T denotes the time-

ordering product. The operators cHik(t) and c†Hik(t) are
Heisenberg operators, and the expectation value 〈· · ·〉
is taken with respect to the exact Heisenberg ground
state. In order to analyze the above correlation func-
tions, we evaluate Πij perturbatively on the basis of
the HF ground state using a ring-diagram approxima-
tion [23, 25, 26], where the ring-diagrams of dipolar and
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non-dipolar fermions are mixed via the inter-particle in-
teraction as depicted in Figure 1.

FIG. 1. Ring-diagrams of dipolar and non-dipolar Fermi
atoms. The solid and dashed lines represent dipolar and non-
dipolar fermions, respectively. The solid and dashed wavy-
lines represent the dipolar and inter-particle interactions, re-
spectively.

In this approximation, the correlation functions are
calculated for the wavevector q and frequency ω to be

Π11(q, ω) =
Π11

0

1− VddΠ11
0 − g2Π11

0 Π22
0

, (5)

Π12(q, ω) = Π21(q, ω) =
gΠ11

0 Π22
0

1− VddΠ11
0 − g2Π11

0 Π22
0

,(6)

Π22(q, ω) =
(1− VddΠ

11
0 )Π22

0

1− VddΠ11
0 − g2Π11

0 Π22
0

, (7)

where Πii
0 (q, ω) is the single-loop polarization functions

with respect to the HF ground state,

Πii
0 (q, ω) =

∑

k

[

(1− fik+q)fik
h̄ω + ǫik − ǫik+q + iη

− fik+q(1 − fik)

h̄ω + ǫik − ǫik+q − iη

]

. (8)

Here fik (i = 1, 2) is the Fermi-Dirac distribution func-
tion in the HF approximation.
The dispersion relation of the collective excitations is

obtained from the poles of the retarded correlation func-
tions Πij

R(ω); the eigenfrequency ωq of the collective ex-
citations are determined from the eigenvalue equation:

1 =
[

Vdd(q) + g2Π22
0R(q, ωq)

]

Π11
0R(q, ωq) (9)

where Πii
0R(q, ωq) = ReΠii

0 (q, ωq) + isgnωq ImΠii
0 (q, ωq)

[25]. It should be noted that in the eigenvalue equation
(9) the factor

[

Vdd(q) + g2Π22
0R(q, ωq)

]

plays a role of the
effective density-density interaction, and in general when
it is positive the undamped zero sound mode may emerge.
The polarization function Π11

0R can be evaluated us-
ing the variational ansatz for the distribution function of
dipolar Fermi gases [6]:

f1k = θ

(

k21F − 1

β
(k2x + k2y)− β2k2z

)

, (10)

where k1F = (6π2n1)
1/3, and the n1 is the number-

density of dipolar Fermi gas; the parameter β (β < 1)
characterizes Fermi surface (non-spherical) deformation
caused by the exchange energy of dipolar interaction.
In this variational approximation, the HF single-

particle energy ǫ1k of dipolar Fermi gas is given by

ǫ1k = ǫ(0) +
h̄2

2m1
λ2

(

1

β
(k2x + k2y) + β2k2z

)

, (11)

where ǫ(0) and λ2 represent the energy shift and the cur-
vature of the single-particle energy (an effective mass),
respectively. The parameters β, ǫ(0), and λ included in
the above equation can be evaluated in the variational
approximation method [27], and they are shown to de-
pend on the dimensionless dipolar interaction strength
k1Fadd with add = m1d

2/3h̄2 the dipolar length. Then,
the real and imaginary parts of Π11

0R(q, ω) become

ReΠ11
0R = C11



−1 +
k1F
2qβ

{

1−
(

ω

λ2v1F qβ
− qβ

2k1F

)2
}

ln

∣

∣

∣

∣

∣

∣

1 +
(

ω
λ2v1F qβ

− qβ
2k1F

)

1−
(

ω
λ2v1F qβ

− qβ
2k1F

)

∣

∣

∣

∣

∣

∣

− k1F
2qβ

{

1−
(

ω

λ2v1F qβ
+

qβ
2k1F

)2
}

ln

∣

∣

∣

∣

∣

∣

1 +
(

ω
λ2v1F qβ

+
qβ

2k1F

)

1−
(

ω
λ2v1F qβ

+
qβ

2k1F

)

∣

∣

∣

∣

∣

∣



 , (12)
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and

ImΠ11
0R =































−C11k1F

2qβ

[

1−
(

ω
λ2v1F qβ

− qβ
2k1F

)2
]

; 1 ≤ qβ
2k1F

and
qβ

2k1F
− 1 ≤ ω

λ2v1F qβ
≤ qβ

2k1F
+ 1

−C11k1F

2qβ

[

1−
(

ω
λ2v1F qβ

− qβ
2k1F

)2
]

; 0 ≤ qβ
2k1F

< 1 and 1− qβ
2k1F

≤ ω
λ2v1F qβ

≤ qβ
2k1F

+ 1

− C11ω
λ2v1F qβ

; 0 ≤ qβ
2k1F

< 1 and 0 ≤ ω
λ2v1F qβ

< 1− qβ
2k1F

0; otherwise,

(13)

respectively, where we have defined C11 = m1k1F

4π2h̄2λ2
, qβ =

(q2x/β + q2y/β + β2q2z)
1/2, and v1F = h̄k1F /m1.

In the same way, we obtain the real and imaginary
parts of Π22

0R(q, ω):

ReΠ22
0R = C22



−1 +
k2F
2q

{

1−
(

ω

v2F q
− q

2k2F

)2
}

ln

∣

∣

∣

∣

∣

∣

1 +
(

ω
v2F q − q

2k2F

)

1−
(

ω
v2F q − q

2k2F

)

∣

∣

∣

∣

∣

∣

− k2F
2q

{

1−
(

ω

v2F q
+

q

2k2F

)2
}

ln

∣

∣

∣

∣

∣

∣

1 +
(

ω
v2F q + q

2k2F

)

1−
(

ω
v2F q + q

2k2F

)

∣

∣

∣

∣

∣

∣



 , (14)

and,

ImΠ22
0R =































−C22k2F

2q

[

1−
(

ω
v2F q − q

2k2F

)2
]

; 1 ≤ q
2k2F

and q
2k2F

− 1 ≤ ω
v2F q ≤ q

2k2F
+ 1

−C22k2F

2q

[

1−
(

ω
v2F q − q

2k2F

)2
]

; 0 ≤ q
2k2F

< 1 and 1− q
2k2F

≤ ω
v2F q ≤ q

2k2F
+ 1

−C22ω
v2F q ; 0 ≤ q

2k2F
< 1 and 0 ≤ ω

v2F q < 1− q
2k2F

0; otherwise,

(15)

respectively, where q = |q|, C22 = m2k2F

4π2h̄2 , and v2F =

h̄k2F /m2 where k2F = (6π2n2)
1/3 with n2 being the

number density of non-dipolar atoms.

III. STABILITY OF FERMI-FERMI MIXTURES

In this section we determine the stability phase di-
agram for experimentally realizable dipolar and non-
dipolar Fermi mixtures: 167Er-173Yb, 167Er-6Li, 161Dy-
173Yb, and 161Dy-6Li. From the eigenvalue equation (9),
the stability condition for a given q is obtained as

1 ≥
[

Vdd(q) + g2Π22
0R(q, 0)

]

Π11
0R(q, 0). (16)

It should be noted that the anisotropic dipole-dipole in-
teraction Vdd(q) takes the minimum value at θq = π

2 ,

i.e., Vdd(q) = − 4π
3 d2, which is negative and indepen-

dent of the magnitude of momentum. When ω = 0, Π11
0R

and Π22
0R are negative and those absolute values decrease

monotonically with increasing q at θq = π
2 . it is likely

that the system becomes most unstable against the ho-
mogeneous density fluctuations (q → 0) in the direction

perpendicular to the dipole polarization one, i.e., θq = π
2 .

Therefore, the stability condition of the mixture becomes

1 ≥ 2

π

k1Fadd
λ2

+
1

π2

(√
rm +

1√
rm

)2
r
1/3
n (k1F as)

2

λ2
, (17)

where rm = m2/m1 and rn = n2/n1 are the mass ratio
and the number-density ratio, respectively. It should be
noted that a dipolar and non-dipolar mixture becomes
unstable if the stability condition is not satisfied, irre-
spective of the sign of the scattering length as as shown
in Eq. (17). In the unstable region for positive as, the
mixed gas undergoes a phase separation between dipolar
and non-dipolar gases, whereas for negative as it col-
lapses to a dense phase [28]. In what follows, we con-
sider the stability condition only for positive as (repulsive
inter-particle interaction).
Figure 2 shows stability diagrams in the rn-k1Fas plane

for dipolar and non-dipolar mixtures: (a) the 167Er-
173Yb and 167Er-6Li for k1Fadd = 0.250, and (b) the
161Dy-173Yb and 161Dy-6Li for k1F add = 0.482 [29]. The
167Er-173Yb and 167Er-6Li mixtures are stable in the re-
gion below the solid and dashed lines in Fig. 2 (a), re-
spectively, while 161Dy-173Yb and 161Dy-173Yb are sta-
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ble below the solid and dashed lines in Fig. 2 (b). From
these figures, larger mass-imbalanced mixtures are found
to be more unstable. It should be understood by the ex-
istence of the pre-factor (

√
rm + 1√

rm
)2 in the stability

condition (17). Since the magnetic moment of the Dy
atom is about 10/7 times as large as that of the Er atom,
the dipolar interaction of Dy atoms is stronger than Er
atoms; it explains why the critical line of the Dy atom
is pushed downward in comparison with that of the Er
atom as shown in Figs. 2 (a) and (b).
Here we make a comment on the stability condition of

the phase separation for positive as; according to theo-
retical studies of two-component repulsive atomic Fermi
gases [30], for instance, the quantum fluctuations may
cause a phase separation with lower values of k1Fas than
the mean-field result obtained in this study. Neverthe-
less, in the following sections, we will develop a ring-
diagram approximation for collective excitations upon
the mean-field ground state in a consistent manner.

10-3 10-2 10-1 100 101 102
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5

k
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s

(a)
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r
n

0

1

2

3

4

5

k
1F

 a
s

(b)

FIG. 2. Stability diagrams obtained from (17) in the plane
of the dimensionless inter-particle scattering length k1F as

and the number-density ratio rn = n2/n1 for mixtures of
(a) 167Er-173Yb (solid line) and 167Er-6Li (dashed line) for
k1F add = 0.250, and (b) 161Dy-173Yb (solid line) and 161Dy-
6Li (dashed line) for k1F add = 0.482. Each system is stable
in the region below line.

0 0.05 0.1 0.15 0.2 0.25
0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

undamped zero sound

p-h continuum edge (161Dy atomic gas)

p-h continuum edge (173Yb atomic gas)

FIG. 3. Eigenfrequency of undamped zero sound mode (scaled
with the momentum Ωq/qv1F ) for the momentum transfer
q = (0, 0, q) of the 161Dy - 173Yb (k1F add = 0.482 and
rm = 1.00746) for k1F as = 1.30, rn = 1.00 (solid line). Dot-
dashed and dashed lines represent the edges of the incoherent
particle-hole continuum of 161Dy and 173Yb atomic gases, re-
spectively.

IV. DYNAMICAL PROPERTIES OF THE
161Dy-173Yb MIXTURE

In this section, we focus on the system of 161Dy-
173Yb mixture which provides k1F add = 0.482 and rm =
1.00746, and investigate its dynamical properties as vary-
ing parameters of k1Fas and rn within ranges available
in experiments. The qualitative behavior of dynami-
cal properties are expected not to change significantly
for other mixtures of mass-imbalanced dipolar and non-
dipolar atoms [31].

A. Undamped zero sound

The eigenvalue equation (9) generally admits a com-
plex eigenfrequency solution: ωq = Ωq − iΓq, which cor-
responds to the collective excitations of the dipolar and
non-dipolar Fermi mixtures. As is shown in our previous
paper [23], the undamped zero-sound mode with Γq = 0
appears only when the mixture is stable.

Figure 3 shows the eigenfrequency Ωq of the undamped
zero sound mode as a function of the transfer q = (0, 0, q),
i.e., along the dipole polarization direction. In the figure
the eigenfrequency seems to encounter the edge of in-
coherent particle-hole continuum solution at a point of
some finite q, but a careful analysis of the solution shows
that the amplitude of the sound mode vanishes exactly
at this point.

In Figure 4, we show the speed of the undamped zero
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sound defined by

s = lim
q→0

Ωq

q
(18)

in the case of θq = 0, i.e., for the sound propagating
along the dipole polarization direction. In calculations
of the speed of sound in what follows, we take the long-
wavelength limit (q → 0) of the real parts of Π11

0R and
Π22

0R with the ratio ω/q fixed, which result in

ReΠ11
0R → C11

[

ω

λ2v1F qαβ(θq)
ln

∣

∣

∣

∣

∣

1 + ω
λ2v1F qαβ(θq)

1− ω
λ2v1F qαβ(θq)

∣

∣

∣

∣

∣

− 2

]

,

ReΠ22
0R → C22

[

ω

v2F q
ln

∣

∣

∣

∣

∣

1 + ω
v2F q

1− ω
v2F q

∣

∣

∣

∣

∣

− 2

]

,

where

αβ(θq) = (sin2 θq/β + β2 cos2 θq)
1/2.

As shown in Fig. 4 (a), the speed of sound (solid line)
increases monotonically with the value of k1Fas. The
dotted line in Fig. 4(a) represents the speed of sound in
the weak-coupling regime, which is given in an analytical
form as

s = s20






1 + 2 exp











−2− 2π2λ2

(√
rm + 1√

rm

)2

r
1/3
n (k1F as)2

(

2

Φ11(s20)
− 4k1Fadd

πλ2

)
















, (19)

where s20 = r
1/3
n v1F /rm is the speed of sound at particle-

hole continuum edge of non-dipolar atoms, and

Φ11(s) =
s

λ2βv1F
ln

∣

∣

∣

∣

∣

1 + s
λ2βv1F

1− s
λ2βv1F

∣

∣

∣

∣

∣

− 2.

As shown in Fig. 4 (a), it agrees with the numerical re-
sults (solid line) in the region of small values of k1F as.
Moreover, as shown in Fig. 4 (b), the speed of sound
(solid line) increases monotonically with rn, and it ap-

proaches the edge of incoherent particle-hole continuum
of 173Yb atomic gas (dashed line) as rn increases.
Figure 5 shows the anisotropy of the speed of zero

sound, i.e., its dependence on the angle θq. Dot-
dashed and dashed lines represent the edges of incoherent
particle-hole continuum of 161Dy and 173Yb atomic gases,
respectively. As the angle θq gets close to π/2, the speed
of zero sound approaches the edge of incoherent particle-
hole continuum of 161Dy atomic gas. In this case, the
speed of zero sound can be approximated by that in the
weak-coupling regime:

s = s10






1 + 2 exp











−2− 2

2k1F add

πλ2 (3 cos θ2q − 1) +
(√

rm + 1√
rm

)2
(k1F as)2r

1/3
n

2π2λ2 Φ22(s10)
















(20)

where s10 = λ2αβ(θq)v1F is the speed of sound at
particle-hole continuum edge of dipolar atoms, and

Φ22(s) =
rms

r
1/3
n v1F

ln

∣

∣

∣

∣

∣

1 + rms

r
1/3
n v1F

1− rms

r
1/3
n v1F

∣

∣

∣

∣

∣

− 2.

As shown in Fig. 5, the numerical results (solid line) agree
well with those from the weak-coupling approximation
(20) (dotted line) in the region where 1.0 <∼ θq.
In the absence of the contact interaction (as = 0), or in

the case of a pure dipolar Fermi gas, the undamped zero
sound exists only in the region, 0 ≤ θq ≤ arccos(1/

√
3) ≃

0.9553, where the dipolar interaction Vdd(q) becomes re-
pulsive. In the case of mixtures, on the other hand,
the undamped zero sound exists only when the effec-
tive density-density interaction in Eq. (9) becomes re-
pulsive, i.e., Vdd(q) + g2ReΠ22

0R(q,Ωq) > 0. Since the

eigenfrequency Ωq encounters the particle-hole contin-
uum edge of the dipolar atoms as the critical angle θcq
is approached from below, the eigenfrequency near the
critical angle in the long-wavelength limit q → 0 be-
comes Ωq = λ2αβ(θq)v1F q. Thus, the critical angle is
determined by the condition

lim
q→0

[

Vdd(θ
c
q) + g2ReΠ22

0R(q, λ
2αβ(θ

c
q)v1F q)

]

= 0

Figure 6 shows the critical angle of the 161Dy - 173Yb
mixture as functions of (a) k1F as for rn = 1.00 and of (b)
rn for k1Fas = 1.30, respectively. As shown in Fig. 6, the
critical angles start from its pure dipolar Fermi gas limit,
i.e., θcq = arccos(1/

√
3), and increase monotonically both

with k1F as and rn, due to the effect of the inter-particle
interaction between dipolar and non-dipolar atoms, until
k1Fas exceeds 1.17 for rn = 1.00 in Fig. 6(a) and rn
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0.2 0.4 0.6 0.8 1 1.2

0.93

0.94

0.95

0.96

0.97

0.98
(a)

0 0.5 1 1.5 2 2.5
0.9

1

1.1

1.2

1.3
(b)

FIG. 4. Speeds of the undamped zero sound (sollid line) with
θq = 0 of the 161Dy - 173Yb mixture (k1F add = 0.482 and
rm = 1.00746) as a function of (a) k1F as for rn = 1.00,
and (b) rn for k1F as = 1.30. The dotted line in (a) repre-
sents the speed of sound in the weak-coupling regime given
by Eq. (19). The dashed line in (b) represents the edge of
incoherent particle-hole continuum of 173Yb atomic gas.

exceeds 0.90 for k1F as = 1.30 in Fig. 6(b), respectively.
The measurements of collective excitation spectra in

atomic gases have been performed using fixed momentum
two-photon Bragg spectroscopy [32], which is designed to
make an arbitrary frequency and momentum transfer to
density fluctuations. Using the experimental technique,
the anisotropic properties of the undamped zero sound of
dipolar and non-dipolar Fermi-Fermi mixtures discussed
in this subsection can be observed.

B. Density fluctuations induced by an impulsive

perturbation

Let us now turn to a discussion of linear response of
161Dy - 173Yb mixtures to an impulsive perturbation that
is expressed by

Ĥex(t) =

∫

d3r {n̂1(r, t) + n̂2(r, t)}Uex(r, t) (21)

where Uex(r, t) = Uex
0 eiq·rδ(t). The corresponding in-

duced density fluctuations are given by

δni(r, t) =

2
∑

j=1

δnij(r, t)

with δnij(r, t) = Re

[

Uex
0 eiq·r

∫

dω

2π
e−iωtΠij

R(q, ω)

]

,

where δnij (i, j = 1, 2) represents the density fluctuation
of the i-th atomic gas induced by the perturbation af-
fecting the j-th atomic gas. Using the results obtained
in previous sections, the density fluctuations δnij induced
by the undamped zero sound are calculated to be

δn11 = Uex
0

Π11
0R

2F ′(q,Ωq)
sin(q · r − Ωqt), (22)

δn12 = δn21 = Uex
0

gΠ11
0RΠ

22
0R

2F ′(q,Ωq)
sin(q · r − Ωqt), (23)

δn22 = Uex
0

(1− VddΠ
11
0R)Π

22
0R

2F ′(q,Ωq)
sin(q · r − Ωqt), (24)

where

F ′(q,Ωq) = −Vdd
∂Π11

0R

∂ω

∣

∣

∣

∣

Ωq

− g2
∂(Π11

0RΠ
22
0R)

∂ω

∣

∣

∣

∣

Ωq

.

These derivatives of the polarization functions are given
by

0 0.5 1 1.5
0.9

0.95

1

1.05

undamped zero sound

p-h continuum edge (161Dy atomic gas)

p-h continuum edge (173Yb atomic gas)
weak-coupling

FIG. 5. Anisotropic speed of undamped zero sound of the
161Dy - 173Yb mixture (k1F add = 0.482 and rm = 1.00746),
as a function of the angle θq for k1F as = 1.30 and rn = 1.00
(solid line). Dot-dashed and dashed lines represent the edges
of incoherent particle-hole continuum of 161Dy and 173Yb
atomic gases, respectively. The dotted line is the speed of
sound in the weak-coupling regime Eq. (20).
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0 0.2 0.4 0.6 0.8 1 1.2

1

1.2

1.4

1.6
(a)

0 0.2 0.4 0.6 0.8 1

1

1.2

1.4

1.6
(b)

FIG. 6. Critical angles (solid line) of the 161Dy - 173Yb mix-
ture (k1F add = 0.482 and rm = 1.00746) as a function of (a)
k1F as for rn = 1.00 and (b) rn for k1F as = 1.30. The dashed
straight lines correspond to θcq = π/2.

∂Π11
0R

∂ω
=

C11

λ2v1F qβ

k1F
qβ





(

ω

λ2v1F qβ
+

qβ
2k1F

)

ln

∣

∣

∣

∣

∣

∣

1 +
(

ω
λ2v1F qβ

+
qβ

2k1F

)

1−
(

ω
λ2v1F qβ

+
qβ

2k1F

)

∣

∣

∣

∣

∣

∣

−
(

ω

λ2v1F qβ
− qβ

2k1F

)

ln

∣

∣

∣

∣

∣

∣

1 +
(

ω
λ2v1F qβ

− qβ
2k1F

)

1−
(

ω
λ2v1F qβ

− qβ
2k1F

)

∣

∣

∣

∣

∣

∣



 ,

(25)

∂Π22
0R

∂ω
=

C22

v2F q

k2F
q





(

ω

v2F q
+

q

2k2F

)

ln

∣

∣

∣

∣

∣

∣

1 +
(

ω
v2F q + q

2k2F

)

1−
(

ω
v2F q + q

2k2F

)

∣

∣

∣

∣

∣

∣

−
(

ω

v2F q
− q

2k2F

)

ln

∣

∣

∣

∣

∣

∣

1 +
(

ω
v2F q − q

2k2F

)

1−
(

ω
v2F q − q

2k2F

)

∣

∣

∣

∣

∣

∣



 . (26)

Getting all together, we obtain the total density fluctua-
tion of the i-th atomic gas as

δni = Ai sin(q · r − Ωqt) (27)

where the amplitudes A1 and A2 are given by

A1 = Uex
0

Π11
0R + gΠ11

0RΠ
22
0R

2F ′(q,Ωq)
, (28)

A2 = Uex
0

gΠ11
0RΠ

22
0R + (1 − VddΠ

11
0R)Π

22
0R

2F ′(q,Ωq)
, (29)

respectively. In the long-wavelength limit, the derivatives
of Π11

0R and Π22
0R become

∂Π11
0R

∂ω
=

C11

λ2v1F qβ






ln

∣

∣

∣

∣

∣

1 + ω
λ2v1F qβ

1− ω
λ2v1F qβ

∣

∣

∣

∣

∣

+

2ω
λ2v1F qβ

1−
(

ω
λ2v1F qβ

)2






,

∂Π22
0R

∂ω
=

C22

v2F q






ln

∣

∣

∣

∣

∣

1 + ω
v2F q

1− ω
v2F q

∣

∣

∣

∣

∣

+

2ω
v2F q

1−
(

ω
v2F q

)2






,

respectively. From the above equations both of the am-
plitudes are shown to be zero when q = 0.
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Figure 7 shows the amplitudes of density fluctuations
A1,2 in the 161Dy - 173Yb mixture induced by the impul-

sive perturbation Ĥex(t) with the transfer q = (0, 0, q)
for k1Fas = 1.30 and rn = 1.00. The amplitudes gradu-
ally increases with q up to a certain value, and beyond it
they fall abruptly to be zero again at the point where the
eigenfrequency of the undamped zero sound touches the
incoherent particle-hole continuum edge of 173Yb atomic
gas as shown in Fig. 3.

0 0.05 0.1 0.15
0

1

2

3

4

5
10-4

FIG. 7. Amplitudes of density fluctuations of the 161Dy -
173Yb mixture where k1F add = 0.482 and rm = 1.00746 in-
duced by the impulsive perturbation Ĥex(t) with the momen-
tum transfer q = (0, 0, q) for k1F as = 1.30 and rn = 1.00. The
solid and dashed lines show h̄A1/k

3

1FU
ex
0 and h̄A2/k

3

1FU
ex
0 ,

respectively.

Figure 8 shows the relative density fluctuations of the
161Dy - 173Yb mixture: (a) δni/(δn1 + δn2) and (b)
δnij/(δn1 + δn2), in the limit of q → 0 as a function
of θq for k1Fas = 1.30 and rn = 1.00. As shown in
Fig. 8 (a), the density fluctuations of 161Dy atoms tend
to be more dominant than those of 173Yb atoms with
increasing θq. The result is understood from the behav-
ior in Fig. 5 that the eigenfrequency of the undamped
zero sound approaches the incoherent particle-hole con-
tinuum edge of 161Dy with increasing θq; that is the
sound mode consists mostly of particle-hole pair states of
161Dy atoms just below the eigenfrequency of the sound
mode. Fig. 8 (b) shows the relative fraction of δnij in the
total induced density fluctuation. Similar to the results
in Fig. 5, the numerical results in Figs. 8 (a) and (b) also
agree well with those in the weak-coupling regime with
the speed of sound given by Eq. (20) (dotted line) around
the momentum angle region 1.0 <∼ θq.
The impulsive perturbation can be realized using the

technique of the short Bragg pulse in Ref. [33]. The
in situ measurement of subsequent oscillations after a
Bragg pulse can reveal the frequencies and amplitudes
of collective oscillations of the dipolar and non-dipolar
Fermi-Fermi mixtures.

0 0.5 1 1.5
0.3

0.4

0.5

0.6

0.7
(a)

 n
1

 n
2

weak-coupling

0 0.5 1 1.5
0.1

0.2

0.3

0.4

0.5

(b)
 n

11
 n

12

 n
22

weak-coupling

FIG. 8. Relative density fluctuations of the 161Dy - 173Yb
mixture where k1F add = 0.482 and rm = 1.00746 in the limit
of q → 0 as a function of θq for k1F as = 1.30 and rn =
1.00. Figures (a) and (b) show δni/(δn1 + δn2) (i = 1, 2) and
δnij/(δn1 + δn2) (i, j = 1, 2), respectively. The dotted lines
in (a) and (b) represent results in the weak-coupling regime
with the speed of sound given by Eq. (20).

V. SUMMARY

In this paper, we have studied the stability and dynam-
ical properties of homogeneous dipolar and non-dipolar
Fermi-Fermi mixtures at zero temperature. We have ob-
tained the density-density correlation functions of the
mixtures in the ring-diagram approximation, and ana-
lyzed the eigenvalue equations of the collective excita-
tions. We have obtained the stability diagrams of the
167Er - 173Yb, 167Er - 6Li, 161Dy - 173Yb and 161Dy -
6Li mixtures, and found that the mixtures of larger mass
imbalance tend to be more unstable. We have also in-
vestigated the eigenfrequency, the speed of undamped
zero sound, and the density fluctuations of the 161Dy -
173Yb mixture in the impulsive perturbation method;
the results are summarized in Figs. 3-8. These results
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show that the inter-particle interaction between 161Dy
and 173Yb atoms has a significant effect on the angle de-
pendence of the sound propagation with respect to dipo-
lar polarization direction, and also on the linear response
of external perturbation through the density-density cor-
relation between 161Dy and 173Yb atoms. These results
can be experimentally observed using the Bragg spec-
troscopy technique [32, 33].
In this paper, we obtained the excitation spectrum of

undamped zero sound and density fluctuations by the
impulsive perturbation in the 161Dy and 173Yb mixture,
assuming repulsive inter-particle interaction (as > 0). It
should be noted that the excitation spectrum depends
only on the magnitude of scattering length as as shown
in Eq. (9), whereas the amplitude of density fluctuations

depends on the sign of as as shown in Eqs.(28) and
(29); we present the results only for positive as in the
subsection IV-B. In the case of negative as, which we do
not investigate in this study, one can expect the Cooper
pairing between dipolar and non-dipolar atoms if the
system is in the stable region of density fluctuations.
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[22] F. Schäfer and Y. Haruna and Y. Takahashi,
Phys. Rev. A 107, L031306 (2023).

[23] T. Miyakawa and E. Nakano and H. Yabu, JPS Conf.
Proc. 38, 011014 (2023).

[24] E. E. Kolomeitsev and D. N. Vosokresensky,
Euro. Phys. J. A 52, 362 (2016).

[25] A. L. Fetter and J. D. Walecka, ”Quantum theory of
many-particle systems”, Dover publication (2003).

[26] P. Nozieres and D. Pines, ”The Theory of Quantum Liq-
uids”, Perseus Books Publishing (1999).

[27] K. Nishimura and E. Nakano and K. Iida and H. Tajima
and T. Miyakawa and H. Yabu, Phys. Rev. A 103, 033324
(2021).

[28] M. Houbiers, et. al., Phys. Rev. A 56, 4864 (1997).
[29] The values of k1F add discussed here are relatively larger

than typical ones which are the order of a few percent.
These values are reproduced by using the value of the
central density of a dipolar Fermi gas with 5× 106 par-
ticles in a hormonic oscillator potential with a frequency
500Hz.

[30] R. A. Duine and A. H. MacDonald, Phys. Rev. Lett. 95,
230403 (2005); G. J. Conduit, A. G. Green, and B. D. Si-
mons, Phys. Rev. Lett. 103, 207201 (2009); S. Pilati,
G. Bertaina, S. Giorgini, and M. Troyer, Phys. Rev. Lett.
105, 030405 (2010).

[31] The ring-diagram approximation contains only one
particle-hole pair excitations; it is valid for weak cou-
plings: k1F add ≪ 1 and k1F as ≪ 1. When the cou-
plings are not weak, it is necessary to take into account
multi-pair excitations too. However, dynamical proper-
ties of collective excitation in the long wavelength and
low-frequency limit can be explained by the ring-diagram
approximation, at least qualitatively, since single pair ex-
citations are of importance in this case [26].

[32] J. Steinhauer, R. Ozeri, N. Katz, and N. David-
son, Phys. Rev Lett. 88, 120407 (2002); S. Hoinka,
et. al., Nat. Phys. 13, 743 (2017); H. Biss, et. al.,



11

Phys. Rev Lett. 128, 100401 (2022). [33] I. Shammass, S. Rinott, A. Berkovitz, R. Schley, and
J. Steinhauer, Phys. Rev Lett. 109, 195301 (2012).


