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ABSTRACT

Previous studies on music style transfer have mainly fo-
cused on one-to-one style conversion, which is relatively
limited. When considering the conversion between mul-
tiple styles, previous methods required designing multiple
modes to disentangle the complex style of the music, re-
sulting in large computational costs and slow audio gener-
ation. The existing music style transfer methods generate
spectrograms with artifacts, leading to significant noise in
the generated audio. To address these issues, this study
proposes a music style transfer framework based on diffu-
sion models (DM) and uses spectrogram-based methods to
achieve multi-to-multi music style transfer. The GuideD-
iff method is used to restore spectrograms to high-fidelity
audio, accelerating audio generation speed and reducing
noise in the generated audio. Experimental results show
that our model has good performance in multi-mode music
style transfer compared to the baseline and can generate
high-quality audio in real-time on consumer-grade GPUs.

1. INTRODUCTION

The study of musical styles is important for the develop-
ment of music. Incorporating different styles into com-
positions can lead to new and innovative music. Trans-
ferring musical styles can create works that pay homage
to traditional styles while incorporating contemporary ele-
ments. By studying how different styles can be combined
and transformed, musicians can create new forms of artis-
tic expression.

When discussing the transfer of musical style, it is typ-
ically believed that music can be broken down into two
elements: content and style. The goal of music style trans-
fer is to maintain the content of the music while modify-
ing the style. With the rapid development of deep genera-
tive models, various models such as autoregressive models,
generative adversarial networks, variational autoencoders,
and stream-based models have actively promoted the de-
velopment of speech synthesis and music generation. Fur-
thermore, many academics have used these models to re-

*Corresponding author

Copyright: ©2023 Hong Huang et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License 3.0
Unported, which permits unrestricted use, distribution, and reproduction
in any medium, provided the original author and source are credited.

search musical style transfer. MIDI-VAE, a neural net-
work model based on variational autoencoders, was used
by Brunner et al. [1] to convert the style of polyphonic
music with several instrumental tracks. The same year,
Brunner et al. [2] offered a different approach that in-
volved converting midi format audio into a piano rolling
matrix, training CycleGAN with the matrix, and then pro-
ducing converted midi audio. However, this method can
only transfer the style from the playing dimension. Huang
et al. [3] proposed Timbretron by extracting CQT features
of the audio, then converting them into timbre through Cy-
cleGAN, and finally synthesizing CQT features into orig-
inal audio waveforms using pre-trained WaveNet. Their
method can capture higher resolution at lower frequencies
and maintain equal variance of pitch energy, but the gen-
erated audio quality is still inadequate. Donahue et al. [4]
enhanced the effect of multi-instrument music generation
through cross-domain training based on Transformer, but
the quality of synthesized audio is still inadequate. Hung
et al. [5] proposed a deep learning model for rearrang-
ing any music, resulting in a ”stylistic shift” without much
impact on the tonal substance. Bonnici et al. [6] used a
variational autoencoder combined with a generative adver-
sarial network to construct a meaningful representation of
source audio and generate a realistic generation of the tar-
get audio. Noam et al. [7] proposed a general music trans-
lation network that achieves timbre conversion by train-
ing a WaveNet encoder and multiple WaveNet decoders.
This method can convert from one timbre domain to mul-
tiple timbre domains, but it requires training multiple de-
coders to adapt to different styles, which is computation-
ally expensive, and the synthesized audio speed is slow.
Denoising Diffusion Probability Models (DDPMs) [8] and
Score Matching (SM) [9] are recently proposed methods
that have achieved good results in the fields of speech syn-
thesis and music generation. The aforementioned studies
have achieved promising results in their respective research
directions, but they mainly focus on transferring a single
attribute of music (timbre, performance style, composition
style), and previous methods suffer from artifacts in the
generated spectrograms. Considering many-to-many style
migration, previous methods have suffered from complex
design structures, high computational overhead, and slow
generation of audio.

To overcome these limitations, this study uses DM, an-
other type of generative model, whose synthesis process
extracts the required generated samples from noise through
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iterative steps. As the number of iterations increases, the
quality of the synthesis improves. However, directly ex-
tending DMs to audio generation requires a large amount
of computational resources [10] and cannot solve the prob-
lem of slow generation speed. To address these issues, this
study proposes a general and efficient music style trans-
fer framework based on the latent diffusion model (LDM)
[11]. Specifically, the framework consists of two parts:
style transfer and audio generation. In the style transfer
part, a conditional mechanism is introduced to learn differ-
ent types of input styles and transfer their information to
the latent space for guiding the generation of target spec-
trograms. This approach avoids the need for designing
complex, disentangled transfer frameworks and enables many-
to-many style transfer. Moreover, the transfer process takes
place in latent space, greatly reducing computational costs
and improving generation speed. For the audio generation
part, this study proposes GuideDiff, a waveform audio gen-
erator based on DMs. It compresses and encodes spectro-
grams into the latent space to control and guide waveform
generation, achieving fast inference speed and high-quality
audio generation compared to baseline vocoders. This has
practical significance for the real-time generation of high-
quality audio.

In summary, the main works are as follows:
(1) The paper introduces a music style transfer model

that is based on DM and allows for many-to-many music
styles to be transferred. This model is capable of perform-
ing real-time style transfer on audio, making it highly effi-
cient and practical.

(2) This study proposes a novel audio generation method
called GuideDiff, which is based on the diffusion model.
The GuideDiff method is designed to generate high-quality
audio waveforms by utilizing spectrogram restoration tech-
niques.

(3) The experimental results show that the proposed model
has good performance in both style transfer and audio qual-
ity compared to the baseline model. Moreover, it can achieve
real-time conversion and generate target audio on consumer-
grade GPUs.

In the remainder of this paper, we will organize the con-
tent as follows: Section 2 presents related work; Section
3 describes the architecture of the proposed method; Sec-
tion 4 evaluates the effectiveness of the proposed method
through experiments; and Section 5 provides the conclu-
sion of this paper.

2. RELATED WORK

2.1 Music Style Transfer

Numerous studies on musical style transfer have taken cues
from models for transferring image styles. Musical style
transfer can be categorized into three types: timbral style
transfer, performance style transfer, and compositional style
transfer. Among these, timbral-style transfer has received
the most attention in recent years. This type of transfer
involves altering the timbre of a musical composition in
the audio domain. However, relatively little study has been
done on the latter two types of musical style transfer: per-
formance and compositional. Further study on these types
of musical style transfers could lead to new and innovative
ways of creating and transforming music.

Researchers typically follow two different design patterns
to achieve music style transfer. One involves symbolic mu-
sic notation, and the other involves audio signals. For au-
dio signals, researchers typically use time-frequency meth-
ods, which are more indirect and help reduce data com-
plexity. They convert the abstract audio into spectrograms
and use deep learning models for high-quality transfer. This
method involves two deep learning models, with the first
model involving the style transfer of the spectrogram of
the audio and the second model involving the restoration
of the generated spectrogram to real audio. Currently, re-
searchers mainly use generative models such as CycleGAN
[2], VAE [1], UNIT [12], and MusicVAE [13] for music
style transfer. However, while these models have shown
promising results, they also have limitations that hinder
their practical application. Further research is needed to
overcome these limitations and improve the effectiveness
and efficiency of musical style transfer.

The focus of this study is to explore a new generic mu-
sic style transfer model that employs a time-frequency ap-
proach. This model is designed to enable three types of
music style transfer: timbral, performance, and composi-
tional.

2.2 Diffusion Models

DM is a class of likelihood-based generative models, with
its pioneering work being DDPM. Its core theoretical un-
derpinnings are the Markov chain and Langevin dynamics.
Due to its stable training and easy expansion, it has sur-
passed GANs [14] in image generation tasks and achieved
higher sample quality. However, the sampling process is
slow, and it needs to follow a Markov chain to generate
a sample step by step. DDIM [15] accelerates the sam-
pling process by iterative non-Markovian methods while
keeping the training process unchanged. ADM [14] ulti-
mately outperforms GAN-based methods through a well-
designed architecture and classifier guidance. A latent dif-
fusion model [11] has also been proposed recently for im-
age synthesis. This model compresses the image from pixel
space to latent space for diffusion, resulting in significantly
reduced computational complexity while achieving high-
quality image generation. However, the application of this
model in the field of music generation has not been ex-
tensively studied. In this study, we propose a generic mu-
sic style transfer framework based on the latent diffusion
model, using spectrograms as an intermediate representa-
tion of music. In this respect, our work has something in
common with riffusion [28], as both utilize Fourier trans-
forms to process audio waveforms in order to obtain a spec-
trogram. This spectrogram is then diffused using a diffu-
sion model.

2.3 Neural Vocoder

Deep generative models have achieved significant success
in modeling audio generation, with common methods in-
cluding autoregressive models, flow-based models, and dif-
fusion models. WaveNet [16] is an autoregressive model
that generates high-fidelity audio, but its synthesis is slow,
and the synthesized audio contains audible noise. Wav-
eRNN [17] is another autoregressive model that reduces
computational complexity by using sparse recurrent neu-



ral networks. Stream-based models, such as WaveFlow
[18], WaveGlow [19], and FloWaveNet [20], improve the
quality of audio synthesis by maximizing the likelihood of
training the model. Recently, DM-based audio generation
models have been proposed, such as DiffWave [21] and
WaveGrad [22], which are able to generate higher-quality
audio and synthesize it faster than common models.

In this work, we propose a new neural vocoder called
GuideDiff based on DM. This vocoder is mainly used in
the style transfer model to restore high-quality audio from
generated spectrograms. Moreover, its synthesis speed is
several orders of magnitude faster than baseline models
like WaveNet.

3. METHOD

Figure 1. Piano to violin style transfer.

Music style transfer is accomplished in three steps in this
work, as illustrated in Figure 1. Firstly, a spectrogram is
obtained from the input audio waveform using the Short
Time Fourier Transform (STFT), which represents time
and frequency. The phase information is discarded, and
only the amplitude is processed as an image. Secondly, the
transfer of musical styles is performed by completing the
domain conversion on the spectrogram using a latent dif-
fusion model. Lastly, GuideDiff is utilized to convert the
transformed spectrograms into audio waveforms.

The section following this introduction will focus on the
second part of the music style transfer process, which in-
volves the conversion of the input spectrogram to a target
spectrogram using a latent diffusion model. The subse-
quent section will cover the third part of the process, which
is the conversion of the target spectrogram into a high-
quality audio waveform using the proposed neural coder,
GuideDiff.

3.1 Time-Frequency Analysis

The audio signal is often more challenging to capture com-
pared to image signals. As a result, an audio spectrogram,
which provides a visual representation of the frequency
content of sound, is commonly used. In Figure 2, the x-axis
represents time, while the y-axis represents frequency. The
color of each pixel corresponds to the frequency and vol-
ume of the audio in its corresponding rows and columns.
To perform style transfer, we need to analyze the input au-
dio in both the time and frequency domains to obtain a
spectrogram.

One of the most commonly used techniques in this area is
the Short Time Fourier Transform (STFT), which is often
discretized for computer calculations. The discrete STFT
operation can be abbreviated as

STFTx[n](m,ωk) =

∞∑
n=−∞

x[n]ω[n−m]e−jωkn (1)

Figure 2. Spectrogram.

Where x[n] is the input time domain signal, m is the step
size, ωk is the frequency, and ω is a window function.

The audio is divided into segments of 5 seconds for time-
frequency analysis to make processing easier. By perform-
ing the STFT transform independently, the segmented au-
dio is converted into a spectrogram. In this case, a Hanning
window with a step size of 100 is used, and the phase in-
formation is discarded during processing because it is am-
biguous and unpredictable.

3.2 Transfer Model

Figure 3. Models of transfer.

Figure 3 illustrates the three main components of the style
transfer model: an autoencoder (AE) that compresses and
restores the input and output spectrogram information in
pixel space; a latent space diffusion model that is mainly
used for style transfer, which incorporates a cross-attention
mechanism that completes the domain transformation by
transferring data from the conditional mechanism into the
denoised UNet; the conditional mechanism is primarily
used to convey information learned from various musical
spectrograms into latent space.

3.2.1 Perceptual Compression

By drawing on the work of Robin Rombach et al. [11], we
introduced perceptual compression to lower the computing
needs of training DM for producing high-quality spectro-
grams. The sampling is carried out in a low-dimensional
space, which increases the DM’s computing efficiency.

A pre-trained self-encoder was employed for perceptual
compression. This self-encoder is trained using a patch-
based adversarial objective in conjunction with a percep-
tual loss. The blur created by relying simply on pixel space
loss is effectively avoided, which enhances the reconstruc-
tion’s realism. It offers a low-dimensional representation
space that is analogous to the data space from a perceptual
standpoint.

The self-encoder consists of an encoder ε and a genera-
tor D. They are both composed of three layers of three-
dimensional convolution. Formally, given a sample spec-
trogram x ∈ RH×W×3, the encoder ε encodes it into a
potential representation z = ε(x),where z ∈ Rh×w×3.



The encoder downsamples the spectrogram by a factor f =
H/h = W/w and the generator D reconstructs the poten-
tial representation back into a sample x̃,i.e. x̃ = D(z).

To avoid a high degree of dissimilarity in the potential
representation space, we have adopted a KL-reg regular-
ization, introducing a slight KL penalty term. A standard
learning rate is obtained at the beginning, and the effect
is very close to that of a variational autoencoder (VAE).
The reconstruction loss Lrec consists of pixel-level mean
squared error (MSE) and perceptual-level loss. In sum-
mary, the overall training objectives for encoder ε and gen-
erator D are

LAE = min
ε,D

(Lrec(x,D(ε(x)))+KLreg(x||(ε(x)))) (2)

3.2.2 Latent Diffusion Models

With the perceptual compression model, we can obtain an
effective, low-dimensional latent space in which high fre-
quencies and some difficult-to-perceive details are abstracted.
This is effective for the extraction of musical features such
as pitch, loudness, timbre, etc. Recalling DM, we propose
to diffuse and denoise the spectrogram in the latent space.
Given a compressed latent code z0 ∼ q(z0). DM con-
sists of a forward diffusion process and a backward denois-
ing process. In the forward diffusion process, we train the
diffusion model by iteratively adding T steps of diffusion
Gaussian noise according to a fixed noise schedule, start-
ing from data z0 to produce a set of noisy latent variables,
i.e. z1, ..., zT .

q(zt|zt−1) = N (zt;
√

1− βtzt−1, βtI) (3)

q(z1:T |z0) =
T∏

t=1

q(zt|zt−1) (4)

where β1, β2, ..., βT is the noise scheduling that converts
the data distribution z0 into a potential zT .

Ultimately, data points zT are indistinguishable from pure
Gaussian noise when mixed together. The diffusion model
is employed in the reverse denoising process to recover zT
to z0 by

p(zt−1|zt) = N (zt−1;µθ(zt, t), σθ(zt, t)) (5)

pθ(z0:T ) = p(zT )

T∏
t=1

pθ(zt−1|zt) (6)

where θ is a parameterized neural network that is defined
by a Markov chain. The U-Net, commonly used in image
synthesis, is used here to predict µθ(zt, t) and σθ(zt, t).
In actuality, σθ is set to a time-dependent constant that is
untrained depending on a noise schedule of

σθ(zt, t) = σt =
1− ᾱt−1

1− ᾱt
βt (7)

Where αt = 1− βt,āt =
∏t

i=1 αi, we parameterize µθ =

(zt, t) by

µθ(zt, t) =
1

√
αt

(zt −
βt√
1− ᾱt

ϵθ(zt, t)) (8)

Final ϵθ(zt, t) was assessed.
In practice, we use simplified training objectives.

Lsimple(θ) = Eε(x),ϵ∼N (0,1)||ϵθ(zt, t)− ϵ||22 (9)

where ϵ ∼ N (0, 1) . Since the forward process of the dif-
fusion model is fixed, it can be efficiently obtained during
training zt and the p(z) samples generated by the reverse
process can be encoded once in perceptual space through
the generator D into image space.

Style transfer module. To model the generation of spec-
trograms in the latent space and to accomplish style trans-
fer. We used a 2-dimensional convolutional layer to build
the underlying U-Net capabilities, specifically a 2×2 shaped
convolutional layer. A cross-attention mechanism is added
to augment the U-Net backbone, enabling it to generate
spectrograms in the target domain conditional on the style
transfer. And it ensures that style information can be shared
across the potential space, which is essential for learning
the style of audio and completing style transfer.

3.2.3 Conditioning Mechanisms

In this module, we employ a domain-specific encoder τθ
to preprocess the input conditional style spectrogram y and
project the encoded y onto an intermediate representation
τθ(y) ∈ RM×dτ , which is then mapped to the intermedi-
ate layer of the U-Net via a cross-attention layer to enable
the generation of the spectrograms according to condition
y. The following equation carries out the cross-attention
mechanism.

Attention(Q,K, V ) = softmax(
QKT

√
d

) · V (10)

where Q = W
(i)
Q · φi(zt) ,K = W

(i)
K · τθ(y),V = W

(i)
V ·

τθ(y). φi(zt) ∈ Rd×di
ϵ denotes the intermediate U-Net

representation that implements εθ. W (i)
V ∈ Rd×di

ϵ ,W (i)
K ∈

Rd×di
ϵ and W

(i)
Q ∈ Rd×di

ϵ are projection matrices that are
mainly used to learn and map styles from the target domain
of the τθ(y) representation, enabling style transfer. The
objective function is rewritten as

LCM (θ) = Eε(x),y,ϵ∼N (0,1)||ϵ− ϵθ(zt, t, τθ(y))||22 (11)

Where τθ and ϵθ can be jointly optimized by means of an
objective function.

3.3 Waveform Reconstruction

We propose a novel encoder, called GuideDiff, to convert
the spectrogram output from the model into audio. It can
restore the spectrogram to generate high-quality audio. As
shown in Figure 4, a 3 × 3 encoder ε = Eθenc(mw) is
first used to encode the spectrogram into the latent space,
and then the information x from the latent space is sent
as conditional information into the U-Net’s cross-attention



Figure 4. GuideDiff architecture.

mechanism for conditioning and directing the creation of
waveforms. The original waveform is then recreated by
using the diffusion decoder D = Dθdec(z, α, s) to decode
the latent signal, where Dθdec denotes the diffusion sam-
pling method, α denotes the noise, and s denotes the sam-
ple pace length. Target diffusion is used to train Decoder
D while conditioning the latent 2D U-Net, which is re-
peatedly invoked during the decoding procedure. Figure 5
displays the model’s primary network diagram. Where yn

Figure 5. Model’s primary network.

denotes the n th round of noisy audio input and ϵθ denotes
the simulated generated noise. FiLM is the characteristic
linear modulation module, consisting of two 3 × 1 con-
volutional layers and the Leaky ReLU function. Here we
condition on noise level

√
ᾱ and pass it to the position en-

coding function.
Compared to the DM objective function, we can write the

objective function as

LGuideDiff (θ) = Eᾱ,ε[||ϵ−ϵθ(
√
ᾱny0+

√
1− ᾱnϵ, x,

√
ᾱ)||1]

(12)
where α = 1 − βn,ᾱn =

∑n
s=1 αs , in this case βn, is an

equivariant sequence from 0 to 1.
For the input spectrograms, we discarded the phase and

used only the amplitude. By encoding the spectrograms
in latent space, the computational load for the representa-
tion can be effectively reduced. Moreover, it enables the
diffusion model to learn how to generate waveforms with
true phase. The latent space obtained is used as the start-
ing point for the next diffusion phase. The advantage of
this is that our model only needs to be trained once. The
latent trajectory space also allows for a large number of in-

ference procedures to be performed without requiring re-
training. Specifically, once this model is trained, it is only
necessary to use a different number of iterations N in the
inference process to determine the quality of the computa-
tional output. This is useful for rapidly bootstrapping the
generation of high-quality raw audio. To ensure that the
reduced latent space is available for latent diffusion, we
apply the tanh function to the bottleneck, ensuring that the
values remain within the range [-1, 1].

In summary, our overall objective function is

L = LAE+Lsimple(θ)+LCM (θ)+LGuideDiff (θ) (13)

4. EXPERIMENTS

In Section 4.1, we provide details on the experimental setup,
including data description and pre-processing, as well as
evaluation metrics. Section 4.2 then provides a detailed
description of the implementation.

4.1 Experimental Setup

4.1.1 Data Description And Preprocessing

The model consumes a large amount of memory when gen-
erating an entire song at once. To mitigate this issue, we
employed the Demucs model to separate the music into its
constituent sources, such as vocals, bass, and drums. Fur-
thermore, each song was divided into smaller segments,
which were modeled individually and then reassembled.
However, rearranging the segments was challenging, as
they differed in downbeat, key, and pace. To address this,
we smoothly interpolated cues and seeds in the model’s
latent space. In a diffusion model, the latent space is a
feature vector that encompasses the entire space of possi-
bilities that can be generated by the model. Items that are
similar to each other are approached in the latent space,
and each value in the latent space is decoded into a feasi-
ble output. This makes the audio sound natural.

We require various types of music data to train our model
to achieve music style migration. For all the experiments
in this study, we used music datasets from multiple source
domains collected from the web. This dataset includes over
100,000 WAV audio files of various instruments, genres,
and compositional styles. The main instruments include
piano, violin, guitar, and others, while the genres mainly
consist of jazz, classical, and pop. The data was used for
training (80%), testing (10%), and validation (10%).

4.1.2 Evalutaion Metrics

The following measures were used to evaluate and analyze
the model’s performance:

Fréchet Audio Distance (FAD) [23] The FAD calculates
the Fréchet distance between the output generated audio
samples and the real audio samples. The smaller the dis-
tance between the two data distributions, the more realistic
the generated samples will be, which gives a reliable as-
sessment of the difference between them.

Accuracy In this research, five independent style assess-
ment classifiers were trained in order to test the efficacy
of the model style transfer. The percentage of styles ac-
curately predicted in each song bar served as a measure of
the classifiers’ accuracy.



Mean Opinion Score(MOS) In this work, a 5-scale mean
opinion score is used to evaluate the proposed model. Where
the MOS value suggests that a higher value is preferable.
Subjects were asked to rate each of the three questions for
each transfer version on a scale of 1 to 5.

1. Success in style transfer (ST): whether the target do-
main is migrated in the generated audio after transfer
compared to the original audio.

2. Content preservation (CT): the extent to which the
migrated-generated audio matches the original audio
content.

3. Sound quality (SQ): the generated audio has high or
poor sound quality.

A mean score will be used when comparing it to other
baseline models. GuideDiff simply evaluates the quality
of the generated sound.

Inception Score (IS) [24] To evaluate the level of diver-
sity and quality of the sample generation. IS is an evalu-
ation metric employing a ResNeXT classifier [25] trained
on our dataset and a 10-dimensional logit based on a 1024-
dimensional feature vector. To assess the effectiveness of
the proposed audio generation model. IS is calculated as

IS = exp(Ex∼pgenKL(PF(x)||Ex′∼pgen
PF(x

′
)))

(14)
Where PF(x) is a multinomial distribution and Ex′∼pgen

PF(x
′
)

is an edge label distribution.

4.1.3 Implementation Details

This work uses a UNet architecture consisting of 14 lay-
ers of stacked convolution blocks and attention blocks as a
combination of upsampling and downsampling for the dif-
fusion model, which is based on the work of Robin Rom-
bach et al [11]. For the downsampling factor, a down-
sampling factor of 4 was used. The same hidden size and
skip connection layers were set between the layers in the
UNet model. The first six layers of the UNet model use
512 × 512 input and output channels, followed by two
256×256 and 128x128 input and output channels, respec-
tively. After that, the input and output channels are halved
layer by layer. The attention mechanism is used in this
work at 16× 16,8× 8 and 4× 4 resolutions. A ResBlock
is also added to the UNet module, which receives two in-
puts: the image x and the embedding corresponding to the
timestep. Two linear layers and the time emb layer make
up the time-step embedding layer. Our compression ratio
for the latent space is 64. The audio samples were sampled
at a frequency of 16000 Hz, with a channel size of 2, and
an amplitude of -10 dB. The model was trained using the
Adam optimizer with 500k steps, a learning rate of 5e-5,
and a batch size of 100. The batch size for GuideDiff was
set to 256. Approximately 1M steps were trained using the
Adam optimizer.

The experiments in this research generated audio in less
than 5 seconds, which can be regarded as real-time gener-
ation, and were trained on 3 NVIDA RTX3090Ti, a GPU
capable of running 50 stable diffusion steps.

4.2 Experimental Analysis

Four primary musical style transfer tasks were taken into
consideration in the trials:

1. Stylistic transfer of instrument timbres. Mainly con-
sider piano to guitar (p2g) and piano to violin transi-
tions (p2v). Each transition will do a bilateral trans-
formation.

2. transfer of musical genres. Genre conversions from
jazz to pop (j2p) and jazz to class (j2c) are mainly
considered. Each transition will do a bilateral trans-
formation.

3. Music composition style conversion. Beethoven to
Chopin (B2C), and Chopin to Beethoven (C2B) con-
versions are mainly considered.

4. Many-to-many style conversions. Conversion of clas-
sical piano pieces played mainly by Beethoven to
jazz violin in the Chopin style (Bcp2Cjv).

Figure 6. Style transitions for various tasks.

The spectrograms of our model’s inputs and outputs for
the various tasks are shown in Figure 6. From the plots, it
is clear that the target domain is shifted while the contents
are kept intact.

4.2.1 Style Conversion Evaluation

This study evaluates the proposed model through four dif-
ferent style transfer challenges. Subjective (MOS) and ob-
jective (FAD, accuracy) evaluations are used to compare
the style conversions. Each score has its own limitations.
Subjective measurements evaluate three main aspects of
the model: the success of style transfer (ST), content preser-
vation (CP), and sound quality (SQ). A 5-point scale is
used for evaluation. Objective evaluations use FAD to mea-
sure individual aspects of the conversion, and accuracy is
used to evaluate the accuracy of style transfer.

Subjective evaluation Mean opinion scores (MOS) were
collected from 200 testers for the listening test. These
testers included both music lovers and non-musicians. In
each mid-round score, testers first listened to the original
audio clip and then to the style-shifted version.

The results indicate that our model performs the best in
the piano2violin task, which may be attributed to the rel-
atively simple timbre conversion of a single instrument.



Task ST CP SQ
piano2Violin 4.27 4.13 4.3
piano2guitar 4.02 4.05 4.2
jazz2pop 3.95 3.8 4.0
jazz2class 3.96 4.0 4.12
Beethoven2Chopin 4.05 4.1 4.15
Bcp2Cjv 4.1 4.23 4.3

Table 1. 5-scale MOS with style Transfer.

Our model’s performance is slightly lower in the jazz2pop
and jazz2class tasks, but it still achieves scores close to
4 in terms of successful style transfer and content reten-
tion. This suggests that our model is relatively success-
ful in genre conversion. Additionally, the high scores for
sound quality in all six tasks indicate that the proposed
model is capable of generating high-quality music.

Objective review Measures how well the converted ver-
sion matches the original version and the accuracy of the
style transfer.

Task FAD↓ Accuracy↑
piano2Violin 7.52 94.5%
piano2guitar 6.95 93.4%
jazz2pop 11.76 86.2%
jazz2class 10.55 87.2%
Beethoven2Chopin 6.19 95.3%
Bcp2Cjv 6.07 95.7%

Table 2. FAD&Accuracy for the tasks.

The accuracy of style transfer between the audio pro-
duced by the specified task and the original audio is pre-
sented in Table 2 along with the results of FAD calcula-
tions. The results indicate good performance in terms of
the timbre transfer of instruments and the transfer of com-
positional styles. However, the performance is poor in
terms of genre transfer, which is consistent with the results
of the subjective evaluation. This is an area that requires
improvement in future research.

4.2.2 Comparison With Other Models

Our model was compared against a number of baseline
models, including CycleGAN [2], UNIT [12], musicVAE
[13], and autoencoder [26], in order to show the validity
of the model described in this work. Table 3 presents the
outcomes.

Note that these baseline models for style transfer are all
one-to-one mappings. In this work, the input transfers use
the same music clip, and they are trained independently.
Only the spectrogram form is considered for the intermedi-
ate representation of the music. The same model, GuideD-
iff, is used for the generation of the waveform.

The comparison of the baseline models indicates that Cy-
cleGAN performs the best in terms of genre migration,
which may be related to the fact that cycle consistency loss
is taken into account in its direct matching of target do-
mains at the feature level. However, our model achieved a
result that is only about 0.1 points lower than the best. Ad-
ditionally, our model outperforms the other baseline mod-
els in terms of the migration of musical instrument tim-
bre and compositional style. Therefore, it can be con-

Model Task
p2v p2g j2p j2c B2C

CycleGAN 3.98 3.96 4.17 4.12 4.0
UNIT 3.7 3.75 3.5 3.62 3.71
musicVAE 3.86 3.91 3.7 3.68 3.89
autoencoder 3.5 3.56 3.4 3.45 3.52
ours 4.23 4.09 3.91 4.02 4.07

Table 3. MOS with the baseline comparison model.

cluded that the proposed model demonstrates superior per-
formance in terms of flexible many-to-many musical style
migration compared to the other baseline models.

4.2.3 Evaluation of the audio generating model

To demonstrate the performance and high-quality audio
generation capabilities of GuideDiff, the proposed audio
generation model, examples are presented in this section.
Comparisons are made between the proposed model and
WaveNet [16], WaveRNN [17], and WaveGAN [27]. All
models use the same training set and are tested using the
same spectrograms to generate audio. Both subjective and
objective evaluation techniques are used to assess the qual-
ity of the generated audio. Testers will rate the audio qual-
ity on a scale of 1 to 5 for subjective evaluation. The results
are presented in Table 4.

Model MOS(↑) IS(↑)
WaveNet 3.02 2.84
WaveGAN 3.82 4.53
WaveRNN 4.40 5.38
GuideDiff 4.41 5.40

Table 4. Comparison of audio generation models.

The comparison demonstrates that our model performs
similarly to the autoregressive model WaveRNN and sur-
passes the other baseline models. This suggests that the
proposed model has excellent performance in producing
high-quality audio.

5. CONCLUSIONS

In this work, we have designed an efficient DM-based frame-
work for music style transfer. A latent layer was introduced
into the framework, which effectively reduces the dimen-
sionality of the data. A cross-attention mechanism is added
to the latent layer. The transfer of styles is achieved by
adding seed conditions to guide and complete the gener-
ation of transformations in the target domain. As for the
generation of audio, this study proposes GuideDiff, a DM-
based method for generating waveform audio. The method
compresses the spectrogram into latent space via an en-
coder and transfers it to the U-Net. The potential signal is
then decoded back into the waveform using diffusion guid-
ance.

The experimental results demonstrate that the proposed
model can achieve many-to-many style migration and gen-
erate high-quality music in comparison to previous approaches.
Additionally, the model is capable of performing style mi-
gration and generating high-quality audio in real-time on
a consumer-grade GPU. Given the excellent performance



of this model, future work will utilize it to explore text-
generated music.
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