
ar
X

iv
:2

40
4.

14
78

3v
1

 [
m

at
h.

N
A

]
 2

3
A

pr
 2

02
4

One-Pass Randomized Algorithm with Practical

Rangefinder for Low-Rank Approximation to Quaternion

Matrices

Chao Chang∗ Yuning Yang∗†

April 24, 2024

Abstract

As its real/complex counterparts, randomized algorithms for low-rank approximation to
quaternion matrices received attention recently. For large-scale problems, however, existing
quaternion orthogonalization methods are not efficient, leading to slow rangefinders. By re-
laxing orthonormality while maintaining favaroable condition numbers, this work proposes
two practical quaternion rangefinders that take advantage of mature scientific computing
libraries to accelerate heavy computations. They are then incorporated into the quaternion
version of a well-known one-pass algorithm. Theoretically, we establish the probabilistic
error bound, and demonstrate that the error is proportional to the condition number of the
rangefinder. Besides Gaussian, we also allow quaternion sub-Gaussian test matrices. Key to
the latter is the derivation of a deviation bound for extreme singular values of a quaternion
sub-Gaussian matrix. Numerical experiments indicate that the one-pass algorithm with
the proposed rangefinders work efficiently while only sacrificing little accuracy. In addition,
we tested the algorithm in an on-the-fly 3D Navier-Stokes equation data compression to
demonstrate its efficiency in large-scale applications.
Keywords: Randomized Algorithm, Rangefinder, One-pass, Quaternion matrix, Sketch-
ing, Low-rank approximation, sub-Gaussian

1 Introduction

1.1 Background

Low-rank matrix approximation (LRMA) has been applied in various applications. In the big
data era, large amounts of data are being captured and generated through various channels, such
as high-definition color video, scientific simulations, and artificial intelligence training sets. This
trend poses challenges in terms of computation time, storage, and memory costs to LRMA. In
2011, a randomized SVD algorithm (HMT) [14] was proposed by Halko, Martinsson, and Tropp,
which uses a random sketch to obtain an oversampling approximation before implementing
the truncated SVD. Compared to the deterministic SVD, the randomized one runs faster with
adjustable precision loss. It is robust, but there is still a need to revisit the original data
during the low-rank approximation. In 2017, Tropp et al. [41] proposed a one-pass randomized
algorithm using two sketches, which needs to visit the data only once. It is more effective for
managing data with limited storage, arithmetic, and communication capabilities. Later on, the

∗College of Mathematics and Information Science, Guangxi University, Nanning, 530004, China
†Corresponding author: Yuning Yang, yyang@gxu.edu.cn.

1

http://arxiv.org/abs/2404.14783v1

authors developed also a one-pass algorithm using three sketches and applied it to streaming
data [42]. Prior to these work, randomized algorithms have been studied extensively in the
literature; see, e.g., [1, 46, 8, 30, 45, 9, 4], and the recent surveys [40, 20, 21, 34, 31, 32].

Despite the noncummutativity in quaternion multiplications, quaternion matrices have been
widely used in various applications such as signal processing [11], color image analysis [39, 38],
and machine learning [48, 33] in recent years. Randomized quaternion low-rank matrix approx-
imation has garnered increasing attention very recently. Liu et al. [27] developed a randomized
quaternion SVD algorithm based on the HMT framework by using structure-preserving quater-
nion QR and quaternion SVD, and studied its error bound. This algorithm was later applied
to nonnegative pure quaternion matrix approximation [29]. Ren et al. [35] proposed a ran-
domized quaternion QLP decomposition algorithm. Li et al. [23] also proposed a randomized
block Krylov subspace algorithm with improved approximation accuracy. Very recently, a fixed-
precesion randomized quaternion SVD was studied in [28].

The framework of the HMT algorithm [14] (also [41, 42], and the quaternion randomized
algorithms [27, 35, 23]) can be divided into a randomized QB approximation stage and a trunca-
tion stage. Initially, the QB stage involves generating a sketch of the input data matrix through
randomized oversampling with Gaussian or alternative embeddings. This then leads to the for-
mation of the Q matrix, representing an orthonormal basis for the range of the sketch, known
as the rangefinder step. The B matrix is then determined, either exactly [14] or approximately
[41, 42]. In the truncation stage, truncated SVD or other deterministic methods are performed
on the B matrix to find a more accurate fixed-rank approximation.

1.2 Quaternion rangefinders

In the real/complex case, constructing an orthonormal rangefinder is cheap. Fast and stable
algorithms for orthogonalization have matured, and highly optimized implementations are avail-
able, such as MATLAB’s built-in function qr, and various QR routines in LAPACK [3] and the
Intel Math Kernel Library (MKL) [10].

In the quaternion case, orthogonalization approaches are developing. Classical QR decompo-
sition methods can be extended to the quaternion arithmetic with little modifications. For ex-
ample, the quaternionic Householder QR was proposed for quaternion eigenvalue computations
[5]; this was implemented by Sangwine and Le Bihan in the quaternion toolbox for MATLAB
(QTFM) [36] with the function name qr. To speed up quaternion matrix computations, in a se-
ries of papers [18, 24, 19, 7], the authors proposed structure-preserving algorithms. This type of
algorithms is promising, as its basic idea is to only operate on the compact real representation of
a quaternion matrix, avoiding quaternion operations and smartly reducing computational com-
plexity. The structure-preserving quaternion Householder QR (QHQR) [19, 26] is numerically
stable and accurate; the structure-preserving quaternionic modified Gram-Schimit (QMGS) [44]
is more economic but may lose accuracy. These methods together with QTFM’s qr function were
employed for orthonormal rangefinders by the quaternion randomized algorithms [27, 23, 35].

1.3 Limitation and motivation

The above quaternionic orthogonalization methods are efficient in small and moderate problems;
however, for large-scale matrices, they are still expensive. For instance, even QMGS (wihch is
the fastest one mentioned in the previous subsection) is at least two order of magnitude slower
than qr in MATLAB for 5000× 500 matrices; see Fig. 11. One of the possible reasons is that

1The code of QHQR was downloaded from http://maths.jsnu.edu.cn/_upload/article/files/40/5c/0abecd234d2c909be8b4fac9c4ad/1f

and that of QMGS was implemented from [2]. MATLAB’s qr and svd are applied to the full complex rep-
resentation of the quaternion matrix, which is of size 2m × 0.2m; see the next section. As complex QR and

2

http://maths.jsnu.edu.cn/_upload/article/files/40/5c/0abecd234d2c909be8b4fac9c4ad/1f0499ce-65d1-4364-9000-b8998137e516.zip

0 1000 2000 3000 4000 5000

10-2

100

102

104

C
o

s
t

T
im

e
(s

e
c
)

ComplexQR

ComplexSVD

QMGS

QHQR

qtfm

Figure 1: Running time comparisons of QTFM’s qr, QHQR, QMGS, and MATLAB’s qr and
svd (applied to the full complex representation). m from 100 to 5000, n = 0.1m

highly optimized implementations of these quaternion orthogonalization methods are far from
developed. For example, MATLAB’s built-in functions such as qr and svd do not support
quaternions yet; nor MKL. Without an elegant implementation, even an advanced method
cannot take advantage of the features such as parallelism and memory management in modern
computing architecture, holding back its advancement.

To pursue speed, a common design philosophy is to trade accuracy, akin to randomized
algorithms. Following this vein, it is possible to consider a non-orthonormal rangefinder. If so,
what criteria should the new rangefinder meet, and how to quantify the loss of orthonormality?

Within the HMT and RQSVD frameworks, the orthonormal rangefinder plays two roles.
One is to improve the numerical stability in matrix decompositions [14, Section 4.1]. The other
is to explode the singular values and their corresponding singular vectors in the truncation
stage, which helps in better approximating the original matrix. To quantify the accuracy, it is
natural to take the condition number of the rangefinder into account. Obviously, an orthonormal
rangefinder gives the optimal condition number, while deviations from orthonormality should
maintain a condition number that does not indicate severe ill-conditioning.

When the criterion above is met, it is expected that the new rangefinder is built upon
mature scientific computing libraries or advanced algorithms in the real/complex arithmetic to
fully utilize the modern computing architecture.

1.4 This work

The general idea throughout this work is to transform heavy quaternion computations to QR,
SVD, and solving linear equations in the complex arithmetic. To this end, we employ compact or
full complex representations of quaternion matrices as intermediaries, accepting potential reduc-
tions in orthonormality and accuracy to maintain favorable condition numbers. The influence
of condition numbers on approximation accuracy will be examined theoretically. Specifically:

In Section 3, we provide two range-preserving rangefinders, termed pseudo-QR and pseudo-
SVD. Theoretically, Pseudo-QR can reduce the condition number of the sketch from 108 within
10. Pseudo-SVD on the other hand generates an orthonormal matrix even with very ill-

SVD cannot directly generate an orthonormal rangefinder in the quaternion domain, the purpose of this rough
comparison is to show that the speed of computing the rangefinder still has a large room to improve.

3

conditioned sketch. Almost all the computations are built upon established scientific computing
libraries in the complex arithmetic to ensure their efficiency.

In Section 4, the proposed rangefinders are incorporated into the quaternion version of the
one-pass framework of [41].

Our theoretical findings in Sections 4, 5, and 6 are summarized as follows:

• In the QB approximation stage, the approximation error, measured by the tail energy, is
independent of the condition number of the rangefinder;

• In the truncation stage, the truncation error is proportional to the condition number of
the rangefinder. This and the previous point ensure the reasonability of using a non-
orthonormal yet well-conditioned rangefinder in theory.

• We derive a deviation bound for extreme singular values of a quaternion sub-Gaussian
matrix, which may be of independent interest. This theoretically justifies the use of
quaternion sub-Gaussian test matrices.

Some comments are in order.

• The result of the first two points applies to any range-preserving while non-orthonormal
rangefinders.

• The deviation bound of extreme singular values of a quaternion Gaussian matrix was first
studied in [27], while ours in the sub-Gaussian case generalizes a result in the real case
by Vershynin [43]. Specifically, with high probability, the singular values of a tall m× n
quaternion sub-Gaussian matrix are shown to lie in the interval [2

√
m− 2C

√
n− t, 2

√
m+

2C
√
n + t] for some C, t > 0.

Finally, Section 7 evaluates the performance of our algorithm and other ones through various
experiments using synthetic data. We apply our method to compression of scientific simulation
data from 3D Navier-Stokes equations and a 4D Lorenz-type chaotic system to demonstrate its
efficiency in large-scale problems.

Our implementation in MATLAB is available at github.com/Mitchell-Cxyk/RQLRMA, which
can be ran with either CPU or GPU.

2 Preliminaries on Quaternions

Quaternions were invented by Sir William Rowan Hamilton in 1843. A quaternion scalar is of
the form a = aw +axi+ayj+azk where aw, ax, ay, az are real numbers. The sum of quaternions
is defined component-wise and the their multiplication is determined by the following rules
along with the associative and distributive laws i2 = j2 = k2 = ijk = −1. For a, b ∈ Q,
ab 6= ba in general. A quaternion matrix Q ∈ Qm×n is defined as Q = Qw + Qxi + Qyj + Qzk,
where Qi(i = w, x, y, z) ∈ Rm×n. The conjugate and conjugate transpose of Q are respectively
denoted as Q := Qw−Qxi−Qyj−Qzk and Q∗ := QT

w−QT
x i−QT

y j−QT
z k. For two quaternion

matrices P and Q of proper size, P∗Q = (Q∗P)∗ while P∗Q 6= P∗ · Q. More properties are
referred to [47].

4

github.com/Mitchell-Cxyk/RQLRMA

2.1 Quaternion vector space

Considering vectors with quaternion coordinates, a module over the ring Q is usually called the
quaternion right vector space under the summation and the right scalar multiplication. Given
quaternion vectors v1, . . . ,vr, they are right linearly independent if for quaternions k1, . . . , kr,

v1k1 + v2k2 + · · ·+ vrkr = 0 implies ki = 0, i = 1, . . . , r.

Most linear algebra concepts and results can be transplanted to the right vector space in parallel
[47] and throughout this work, we always omit the prefix “right”.

Given V = [v1, . . . ,vr], its range is defined as

R(V) = span(v1, . . . ,vr) =
{

∑r

i=1
vikr | kr ∈ Q, i = 1, . . . , r

}

.

The inner product between u and v is given by 〈u,v〉 = u∗v [17, 6]. They are orthogonal if
〈u,v〉 = 0 and written as u ⊥ v. If 〈u,u〉 = 〈v,v〉 = 1, they are called orthonormal quater-
nion vectors. Considering a quaternion linear space V , for a subspace L ⊂ V , its orthogonal
complement is defined as L⊥ = {v ∈ V : 〈v,w〉 = 0, ∀w ∈ L}.

2.2 Complex representation

Q ∈ Qm×n can be represented as Q = Q0 + Q1j, where Q0, Q1 ∈ Cm×n with Q0 = Qw + Qxi

and Q1 = Qy + Qzi. The (full) complex representation of Q is defined as [47]:

χQ :=

[

Q0 Q1

−Q1 Q0

]

∈ C2m×2n.

χQ has several nice properties that it is useful in the study of quaternions:

Proposition 2.1 ([47]). Let P,Q be quaternion matrices of proper size. Then

χk1P+k2Q = k1χP + k2χQ(k1, k2 ∈ R), χPQ = χPχQ,

χQ∗ = χQ
∗, χQ−1 = χQ

−1 if Q−1 exists,

χQ is (partially) unitary/Hermitian if and only if Q is (partially) unitary/Hemitian.

χQ can be partitioned as two blocks:

χQ = [Qc,Qa], with Qc :=

[

Q0

−Q1

]

, Qa :=

[

Q1

Q0

]

.

We call Qc the compact complex representation of Q. Qa can be generated from Qc by using

the symplectic matrix J :=

[

0 −Im
Im 0

]

, with Qa = JQc. The relation between Qc and Qa is

important in the design and analysis of our rangefinders. One can directly check that J admits
the following properties:

Lemma 2.1. J-adjoint satisfies:

J ∗ = J−1 = −J ; χQ = [Qc,JQc]; J ∗
χQJ = JχQJ ∗ = χQ;

J ∗[v,J v]J = J [v,J v]J ∗ = [v,J v], and 〈v,J v〉 = 0, ∀v ∈ C2m.

The quaternion Moore-Penrose (MP) inverse can be defined similarly as its real/complex
counterpart [2, section 1.6]. For A ∈ Qm×n, there exists a unique solution X, denoted as A†,
that satisfies the following four matrix equations

AXA = A, XAX = X, (AX)∗ = AAX, (XA)∗ = XA.

5

Lemma 2.2. Let A ∈ Qm×n; then χA† = (χA)†.

Proof. The lemma can be proved by checking the MP inverse directly:

χA†χAχA† = χA†AA† = χA† ,

χAχA†χA = χAA†A = χA,

(χAχA†)
∗

= χ
∗
AA† = χ(AA†)∗ = χAA† = χAχA† ,

(χA†χA)∗ = χ
∗
A†A

= χ(A†A)∗ = χA†A = χA†χA.

Lemma 2.3. Let U ∈ C2m×n; denote M := [U,JU] and PM := MM † the orthogonal projection
on to R(M). Then JPMJ ∗ = J ∗PMJ = PM .

Proof. Denote U ∈ Qm×n such that Uc = U . Then χU = M . Thus

JPMJ ∗ = JχUχU
†J ∗ = JχUU†J ∗ = χUU† = χUχU

† = MM † = PM ,

where the second and fourth equalities are due to Lemma 2.2 and Proposition 2.1, and the third
one comes from Lemma 2.1. Verifying J ∗PMJ = PM is similar.

Analygously to the real/complex case, quaternion matrices admit SVD:

Theorem 2.1. (compact QSVD [47, Theorem 7.2]) Let A ∈ Qm×n (m ≥ n) be of rank r.
Then there exists unitary quaternion matrices U ∈ Qm×m, V ∈ Qn×n and diagonal real matrix
Σ = diag(σ1, . . . , σr, 0, . . . , 0) ∈ Rn×n with σ1 ≥ · · · ≥ σr > 0, such that A = UΣV∗.

The following property, which can be deduced from [47], reveals the relation between the
SVD of A ∈ Qm×n and its complex representation χA:

Proposition 2.2. Under the notations in Theorem 2.1, if A = UΣV∗, then χA = χUSχV
∗

with S = diag(Σ,Σ) ∈ R2n×2n is a compact SVD of χA, and vice versa.

Lemma 2.4. [2, Section 1.6] Under the notations in Theorem 2.1, if A = UΣV∗, then A† =
UΣ†V∗ with Σ† = diag(σ−1

1 , . . . , σ−1
r , 0, . . . , 0) ∈ Rn×n.

3 Practical Quaternion Rangefinders

Given a data matrix A ∈ Fm×n (F = R,C,Q), a randomized rangefinder first draws a random
test matrix Ω ∈ Fn×s with s ≪ n [41] (s is close to the target rank and often can be regarded
as a constant), takes a sketch Y = AΩ, and then orthogonalizes it, i.e.,

Y = AΩ, Q = orth(Y),

where Q is orthnormal and preserves the range of Y . In the real/complex case, computing Q is
cheap by using QR decomposition, while things change in the quaternion setting, especially for
large-scale problems, as discussed in the introduction. To better fit into the modern need, we
present two practical rangefinders in this section by trading accuracy or space for time cost. To
achieve this, we mostly employ mature libraries such as QR, SVD, and linear equation solvers
in complex arithmetic for heavy computations. Finally, we will compare the running time of
the proposed rangefinders with those in the literature.

6

3.1 Pseudo-QR

Given a quaternion matrix X = X0 + X1j ∈ Qm×n, previous work (cite) indicates that full

information has been contained in its compact represtation Xc =

[

X0

−X1

]

∈ C2m×n, while

full representation χX futher preserves its structure as an operator. Although Xc does not
capture the entire structure in the same way as χX, the fact that χX can be easily derived
from Xc implies that underlying structure may still be preserved within Xc. Starting from this
observation, we prefer to operate on Xc to obtain our first rangefinder.

Let Y = AΩ = Y0 + Y1j ∈ Qm×s with m > s be the sketch of the input data matrix

A ∈ Qm×n, with Ω ∈ Qn×s the random test matrix. Let Yc =

[

Y0

−Y1

]

∈ C2m×s be its compact

complex representation. Then, a cheap thin QR in the complex arithmetic can be directly
applied to Yc:

Yc =

[

Y0

−Y1

]

=: QR, (1)

where Q ∈ C2m×s is orthonormal in the complex space, and R ∈ Cs×s is upper triangular.

Then, we partition Q as Q =

[

Q0

Q1

]

with Q0, Q1 ∈ Cm×s. Furthermore, denote

H0 := Q0, H1 := −Q1 and H := H0 + H1j ∈ Qm×s. (2)

It then follows from (2) that the compact representation of H is exactly Q:

Hc =

[

H0

−H1

]

=

[

Q0

Q1

]

= Q.

This together with (1) shows that Hc and R gives the QR decomposition of Yc:

Yc = HcR, Hc ∈ C2m×s, R ∈ Cs×s. (3)

The following result shows that H has the same range as Y:

Theorem 3.1. Assume that Y ∈ Qm×s has full column rank. Then,

R(H) = R(Y). (4)

Proof. It suffices to show that there exists an invertible matrix R ∈ Qs×s such that Y = HR.
Let Yc = HcR be as in (3). As Y is of full column rank, Proposition 2.1 indicates that χY

is also of full column rank, and so is Yc. Thus R is invertible. By Lemma 2.1, χY can be
represented as:

χY = [Yc,JYc] = [HcR,JHcR]

= [Hc,JHc]diag(R,R) = χHdiag(R,R).

Transforming back to quaternions, the above identity is equivalent to Y = HR. Thus (4) follows
from the invertibility of R.

Remark 3.1. Even if Y is rank-deficient, we still have R(H) ⊃ R(Y), i.e., the range of H
captures the range of the sketch Y.

The theorem belows shows that, although H may be non-orthonormal in the quaternion
domain, its singular values are structured.

7

Theorem 3.2. All the singular values of H takes the form of

√

1± µ1,
√

1± µ2, . . . ,

with 0 ≤ µi ≤ 1, and the largest singular value is upper bounded by
√

2.

Proof. By Lemma 2.2, It suffices to consider the singular values of its complex representation

χH =

[

H0 H1

−H1 H0

]

=
[

Hc, Ha

]

=
[

Hc, JHc

]

.

It follows from the (3) that H∗
cHc = Is; H

∗
aHa = Hc

∗J ∗JHc = Hc
∗
Hc = Is as well. Then we

have:

χH
∗
χH =

[

Is H∗
0H1 −H1

∗
H0

H∗
1H0 −H0

∗
H1 Is

]

and it is positive semi-definite. Denote T := H∗
cHa = H∗

0H1 −H1
∗
H0; then

χH
∗
χH =

[

I T
T ∗ I

]

. (5)

Consider the characteristic polynomial of χH
∗χH:

det

([

(1 − λ)Is T
T ∗ (1 − λ)I

])

= det ((1− λ)Is) det
(

(1− λ)Is − (1− λ)
−1

T∗T
)

= det
(

(1 − λ)2Is − T∗T
)

.

Let µ2 be an eigenvalue of T ∗T . Then the above relation shows that λ = 1 ± µ are a pair of
eigenvalues of χH

∗χH, i.e.,
√

1± µ are a pair of singular values of χH, which together with
Lemma 2.2 shows that they are also singular values of H. Finally, it is easily seen from (5) that
Is � T ∗T , namely, µ ∈ [0, 1], which implies that the largest singular value of H is smaller than√

2.

Remark 3.2. The two properties above are not enough to control the condition number κ(H). In
fact, from the analysis above, we see that the smallest singular value of H depends on T = H∗

cHa.
If the angle between span(Hc) and span(Ha) is very small, then T tends to be an identity
matrix and so the smallest eigenvalue of χH

∗χH tends to zero; on the contrary, if span(Hc)
and span(Ha) are perpendicular to each other, then T is exactly 0 and the smallest eigevalue
of χH

∗χH is 1. However, by the construction (3), span(Hc) = span(Yc) and span(Ha) =
span(Ya). As [Yc,Ya] = χY and Y is data-dependent, we cannot make any assumption on
the angle between span(Yc) and span(Ya). Thus the smallest singular value of H cannot be
estimated, nor κ(H).

Nevertheless, empirically we usually observe that κ(H) is at least two times smaller than
κ(Y). To further reduce κ(H), we can perform a range-preserving correction step:

Hnew ← (1 − ǫ)H + ǫ(H†)∗ (6)

The next theorem shows that, if ǫ is chosen close to the smallest singular value of H, and if
κ(H) is not small, then it will be reduced rapidly.

Theorem 3.3. Suppose in (6), one chooses ǫ such that ǫ ∈ [σs(H), δσs(H)], where δ ∈ [1,
√

7/2].
If κ(H) > max{2

√
2δ, 2δ2 + 1/2}, then κ(Hnew) <

√

κ(H).

8

The role of δ above means that one can compute σs(H) inexactly; in practice, one usually
performs two or three power iterates of approximating σ1(H†) (namely, σs(H)−1) to obtain ǫ.
The upper bound of κ(H) > max{2

√
2δ, 2δ2+1/2} is 4, i.e, when κ(H) > 4, it will be reduced to

its square root. Empirically, an H with κ(H) < 10 is enough for obtaining a desirable low-rank
approximation.

In practice, one can execute the correction step (6) at most two or three times to obtain
a desirable H. The following corollary shows that, if H is generated by (1) and (2) with
κ(H) < 108, then κ(H) will not exceed 10 after at most three correction steps.

Corollary 3.1. Let Hk+1 ← (1 − ǫk)Hk + ǫk(H†
k)∗ with H0 be given by (1) and (2). If

ǫk ∈ [σs(Hk), δσs(Hk)], where δ ∈ [1,
√

7/2], and if κ(Hk) > max{2
√

2δ, 2δ2 + 1/2}, then
κ(Hk+1) <

√

κ(Hk).

The proofs of Theorem 3.3 and Corollary 3.1 are given in the appendix. The iterative scheme
above is essentially the quaternion version of the quadratically convergent Newton method for
computing polar decomposition [15, Section 3.3] but with different parameters.

The remaining question is how to compute (H†)∗. We convert it to solving linear equations
in the complex arithmetic such that highly efficient solvers can be used. To this end, assume
that Y has full column rank (and by Theorem 3.1, so does H); further assume that H∗H is not
too ill-conditioned (say, κ(H∗H < 1016)). Since H† = (H∗H)−1H∗, we can solve the equation
H∗HX = H∗ to obtain (H†)∗. The following idea comes from [47]. For a general quaternion
linear equation AX = B with A ∈ Qm×n,X ∈ Qn×s,B ∈ Qm×s,

AX = B⇔ χAχX = χB ⇔ χA [Xc,Xa] = [Bc,Ba] .

In fact, using the relation Xa = JXc, solving the complex equation χAZ = Bc is enough to
give a solution to AX = B. To see this, let Ẑ ∈ C2n×s be a solution to χAZ = Bc and partition

it as Ẑ = [Ẑ∗
0 , Ẑ∗

1]∗ with Ẑ0, Ẑ1 ∈ Cn×s. Similar to (2), let X := Ẑ0 − Ẑ1j; then Xc = Ẑ,
namely, χAXc = Bc, and it follows from Lemma 2.1 that

χAXa = χAJXc = JχAJ ∗JXc = JχAXc = JBc = Ba,

which together with χAXc = Bc means that AX = B.

Therefore, it suffices to solve χH∗HZ = (H∗)c to obtain H†. Note that χH∗H ∈ C2s×2s and
(H∗)c ∈ C2s×m. As the sampling size s is usually small, solving this equation in the complex
arithmetic can be efficient by using mature solvers.

Algorithm 1 Quaternion structure-preserving equations solver

Require: A ∈ Qn1×n2 and B ∈ Qn1×l

Ensure: Quaternion matrix X ∈ Cn2×l satisfy AX = B

1: Construct χA ∈ C2n1×2n2 and Bc ∈ C2n1×l.
2: Compute Xc = χA\Bc.
3: Construct X = Xc(1 : n2, :)−Xc(n2 + 1 : 2n2, :)j

The whole algorithm in this subsection is summarized in Algorithm 2.

3.2 Pseudo-SVD

In the complex QR step of pesudo-QR, we only enforce orthonormality on Hc. To obtain a
better well-conditioned H, the relationship between Hc and Ha = JHc should be taken into
account. A motivation is from the following lemma.

9

Algorithm 2 (pseudo-QR) quaternion pseudo-QR implementation

Require: Sketch matrix Y ∈ Qm×n.
Ensure: A quaternion rangefinder H ∈ Qm×s

1: Construct the 2m× s complex matrix Yc from Y.
2: Compute complex QR [U,∼] = qr(Yc, 0)
3: Construct H = H0 + H1j from U with H0 = U(1 : m, :) and H1 = −U(m + 1 : 2m, :)j .
4: Execute the correction step (6) a few times (often 2 to 3 times). One can use Algorithm 1

to solve χH∗HZ = (H∗)c to obtain H†.

Lemma 3.1 (c.f. [47]). Let A ∈ Qm×m be Hermitian. If v is an eigenvector of χA corresponding
to the eigenvalue λ, then λ = λ, and J v is also an eigenvector asssociated to λ. Moreover, v is
perpendicular to J v.

The above lemma implies that in the ideal situation, if every columns of Hc are from different
eigenspaces, then H∗

cHc = I, H∗
cHa = H∗

cJHc = 0, which means that χH
∗χH = I, and H is

orthonormal. To this end, we resort to (and modify) the method introduced in [22] to find a
suitable pair (Hc,Ha). The idea is to find an SVD of Y via computing the complex SVD of
χY. Let

χY := USV ∗, U ∈ C2m×2s, V ∈ C2s×2s, S =

[

Σ 0
0 Σ

]

∈ R2s×2s (7)

be a compact SVD of χY, where Σ is diagonal. Partition

U =

[

Uul Uur

Udl Udr

]

, V =

[

Vul Vur

Vdl Vdr

]

, with Uul ∈ Cm×s, Vul ∈ Cs×s. (8)

Denote

H := Uul − Udlj ∈ Qm×s and V := Vul − Vdlj ∈ Qs×s. (9)

Theorem 3.4 ensures that conditionally, HΣV∗ is a compact QSVD of Y.

Theorem 3.4. Let H,Σ,V be given by (7) and (9). If all the singular values of Y are distinct,
then HΣV∗ is a compact QSVD of Y.

We first present the following lemma.

Lemma 3.2. Let σ1 > · · · > σr be r singular values of χY, each of which has multiplicity two,
and Uσ = [u1, . . . , ur] be r left singular vectors corresponding to σ1, . . . , σr. Then [Uσ,JUσ] is
orthonormal and spans the left invariant subspace of σ1, . . . , σr.

Proof. By the multiplicity assumption on σ1, . . . , σr and noting uj ⊥ J uj, Lemma 3.1 shows
that span(uj ,J uj) is the invariant subspace of σj . On the other hand, each uj belongs to
distinct σj , and so ui ⊥ uj, J ui ⊥ J uj , J ui ⊥ J uj, i 6= j. Thus the results follow.

Proof of Theorem 3.4. The assumption shows that Σ consists of distinct singular values. By
Lemma 2.2, it suffices to prove that

χY = χHSχV
∗ = [Hc,JHc]

[

Σ 0
0 Σ

] [

V∗
c

(JVc)
∗

]

(10)

10

with [Hc,JHc] and [Vc,JVc] orthonormal. It follows from the construction of H that Hc =
[

Uul

Udl

]

, which, by Lemma 3.2, demonstrates the orthonormality of [Hc,JHc]. Similarly, [Vc,JVc]

is orthonormal. It then follows from χYVc = HcΣ that

χYJVc = JJ ∗
χYJVc = JχYVc = JHcΣ = JHcΣ,

and so χY[Vc,JVc] = [Hc,JHc]diag(Σ,Σ), which together with the orthonormality of [Vc,JVc] ∈
C2s×2s yields (10).

Remark 3.3. The above proof implies why the assumption in Theorem 3.4 is neccessary. Con-
sider the counterexample Y = I2 ∈ Q2×2, and so χY = I4 ∈ C4×4. Any normalized u ∈ C4 is a
singular vector. If Hc = [u,J u], it is clear that JHc = Hc and so [Hc,JHc] is rank-deficient.

However, some issues should be addressed. Firstly, as χY is two times larger than Y (in terms
of the real elements), directly computing the SVD of χY seems to be redundant. Nevertheless,
recall that Y ∈ Qm×s is a sketch, whose column size s is usually much smaller than m [41];
thus the SVD of χY scales well. As shown in subsection 3.3, rangefinder based on SVD of χY

is still much faster than the competitors.

A much criticized flaw is that when Y is too ill-conditioned (say, κ(Y) > 1013), due to
rounding errors, numerically, the small singular values of χY may not appear twice, and so
doing (9) may not generate the correct singular vectors for H corresponding to the small singular
values [5, p. 84]. The same situation also occurs when Y has duplicated singular values. In this
two cases, H given by (9) is no longer orthonormal and may not even span the correct range.

Fortunately, the above issue indeed can be tackled because the task is to find a well-
conditioned range of Y instead of a QSVD. When this issue occurs, numerically computing
an SVD of χY may exhibit the following form

χY = US̃V ∗, U ∈ C2m×2s, V ∈ C2s×2s, S̃ =

[

Sg 0
0 Σb

]

∈ R2s×2s, (11)

U∗U = I2s, V
∗V = I2s,Σb ∈ R2t×2t(t < s), Sg =

[

Σ 0
0 Σ

]

∈ R2(s−t)×2(s−t);

i.e., now the singular values S̃ can be partitioned as the “good” part Sg and the “bad” part
Σd. Sg consists of singular values of χY still appearing exactly twice, i.e., Σ consists of distinct
singular values. Σb represents those small singular values, which, due to rounding errors, are
distinct and the order is disturbed (the latter is more severe), as well as the sigular values with
multiplicity larger than 2.

Given χY = US̃V ∗ as in (11), if still generating H by (9), then H∗H will exhibit the form
of

H∗H =

[

I2(s−t) 0
0 ×

]

∈ Q2s×2s,

where “×” is a matrix not equal to identity. Based on this observation, correcting H can
be excecuted as follows: first write U = [Ug, Ub], with Ug ∈ C2m×2(s−t) and Ub ∈ C2m×2t

corresponding to Sg and Σb respectively; V = [Vg, Vb] is partitioned accordingly. From (11)
denote

χY := Yg + Yb, Yg = UgSgV
∗
g , Yb = UbΣbV

∗
b . (12)

Further partition Ug as in (8) and generate Hg from Ug as in (9). According to the definition
of Sg, Lemma 3.2 ensures that

Hg is orthonormal and R(χHg
) = R(Ug). (13)

For Σb, although it is not structured, we can still select a representation basis from Ub.
Denote Ub := [u1, . . . , u2t] ∈ C2m×2t. Then:

11

Proposition 3.1. One can find Ub̃ := [ui1 , . . . , uit] ⊂ Ub = [u1, . . . , u2t], such that

span(Ub̃,JUb̃) = span(Ub) = 2t. (14)

The proof is given in appendix. Given this and let Hb̃ ∈ Qm×t be constructed such that
χH

b̃
= [Ub̃,JUb̃]. Then

Proposition 3.2. If Y has full column rank, then R([Hg,Hb̃]) = R(Y).

Proof. This can be achieved by verifying that the direct sum R(Hg) ⊕ R(Hb̃) = R(Y), as
Hg ⊥ Hb̃. As (12) holds, we only need to verify R(χH

b̃
) = R(Ub), which by the construction of

Hb̃ is true because R(χH
b̃
) = span((Hb̃)c,J (Hb̃)c) = span(Ub,JUb̃) = span(Ub) using (14).

Denote Hnew = [Hg,Hb̃], it remains to adjust Hnew such that it is orthonormal. Owing to
(13) and that Hg ⊥ Hb̃, we only need to adjust Hb̃, which in fact can be simultaneously done
during the selection of Ub̃ using modified Gram-Schimit orthogonalization [12].

However, in case that t≪ s and Y is too ill-conditioning, we find that the following process
is more accurate and efficient. The idea still resorts to complex SVD. Denote Hb ∈ Qm×2t such
that χHb

= [Ub,JUb] (this Hb need not be explicitly constructed). Then Lemma 3.2 shows that
R(χHb

) = span(Ub). In addition, let

Hb ← Hbdiag(f), with fj ∼ Uniform(0, 1) + 1, j = 1, . . . , 2t. (15)

Empirically, multiplying diag(f) avoids Hb to have duplicated singular values. In this case,
applying the complex SVD to χHb

∈ C2m×4t yilelds

χHb
= [Uh1, Uh2, Uhb]diag(Σh,Σh, 0)V ∗

h , Σh ∈ Rt×t, Uh1 ∈ C2m×t, (16)

which reduces to the case of (11). We can construct the new Hb̃ ∈ Qm×t from Uh1 such that
χH

b̃
= [Uh1,JUh1]. By Lemma 3.2, Hb̃ is orthonormal and R(χH

b̃
) = span(Ub). Denote

Hnew = [Hg,Hb̃]. We still have R(Hnew) = R(Y) and Hnew is orthonormal.

The whole computation is summarized in Algorithm 3.

Algorithm 3 (pseudo-SVD) quaternion pseudo-SVD implementation

Require: Sketch matrix Y ∈ Qm×s.
Ensure: Quaternion rangefinder H ∈ Qm×s.
1: Compute complex SVD [U,∼,∼] = svd(χY, 0) and partition U = [Ug, Ub] with Ub ∈ C2m×2t

corresponding to the “bad” part.
2: Construct Hg = H0 + H1j from Ug such that χHg

= [Ug,JUg].
3: if t≪ s then

4: Construct Hb from (15). Compute [Uh,∼,∼] = svd(χHb
, 0) with Uh = [Uh1, Uh2, Uhb]

as (16), and construct Hb̃ such that χH
b̃

= [Uh1,JUh1].
5: else

6: Sequentially select linearly independent ui1 , . . . , uit from Ub and simultaneously do or-
thogonalization such that uij ⊥ [ui1 ,J ui1 , . . . , uij−1 ,J uij−1], j = 2, . . . , t. Let Ub̃ =

[ui1,...,uit
] and construct Hb̃ such that χH

b̃
= [Ub̃,JUb̃].

7: end if

8: H = [Hg,Hb̃].

12

500 1000 1500 2000

m:

10-2

100

102

C
o

s
t

T
im

e

Pseudo-QR

Pesudo-SVD

QHQR

QMGS

qtfm

(a) All rangefinders

0 2000 4000 6000 8000
10-2

10-1

100

101

102

C
o

s
t

T
im

e

Pseudo-QR

Pesudo-SVD

QMGS

(b) QMGS, our rangefinders

0 5000 10000 15000
10-2

10-1

100

101

C
o
s
t
T

im
e

Pseudo-QR

pseudo-SVD

(c) our rangefidners

Figure 2: Running Time m = 25n, x-axis is m and y-axis is running time with Logarithmic scale.

10
5

10
10

10
15

10
20

condition number of sketch

10
0

10
1

c
o

n
d

it
io

n
 n

u
m

b
e

r
o

f
ra

n
g

e
fi
n

d
e

r

Pseudo-QR

pseudo-SVD

QMGS

QHQR

10
15

0.9

1

1.1

1.2

1.3

(a) Condition Number

10
5

10
10

10
15

10
20

condition number of sketch

10
-10

10
-5

10
0

ra
n

g
e

 p
re

c
is

io
n

Pseudo-QR

pseudo-SVD

QMGS

QHQR

10
16

10
17

10
18

10
19

10
0

(b) Range Precision

Figure 3: m = 1000, n = 200, condition number of sketch from 1e6 to 1e22.

3.3 Comparsions

For a sketch Y ∈ Qm×s, the computational complexity of Pseudo-QR and Pseudo-SVD is
O(ms2 + s3) and O(ms2), respectively. In practice, these algorithms are suited to different
criteria. Pseudo-QR performs well when the condition number κ(Y) < 108. Conversely, Pseudo-
SVD is more accurate for highly ill-conditioned sketch; however, it necessitates to compute the
SVD of χ(Y), which demands twice the memory compared to Pseudo-QR.

Subsequently, we will juxtapose these algorithms with other rangefinders, including the qr

function in QTFM, the structure-preserving Quaternion Householder QR (QHQR) [19], and
the structure-preserving modified Gram-Schmidt QR (QMGS) [2]. Figure 2a illustrates that
our rangefinders exhibit significantly lower computational costs compared to qr in QTFM and
the QHQR. The disparity in their time complexity can span two to three orders of magnitude,
escalating with an increase in the size of the sketches from 600 to 2000. As the size continues to
grow, Figure 2b demonstrates that our rangefinders outperform the QMGS algorithm markedly,
while the qr function in QTFM and QHQR become prohibitively time-consuming. Finally,
Figure 2c reveals that Pseudo-QR operates marginally faster than Pseudo-SVD when the data
size exceeds 104.

We then fixe the size of Y to be 1000× 200 while vary κ(Y) and compare their precision as
illustrated in Fig. 3. In terms of the condition number of the rangefinder, all the rangefinders
perform well when κ(Y) < 1016, and the orthonormal ones (Pseudo-SVD, QMGS, QHQR)
keep their orthogonality. In terms of the range precision ‖ HH† −YY† ‖F , Pseudo-SVD and
MGSQR outperform the competetors, while Pesudo-QR is still valuable when κ(Y) < 108.

13

4 One-Pass Algorithm

In this section, we consider the one-pass randomized algorithm proposed by Tropp et al. [41]
with a range-preserving while possibly non-orthonormal rangefinder. The one-pass algorithm
can reduce storage cost and ensure linear update of streaming data, where the latter can save
multiplication flops during sketching [41, 42].

Our theoretical result shows that the accuracy loss of the truncation approximation is propor-
tional to the condition number κ(H). More detailed estimation with Gaussian and sub-Gaussian
embeddings will be left to Sections 5 and 6.

4.1 The algorithm

For a given data matrix A ∈ Qm×n and the target rank r, the purpose is to find a rank-r
approximation. First draw two random quaternion Ψ ∈ Ql×m and Ω ∈ Qm×s independently
where the sketch size satisfy: r ≤ s ≤ l ≤ min{m,n}. Then main information can be captured
by two sketches:

Y = AΩ ∈ Qs×m and W = ΨA ∈ Ql×n, (17)

where Y is used to generate the range H by using any range-preserving rangefinders such as
pesudo-QR or pesudo-SVD.Then, a rank-s QB approximation can be obtained by solving

HX = H (ΨH)†W. (18)

Finally, a truncated QSVD is applied to X to further obtain the final rank-r approximation. In
the recovery algorithm, only Y, W, and Ψ are required, which means that A is not exposed to
the recovery process. The pseudocode is given in Algorithms 4 and 5.

Algorithm 4 QB Stage

Require: Quaternion sketch Y ∈ Qm×s,W ∈ Ql×n, test matrices Ψ ∈ Ql×m,
Ensure: Rank-s approximation of the form Â = HX ∈ Qm×n with H ∈ Qm×s and X ∈ Qs×n

1: H← F(Y) ⊲ F is a rangefinder map.
2: X← (ΨH) \W ⊲ Solving overdetermined quaternion linear equations
3: return (H,X)

Algorithm 5 Truncation Stage

Require: (H,X) from Algorithm 4

Ensure: Rank-r approximation Â = UΣV∗ with U ∈ Qm×r, orthonormal V ∈ Qn×r, and real
diagonal matrix Σ ∈ Rr×r.

1: (U,Σ,V) = QSVD(X)
2: Σ = Σ(1 : r, 1 : r), U = U(:, 1 : r), V = V(:, 1 : r)
3: U = HU

4: return (U,Σ,V)

Remark 4.1. To solve (ΨH) \W, one can use Algorithm 1 in the complex arithmetic. QSVD in
the truncation stage can be any quaternion SVD algorithms [26, 37, 16, 25] or directly computing
the SVD of χX.

14

Remark 4.2. Even though H may be non-orthonormal, empirically, we find that a truncation
stage is still helpful in improving the recovery accuracy than only doing a QB approximation.
This is the same as the orthonormal case [41, 14, 27].

4.2 Deterministic error

This subsection is only concerned with the deterministic error without assuming the distribution
of the test matrices at first. More detailed probabilistic bounds will be given in Sections 5 and 6
when a randomized embedding is selected. The following basic requirements on the rangefinder
H and the sketch size are made througout this subsection:

R(H) = R(Y), and H has full column rank; (19)

r ≤ s ≤ l ≤ min{m,n}. (20)

To analyze the approximation error with a non-orthonormal H, the idea is to use QB decom-
position as a bridge such that existing error analysis can be applied. One can represent H

as:

H = QB, Q ∈ Qm×s, Q∗Q = Is. (21)

Under (19), R(Q) = R(H) = R(Y) and B ∈ Qs×s is invertible. Here (21) can be thin QR,
compact QSVD, or polar decomposition.

We introduce notations used in this subsection. Define the partially orthonormal matrix
Q⊥ ∈ Qm×(m−s) with Q⊥Q∗

⊥ := Im − QQ∗ such that R(Q) ⊥ R(Q⊥). Then we define
submatrices:

Ψ1 = ΨQ⊥ ∈ Ql×(m−s), Ψ2 = ΨQ ∈ Ql×s. (22)

Let the QSVD of A ∈ Qm×n be

A = UΣV∗ = [U1 U2]

[

Σ1 0
0 Σ2

] [

V∗
1

V∗
2

]

, Σ1 ∈ Rr×r, U1 ∈ Qm×r, V1 ∈ Qn×r; (23)

and define:

Ω1 = V∗
1Ω ∈ Qr×s, Ω2 = V∗

2Ω ∈ Q(n−r)×s. (24)

The error of Algorithm 4, which is independent of κ(H), is provided.

Theorem 4.1 (QB error). Let (H,X) be generated by Algorithm 4 and (19) holds. With
notations in (22) and (24), if Ω∗

1 and Ψ2 have full column rank, we have the following error
estimation, where “a”∈ {F, 2}:

‖HX−A‖a ≤‖ A−QQ∗A ‖a + ‖ Ψ†
2Ψ1(Q∗

⊥A) ‖a (25)

≤
(

1+ ‖ Ψ†
2 ‖2‖ Ψ1 ‖2

)(

1+ ‖ Ω2 ‖2‖ Ω†
1 ‖2

)

‖Σ2‖a; (26)

in particular,

‖ A− (ΨQ)
†
ΨA ‖2F= ‖A−QQ∗A‖2F + ‖Ψ†

2Ψ1 (Q∗
⊥A) ‖2F . (27)

Recall that X = (ΨH)†ΨA in Algorithm 4. Denote ⌊X⌋r as the best rank-r approximation
of X. Analygous to the real/complex counterpart, ⌊X⌋r is also given by the rank-r turncated
QSVD [22]. The truncation error is estimated in the following theorem:

15

Theorem 4.2 (Truncation error). Let H, X be generated by Algorithm 4 with (19) hold, and
⌊X⌋r be truncated by Algorithm 5. Then

‖ H⌊X⌋r −HX ‖a≤ κ(H) (‖ A−HX ‖a +τr(A)) . (28)

To make the proof of Theorem 4.1 clear, we devide it in a series of lemmas.

Lemma 4.1. Let A ∈ Qm×n and B ∈ Qn×p; then (AB)† 6= B†A† in general. However, we
have the following sufficient conditions for (AB)† = B†A†:

1. A has orthonormal columns (A∗A = A†A = I) or

2. B has orthonormal rows (BB∗ = BB† = I) or

3. A has full column rank (A†A = I) and B has full row rank (BB† = I) or

4. B = A∗ or

5. B = A†.

Proof. By Lemma 2.2, it suffices to prove (χAχB)
†

= χ†
Bχ

†
A. For two complex matrices E and

F , [13] proved that (EF)† = F †E† holds if and only if:

E†EFF ∗E∗EFF † = FF ∗E∗E. (29)

Let E = χA, F = χB. Using the properties of generalized inverse and complex representation of
quaternion matrices, one can check that each condition in this lemma can make (29) hold.

Lemma 4.2. Let H ∈ Qm×s (m ≥ s) have full column rank, Q ∈ Qm×s is given by (21), and
Ψ is an arbitrary l ×m (s ≤ l ≤ m) quaternion matrix with full row rank. Then we have:

HX = H (ΨH)
†
ΨA = Q(ΨQ)†ΨA. (30)

Proof. Let H = QB where B ∈ Qs×s is invertible. Then

H (ΨH)
†
ΨA = QB(ΨQB)†ΨA

(Lemma 4.1, point 3) = QBB−1(ΨQ)†ΨA

= Q(ΨQ)†ΨA.

The second identity is from Lemma 4.1 because ΨQ ∈ Ql×s(l ≥ s) has full column rank (Ψ∗

and Q are both of full column rank) and B is invertible.

The following lemma is a trivial quaternion version of [41, Lemma A.4].

Lemma 4.3. Assume that Ψ2 has full column rank; then

(ΨQ)† ΨA−Q∗A = Ψ
†
2Ψ1 (Q∗

⊥A) .

The follow lemma comes from [27, Section 4.3]; see also [14, Theorem 9.1].

Lemma 4.4 (deterministic error bound). With the notations in Algorithm 4 and in (24), and
Q is as in Lemma 4.2,

‖ A−QQ∗A ‖2a ≤‖ Σ2 ‖2a + ‖ Σ2Ω
∗
2 (Ω∗

1)
† ‖2a

≤
(

‖ Σ2 ‖a + ‖ Σ2Ω
∗
2 (Ω∗

1)
† ‖a

)2

.

16

Now we prove Theorem 4.1. Note that
(

X†)∗ = (X∗)† will be frequently used in the proof.

Proof of Theorem 4.1. By Lemma 4.2, it holds that

‖ A−HX ‖a=‖ A−H (ΨH)
†
ΨA ‖a=‖ A−Q(ΨQ)†ΨA ‖a . (31)

Thus, it suffices to evaluate the right part of (31). Then,

‖A−Q(ΨQ)†ΨA‖a ≤ ‖A−QQ∗A‖a + ‖Q(ΨQ)†ΨA−QQ∗A‖a
= ‖A−QQ∗A‖a + ‖Ψ†

2Ψ1 (Q∗
⊥A) ‖a,

where the equality uses that both Frobenius and spectral norm are unitary invariant and by
Lemma 4.3. Note that

‖Ψ†
2Ψ1 (Q∗

⊥A) ‖a ≤‖ Ψ†
2 ‖2‖ Ψ1 ‖2 ‖Q∗

⊥A‖a (32)

and

‖Q∗
⊥A‖a = ‖Q⊥Q

∗
⊥A‖a = ‖A−QQ∗A‖a;

it follows from Lemma 4.4 that

‖A−QQ∗A‖a ≤
(

1+ ‖ (Ω∗
1)

† ‖2‖ Ω∗
2 ‖2

)

‖ Σ2 ‖a .

In particular, using Ψ
†
2Ψ1 (Q∗

⊥A) = Q(ΨQ)†ΨA−QQ∗A and Pythagorean identity,

‖ A−Q(ΨQ)†ΨA ‖2F =‖ A−QQ∗A + QQ∗A−Q(ΨQ)†ΨA ‖2F
= ‖A−QQ∗A‖2F + ‖Ψ†

2Ψ1 (Q∗
⊥A) ‖2F .

Proof of Theorem 4.2. Let H = QB as (21) where Q is partially orthonormal and B is invertible.

Then X = (ΨH)
†
ΨA = (ΨQB)

†
ΨA = B−1 (ΨQ)

†
ΨA, where the last equality follows from

the proof of Lemma 4.2 and that a random fat Ψ ∈ Ql×m drawn from continuous distribution
has full row rank genericly. Denote Ain := Q(ΨQ)†ΨA. We have:

‖ HX−H⌊X⌋r ‖a ≤‖ H ‖2‖ X− ⌊X⌋r ‖a
=‖ H ‖2‖ B−1(ΨQ)†ΨA− ⌊B−1(ΨQ)†ΨA⌋r ‖a
≤‖ H ‖2‖ B−1(ΨQ)†ΨA−B−1⌊(ΨQ)†ΨA⌋r ‖a
≤‖ H ‖2‖ B−1 ‖2 · ‖ (ΨQ)†ΨA− ⌊(ΨQ)†ΨA⌋r ‖a

([41], Q⌊(ΨQ)
†
ΨA⌋r = Ain) = κ(H) ‖ Ain − ⌊Ain⌋r ‖a ≤ κ(H) ‖ Ain − ⌊A⌋r ‖a

≤ κ(H)(‖ Ain −A ‖a + ‖ A− ⌊A⌋r ‖a)

= κ(H) (‖ A−HX ‖a +τr(A)) ,

where the second inequality is because that B−1⌊(ΨQ)†ΨA⌋r has rank at most r, which is
no closer than ⌊B−1(ΨQ)†ΨA⌋r to B−1(ΨQ)†ΨA. The last equality uses Lemma 4.2 that
HX = H(ΨH)†ΨA = Q(ΨQ)†ΨA = Ain.

17

4.3 Selection of test matrices

There are advantages and disadvantages to using test matrices from various probability distri-
butions and structure in creating sketches. Such distributions influence parameter selection,
randomization and computation expenses, storage space complexity, trade cost in streaming
and distributed systems, as well as the numerical stability and error bounds.

• Gaussian. Quaternion Gaussian matrices have similar properties to real or complex
Gaussian matrices. In addition to practical performance, unitary invariance also enables
more accurate a priori error bounds, which will be discussed in Section 5.

• Radmacher. Rademacher matrices has similar behavior to quaternion gaussian matrix.
But it cost less in storage and arithmetic.

• Sparse. Sparse structural random matrices require much less storage and arithmetic costs
compared to matrices with no structure. However, they are less reliable and numerically
stable and may need more oversampling in QB stage.

• Rectangular. Tall random matrices act as approximate isometries. If we allow for a
more flexible selection of sketch size parameters, the distribution may not be as crucial.
However, to provide a priori error bound, assumptions of distribution and independence
are also needed. It as randomized embedding will be discussed in Section 6.

5 Guassian Test Matrices

We further quantify the probabilistic estimation of the QB error in Theorem 4.1 with Guassian
test matrices. The probabilistic truncation error can be then derived from Theorem 4.2 accord-
ingly. Using the statistical properties of quaternion Gaussian matrices established in [27], the
estimation can be derived using a similar deduction as in [41]. We first recall some results from
[27].

Lemma 5.1. ([27]) Let G ∈ Qm×n be a quaternion Guassian matrix and S ∈ Ql×m, T ∈ Qn×s

be fixed. Then:

E ‖ SGT ‖2F = 4 ‖ S ‖2F ‖ T ‖2F ,
E ‖ SGT ‖2 ≤ 3 (‖ S ‖2‖ T ‖F + ‖ S ‖F ‖ T ‖2) .

Lemma 5.2. ([27]) Let G ∈ Qm×n (m ≤ n) be a quaternion Guassian matrix. Then

E ‖G† ‖2F=
m

4 (n−m) + 2
, and E ‖ G† ‖2=

e
√

4n + 2

2n− 2m + 2
.

Theorem 5.1 (Probabilistic QB error). For A ∈ Qm×n(m ≥ n), let (H,X) be generated by
Algorithm 4 with (19) hold, and let H = QB as in (21). If Ψ and Ω in (17) are quaternion
Gaussian, for any k < s, we have

E ‖ HX−A ‖2F≤
(

4l + 2

4 (l − s) + 2

)(

4s + 2

4 (s− k) + 2

)

‖ Σ2 ‖2F . (33)

Proof. For the Frobenius norm, from (27) of Theorem 4.1, it suffices to respectively estimate

‖ Ψ
†
2Ψ1 (Q∗

⊥A) ‖2F and ‖ A − QQ∗A ‖2F . Owing to the marginal property of the standard
normal distribution, Ψ2 = ΨQ ∈ Ql×s and Ψ1 = ΨQ⊥ are statistically independent guassian

18

matrices. We thus have

EΨ‖Ψ†
2Ψ1 (Q∗

⊥A) ‖2F = EΨ2
EΨ1
‖Ψ†

2Ψ1 (Q∗
⊥A) ‖2F (34)

(Lemma 5.1) = 4E ‖ Ψ†
2 ‖2F ‖ Q∗

⊥A ‖2F
(Lemma 5.2) ≤ 4s

4 (l − s) + 2
‖ Q∗

⊥A ‖2F

=
4s

4 (l − s) + 2
‖ (I −QQ∗)A ‖2F .

From (27) and the independence of Ω and Ψ,

E ‖ HX−A ‖2F = EΩ

(

1 +
4s

4 (l − s) + 2

)

‖ (I −QQ∗)A ‖2F . (35)

Lemma 4.4 shows that

EΩ ‖ (I −QQ∗)A ‖2F ≤‖ Σ2 ‖2F +EΩ ‖ Σ2Ω
∗
2 (Ω∗

1)
† ‖2F

≤
(

1 +
4k

4 (s− k) + 2

)

‖ Σ2 ‖2F , (36)

where the deduction of the second inequality is similar to (34). Plugging this into (35) yields
(33).

6 Sub-Guassian Test Matrices

This section establish the probabilistic QB error Theorem 4.1 with sug-Gaussian test matrices:

Theorem 6.1 (Probabilistic error). Assume that the sketch parameters satisfy the k ≪ s ≪
l ≪ min{m,n}. Draw random test matrices Ω ∈ Qn×s and Ψ ∈ Ql×m such that the rows of
Ω∗ and Ψ are independent sub-gaussian isotropic random vectors. Let H,X be generated by
Algorithm 4. Then we have

‖ HX−A ‖a≤
(

1 +
2
√
l + 2CK

√
m− s + t

2
√
l − 2CK

√
s− t

)

(

1 +
2
√
s + 2CK

√
n− k + t

2
√
s− 2CK

√
k − t

)

‖ Σ2 ‖a

with probability at least 1 − 2 exp
(

− 2cKt2

K4

)

, where CK and cK are only depend on the sub-

gaussian norm K.

The main tool to prove the above theorem is Theorem 6.2, which gives a deviation bound
for extream singular values of a quaternion sub-Gaussian matrix. To achieve this, we need to
use real representation of a quaternion matrix as a bridge, such that the results in [43] can be
applied.

Similar to complex representation, a quaternion matrix Q = Qw +Qxi+Qyj+Qzk has real
representation [27]:

Qr =

Qw

Qx

Qy

Qz

and ΥQ = [J0Qr,J1Qr,J2Qr,J3Qr]

19

where J0 = I4m and

J1 =

−eT2
eT1
eT4
−eT3

⊗ Im, J2 =

−eT3
−eT4
eT1
eT2

⊗ Im, J3 =

−eT4
eT3
−eT2
eT1

⊗ Im.

All of Ji(i = 0, 1, 2, 3) are orthogonal. Spectral and Frobenius norms of a quaternion matrix Q

can be represented by those of real matrices as below:

‖Q‖2 = ‖ΥQ‖2 ≥‖ Qr ‖2, ‖Q‖F =
1

2
‖ΥQ‖F =‖ Qr ‖F .

Subsequently, we shall delineate certain fundamental definitions and lemmas pertaining to
real probabilistic theory. These can be extended to the realm of quaternions by leveraging the
correspondence between quaternion matrices and their real representations.

Definition 6.1. (sub-gaussian random variable, [43]) A random variable X is called a sub-
gaussian random variable if satisfying:

P {|X | > t} ≤ exp
(

1− ct2
)

for all t > 0. And the sub-gaussian norm of X, denoted ‖X‖Ψ2
, is defined as:

‖X‖Ψ2
= sup

p>=1
p−1/2 (E |X |p)

1/p

Definition 6.2. (sub-exponential random variable, [43]) A random variable X is called a sub-
exponential random variable if satisfying

P {|X | > t} ≤ exp (1− t/K1)

for all t > 0. And the sub-exponential norm of X, denoted ‖X‖Ψ1 , is defined as:

‖X‖Ψ1
= sup

p≥1
p−1(E|X |p)1/p.

Definition 6.3. (sub-gaussian vector, [43]) A random vector X in Rn is called a sub-gaussian
vector if the one-demensional marginals (X, x) are sub-gaussian random variables for all x ∈ Rn.
The sub-gaussian norm of X is defined as:

‖X‖Ψ2
= sup

x∈Sn−1

‖〈X, x〉‖Ψ2
.

Definition 6.4. (isotropic vector, [43]) A random vector X ∈ Rn is called isotropic if Σ(X) = I.
Equivalently, X is isotropic if

E〈X, x〉2 = ‖x‖22 for all x ∈ Rn.

Definition 6.5. (quaternion sub-gaussian random variable (matrix)) A quaternion random
variable x = xw + xxi + xyj + xzk follows quaternion sub-gaussian distribution if xw, xx, xy, xz

are randomly and independently drawn from a real sub-gaussian distribution. If all entries of
the quaternion matrix A are independent and identically distributed to sub-gaussian distribution
with sub-gaussian norm ‖A‖Ψ2

= K, we call the A is a sub-gaussian matrix with sub-gaussian
norm ‖A‖Ψ2

= K.

Definition 6.6. (Quaternion isotropic vectors) Let Ω be a quaternion isotropic vector in Qn

if its real column representation satisfies:

EΩrΩ
T
r = I4n

20

Lemma 6.1. ([43]) Let X1, . . . , XN be independent centered sub-exponential random variables,
and let K = maxi ‖Xi‖Ψ1

. Then, for every ε ≥ 0, we have:

P

{∣

∣

∣

∣

∣

N
∑

i=1

Xi

∣

∣

∣

∣

∣

≥ εN

}

≤ 2 exp

[

−cmin

(

ε2

K2
,
ε

K

)

N

]

.

Lemma 6.2. ([43]) Consider a real matrix B that satisfies

‖BTB − I‖ ≤ max(δ, δ2)

for some δ > 0. Then

1− δ ≤ smin(B) ≤ smax(B) ≤ 1 + δ. (37)

Conversely, if B satisfies (37) for some δ > 0 then ‖BTB − I‖ ≤ 3 max(δ, δ2).

Lemma 6.3. Let X, Y be two random variables; we have:

P{X + Y > 2ε} ≤ P{X > ε}+ P{Y > ε}

Proof. Using formula of total probability,

P{x + y > 2ε} = P{x + y > 2ε|y > ε}P{y > ε}+ P{x + y > 2ε|y ≤ ε}P{y ≤ ε}
≤ P{y > ε}+ P{x + y > 2ε|y ≤ ε}
≤ P{y > ε}+ P{x > ε}

Lemma 6.4. Let X, Y be positive random variables; we have:

P{XY > ε2} ≤ P{X > ε}+ P{Y > ε}

Proof. Consider the random variables X1 = ln(X), Y1 = ln(Y). Then using Lemma 6.3 gives

P{X1 + Y1 > 2 ln ε} ≤ P{X1 > ln ε}+ P{Y1 > ln ε}.

The deviation bound for extreme singular values of a quaternion sub-Gaussian matrix is
given as follows. The idea of the proof follows from [43, Theorem 39].

Theorem 6.2 (Deviation bound). Let A ∈ QN×n(N > 4n) be a quaternion matrix whose rows
Ai are independent sub-Gaussian isotropic random quaternion vectors, Then for every t ≥ 0,

with probability at least 1− exp
(

− cKt2

K4

)

one has

2
√
N − 2C

√
n− t ≤ σmin (A) ≤ σmax (A) ≤ 2

√
N + 2C

√
n + t. (38)

Here CK and cK only depend on the sub-Gaussian norm K = maxi ‖Ai‖Ψ2
of the rows.

Proof. First, from [27], σmin(ΥA) = σmin(A) and σmax(ΥA) = σmax(A). Thus we focus on the
estimation of σmin(ΥA) and σmax(ΥA). Applying Lemma 6.2 for B := ΥA/

√
4N , the conclusion

is equivalent to

‖ 1

4N
Υ∗

AΥA − I‖2 ≤ max(δ, δ2) =: ε where δ = C

√

4n

4N
+

t√
4N

. (39)

21

We can evaluate the operator norm ‖ 1
4N Υ∗

AΥA − I‖2 in (40) on a 1
4 -net N of the unit sphere

S4n−1:
∥

∥

∥

∥

1

4N
Υ∗

AΥA − I

∥

∥

∥

∥

2

≤ 2 max
x∈N

∣

∣

∣

∣

〈

(
1

4N
Υ∗

AΥA − I)x, x

〉∣

∣

∣

∣

= 2 max
x∈N

∣

∣

∣

∣

1

4N
‖ΥAx‖22 − 1

∣

∣

∣

∣

(40)

Write ΥA as ΥA =

ΥA1

ΥA2

ΥA3

ΥA4

with ΥAi ∈ RN×4n, i = 1, 2, 3, 4; here we call ΥAi the i-th block

row of the real counterpart ΥA. By its structure and that each row of A is independent and
isotropic, each row of ΥAi is an independent sub-Gaussian isotropic real vector.

Fix any vector x ∈ S4n−1, we will upper bound P
{∣

∣

1
4N ‖ ΥAix ‖2 − 1

4

∣

∣ > ε
2

}

for each fix i.
The idea comes from the proof of [43, Theorem 39]. First denote

‖ ΥAix ‖22=

N
∑

j=1

〈ΥA
j
i , x〉2 =:

N
∑

j=1

Z2
j ,

where ΥA
j
i represents the j-th row of ΥAi. Zj = 〈ΥA

j
i , x〉 are independent sub-Gaussian

random variables with EZ2
j = 1 and ‖Zj‖Ψ2 ≤ K. Thus Z2

j − 1 are independent centered
sub-exponential random variables. Using Lemma 6.1 to give:

P

{
∣

∣

∣

∣

1

N
‖ΥAix‖22 − 1

∣

∣

∣

∣

≥ ε

2

}

= P

∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

Z2
j − 1

∣

∣

∣

∣

∣

∣

≥ ε

2

≤ 2 exp
[

− c1
K4

min(ε2, ε)N
]

= 2 exp
[

− c1
K4

δ2N
]

≤ 2 exp
[

− c1
K4

(C2n + t2)
]

,

where c1 is an absoult constant. By Lemma 6.3,

P

{
∣

∣

∣

∣

1

4N
‖ ΥAx ‖22 −1

∣

∣

∣

∣

>
ε

2

}

≤
4
∑

i=1

P

{
∣

∣

∣

∣

1

4N
‖ ΥA

2
ix ‖2 −

1

4

∣

∣

∣

∣

>
ε

2

}

≤ 8 exp
[

− c1
K4

(C2n + t2)
]

.

Taking the union bound over all vectors x in the net N of cardinality |N | ≤ 9n, we obtain:

P

{

max
x∈N

∣

∣

∣

∣

1

4N
‖ΥAx‖22 − 1

∣

∣

∣

∣

≥ ε

2

}

≤ 9n · 8 exp
[

− c1
K4

(C2n + t2)
]

≤ exp

(

−c1t
2

K4

)

,

where the last inequality holds when C ≥ K2
√

1
c1

(

ln 9 + ln 8
n

)

.

Back to (40), we have:

P

{

‖ 1

4N
Υ∗

AΥA − I‖2 ≥ ε

}

≤ exp

(

−c1t
2

K4

)

It means that at least with probability 1− exp
(

− c1t
2

K4

)

, we have:

1− δ ≤ σmin

(

1

2
√
N

ΥA

)

≤ σmax

(

1

2
√
N

ΥA

)

≤ 1 + δ

where δ = C
√

4n
4N + t√

4N
in (39). As noted at the beginning of the proof, this completes the

proof of the theorem.

22

Remark 6.1. The right-hand side of inequality (38) still holds when N ≤ 4n. However, the
left-hand side may yield a trivial result.

If A has independent quaternion isotropic columns, the largest singular value can be esti-
mated by using conjugate transposition A∗.

Now we prove Theorem 6.1 based on Theorems 4.1 and 6.2.

Proof of theorem 6.1. Recall that Theorem 4.1 gives

‖HX−A‖a ≤
(

1+ ‖ Ψ†
2 ‖2‖ Ψ1 ‖2

)(

1+ ‖ Ω∗
2 ‖2‖

(

Ω
†
1

)∗
‖2
)

‖Σ2‖a,

where Ψ2 = ΨQ ∈ Ql×s, Ψ1 = ΨQ⊥ ∈ Ql×(m−s),Ω∗
1 = Ω∗V1 ∈ Qs×k, Ω∗

2 = ΩV∗
2 ∈ Qs×(n−k)

with independent isotropic sub-gaussian rows. Some deviation bounds will be given first.

By definition, ‖ Ψ
†
2 ‖2= 1/σmin (Ψ2), ‖ Ψ1 ‖2= σmax (Ψ1), ‖ Ω∗

2 ‖2= σmax (Ω2) and

‖
(

Ω
†
1

)∗
‖2= σmin (Ω1). Thus, by Lemma 6.4 and Theorem 6.2, we have:

P

{

1+ ‖ Ψ†
2 ‖2‖ Ψ1 ‖2> 1 +

2
√
l + 2CK

√
m− s + t

2
√
l − 2CK

√
s− t

}

≤ exp

(

−cKt2

K4

)

;

P

{

1+ ‖ Ω2 ‖2‖ Ω†
1 ‖2> 1 +

2
√
s + 2CK

√
n− k + t

2
√
s− 2CK

√
k − t

}

≤ exp

(

−cKt2

K4

)

.

Again by Lemma 6.4,

P

{

‖HX−A‖a ≥
(

1 +
2
√
l + 2CK

√
m− s + t

2
√
l− 2CK

√
s− t

)

(

1 +
2
√
s + 2CK

√
n− k + t

2
√
s− 2CK

√
k − t

)

‖Σ2‖a
}

≤ 2 · exp

(

−cKt2

K4

)

.

7 Numerical Experiments

In this section, we test the practical algorithm by following examples. All the experiments
are carried out in MATLAB 2021a on a personal computer with an Intel(R) CPU i7-12700 of
2.10 GHz and 32GB of RAM. All example use the one-pass randomized quaternion low-rank
approximation algorithm with pseduo-QR and pseudo-SVD.

For Algorithm 4, the approximation error and relative error are defined as :

relative error =
‖ A− Â ‖F
‖ A ‖F

(41)

7.1 Synthetic data

This subsection will be provided in the next version.

23

0 500 1000 1500 2000

Singular value order:

10-10

100

1010

S
in

g
u

la
r

v
a

lu
e

:

Singualr Value

Figure 4: Singular values of microConvection

7.2 Image compression

This subsection will be provided in the next version.

7.3 Scientific data

Example 7.1. In this example, we test the compression of the output of a computational fluid
dynamics simulation by quaternion low-rank approximation. We have obtained a numerical
simulation on a mesh of the 3D Navier–Stokes equations for microscopic natural convection for
biological research applications. Velocity and pressure field are computed by QuickerSim CFD
Toolbox for MATLAB. Then shear rate on each node can be computed by velocity field.

The origin data contains 20914 nodes and 2000 time instants. The elements of quaternion
matrices microConvection represent the space velocity field by:

ap,t = vx(p, t)i + vy(p, t)j + vz(p, t)k (42)

where v = (vx, vy, vz) is velocity vector field on the M× R, p ∈ M is discrete point on vessel
surface. Original data has rapidly decay spectrum as shown in figure 4.

Figure 5 show that our algorithm work efficiently and obtain high accuracy when origin data
have rapidly decay spectrum. In particular, if we set k = 60, the relative Frobenius error is
under 10−5 while the compression cost less than 2 second. It means that our algorithm can
complete compression process before next input, which allows us compress on-the-fly large-scale
quaternion output of scientific simulations.

Figure 6 illustrates that our compression can highly approximate the origin velocity field
and compute the shear rates closely match the real data even if algorithm compress the original
data from 256.81MB to 26.28MB.

Example 7.2. In this section, we will compress the output of a 4D Lorenz-type chaotic sys-
tem simulation by our randomized quaternion low-rank approximation algorithms. The chaotic

24

0 50 100 150 200

Target rank k:

10-8

10-6

10-4

R
e

la
ti
v
e

 F
ro

b
e

n
iu

s
 E

rr
o

r:

PesudoQR

PesudoSVD

(a) Relative Frobenius Error

0 50 100 150 200

Target rank k:

0

1

2

3

4

5

6

R
u

n
n

in
g

 T
im

e
:

PesudoQR

PesudoSVD

(b) Running Time

Figure 5: Relative Errors and Running Time of CFD simulation with different target rank k

system is as follows:

dx
dt = a(y − x)− ew,
dy
dt = xz − hy,
dz
dt = b− xy − cz,
dw
dt = ky − dw,

where x, y, z and w are state variables and a, b, c, d, e, h are positive parameters of system.
In our simulation, we set a = 5, b = 20, c = 1, d = 0.1, k = 0.1, e = 20.6, h = 1. And we
set 10000 initial state (x, y, z, w) randomly from sphere ‖ (x, y, z, w) ‖2= 20. Choosing 2000
time instance, we can obtain a 10000× 2000 quaternion matrix which record the information of
solutions. The quaternion matrix has slower spectrum decay shown in figure 7.

Figure 8 show that larger sketch size is necessary to obtain a high accuracy when input data
have low spectrum decay. One-pass algorithms using pseudo-QR and pseduo-SVD have similar
accuracy with the same sketch size. However, pseduo-QR may cost less time with larger sketch
size.

8 Conclusions

Existing quaternion rangefinders, which are based on quaternion orthogonalization, may be in-
efficient for large-scale problems. Based on the strategy of trading accuracy or space for speed,
this work presented two practical rangefinders, which may not be orthonormal but still well-
conditioned. The proposed rangefinders were then incorporated into the the one-pass algorithm
proposed by Tropp et al. [41] for low-rank approximation to quaternion matrices. Throughout
the whole algorithm, heavy quaternion computations has been transformed to QR, SVD, and
solving linear equations in the complex arithmetic, such that mature scientific computing li-
braries or advanced algorithms can be employed to accelerate the computations. Theoretically,
the probabilistic error bound was established; in particular, it was shown that the condition
number of the rangefinder is proportional to the error, giving validity of using a non-orthonormal
yet well-conditioned rangefinder. In addition, we established a deviation bound for the extreme
singular values of a quaternion sub-Gaussian matrix, giving theoretical support of using a sub-
Gaussian test matrix. Numerical experiments demonstrate that our algorithms work efficiently
with less storage costs. Finally, we tested two practical numerical examples, including image
dimensionality reduction and compression of large-scale scientific simulation data, to verify the

25

(a) Origin at 8th step (b) Recovered at 8th step

(c) Origin at 14th step (d) Recovered at 14th step

(e) Origin at 23rd step (f) Recovered at 23rd step

Figure 6: Shear rate computed from origin data and compressed data

26

0 500 1000 1500 2000

Singular value order:

100

105

S
in

g
u

la
r

v
a

lu
e

:

Singualr Value

Figure 7: Singular values of 4D Lorenz system

0 200 400 600 800 1000

Target rank k:

10-3

10-2

10-1

R
e

la
ti
v
e

 F
ro

b
e

n
iu

s
 E

rr
o

r:

PesudoQR

PesudoSVD

(a) Relative Frobenius Error

0 200 400 600 800 1000

Target rank k:

0

5

10

15

20

25

30

R
u

n
n

in
g

 T
im

e
(s

):

PesudoQR

PesudoSVD

(b) Running Time

Figure 8: Relative Errors and Running Time of Lorenz system with different target rank k

27

effectiveness of the algorithm.

References

[1] Fast monte-carlo algorithms for finding low-rank approximations | Journal of the ACM.
https://dl.acm.org/doi/abs/10.1145/1039488.1039494. 2

[2] Quaternion Matrix Compuation. 2, 5, 6, 13

[3] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide.
Society for Industrial and Applied Mathematics, Philadelphia, PA, third edition, 1999. 2

[4] Christos Boutsidis, David P. Woodruff, and Peilin Zhong. Optimal principal component
analysis in distributed and streaming models. In Proceedings of the Forty-Eighth Annual
ACM Symposium on Theory of Computing, STOC ’16, pages 236–249, New York, NY, USA,
June 2016. Association for Computing Machinery. 2

[5] Angelika Bunse-Gerstner, Ralph Byers, and Volker Mehrmann. A quaternion QR algorithm.
55(1):83–95. 2, 11

[6] Junren Chen and Michael K. Ng. Color image inpainting via robust pure quaternion
matrix completion: Error bound and weighted loss. SIAM Journal on Imaging Sciences,
15(3):1469–1498, 2022. 5

[7] Yong Chen, Zhi-Gang Jia, Yan Peng, Ya-Xin Peng, and Dan Zhang. A new structure-
preserving quaternion QR decomposition method for color image blind watermarking.
185:108088. 2

[8] Kenneth L. Clarkson and David P. Woodruff. Numerical linear algebra in the streaming
model. In Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing,
pages 205–214, Bethesda MD USA, May 2009. ACM. 2

[9] Michael B. Cohen, Sam Elder, Cameron Musco, Christopher Musco, and Madalina Persu.
Dimensionality reduction for k-means clustering and low rank approximation. In Proceed-
ings of the Forty-Seventh Annual ACM Symposium on Theory of Computing, page 163–172,
New York, NY, USA, 2015. Association for Computing Machinery. 2

[10] Intel Corporation. Intel math kernel library (version x.x).
https://software.intel.com/content/www/us/en/develop/tools/math-kernel-library.html,
20xx. Accessed: yyyy-mm-dd. 2

[11] Todd A. Ell, Nicolas Le Bihan, and Stephen J. Sangwine. Quaternion Fourier Transforms.
In Quaternion Fourier Transforms for Signal and Image Processing, pages 35–66. John
Wiley & Sons, Ltd. 2

[12] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins Studies
in the Mathematical Sciences. The Johns Hopkins University Press, fourth edition edition.
12

[13] T. N. E. Greville. Note on the Generalized Inverse of a Matrix Product. 8(4):518–521. 16

[14] N. Halko, P. G. Martinsson, and J. A. Tropp. Finding Structure with Randomness: Prob-
abilistic Algorithms for Constructing Approximate Matrix Decompositions. 53(2):217–288.
1, 2, 3, 15, 16

[15] Nicholas J. Higham. Computing the Polar Decomposition—with Applications. SIAM
Journal on Scientific and Statistical Computing, 7(4):1160–1174, 1986. 9

28

https://software.intel.com/content/www/us/en/develop/tools/math-kernel-library.html

[16] Zhigang Jia, Michael K. Ng, and Guang-Jing Song. Lanczos method for large-scale quater-
nion singular value decomposition. Numerical Algorithms, 82(2):699–717, 2019. 14

[17] Zhigang Jia, Michael K. Ng, and Guang-Jing Song. Robust quaternion matrix comple-
tion with applications to image inpainting. Numerical Linear Algebra with Applications,
26(4):e2245, 2019. 5

[18] Zhigang Jia, Musheng Wei, and Sitao Ling. A new structure-preserving method for quater-
nion Hermitian eigenvalue problems. 239:12–24. 2

[19] Zhigang Jia, Musheng Wei, Mei-Xiang Zhao, and Yong Chen. A new real structure-
preserving quaternion QR algorithm. 343(C):26–48. 2, 13

[20] Ravindran Kannan and Santosh Vempala. Randomized algorithms in numerical linear
algebra. Acta Numerica, 26:95–135, May 2017. 2

[21] Anastasia Kireeva and Joel A. Tropp. Randomized matrix computations: Themes and
variations, February 2024. 2

[22] Nicolas Le Bihan and Jérôme Mars. Singular value decomposition of quaternion matrices:
A new tool for vector-sensor signal processing. Signal Processing, 84(7):1177–1199, 2004.
10, 15

[23] Chaoqian Li, Yonghe Liu, Fengsheng Wu, and Maolin Che. Randomized block Krylov
subspace algorithms for low-rank quaternion matrix approximations. 2

[24] Ying Li, Musheng Wei, Fengxia Zhang, and Jianli Zhao. Real structure-preserving algo-
rithms of Householder based transformations for quaternion matrices. 305:82–91. 2

[25] Ying Li, Musheng Wei, Fengxia Zhang, and Jianli Zhao. A fast structure-preserving method
for computing the singular value decomposition of quaternion matrices. Applied Mathemat-
ics and Computation, 235:157–167, 2014. 14

[26] Ying Li, Musheng Wei, Fengxia Zhang, and Jianli Zhao. Real structure-preserving algo-
rithms of Householder based transformations for quaternion matrices. Journal of Compu-
tational and Applied Mathematics, 305:82–91, October 2016. 2, 14

[27] Qiaohua Liu, Sitao Ling, and Zhigang Jia. Randomized Quaternion Singular Value De-
composition for Low-Rank Matrix Approximation. 44(2):A870–A900. 2, 4, 15, 16, 18, 19,
21

[28] Yonghe Liu, Fengsheng Wu, Maolin Che, and Chaoqian Li. Fixed-precision randomized
quaternion singular value decomposition algorithm for low-rank quaternion matrix approx-
imations. Neurocomputing, 580:127490, May 2024. 2

[29] Chengyao Lyu, Junjun Pan, Michael K. Ng, and Xile Zhao. Randomized low rank approx-
imation for nonnegative pure quaternion matrices. 150:108940. 2

[30] Michael W. Mahoney. Randomized Algorithms for Matrices and Data. Foundations and
Trends® in Machine Learning, 3(2):123–224, November 2011. 2

[31] Per-Gunnar Martinsson and Joel Tropp. Randomized Numerical Linear Algebra: Founda-
tions & Algorithms, March 2021. 2

[32] Per-Gunnar Martinsson and Joel A. Tropp. Randomized numerical linear algebra: Foun-
dations and algorithms. Acta Numerica, 29:403–572, May 2020. 2

[33] Toshifumi Minemoto, Teijiro Isokawa, Haruhiko Nishimura, and Nobuyuki Matsui. Feed
forward neural network with random quaternionic neurons. 136:59–68. 2

29

[34] Riley Murray, James Demmel, Michael W. Mahoney, N. Benjamin Erichson, Maksim Mel-
nichenko, Osman Asif Malik, Laura Grigori, Piotr Luszczek, Micha l Dereziński, Miles E.
Lopes, Tianyu Liang, Hengrui Luo, and Jack Dongarra. Randomized Numerical Linear
Algebra : A Perspective on the Field With an Eye to Software, April 2023. 2

[35] Huan Ren, Ru-Ru Ma, Qiaohua Liu, and Zheng-Jian Bai. Randomized Quaternion QLP
Decomposition for Low-Rank Approximation. 92(3):80. 2

[36] Stephen J. Sangwine and Nicolas Le Bihan. Quaternion toolbox for MATLAB.
http://qtfm.sourceforge.net/. 2

[37] Stephen J. Sangwine and Nicolas Le Bihan. Quaternion singular value decomposition based
on bidiagonalization to a real or complex matrix using quaternion Householder transforma-
tions. Applied Mathematics and Computation, 182(1):727–738, November 2006. 14

[38] Soo-ChangPei, Ja-Han Chang, and Jian-Jiun Ding. Quaternion matrix singular value de-
composition and its applications for color image processing. In Proceedings 2003 Inter-
national Conference on Image Processing (Cat. No.03CH37429), volume 1, pages I–805–8.
IEEE. 2

[39] Yanfeng Sun, Shangyou Chen, and Baocai Yin. Color face recognition based on quaternion
matrix representation. 32(4):597–605. 2

[40] Joel A. Tropp and Robert J. Webber. Randomized algorithms for low-rank matrix approx-
imation: Design, analysis, and applications, September 2023. 2

[41] Joel A. Tropp, Alp Yurtsever, Madeleine Udell, and Volkan Cevher. Practical Sketching
Algorithms for Low-Rank Matrix Approximation. 38(4):1454–1485. 1, 2, 4, 6, 11, 14, 15,
16, 17, 18, 25

[42] Joel A. Tropp, Alp Yurtsever, Madeleine Udell, and Volkan Cevher. Streaming Low-Rank
Matrix Approximation with an Application to Scientific Simulation. 41(4):A2430–A2463.
2, 14

[43] Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. In
Gitta Kutyniok and Yonina C. Eldar, editors, Compressed Sensing: Theory and Applica-
tions, pages 210–268. Cambridge University Press. 4, 19, 20, 21, 22

[44] Musheng Wei, Ying Li, Fengxia Zhang, and Jianli Zhao. Quaternion Matrix Computations.
Nova Science Publishers, Incorporated, 2018. 2

[45] David P. Woodruff. Sketching as a Tool for Numerical Linear Algebra. Foundations and
Trends® in Theoretical Computer Science, 10(1-2):1–157, 2014. 2

[46] Franco Woolfe, Edo Liberty, Vladimir Rokhlin, and Mark Tygert. A fast randomized algo-
rithm for the approximation of matrices. Applied and Computational Harmonic Analysis,
25(3):335–366, November 2008. 2

[47] Fuzhen Zhang. Quaternions and matrices of quaternions. 251:21–57. 4, 5, 6, 9, 10

[48] Huisheng Zhang and Hui Lv. Augmented Quaternion Extreme Learning Machine. 7:90842–
90850. 2

Proof of Theorem 3.3. Let H = UΣV∗ be a compact QSVD of H where Σ = diag(σ1, . . . , σs) with σi

arranged in a decreasing order. Denote

f(x) := (1− ǫ)x+ ǫx−1.

Then (6) shows that Hnew has singular values f(σi) = (1− ǫ)σi + ǫσi
−1, i = 1, . . . , s. We first consider

the upper bound of f on [σs, 1] and [1, σ1], respectively.

30

http://qtfm.sourceforge.net/

For any ǫ and x ∈ [1, σ1],

f(x) = (1− ǫ)x+ ǫx−1 ≤ (1− ǫ)x+ ǫx ≤ x,

meaning that f(x) ≤ σ1 on [1, σ1].

Next, we consider x ∈ [σs, 1]. Observe that f(x) is convex when x > 0, which achieves the maximal
value on the boundary. It follows from ǫ ≥ σs that f(σs) ≥ (1 − ǫ)σs + σsσ

−1
s ≥ 1 = f(1), i.e., f is

upper bounded by f(σs) = (1− ǫ) σs + ǫ/σs on [σs, 1]. Furthermore, as σs ≤ 1 and ǫ ≤ δσs,

f(x) ≤ (1− ǫ) σs + ǫ/σs ≤ (1− δσs)σs + δσs/σs = δ + σs − δσ2
s < δ + 1/(4δ).

The analysis above together with σ1 ≤
√
2 in Theorem 3.2 shows that the largest singular value of

Hnew cannot exceed max{
√
2, δ + 1/(4δ)}.

On the other hand, it follows from the convexity of f(x) that when x > 0, f(x) ≥ 2
√

ǫ(1− ǫ). The

range of ǫ implies 2
√

ǫ(1− ǫ) ≥ 2
√

σs(1− σs). Thus f(x) ≥ 2
√

σs(1− σs).

We also need a lower bound on σs. When κ(H) > max{2
√
2δ, 2δ2+1/2} = 2δmax{

√
2, δ+1/(4δ)} ≥

2δσ1, we obtain that σs ≤ 1/ (2δ).

Comparing the two upper bounds on f obtained previously, if σ1 ≥ δ + 1/(4δ),

κ(Hnew) ≤
σ1

2
√

σs (1− σs)
; (43)

then

κ(Hnew)
√

κ(H)
≤

√
σ1

2
√

(1− σs)
≤ √

σ1/
√
2 ≤

√

max{
√
2, δ + 1/(4δ)}/

√
2 ≤ 1, (44)

where the second inequality follows from σs ≤ 1/ (2δ) < 1/2, and the last one comes from the range of
δ. Similarly, if σ1 < δ + 1/(4δ),

κ(Hnew) ≤
δ + 1/(4δ)

2
√

σs (1− σs)
; (45)

then

κ(Hnew)
√

κ(H)
≤ δ + 1/(4δ)

2
√

σ1 (1− σs)
≤ δ + 1/(4δ)

2
√

1− 1/(2δ)
< 1, (46)

where the second inequality follows from σ1 ≥ 1 and σs ≤ 1/ (2δ), while the last one comes from that
δ+1/(4δ)

2
√

1−1/(2δ)
is non-decreasing on [1,

√
7/2]. The result follows.

Proof of Corollary 3.1. Using the analysis in Theorem 3.3, one can use the induction method to show

that if all the singular values σi(Hk) lies in
[

2
√

σs(Hk−1)(1− σs(Hk−1)),max{
√
2, δ + 1/(4δ)}

]

, then

all σi(Hk+1) also lie in [2
√

σs(Hk)(1− σs(Hk)),max{
√
2, δ+1/(4δ)}]. Similar to the proof of Theorem

3.3, κ(Hk+1) <
√

κ(Hk).

Proof of Proposition 3.1. We first use the induction method to show that span(Ub̃,JUb̃) = 2t. For
t = 1, this claim is true as u1 ⊥ Ju1. Suppose now that we have found Uk := [ui1 , . . . , uik] ∈ Ub (k < t)
such that span(Uk,JUk) has dimension 2k. Note that Ub is partially orthonormal and span(Ub) has
dimension 2t > 2k, and so there always exists at least a uik+1 ∈ Ub \ Uk, such that

uik+1 /∈ span(Uk,JUk). (47)

We first show that (47) is equivalent to Juik+1 /∈ span(Uk,JUk). Suppose on the contrary that

J uik+1 ∈ span(Uk,JUk), which by Lemma 2.1 is equivalent to

uik+1 = J ∗Juik+1 ∈ span(J ∗Uk,J ∗JUk) ⇔ uik+1 ∈ span(JUk, Uk),

31

deducing a contradiction.

Next, we will prove that span(Uk,JUk, uik+1 ,J uik+1) has dimension 2(k + 1). Denote M :=

[Uk,JUk], PM := MM†, and PM⊥ := I2m − MM† the orthogonal projection onto span(M) and
span(M)⊥, respectively. Then uik+1 can be divided into two part:

PM⊥uik+1 ⊥ span(M) and PMuik+1 ∈ span(M). (48)

Correspondingly, J uik+1 can be divided into PM⊥J uik+1 and PMJ uik+1 , where we also notice that

JPM⊥uik+1 = J uik+1 − JPMuik+1 = J uik+1 − PMJ uik+1 = PM⊥J uik+1 ,

with the second equality from Lemma 2.3.

By Lemma 2.1, PM⊥uik+1 ⊥ JPM⊥uik+1 , and due to the above relation, JPM⊥uik+1 ⊥ M . Thus,

span(M,PM⊥uik+1 , PM⊥J uik+1) = span(M,PM⊥uik+1 ,JPM⊥uik+1)

has dimension 2(k + 1). Therefore,

span(Uk,JUk, uik+1 ,J uik+1)

=span(M,PM⊥uik+1 + PMuik+1 , PMJ uik+1 + PM⊥J uik+1)

also has dimension 2(k+1). Thus the induction method shows that there exists Ub̃ = [ui1 , . . . , uit] ∈ Ub,
such that span(Ub̃,JUb̃) has dimension 2t.

It is obvious that R(Ub̃) ⊂ R(Ub). Furthermore, for any u in Ub̃ corresponding to singular value σ
of χY, J u is also corresponding to σ. which means that R(JUb̃) ⊂ R(Ub). Recall that R(Ub) also has
dimension 2t; thus R(Ub̃,JUb̃) = R(Ub).

32

	1 Introduction
	1.1 Background
	1.2 Quaternion rangefinders
	1.3 Limitation and motivation
	1.4 This work

	2 Preliminaries on Quaternions
	2.1 Quaternion vector space
	2.2 Complex representation

	3 Practical Quaternion Rangefinders
	3.1 Pseudo-QR
	3.2 Pseudo-SVD
	3.3 Comparsions

	4 One-Pass Algorithm
	4.1 The algorithm
	4.2 Deterministic error
	4.3 Selection of test matrices

	5 Guassian Test Matrices
	6 Sub-Guassian Test Matrices
	7 Numerical Experiments
	7.1 Synthetic data
	7.2 Image compression
	7.3 Scientific data

	8 Conclusions

