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ABSTRACT
With the success of large language models, generative retrieval has
emerged as a new retrieval technique for recommendation. It can
be divided into two stages: the first stage involves constructing dis-
crete Codes (i.e., codes), and the second stage involves decoding the
code sequentially via the transformer architecture. Current meth-
ods often construct item semantic codes by reconstructing based
quantization on item textual representation, but they fail to capture
item discrepancy that is essential in modeling item relationships
in recommendation sytems. In this paper, we propose to construct
the code representation of items by simultaneously considering
both item relationships and semantic information. Specifically, we
employ a pre-trained language model to extract item’s textual de-
scription and translate it into item’s embedding. Then we propose
to enhance the encoder-decoder based RQVAE model with con-
trastive objectives to learn item code. To be specific, we employ the
embeddings generated by the decoder from the samples themselves
as positive instances and those from other samples as negative
instances. Thus we effectively enhance the item discrepancy across
all items, better preserving the item neighbourhood. Finally, we
train and test semantic code with with generative retrieval on a
sequential recommendation model. Our experiments demonstrate
that our method improves NDCG@5 with 43.76% on the MIND
dataset and Recall@10 with 80.95% on the Office dataset compared
to the previous baselines.
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1 INTRODUCTION
Modern recommender systems employ a retrieve-and-rank strategy,
wherein a set of viable candidates are chosen during the retrieval
phase and subsequently ranked using a ranking model. Since the
ranking model only operates on the candidates it receives, it is
essential for the retrieval phase to generate highly relevant candi-
dates. During the retrieval stage, existing methods typically rely
on traditional vector search methods, which involve complex opti-
mization processes. Generative retrieval, on the other hand, is an
emerging technique that directly generates candidate codes, elimi-
nating the need for any discrete, non-differentiable inner-product
search system or index. Utilizing autoregressive decoding and beam
search, multiple viable candidates can be retrieved. In this context,
we can perceive the Transformer’s storage (i.e., parameters) as an
end-to-end recommendation index.

In the field of recommendation systems, the current methods
of generative retrieval primarily use the textual descriptions of
items to construct discrete codes by using VQ-VAE [17], RQ-VAE
[12, 13] or hierarchical Kmeans [16]. Similarly, for document gen-
erative retrieval methods [4, 16, 20], textual descriptions are also
predominantly used to construct discrete codes. Although using
such semantic codes can effectively capture semantic information,
it overlooks the relationships among items, which are crucial for
recommendation modeling.

In this paper, we argue that the construction of item codes in
recommendation systems should not solely rely on the semantic
information embedded in their textual descriptions. Instead, we
propose that the relationships between items, in conjunction with
semantic information, can collectively influence the quality of item
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Figure 1: An Overview of Contrastive Quantization based
Semantic Code Framework for Generative Recommendation.

codes. To address this, we optimized our code generation method by
introducing contrastive learning [14]. In this approach, we consider
embeddings generated from the decoder as positive samples, while
other generated samples serve as negative samples. Our goal is to
make the embeddings as similar as possible to their respective sam-
ples while increasing the dissimilarity with other samples. This al-
lows for a more significant differentiation between the content and
category of different items. By constructing positive and negative
samples, we gain a holistic view of the item repository, transcend-
ing the limitations of individual item representations. Moreover,
our pretraining method accommodates both small and large-scale
item repository, ensuring effective handling of sequences of varying
lengths.

The contributions of our work are as follow:
• In the current generative retrieval paradigm, heavy reliance on
semantic information limits the effectiveness. We identify that
existing code training doesn’t consider the relationships between
items. To address this, we introduce contrastive learning to create
a code pretraining approach that captures relationships. This pro-
vide a framework for a versatile pretraining corpus for generative
retrieval.

• We present a comprehensive framework for generative retrieval,
accommodating both large and small pretraining corpora. We
conduct experiments in sequence recommendation on sequences
of varying lengths, where our approach demonstrates promising
performance on two real-world datasets.

2 RELATEDWORK
Generative Retrieval. Generative Retrieval is a recently intro-
duced technique aimed at retrieving a set of relevant documents
from a database. It seeks to overcome the limitations of traditional
document retrieval methods by generating tokens one by one, in-
cluding document titles, names, or document ID strings. Tradi-
tional document retrieval typically involves training a dual-tower
model that maps both queries and documents to the same high-
dimensional vector space. Subsequently, it queries all documents to
return the closest ones, often necessitating large embedding tables.

GENRE [2], utilizing a Transformer architecture, is applied to en-
tity retrieval, generating entity names referenced in a given query
one token at a time. On the other hand, DSI [16] is the pioneering
system that assigns structured semantic DocIDs to each document,
which is used in document retrieval. When presented with a query,
the model autonomously generates document DocIDs one by one
in an autoregressive manner.
Item Indexing in Recommendations.Models like P5 [5] and M6
[1] from the LLM4Rec series leverage knowledge from the training
corpus to address various multi-class recommendation system tasks.
[7] further conducts in-depth research on item indexing for its use
in recommendations, exploring various categories of codes. VQRec
[6] employs the OPQ [8] method to generate product codes, and it
performs well in cross-domain downstream tasks. During the pre-
training process in the corpus, multiple domains are mixed for code
construction. Contrastive learning is employed, with mixed-domain
and semi-synthetic data selected as negative samples. TIGER [12]
uses RQVAE to generate semantic codes, which are then utilized in
retrieval models. [13] conduct validations on sequence recommen-
dation for videos, demonstrating the effectiveness and low storage
requirements of semantic codes. However, the relationship between
semantic codes is not considered. In our work, we build a more
global perspective code training scheme.

3 METHODS
Our method consists of two steps:

(1) Generating pretrained item codes from an information-rich
corpus: Firstly, we map content features to embedding vectors with
Pretrained Language Models(PLMs). These embedding vectors are
then input into a quantization model to train codes that possess
both semantic information and relationships.

(2) Utilizing the pretrained retrievable codebook in downstream
Tasks: In sequence recommendation tasks, we transform original
items into codes. These codes are then input into a seq2seq model
for training, enabling the prediction of the code for the next item.

3.1 Construction of Semantic Codes Based on
Contrastive Quantization

As depicted in Figure 1, we employ general-purpose pre-trained
text encoders such as Sentence-T5 and BERT to convert the textual
descriptions of items into embeddings. Subsequently, the RQVAE
model is utilized to transform these embeddings into codes. The
Residual-Quantized Variational AutoEncoder (RQ-VAE) is a multi-
stage vector quantizer that quantizes residuals at various stages
to yield a tuple of codes. This autoencoder trains the encoder-
decoder and codebook at the same time to reconstruct input data
simply using Semantic Codes. Figure 2 (a) illustrates how residual
quantization is used to produce codes.

3.1.1 RQVAE for Semantic Codes Construction. A latent represen-
tation, denoted as 𝑧 := 𝐸 (𝑥), is initially generated by encoding
the input 𝑥 through an encoder 𝐸 in the RQ-VAE model. At the
beginning stage (𝑑 = 0), the initial residual is simply defined as
𝑟0 := 𝑧. We establish a codebook 𝐶𝑑 := 𝑒𝑘𝐾𝑘=1, where 𝐾 represents
the codebook size. To quantize 𝑟0, we select the closest embedding
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Figure 2: The RQVAE model, the semantic reconstruction
and our contrastive quantization.

from the codebook corresponding to that level. The zeroth code-
word is denoted as 𝑐0 = argmin𝑖 ∥𝑟0 − 𝑒𝑘 ∥, which represents the
index of the nearest embedding at 𝑑 = 0, i.e., 𝑒𝑐0 . For level 𝑑 = 1,
the residual is defined as 𝑟1 := 𝑟0 − 𝑒𝑐0 . Subsequently, we employ
the codebook of the first level to compute the code, following the
same procedure used for the zeroth level.

To create semantic code, we repeat this process𝑚 times, resulting
in a tuple of𝑚 codewords. This recursive approach approximates
the input with increasing granularity. In contrast to using a single
codebook magnified𝑚 times, we employ distinct codebooks of size
𝐾 for each of the𝑚 levels. This design decision takes into consider-
ation the decreasing average residual norm as the levels increase,
thereby avoiding codeword conflicts among different granularities.

After obtaining the semantic code (𝑐0, . . . , 𝑐𝑚−1), we sum up
the quantized representation of the selected 𝑧 values and create
𝑧 as 𝑧 :=

∑𝑚−1
𝑑=0 𝑒𝑐𝑖 . This resulting vector, 𝑧, is then fed into the

decoder, whose goal is to reconstruct the input using 𝑧. The loss
function employed for training the RQ-VAE model comprises two
main components:

L𝑠𝑒 (𝑥) := Lrecon + Lrqvae, where

Lrecon := ∥𝑥 − 𝑥 ∥2 and

Lrqvae :=
𝑚−1∑︁
𝑑=0

∥sg[𝑟𝑖 ] − 𝑒𝑐𝑖 ∥2 + 𝛽 ∥𝑟𝑖 − sg[𝑒𝑐𝑖 ] ∥2 .

Here, 𝑥 represents the decoder’s output, and sg denotes the
stop-gradient operation [18]. Importantly, this loss function simul-
taneously trains the encoder, decoder, and codebook.

To prevent codebook collapse in RQVAE, we adopt an initial-
ization approach [22] based on k-means clustering. In the first
training batch, k-means algorithm is applied for 100 iterations and
the obtained centroids are employed as our initialization strategy.

3.1.2 Contrastive Quantization for Item Relationships. Contrastive
learning aims to map the student’s representation 𝑥0 close to the
teacher’s representation 𝑥0, while the negative samples’ represen-
tations {𝑥𝑖 }𝐾𝑖=1 far apart from 𝑥0.

To achieve this, we use the following InfoNCE loss [11, 14] for
model training:

L𝑐𝑜 (𝑥) := 𝛼Lcl + Lrqvae, where

Lcl := − log
exp

(
⟨𝑥0, 𝑥0⟩/𝜏

)∑𝐾
𝑗=0 exp

(
⟨𝑥0, 𝑥 𝑗 ⟩/𝜏

) .
where ⟨·, ·⟩ denotes the cosine similarity between two feature

vectors. 𝜏 represents the temperature parameter that regulates the
level of concentration. Figure 2 (b) illustrates the conventional train-
ing approach for RQVAE, which focuses solely on the semantic
alignment of individual items. In contrast, in Figure 2(c), contrastive
learning is executed as a (𝐾 + 1)-way classification task, wherein
its objective is to maximize the lower bound of mutual information
between 𝑥0 and 𝑥0. With the assistance of contrastive learning,
items delve deeper into learning their own characteristics while dis-
tinguishing themselves from other items. Thus, we have pretrained
a code corpus that considers global item relationships.

3.2 Generative Retrieval Based on Codes
We organize interacted item sequences in chronological order in
the format (𝑖𝑡𝑒𝑚1, ..., 𝑖𝑡𝑒𝑚𝑛). As our objective is to forecast the
subsequent item 𝑖𝑡𝑒𝑚𝑛+1, we tokenize each item into codes 𝐶 =

(𝑐0, . . . , 𝑐𝑚−1) and obtain a sequence of 𝑠 = (𝑐1,0, . . . , 𝑐1,𝑚−1, 𝑐2,0, . . . ,
𝑐2,𝑚−1, . . . , 𝑐𝑛,0, . . . , 𝑐𝑛,𝑚−1). The seq2seq model is then trained to
predict (𝑐𝑛+1,0, . . . , 𝑐𝑛+1,𝑚−1), the code of 𝑖𝑡𝑒𝑚𝑛+1. Finally, we query
the item-code table to retrieve the corresponding items for the code
table.

4 EXPERIMENTS AND ANALYSIS
4.1 Experimental Settings
We conduct extensive experiments on real-world datasets to answer
the following questions.
• Q1: Is our proposed method superior to state-of-the-art models?
• Q2: How sensitive is our model to hyper-parameters?
Datasets and Tasks.We conducted experiments on two real-world
datasets: MIND [21], Amazon’s Office Product domain (Office).
These datasets cover a wide range of item proportions, from 10,000
to 37,000 items. MIND is a comprehensive benchmark dataset for
news recommendations, while Amazon’s datasets comprise user
comments and product descriptions. Details of our preprocessed
datasets are summarized in Table 1, including user interaction se-
quence lengths (Seq), average (mean), and median (medium) se-
quence lengths. To manage the scale of MIND, we followed the
approach outlined in [4], retaining interactions from at least 15
users and capping sequence lengths at 70. For Amazon datasets,
we filtered users who interacted with no more than 5 items. To
explore how the number of items impacts our pretrained model, we
split the Office dataset into Office (S) and Office (L), featuring small
and large item subsets of 14,000 and 37,000 items, respectively. We
extracted three descriptions from the MIND dataset: type, subtype,



and title, and for the Amazon datasets, we selected type, brand, title,
and category. These descriptions served as inputs for Sentence-T5
[10] PLM, producing 768-dimensional semantic embeddings for
each item.

Table 1: Descriptive Statistics for experimental datasets

Datasets User Item Seq Mean Medium
MIND 29207 12251 [15,70] 25.06 22
Office(S) 2868 14618 [10,20] 13.21 12
Office(L) 16696 37347 [5,50] 8.38 12

Parameter Setting. The RQ-VAE [9, 22] model comprises three
core components: a DNN encoder, a residual quantizer, and a DNN
decoder. The encoder has three intermediate layers with dimensions
of 512, 256, and 128, using ReLU activation functions, and ends with
a 96-dimensional latent representation. A unique 3-tuple semantic
code is generated for each item, with shared parameters across our
three-level codebooks, ensuring consistency. The code cardinality
is fixed at 64. We set hyperparameters 𝛼 to 0.1, 𝛽 to 0.25 and 𝜏 to 0.1
for optimization. The Adam optimizer is used with a learning rate of
0.0001 and a batch size of 256. Importantly, our method ensures that
no items share the same code, allowing seamless integration of the
pretrained code into downstream recommendation models without
manual bit adjustments to avoid conflicts. To initially provide a
pretrained model suitable for downstream tasks, we experimented
with a seq2seq transformer model [3, 15, 19]. We utilized a batch
size of 512 and set the learning rate to 0.001 for training.
Evaluation Metrics. There are two critical aspects to validate our
pretrained model, to assess the stability and effectiveness of RQ-
VAE training and the superiority of our code in downstream tasks
like sequence recommendation. We use two evaluation metrics for
RQ-VAE: cosine similarity and 𝑇𝑜𝑝 − 𝐾 precision. Cosine similar-
ity measures similarity between input and output embeddings for
individual samples. 𝑇𝑜𝑝 − 𝐾 precision quantifies the Euclidean dis-
tance between the input of each item and the output of all items
and selects items with the 𝐾 closest ones. Regarding the second
aspect, we utilize Recall and Normalized Discounted Cumulative
Gain (NDCG). We follow the standard leave-one-out evaluation
protocol, reserving the last item for testing, the item before that for
validation, and using the rest for training.

4.2 Performance Comparison and Analysis
Result 1: Performance Comparison (for Q1) To validate our
contrastive quantization based method, we conducted various com-
parative experiments, including using Lse as a baseline, employing
only Lco, and combining Lse with Lco. Table 2 reveals that, for
the MIND dataset, our contrastive learning method outperforms
the other two, with significant improvements in NDCG and Recall,
approximately 38% and 36%, respectively. We also compared our
semantic code construction with random hashing methods, con-
firming its benefits for model inference. Table 3 displays results on
Office (S) and Office (L). For shorter sequences and fewer samples,
Lco + Lse slightly outperforms Lco, while for longer sequences
and more samples, Lco excels. This highlights the versatility of our

Table 2: Experiment results on MIND dataset.

@5 @10 @20 @40
Random NDCG 0.0201 0.0265 0.0327 0.0390

Recall 0.0319 0.0519 0.0766 0.1075

L𝑠𝑒 NDCG 0.0363 0.0474 0.0594 0.0727
Recall 0.0560 0.0905 0.1384 0.2031

L𝑐𝑜 NDCG 0.0522 0.0663 0.0817 0.0975
Recall 0.0803 0.1241 0.1855 0.2625

L𝑠𝑒 + L𝑐𝑜 NDCG 0.0444 0.0574 0.0710 0.0865
Recall 0.0677 0.1081 0.1621 0.2376

Impr. NDCG 43.76% 39.90% 37.52% 34.10%
Recall 43.34% 37.21% 34.05% 29.24%

Table 3: Experiment results on Office dataset.

Metrics Office(S) Office(L)
@10 @20 @10 @20

L𝑠𝑒 NDCG 0.0024 0.0032 0.0041 0.0053
Recall 0.0037 0.0068 0.0075 0.0123

L𝑐𝑜 NDCG 0.0034 0.0043 0.0047 0.0059
Recall 0.0060 0.0094 0.0079 0.0125

L𝑠𝑒 + L𝑐𝑜 NDCG 0.0035 0.0042 0.0042 0.0052
Recall 0.0066 0.0096 0.0079 0.0119

Impr. NDCG 43.80% 31.06% 15.11% 10.53%
Recall 80.95% 41.03% 5.38% 1.46%
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Figure 3: Analysis on 𝜏 and training epochs.

contrastive quantization based approach for pretraining large-scale
item models, with MSE acting as a lower bound for RQVAE training.
Result 3: Sensitivity Analysis of Temperature 𝜏 and training
epochs (for Q2)

To analyse how temperature 𝜏 affects RQVAE training, we use
MIND dataset with T = [0.1, 0.5, and 1.0]. In this case, RQ-VAE was
trained for 20 and 100 epochs, respectively, with he best results
of Recall@40 when T=1.0 and T=0.1 in Figure 3. This shows that
the training of RQVAE fluctuates with 𝜏 within a certain range.
Furthermore, when we fix T=0.1, we conduct training for [20, 50,
100] epochs. As evident from the Figure 3, with increasing training
epochs, the loss steadily decreases, NDCG and Recall consistently
improve, indicating that RQ-VAE captures richer semantic informa-
tion.
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Figure 4: Analysis on codebook size, number of codebooks,
dim of embeddings.

Result 4: Sensitivity Analysis of Codebook (for Q2)
Key parameters influencing RQVAE’s effectiveness encompass

codebook size, codebook quantity, and embedding dimension. As
illustrated in Figure 4, as the codebook space expands, NDCG ex-
hibits a consistent upward trend. This implies that there is a larger
available space to represent each item, leading to more precise
codebook allocation. Moreover, with the increase in embedding di-
mension, item representational capabilities are enhanced, resulting
in improvements across various metrics.

5 CONCLUSION
Existing generative retrieval model predominantly reliant on LLMs
for code generation, tend to be overly tied to semantic content,
overlooking the broader context of product information and user
behavior. In this work, we construct codes with a more compre-
hensive view for generative retrieval. We introduced contrastive
learning into the code generation process. By creating positive and
negative samples, we optimized our model’s understanding of the
global product landscape. Experimental results indicate an enhance-
ment in the performance of our code repository across downstream
tasks. In the future, we anticipate that further advancements in code
generation techniques, potentially incorporating richer contextual
information and user behavior analysis, will continue to improve
the efficacy of generative retrieval systems in catering to evolving
user needs.
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