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Abstract

Large Language Models (LLMs) and multi-agent systems have shown impressive capa-
bilities in natural language tasks but face challenges in clinical trial applications, primarily
due to limited access to external knowledge. Recognizing the potential of advanced clinical
trial tools that aggregate and predict based on the latest medical data, we propose an inte-
grated solution to enhance their accessibility and utility. We introduce Clinical Agent Sys-
tem (CT-Agent), a Clinical multi-agent system designed for clinical trial tasks, leveraging
GPT-4, multi-agent architectures, LEAST-TO-MOST, and ReAct reasoning technology.
This integration not only boosts LLM performance in clinical contexts but also introduces
novel functionalities. Our system autonomously manages the entire clinical trial process,
demonstrating significant efficiency improvements in our evaluations, which include both
computational benchmarks and expert feedback.

1. Introduction

The introduction of clinical multi-agent systems into the healthcare sector marks a substan-
tial advancement in improving care quality through sophisticated computational methods
and in-depth data analysis. These systems, driven by Large Language Models (Singhal
et al., 2023a) (LLMs) like ChatGPT (Liu et al., 2023), BioGPT (Luo et al., 2022), ChatDoc-
tor (Yunxiang et al., 2023), and Med-PaLM (Singhal et al., 2023b), have shown considerable
success in processing and understanding medical data, providing customized care, and of-
fering insights into intricate health conditions. However, their use in clinical trials faces
challenges, mainly due to their limited ability to access and integrate external knowledge
sources, such as DrugBank (Wishart et al., 2018). This research stems from the urgent need
to fully utilize LLMs in clinical settings, going beyond the conversational skills of current
models to include actionable and explanatory analysis leveraging extensive external data.

Our study introduces CT-Agent, a new Clinical multi-agent system tailored for clinical
trial tasks. Utilizing the capabilities of GPT-4, combined with multi-agent system archi-
tectures, and incorporating advanced reasoning technologies like LEAST-TO-MOST (Zhou
et al., 2022) and ReAct (Yao et al., 2022), our solution not only boosts LLM performance
in clinical scenarios but also brings new functionalities. Our system is designed to au-
tonomously oversee the clinical trial process, filling the void in existing implementations
that mainly focus on conversational interactions without sufficient actionable outcomes.

Prior research has highlighted the potential of LLMs in healthcare, particularly in di-
agnostics, patient communication, and medical research (Singhal et al., 2023b; Yunxiang
et al., 2023; Singhal et al., 2023a). Yet, these investigations have not fully exploited the
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models for clinical trials, where understanding the complex relationships between drugs,
diseases, and patient reactions is crucial. Our research introduces a multi-agent framework
that uses specialized agents for tasks such as drug information retrieval, disease analysis,
and explanatory reasoning. This strategy not only allows for a more detailed and un-
derstandable decision-making process but also significantly enhances clinical trial analysis
capabilities, including predicting outcomes, deciphering reasons for failure, and estimating
trial duration.

A review of the literature indicates a growing interest in improving LLM applications
in medicine. For instance, studies like (Li et al., 2024) discuss employing ChatGPT and
BioGPT for patient data synthesis and diagnostic recommendations. However, these discus-
sions often focus only on the conversational aspects, overlooking the actionable intelligence
and comprehensive reasoning our approach introduces. Moreover, our method is unique in
incorporating external databases and reasoning technologies like ReAct, aiming not just to
interpret but also to act on the intricate network of clinical data.

Our main contributions are summarized as follows:

• We present Clinical Trial Multi-Agent (CT-Agent), the first multi-agent framework
that elevates the conversational abilities of LLMs with actionable intelligence.

• We integrate extensive tools, and knowledge and use advanced reasoning technologies
to enhance the system’s decision-making capabilities.

• CT-Agent achieves competitive predictive performance in clinical trial outcome pre-
diction (0.7908 PR-AUC), obtaining a 0.3326 improvement over the Standard Prompt
Method.

2. Related Work

NLP has achieved significant progress in the biomedical arena, delivering crucial insights
and tools for a range of applications in healthcare and medicine. The advent of Large Lan-
guage Models (LLMs) has notably advanced the medical field by embedding comprehensive
medical knowledge into their training.

For example, question answering (QA) in the medical domain represents a critical chal-
lenge in NLP, where language models are tasked with responding to specific queries using
their embedded medical knowledge, e.g., MedQA (USMLE) (Jin et al., 2020) HeadQA (Vi-
lares and Gómez-Rodŕıguez, 2019), MMLU (Hendrycks et al., 2021), and PubMedQA (Jin
et al., 2019).

Despite being pretrained for general purposes, closed-source LLMs like ChatGPT (Ope-
nAI, 2022) and GPT-4 (OpenAI, 2023) have demonstrated considerable medical capabilities
in both benchmark evaluations and real-world applications. Liévin et al. (2023) applied
GPT-3.5 using various prompting techniques, such as Chain-of-Thought, few-shot, and re-
trieval augmentation, across three medical reasoning benchmarks, showcasing the model’s
robust medical reasoning skills without the need for specialized fine-tuning. Additionally,
evaluations of LLMs such as ChatGPT on professional medical assessments, including the
US Medical Exam (Kung et al., 2023) and the Otolaryngology-Head and Neck Surgery
Certification Examinations (Long et al., 2023), have resulted in scores that meet or nearly
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Figure 1: CT-Agent framework. Given a complex problem to solve (e.g., predicting clinical
trial outcome), the role of the Planning Agent is to decompose it into three
subproblems: trial enrollment, drug safety to the human body, and drug efficacy
to disease. These subproblems are solved by Enrollment Agent, Safety Agent,
and Efficacy Agent, respectively, enhanced by calling external tools (Section 3.3).
Finally, the Reasoning Agent aggregates the solutions of subproblems, draws the
conclusion, and makes the prediction.

meet passing thresholds. This performance underscores the potential of LLMs to aid in
significant medical contexts, including medical education and clinical decision-making.

AI for Clinical Trial. AI has great potential to revolutionize clinical trials in a couple of
problems. Specifically, Zhang et al. (2020); Gao et al. (2020) leverage AI to recruit appro-
priate patients that meet the requirement in eligibility criteria. Fu et al. (2022); Chen et al.
(2024); Lu et al. (2024) builds machine learning models to predict the outcome of clinical
trials based on clinical trial features such as drug molecule, disease code, and eligibility
criteria. In the context of clinical trials, Wang et al. (2024) leverages the large language
model to generate patient-level digital twins to simulate clinical trials. However, most of
these works do not utilize LLM’s reasoning ability and cannot solve complex problems in
clinical trials. To the best of our knowledge, our work is the first LLM agent work for
clinical trials and is able to solve complex clinical trial reasoning problems.

3. Methods

3.1. Overview of CT-Agent

Our proposed system is a conversational multi-agent framework, analogous to a hospital
staffed by various specialists. Each agent within this system plays a distinct role, mirroring
the specialization seen in medical professionals—some focus on pharmacology, others on di-
agnosing diseases, while a few are dedicated to designing clinical trials. To process natural
language inputs and generate responses that are coherent and contextually appropriate, each
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agent utilizes GPT-4. Moreover, we enhance the system’s reasoning capabilities by incor-
porating methodologies such as ReAct (Yao et al., 2022) and the LEAST-TO-MOST (Zhou
et al., 2022) principle. Following the reasoning process, the system is capable of taking
actions such as searching for information, indexing data in databases, and employing ex-
pert AI models. By integrating this information, the system effectively simulates a highly
knowledgeable doctor. Working in concert, these agents can deliver precise, explainable
solutions to user inquiries.

3.2. Agent Roles and Responsibilities

The CT-Agent framework integrates a diverse array of specialized agents, each employing
the ReAct and LEAST-TO-MOST reasoning methods to meticulously plan their actions.
Through the use of advanced search capabilities, access to specialist models, and indexing
in databases, these agents are able to execute a wide range of tasks effectively. Below, we
delve into the specific roles and responsibilities assigned to each agent within the system.

3.2.1. Planning Agent

The Planning Agent’s primary role is to strategize and determine the optimal approach
to address user problems. Utilizing the LEAST-TO-MOST Reasoning method, this agent
systematically decomposes complex issues into smaller, more manageable subproblems. This
stepwise breakdown facilitates targeted interventions, where each subproblem is addressed
by the most suitable specialist agent. In the context of clinical trials, the Planning Agent
employs few-shot learning techniques to train on example scenarios. This approach enhances
the agent’s ability to effectively decompose and delegate tasks within clinical contexts,
ensuring precise and efficient problem-solving.

3.2.2. Efficacy Agent

The Efficacy Agent is a specialized module within our multi-agent framework, primarily
focused on assessing the therapeutic effectiveness of drugs against specified diseases (Chang
et al., 2019; Chen et al., 2021; Zhang et al., 2021; Lu et al., 2022). This agent utilizes
advanced data retrieval and analysis techniques, drawing from rich biomedical databases
such as DrugBank (Wishart et al., 2018) and the HetioNet Knowledge Graph to ensure
comprehensive and accurate evaluations.

Specifically, the Efficacy Agent employs the SMILES (Simplified Molecular Input Line
Entry System) notation to identify and retrieve detailed chemical and pharmacological
information about drugs. This includes their molecular structure, mechanism of action,
metabolism, and potential side effects, providing a holistic view of the drug’s properties.

Upon receiving a query with a specific drug and disease, the Efficacy Agent performs
several key functions:

• Drug and Disease Profiling: Retrieves up-to-date, detailed descriptions of the drug
and the disease from DrugBank and other relevant databases, ensuring that users have
access to reliable and comprehensive information.

• Interaction Pathway Mapping: Utilizes the HetioNet Knowledge Graph to trace
and visualize the pathways connecting the drug to the disease. This involves identifying
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biological interactions, such as target proteins and genetic associations, that are crucial
for understanding the drug’s potential efficacy.

• Efficacy Assessment: Analyzes the gathered information to evaluate the potential
effectiveness of the drug against the disease, considering factors like target specificity,
therapeutic indices, and evidence from clinical trials.

By synthesizing data from multiple sources and employing sophisticated analytical tech-
niques, the Efficacy Agent provides essential insights into drug-disease relationships, sup-
porting informed decision-making in clinical and research settings.

3.2.3. Safety Agent

The Safety Agent is integral to our CT-Agent framework, focusing specifically on the as-
sessment of drug safety and its implications for patient health. This agent leverages a
comprehensive repository of pharmacological data and historical clinical trial outcomes to
evaluate the risks associated with specific drug-disease interactions. Utilizing databases
such as DrugBank and clinical trial registries, the Safety Agent provides detailed insights
into the historical safety profiles of drugs.

Key functions of the Safety Agent include:

• Drug Safety Profiling: Accesses detailed safety information from databases to
compile historical data on adverse drug reactions, contraindications, and warnings.
This data is crucial for understanding the risk factors associated with the drug.

• Historical Failure Rate Analysis: Investigates past clinical trials and reported
outcomes to determine the failure rates of drugs in similar contexts or against similar
diseases. This analysis helps predict potential safety concerns in current applications.

• Risk Assessment: Employs statistical models to analyze the safety data and predict
the risk of adverse effects when a drug is used to treat a particular disease. This
predictive capability is vital for making informed decisions about drug prescriptions
and usage.

By systematically analyzing safety data and historical trial outcomes, the Safety Agent
plays a crucial role in minimizing risks and enhancing patient safety in clinical settings.

3.2.4. Enrollment Agent

Proper enrollment ensures that the trial has enough participants to statistically power the
study. This is essential to detect the true effect of the intervention being tested. Insufficient
enrollment can lead to inconclusive or unreliable results because the sample size determines
the ability of a trial to accurately reflect the effects of a treatment. We leverage a Hierar-
chical transformer-based model Yue et al. (2024) that takes eligibility criteria as an input
feature and predicts the success rate of enrollment. It is a binary classification problem,
where 1 denotes the successful enrollment while 0 does not. The details can be found in
Section 3.3.
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3.3. Calling External Tools

GPT supports calling external tools (e.g., function, database retrieval) to leverage external
knowledge and enhance its capability. Specifically, suppose we have a couple of toolkits.
GPT’s API can automatically detect which tool to use, which serves as glue to connect
large language models to external tools. Our system integrates a variety of external data
sources and predictive AI models to support the agents’ functions.

Data Sources The use of professional datasets is pivotal in ensuring the accuracy and
reliability of our agents’ information retrieval capabilities.

• Drugbank: Drugbank (Wishart et al., 2018) stands out as a premier resource, offering
detailed drug data, including chemical, pharmacological, and pharmaceutical information,
with a focus on comprehensive drug-target interactions. Drugbank is not only a repos-
itory of drug information but also serves as an invaluable tool for bioinformatics and
cheminformatics research, providing data for over 13,000 drug entries including FDA-
approved small molecule drugs, FDA-approved biopharmaceuticals (proteins, peptides,
vaccines, and allergenics), and nutraceuticals.

• Hetionet: Hetionet (Himmelstein et al., 2017) is an integrative network of biology that
encompasses a comprehensive collection of biological entities and their relationships. It
uniquely combines data from various biomedical databases covering diseases, genes, com-
pounds, and more, into a single, coherent graph structure. This interconnected approach
allows for multifaceted analyses, including drug repurposing, genetic associations, and
network medicine. Hetionet includes over 47,000 nodes of different types (e.g., diseases,
drugs, genes) and more than 2 million relationships, offering a rich dataset for computa-
tional biology and drug discovery.

• LLM-generated data: Large Language Models (LLM) like GPT-4 and its successors,
have demonstrated remarkable capability as knowledge compressors and generators. They
can synthesize and extrapolate information from vast datasets to generate coherent, novel
data points and insights. In this research, we leverage LLMs to generate new knowledge
relevant to our study, including hypothetical drug interactions, potential therapeutic tar-
gets, and model organism analyses. This approach allows us to expand our dataset beyond
traditional sources, incorporating generated insights that are validated against existing
databases and literature. The use of LLM-generated data introduces a novel dimension
to our research, enabling the exploration of uncharted territories in drug discovery and
biomedical research.

Predictive AI Models We utilize multiple predictive AI models within our framework
to ensure the accuracy and reliability of our agents’ abilities:

• Enrollment Model: The enrollment model is designed to predict the likelihood of
successful participant enrollment in clinical trials based on the eligibility criteria, the
drugs involved, and the diseases targeted. This is a hierarchical transformer-based model,
integrating sentence embeddings from BioBERT (Lee et al., 2020) to capture the nuanced
medical semantics in the criteria text. In practice, the Enrollment Agent receives a
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query containing the drugs, diseases, and detailed eligibility criteria. It processes this
information to predict the enrollment difficulty, which aids in planning and adjusting
recruitment strategies for clinical trials. This capability supports more efficient trial
design and can significantly impact the speed and success of new drug developments.
The details can be found in A.1.

• Drug Risk Model: The Drug Risk Model is designed to estimate the likelihood of a
drug not achieving the desired therapeutic effect in clinical trials. This model is based
on historical data of drug performances across various trials. Using a simple but effective
approach, each drug is represented by its historical success rate, calculated as the mean
of its trial outcomes (1 for success and 0 for failure).

We store these success rates in a precomputed dictionary and utilize a lookup mechanism
to assess drug risk rapidly. For drugs not found in the dictionary, a matching function
approximates the closest drug name to ensure robust risk assessments. This method
allows for quick and accurate risk estimations in real-time decision-making processes and
is particularly useful in early-stage drug development and trial planning.

• Disease Risk Model: Parallel to the Drug Risk Model, the Disease Risk Model calcu-
lates the probability of unsatisfactory treatment outcomes associated with specific dis-
eases. This model aggregates historical trial data to determine success rates for diseases,
which are then inverted to represent risk levels.

Similar to the drugs model, each disease’s risk is precomputed and stored. The model
employs sophisticated string-matching techniques to accommodate variations in disease
naming conventions, ensuring accurate risk evaluations. This model aids in the prioriti-
zation of diseases in clinical research and helps in forecasting the challenges in achieving
successful treatment outcomes.

3.4. Integration of Reasoning Technology

To further enhance the agent’s decision-making capabilities, we integrate advanced reason-
ing technologies such as ReAct (recognition, action, and context) (Yao et al., 2022) and
the Least-to-Most reasoning framework (Zhou et al., 2022). These methodologies comple-
ment each other by providing robust mechanisms for addressing complex problems through
structured and contextual analysis.

ReAct Reasoning: ReAct reasoning is a holistic approach that emphasizes the critical
roles of recognition (Re), action (A), and context (Ct) in effective problem-solving. This
methodology advocates for the identification of patterns or cues (recognition), the formu-
lation and execution of a course of action (action), and the careful consideration of the
surrounding circumstances (context). By integrating these elements, ReAct equips agents
to make informed and precise decisions rapidly, an asset, particularly in dynamic and un-
predictable environments.

Least-to-Most Reasoning: In contrast, the Least-to-Most reasoning method adopts
a hierarchical approach to problem-solving. It suggests beginning with the simplest or
least complex aspects and gradually progressing to address more intricate components.
This structured problem-solving sequence ensures that foundational elements are thoroughly
understood before advancing to tackle more complex layers of the issue. This method
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is valuable in educational contexts and when dealing with new or unfamiliar concepts,
promoting a comprehensive understanding and preventing potential oversights.

Synergistic Integration: By combining ReAct and Least-to-Most reasoning, we can
formulate a synergistic strategy that leverages the strengths of both methods. Initially,
the Least-to-Most framework decomposes a problem into its elemental parts, organizing
them from simplest to most complex. Subsequently, within this structured framework,
ReAct reasoning is applied to each segment. This involves recognizing relevant patterns or
cues, deciding on appropriate actions based on these insights, and adapting these actions by
considering the immediate context. This integrative approach not only ensures a methodical
breakdown of problems but also adopts solutions dynamically to meet the specific demands
of each scenario.

3.5. Workflow

The workflow of our CT-Agent system is designed to optimize the collaboration and effi-
ciency of multiple specialized agents to address complex medical inquiries. The process is
structured in several sequential steps, as described below:

Step 1: Initial Planning and Problem Decomposition The workflow begins with
the Planning Agent, which takes the lead in assessing the user’s query. Utilizing the LEAST-
TO-MOST Reasoning method, this agent decomposes the complex problem into simpler,
more manageable subproblems. This structured breakdown is crucial as it allows for tar-
geted problem-solving by directing specific tasks to the most appropriate specialist agents.

Step 2: Task Allocation to Specialist Agents Once the problem is decomposed, the
Planning Agent allocates each subproblem to the respective specialist agents. For example:

• The Efficacy Agent is tasked with assessing drug effectiveness against specific diseases.

• The Safety Agent evaluates potential risks and adverse effects associated with the drug.

• The Enrollment Agent handles the feasibility and strategies for patient enrollment in
clinical trials.

Each agent operates independently, utilizing its specialized models and databases to process
and analyze the assigned task.

Step 3: Independent Agent Processing Each specialist agent processes its assigned
subproblems using specific methodologies and external tools. This includes retrieving and
analyzing data from sources like DrugBank and HetioNet, applying predictive models, and
generating insights based on the agent’s specialty. The agents may also call external func-
tions or databases to enhance their assessments or predictions.

Step 4: Synthesis of Findings After each agent completes its task, the results are sent
back to the Planning Agent. This agent synthesizes the findings from all the specialists,
creating a comprehensive response that integrates all aspects of the problem, from drug
efficacy and safety to enrollment potential.
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Step 5: Reasoning and Final Decision Making The final step involves applying the
ReAct reasoning method to the synthesized findings. Here, the Planning Agent, enhanced by
few-shot learning capabilities, examines the context and details of the integrated response to
make informed decisions. This approach ensures that the final recommendation or solution
is not only based on segmented analysis but also considers the interdependencies and broader
implications of the combined agent findings.

Step 6: Delivery of Solution The completed solution, which encompasses a detailed
and reasoned response based on the collective intelligence of the multi-agent system, is then
delivered to the user. This response not only addresses the initial query but also provides
explanatory insights that justify the recommendations, thereby enhancing user trust and
understanding.

This structured workflow ensures that CT-Agent effectively mimics a collaborative team
of medical specialists, offering precise and comprehensive solutions to complex medical
inquiries.

4. Experiment

This section outlines the experimental design used to assess the performance of CT-Agent in
the setting of clinical trials. We aim to demonstrate the superior predictive capabilities of
our model by comparing it with established baseline methods.

4.1. Baseline Methods

To ensure a comprehensive evaluation, we have selected diverse baseline methods known for
their robustness in similar tasks:

1. Gradient-Boosted Decision Trees (GBDT): This method integrates embeddings
for drugs, diseases, and eligibility criteria derived from BioBERT. The concatenated
embeddings are then processed using LightGBM, a popular gradient-boosting framework
that is highly efficient and scalable, making it suitable for handling complex datasets
typical in clinical trials.

2. Hierarchical Attention Transformer (HAtten): Employing BioBERT embeddings
for drugs and diseases, this model introduces a hierarchical attention mechanism. It
systematically focuses on different granularity levels, from entire paragraphs to specific
sentences within the eligibility criteria, enhancing its ability to discern relevant informa-
tion. The process culminates in a two-layer Multilayer Perceptron (MLP), which aids in
refining the decision process.

3. Standard Prompting: As a control, this baseline employs large language models
(LLMs) GPT-4 (OpenAI, 2022) in their standard configuration. It tests the hypoth-
esis that without tailored adaptations or integrations of external data, the pre-trained
knowledge embedded within LLMs can competently perform outcome prediction in clin-
ical trials, albeit potentially less effectively than more specialized approaches.

This comparative analysis will help in highlighting the strengths and potential areas for
improvement in CT-Agent, guiding future enhancements in the model’s architecture and
its application in clinical trial settings.

9



CT-Agent: Clinical Trial Multi-Agent

4.2. Experimental Setup

Our experimental framework was implemented on a server equipped with an AMD Ryzen
9 3950X CPU, 64GB RAM, and an NVIDIA RTX 3080 Ti GPU. We utilized Python 3.8
for scripting and PyTorch for model implementation and training. For each experiment, we
used the same seed to ensure reproducibility.

4.2.1. Data and Resources

In our investigation, we employed a variety of datasets and external resources to construct
a comprehensive experimental framework. These are detailed as follows:

• Drug Databases: We usedDrugBank, a comprehensive, freely accessible online database
containing information on drugs and drug targets. DrugBank is instrumental for ac-
quiring detailed pharmacological information, which supports the pharmacokinetics and
molecular mechanisms of drug actions in our models.

• Knowledge Graphs: Hetionet, an integrative knowledge graph of biomedical informa-
tion that interlinks biological entities through relationships, was utilized. It provides a
structured form of data that helps in understanding complex drug-disease relationships,
gene interactions, and more, which are crucial for our predictive analytics.

• ClinicalTrials.gov: We extracted data from https://clinicaltrials.gov/, which in-
cludes information from both completed and ongoing clinical trials. This data is essential
for validating our predictive models and for training them to understand clinical outcomes
based on past trial data.

• GPT-Generated Data: To augment our dataset and test the robustness of our models
under varied scenarios, we generated synthetic data. This was done by prompting Gen-
erative Pre-trained Transformer (GPT) models with scenarios derived from our existing
datasets, thereby creating realistic, hypothetical data scenarios for further testing.

These diverse resources were meticulously integrated into our model, referred to here-
after as CT-Agent. This integration helps in providing a rich and informed context for each
predictive task undertaken by our model.

For our experimental validation, we randomly selected 40 training samples from the
clinical trial outcome prediction benchmark provided in (Fu et al., 2022). An identical ap-
proach was used to select 40 samples from the test set, ensuring that our training and testing
datasets were balanced and randomized, thereby providing a robust evaluation framework
for our model’s performance.

4.2.2. Procedure

Each agent in CT-Agent was tasked with specific roles, as outlined in the Methods section.
The Safety Agent queried drug databases, the Efficacy Agent analyzed disease informa-
tion, the Enrollment Agent predicted the enrollment difficulty, and the Planning Agent
synthesized these findings into actionable insights. We conducted experiments to assess the
accuracy of outcome predictions and the precision of failure reason identifications.

10
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Table 1: A real example of CT-Agent on clinical trial outcome prediction.

User Input
Problem: I have designed a clinical trial and hope you can help me predict whether this
trial can pass. Features contain (1) drug: Aggrenox capsule; (2) disease: cerebrovascular
accident; (3) inclusion criteria: ...; (4) exclusion criteria: ...;

Planning (Planning Agent): few-shot learning
Thought: Decompose a complex problem into several easier subproblems.
Subproblem 1 (Enrollment Agent): Determine the level of enrollment feasibility based
on inclusion and exclusion criteria.
Subproblem 2 (Safety Agent): Evaluate the safety of the drug “aggrenox capsule”
Subproblem 3 (Efficacy Agent): Assess the efficacy of the drug “aggrenox capsule” on
the disease “cerebrovascular accident”

Solving Subproblems:
Subproblem 1 (Enrollment Agent): Detect the function “enrollment prediction model”
should to be called. The predicted enrollment failure rate is 0.3597.
Subproblem 2 (Safety Agent): Detect functions “disease historical statistics” and “drug
historical statistics” should be called. The historical failure rate of Aggrenox capsules in
clinical trials is reported as 1.0.
Subproblem 3 (Efficacy Agent): Detect functions “retrieve Hetionet knowledge graph”
and “retrieve DrugBank database” should be called.

Reasoning (Reasoning Agent): few-shot learning
1. Enrollment Difficulty (Enrollment Agent): A moderate level of difficulty in en-
rolling participants. This could pose challenges in recruiting a sufficient number of eligible
patients meeting the strict inclusion and exclusion criteria set for the trial, which can impact
the overall success rate of the trial.
2. Safety of Aggrenox Capsule (Safety Agent): The historical failure rate of Aggrenox
capsules (1.0) indicates a lack of success in previous trials. Evaluating the safety profile of
the Aggrenox capsule in the context of cerebral infarction and cerebrovascular accidents is
crucial due to the specified risk factors and exclusion criteria. The presence of risk factors
like hypertension, diabetes, and other conditions among the trial participants might raise
concerns about potential interactions or adverse effects of Aggrenox, contributing to the
historical failure rate.
3. Efficacy of Aggrenox Capsule (Efficacy Agent): The Aggrenox capsule, combining
aspirin and dipyridamole, is beneficial in preventing strokes by its antiplatelet and vasodila-
tory effects. Given the criteria provided for the clinical trial specifically targeting patients
with a history of cerebral infarction who meet certain age and risk factor requirements,
Aggrenox capsule’s mechanism of action aligns with the needs of this patient population.
Draw Conclusion. Therefore, considering the historical failure rate, safety concerns, and
the moderate enrollment difficulty level associated with the clinical trial design and the use
of the Aggrenox capsule in patients with cerebral infarction, the predicted success rate of
the trial is low, at 0.0. (groundtruth is 0)
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4.3. Implementation Details

In this section, we provide detailed descriptions of the implementation processes to enhance
the reproducibility of our study.

Role Assignment to Agents Each agent within the CT-Agent framework is designated
a specific role, which is integrated directly into the LLM’s system prompt for clarity and
focus. For instance, the role of the Efficacy Agent is defined as follows:

”As an efficacy expert, you have the capability to assess a drug’s efficacy against
diseases by examining its effectiveness on the disease.”

This role definition is crucial as it guides the LLM to prioritize responses based on the
assigned expert domain, leveraging the model’s inherent capability to focus more acutely
on instructed tasks than on general information.

Defining External Tools External tools are defined in a structured format to facilitate
their integration and usage within the LLM environment. These definitions are crafted in
JSON format, specifying the function name, description, and necessary parameters. Exam-
ples can be found in the A.2.

This structured approach allows for the direct transmission of function calls to the LLM,
which in turn provides detailed responses including the function name and arguments. These
responses enable the execution of functions locally and the retrieval of results in a structured
manner.

Enhanced Few-Shot Reasoning To improve the model’s reasoning capabilities, we
incorporate examples of sub-problems and corresponding labels within the system prompt.
This method, known as few-shot learning, aids the LLM in understanding the context and
methodology required to solve complex problems by referencing similar, previously solved
problems. This approach not only enhances the accuracy of the model’s outputs but also
its ability to generalize from limited examples to new, unseen scenarios.

These implementation strategies collectively ensure that each component of CT-Agent op-
erates effectively and that the integration between different agents and external tools is
seamless, fostering an environment conducive to robust, reproducible research.

4.4. Quantitative Results

Table 2 presents the performance of various methods. Specifically, CT-Agent obtain the
highest ROC-AUC score at 0.8347 among all the compared methods. We observe that
CT-Agent achieve competitive performance among all the well-established methods, e.g.,
GBDT. Also, compared with the standard prompt (basic GPT) model, our method consis-
tently improves all six evaluation metrics. We also compare the performance of GPT-3.5 and
GPT-4 for the standard prompting method in clinical trial outcome prediction. As observed
in Table 2, GPT-4 demonstrates a superior performance across most metrics compared to
GPT-3.5, suggesting that newer versions of large language models may offer incremental
improvements in predicting clinical trial outcomes using the standard prompting method.
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Table 2: Predictive performance of various methods.

Method Accuracy ROC-AUC PR-AUC Precision Recall F1

GBDT 0.6250 0.8000 0.8669 0.6250 1.0000 0.7692
HAtten 0.7500 0.7573 0.8718 0.8947 0.6800 0.7727
GPT-3.5 0.5250 0.4853 0.4419 0.4000 0.5333 0.4571
GPT-4 0.6500 0.6800 0.4582 0.5385 0.4666 0.5000
CT-Agent 0.7000 0.8347 0.7908 0.5714 0.8000 0.6667

4.5. Case Study

We analyze a realistic case study in Table 1. The NCTID is NCT00311402. The trial
focused on evaluating the treatment effect of the Aggrenox capsule on cerebrovascular acci-
dents. Aggrenox is a popular drug and contains a combination of aspirin and dipyridamole.
First, the user describes the problem using natural language: “I have designed a clinical
trial and hope you can help me predict whether this trial can pass” and attach the drug
name, disease name, and inclusion/exclusion criteria as features. Then, the Planning Agent
decomposes the whole problem into three subproblems based on clinical knowledge. It was
enhanced by few-shot learning, which gives some representative examples to the GPT as
prompt. These three subproblems are clinical trial enrollment, Aggrenox’s safety to human
bodies, and Aggrenox’s efficacy in treating cerebrovascular accidents, which are handled by
enrollment agents, safety agents, and efficacy agents, respectively. These agents of subprob-
lems can be solved with the help of external tools. For example, we train an enrollment
success prediction model and the estimated enrollment failure probability is 0.359. Enroll-
ment Agent automatically recognizes and call the predictive AI model and insert the results
(0.359) into the text. Similarly, Safety Agent (drug safety) identifies that the historical fail-
ure rate of Aggrenox capsules is 100%, indicating its high risk. Combining this information,
the Reasoning Agent will make the final decision that the trial is highly likely to fail, which
is correctly forecasted.

4.6. Ablation Study

4.6.1. Different Versions of GPT

In this ablation study, we assess the effectiveness of two iterations of the Generative Pre-
trained Transformer: GPT-3.5 and GPT-4. Our objective is to explore their performance in
the context of predicting outcomes in clinical trials using a standard prompting approach.
The comparative analysis focuses on key performance metrics, as detailed in the subsequent
table.

The results, as summarized in Table 2, distinctly illustrate that GPT-4 outperforms
GPT-3.5 across the majority of evaluated metrics. This enhancement in performance with
GPT-4 underscores the potential benefits of integrating more advanced versions of large
language models in the domain of clinical trial outcome prediction.
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4.6.2. Impact of Few-Shot Learning

This segment of the ablation study investigates the influence of few-shot learning techniques
when integrated into CT-Agent, a multi-agent framework employing large language models
(LLMs). Our comparative analysis pits the version of the model that incorporates few-shot
learning against a baseline version that does not utilize these adaptations. The comparative
results are encapsulated in the table below.

Table 3: Impact of few-shot learning on CT-Agent performance.

Method Accuracy ROC-AUC PR-AUC Precision Recall F1

CT-Agent w few-shot 0.7 0.8347 0.7908 0.5714 0.8 0.6667
CT-Agent w/o few-shot 0.75 0.824 0.6793 0.647 0.7333 0.6875

Table 3 reveals that while the accuracy and F1 score marginally favor the model without
few-shot learning, the few-shot adapted model (CT-Agent) exhibits superior performance in
terms of ROC-AUC and PR-AUC. This indicates that the incorporation of few-shot learning
significantly bolsters the model’s proficiency in accurately classifying positive instances,
despite a minor trade-off in overall accuracy and precision-recall balance.

5. Discussion

This study introduces the groundbreaking Multi-Agent Clinical Trial Helper (CT-Agent),
a multi-agent framework that synergizes the advanced capabilities of GPT-4 with sophisti-
cated agent architectures and cutting-edge reasoning technologies like LEAST-TO-MOST
and ReAct. Our system significantly enhances the performance of large language mod-
els (LLMs) in clinical settings, managing complex trial processes and introducing novel
functionalities such as predictive analytics, comprehensive failure analysis, and precise trial
duration estimations.

Our evaluations, which include computational benchmarks and expert feedback, under-
score the efficiency and effectiveness of CT-Agentin improving clinical trial outcomes. This
integration of LLMs with multi-agent systems not only manages the complexities inherent
in clinical trials but also bridges the gap between conversational AI and actionable intelli-
gence in healthcare. CT-Agentestablishes a new benchmark in the application of LLMs to
clinical trials, promising a future where advanced AI tools play a crucial role in advancing
medical research and patient care.

Limitations While the CT-Agent demonstrates the capability to automatically recognize
and decompose user issues, directing them to specialized agents for resolution, it still relies
significantly on human intervention for its design and configuration. This dependency on
manual input for agent creation limits the system’s scalability and adaptability, particularly
in dynamic environments where user requirements and contexts evolve rapidly. Further
development could focus on integrating machine learning techniques to enable the CT-Agent
to learn from interactions and autonomously update its problem-solving strategies, thereby
reducing the need for frequent human oversight and redesign. These points underscore the
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need for continuous research and development to fully realize the potential of AI-driven
clinical trials, addressing both technical and clinical implications.

References

Yi-Tan Chang, Eric P Hoffman, Guoqiang Yu, David M Herrington, Robert Clarke, Chiung-Ting
Wu, Lulu Chen, and Yue Wang. Integrated identification of disease specific pathways using multi-
omics data. bioRxiv, page 666065, 2019.

Lulu Chen, Chiung-Ting Wu, Robert Clarke, Guoqiang Yu, Jennifer E Van Eyk, David M Her-
rington, and Yue Wang. Data-driven detection of subtype-specific differentially expressed genes.
Scientific reports, 11(1):332, 2021.

Tianyi Chen, Nan Hao, Yingzhou Lu, and Capucine Van Rechem. Uncertainty quantification on
clinical trial outcome prediction. arXiv preprint arXiv:2401.03482, 2024.

Tianfan Fu, Kexin Huang, Cao Xiao, Lucas M Glass, and Jimeng Sun. HINT: Hierarchical interaction
network for clinical-trial-outcome predictions. Patterns, 3(4):100445, 2022.

Junyi Gao, Cao Xiao, Lucas M Glass, and Jimeng Sun. COMPOSE: Cross-modal pseudo-siamese
network for patient trial matching. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 803–812, 2020.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In 9th International Confer-
ence on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenRe-
view.net, 2021. URL https://openreview.net/forum?id=d7KBjmI3GmQ.

Daniel Scott Himmelstein, Antoine Lizee, Christine Hessler, Leo Brueggeman, Sabrina L Chen,
Dexter Hadley, Ari Green, Pouya Khankhanian, and Sergio E Baranzini. Systematic integration
of biomedical knowledge prioritizes drugs for repurposing. Elife, 6:e26726, 2017.

Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng, Hanyi Fang, and Peter Szolovits. What
disease does this patient have? A large-scale open domain question answering dataset from medical
exams. CoRR, abs/2009.13081, 2020. URL https://arxiv.org/abs/2009.13081.

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William W. Cohen, and Xinghua Lu. Pubmedqa:
A dataset for biomedical research question answering. In Kentaro Inui, Jing Jiang, Vincent
Ng, and Xiaojun Wan, editors, Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural Language
Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pages 2567–2577.
Association for Computational Linguistics, 2019. doi: 10.18653/V1/D19-1259. URL https:

//doi.org/10.18653/v1/D19-1259.

Tiffany H Kung, Morgan Cheatham, Arielle Medenilla, Czarina Sillos, Lorie De Leon, Camille
Elepaño, Maria Madriaga, Rimel Aggabao, Giezel Diaz-Candido, James Maningo, et al. Per-
formance of chatgpt on usmle: Potential for ai-assisted medical education using large language
models. PLoS digital health, 2(2):e0000198, 2023.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim, Chan Ho So, and Jaewoo
Kang. BioBERT: a pre-trained biomedical language representation model for biomedical text
mining. Bioinformatics, 36(4):1234–1240, 2020.

15

https://openreview.net/forum?id=d7KBjmI3GmQ
https://arxiv.org/abs/2009.13081
https://doi.org/10.18653/v1/D19-1259
https://doi.org/10.18653/v1/D19-1259


CT-Agent: Clinical Trial Multi-Agent

Jianning Li, Amin Dada, Behrus Puladi, Jens Kleesiek, and Jan Egger. Chatgpt in healthcare: a
taxonomy and systematic review. Computer Methods and Programs in Biomedicine, page 108013,
2024.

Jialin Liu, Changyu Wang, and Siru Liu. Utility of chatgpt in clinical practice. Journal of Medical
Internet Research, 25:e48568, 2023.
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Appendix A.

A.1. Enrollment Model

Model Architecture The architecture of the model consists of the following components

• A transformer encoder layer that processes embeddings of inclusion and exclusion criteria, drugs,
and diseases. This layer is designed to capture interactions across these different types of infor-
mation, crucial for understanding the complexity of trial eligibility.

• A fully connected layer that maps the high-dimensional features from the transformer encoder to
a single output, indicating the probability of successful enrollment.

• A sigmoid activation function applied to the output of the fully connected layer, converting it into
a probability measure.

Data Processing and Feature Extraction For each trial, the Enrollment Agent performs
the following steps:

• Criteria Segmentation: The agent first segments the eligibility criteria into inclusion and
exclusion categories. This segmentation allows for targeted analysis of factors that either
qualify or disqualify potential participants.

• Embedding Generation: Using the pretrained BioBERT model, the agent converts text
data from the criteria, drugs, and diseases into dense vector representations. These embed-
dings capture deep semantic features that are essential for accurate model predictions.

• Feature Aggregation: The embeddings are then aggregated and fed into the transformer
encoder, which processes them to capture the complex dependencies among the criteria, drugs,
and diseases.
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Model Training and Evaluation The model is trained on a dataset comprising historical
trial data, where each record includes the eligibility criteria, associated drugs and diseases, and the
trial outcome regarding enrollment success. The training process involves:

• Balancing the dataset to handle disparities in the number of successful and unsuccessful en-
rollments.

• Employing a cross-entropy loss function adjusted for class imbalance, ensuring that the model
accurately learns from both positive (successful enrollment) and negative (unsuccessful enroll-
ment) examples.

• Evaluation on the test dataset yielded an ROC-AUC score of 0.7037 and an accuracy of 0.7689,
indicating effective class differentiation and prediction accuracy. This model exemplifies the
integration of advanced NLP and neural architectures to improve clinical trial design and
efficiency.

A.2. Function Calling Definitions

The function for retrieving drug information from the DrugBank database is defined as follows:

{

"type": "function",

"function": {

"name": "retrieval_drugbank",

"description": "Retrieves information about a drug from the DrugBank database

using the drug’s name as input.",

"parameters": {

"type": "object",

"properties": {

"drug_name": {

"type": "string",

"description": "The name of the drug."

}

},

"required": ["drug_name"]

}

}

}

The function for retrieving the path connecting the drug to the disease from the Hetionet Knowl-
edge Graph is defined as follows:

{

"type": "function",

"function": {

"name": "retrieval_hetionet",

"description": "

Given the names of a drug and a disease, the model retrieves

the path connecting the drug to the disease from

the Hetionet Knowledge Graph.

Hetionet is a comprehensive knowledge graph that integrates diverse

biological information by connecting genes, diseases, compounds,

and more into an interoperable framework.
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It structures real-world biomedical data into a network,

facilitating advanced analysis and discovery of new insights

into disease mechanisms, drug repurposing,

and the genetic underpinnings of health and disease.",

"parameters": {

"type": "object",

"properties": {

"drug_name": {

"type": "string",

"description": "The drug name",

},

"disease_name": {

"type": "string",

"description": "The disease name",

}

},

"required": ["drug_name", "disease_name"],

},

}

}
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