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Abstract. Subjective Logic (SL) is a logic incorporating uncertainty and
opinions for agents in dynamic systems. In this work, we investigate the
use of subjective logic to model opinions and belief change in social
networks. In particular, we work toward the development of a subjec-
tive logic belief/opinion update function appropriate for modeling belief
change as communication occurs in social networks. We found through
experiments that an update function with belief fusion from SL does not
have ideal properties to represent a rational update. Even without these
properties, we found that an update function with cumulative belief fu-
sion can describe behaviors not explored by the social network model
defined by Alvim, Knight, and Valencia [3].
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1 Introduction

Recently, social networks have begun to influence every aspect of our lives,
with unprecedented, unanticipated consequences, especially in politics and pub-
lic opinion. Research on social networks has studied opinions and their change
over time, but to accurately model real people and their opinions and beliefs, we
must include representations of uncertainty in formal models of social networks.

To achieve this goal, we use subjective logic (SL), which includes information
about agents’ uncertainty, to develop a more nuanced model of social networks
and their changes over time. This work builds upon the model developed by
Alvim, Knight, and Valencia (AKV) [3]. Their social network model incorporates
quantitative opinions and influence on each agent but only addresses binary
opinions and uncertainty is not represented.

The contributions of this paper are the following:

– We propose a model for social networks using elements of the subjective
logic model such as multinomial opinions, trust opinions, and belief fusion
operators.
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– We propose a belief/opinion update function using SL’s trust discount and
belief fusion. We use examples to show that our update function, with cu-
mulative, averaging, and weighted belief fusions, does not satisfy proprieties
that are useful to model a basic social network with rational update.

– We analyze the update function using trust discount and cumulative belief
fusion from subjective logic and how it can represent a different scenario not
described in the model proposed by Alvim, Knight, and Valencia [3].

2 Related Work

There is a great deal of work concerned with logical models of social networks
and formalizing belief change in social networks, but we are unaware of other
work modeling quantitative uncertainty in social networks. More specifically,
other work allows uncertainty only in the sense of multiple states or worlds
that an agent considers possible, whereas in this work we use subjective logic,
considering uncertainty as a total lack of information, on top of the multiple
states an agent may consider possible. Much of the literature treats opinions
as binary, non-quantitative phenomena, whereas we investigate opinions that
take on a spectrum of values between 0 and 1, and which also include possible
uncertainty.

Before the advent of online social networks, Degroot et al. [7] proposed a
model of learning and consensus in multi-agent systems, in which quantitative
beliefs are updated by a constant stochastic matrix at each time step. The De-
groot model does not include uncertainty but otherwise is close to our work in
spirit. The models in [4] are also similar to the models we use, but the focus
of that work is on payoffs and optimal decision-making, whereas our focus is
purely on the changes in information and uncertainty over time. Incorporating
goals and decisions into our models provides an interesting problem for future
work, particularly in the context of our focus on uncertainty. In [8], Holliday
develops a logic with ordered but non-quantitative trust and certainty about
propositions: agent a may trust agent b more than they trust agent c, leading
them to believe certain propositions more strongly than others. Liu et al. [12]
use ideas from doxastic and dynamic epistemic logics to qualitatively model in-
fluence and belief changes in social networks. Christoff [6] has developed several
non-quantitative logics for social networks, and Young Pedersen [13,15] develops
a non-quantitative logic concerned specifically with polarization. In [14], Xiong
and Ågotnes develop a logic to analyze signed social networks where agents can
have “friends” and “enemies,” a different approach to some of the same questions
that concern us, such as polarization and influence.

Hunter [9] introduces a logic of belief updates over social networks with vary-
ing levels of influence and trust. Using dynamic epistemic logic, Baltag et al. [5]
created a threshold model where agents’ behavior changes when the proportion
of supporters changes, but with binary belief and no uncertainty.

This work is a continuation of Alvim et al.’s work [1,2,3]. Alvim et al. develop
a formal model for social networks where agents have quantitative opinions and
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quantitative influence on each other, with a function for agents’ belief update
over time. The goal of the current paper is to extend this model by adding the
possibility of uncertainty to the agents’ quantitative opinions.

3 Background: Subjective Logic

This section provides background on the elements of subjective logic that we
use in our model. Subjective Logic is a logic developed by Jøsang [10] that ex-
tends probabilistic logic by adding uncertainty and subjectivity. In probabilistic
logic, a uniform distribution does not express “we don’t know” because a uni-
form distribution says that we know that the distribution over the domain is
uniform. Subjective logic can distinguish between the situation where the dis-
tribution over outcomes is unknown and the situation where the distribution is
known and, for example, uniform. In subjective logic, it is also possible to have
a situation where some information about the distribution is known and there
is some uncertainty. The subjectivity comes from the fact that we can assign an
opinion, or information, about a proposition to an agent.

Opinion representation The main object of subjective logic is the opinion.
We represent an opinion by ωA

X , where A is an agent, X a random variable,
and ωA

X is A’s opinion about X. An opinion expresses support for none, one,
or many states of a domain. This section presents the elementary definitions
that compose an opinion. A domain is a state space consisting of a finite set of
values called states, events, outcomes, hypotheses, or propositions. The values
are assumed to be exclusive and exhaustive.

Belief mass is a distribution over a domain X representing an agent’s confi-
dence in each value in the domain. The belief mass assigned to a value x ∈ X
expresses support for x being TRUE. Belief mass is sub-additive, i.e.

∑
x∈X

bX(x) ≤

1. The sub-additivity is complemented by uncertainty mass uX and it represents
the lack of support or evidence for the variable X having any specific value.

Definition 1. (Belief Mass Distribution) Let X be a domain of size k ≥ 2,
and let X be a variable over that domain. A belief mass distribution denoted
bX : X → [0, 1] assigns belief mass to possible values of the variable X. Belief
mass and uncertainty mass sum to one, i.e., uX +

∑
x∈X

bX(x) = 1.

Opinions can be semantically different, depending on the situation they apply
to. An aleatory opinion applies to a variable governed by a random or frequentist
process, and represents the likelihood of values of the variable in any unknown
past or future instance of the process. “The (biased) coin will land heads with
p = 0.6” is an aleatory opinion. An epistemic opinion applies to a variable that is
assumed to be non-frequentist, and that represents the likelihood of the variables
in a specific unknown instance. “Beatriz killed Evandro” is an epistemic opinion.
In an epistemic opinion, opposite/different pieces of evidence should cancel each
other out. Therefore, it must be uncertainty-maximized.
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Base rate distribution represents a prior probability distribution over a do-
main: the probability distribution before considering evidence about the domain.

Definition 2. (Opinion) Let X be a domain of size k ≥ 2, and X a random
variable in X. An opinion over the random variable X is the ordered triple ωX =
(bX , uX ,aX) where

– bX is a belief mass distribution over X,

– uX is the uncertainty mass which represents a lack of evidence,

– aX is a base rate distribution (a probability distribution) over X.

The projected probability distribution of an opinion is the posterior probabil-
ity distribution after updating the base rate distribution with the belief mass
distribution. The more an opinion depends on the belief mass, the less it de-
pends on the base rate. The projected probability distribution is defined by
PX(x) = bX(x) + aX(x)uX , ∀x ∈ X

This representation is equivalent to representing an opinion as a Beta PDF (or
Dirichlet PDF if k > 2), where the posterior probability is obtained by updating
the parameters α and β (or a vector of parameters α for the Dirichlet PDF) given
the observations. The equivalence is defined as the projected probability from
SL’s opinion being equivalent to the expected probability of the Beta PDF. More
details about the equivalence between opinions and Beta PDFs are presented in
Appendix A.

The definition of opinion is useful for our model since it is more expressive
than the belief state of an agent about a proposition in [3], which is similarly an
opinion with domain X = {true, false}, with no uncertainty mass. The agent
must commit all of their mass to the values of the domain with no uncertainty.

Example 1. Let X = {x, x} be a domain where x is “global warming is happen-
ing” and x is “global warming is not happening”. Let X be a random variable in
X. An opinion aboutX must be epistemic because it is about a fact in the present
instance that is true or false. Let the base rate be uniform. With no evidence,
an agent A will hold the opinion ωA

X = ((0, 0), 1, (0.5, 0.5)) with PA
X(x) = 0.5,

meaning that A is 50% sure that the global warming is happening, but their
opinion is relying only on the base rate, with no evidence supporting either of
the values.

After gathering evidence from newspapers, scientific studies, and other peo-
ple, A assigns a belief mass to x. If agent A holds the opinion ωA

X = ((0.6, 0), 0.4,
(0.5, 0.5)), then PA

X(x) = 0.8. In this case, A is 80% sure that global warm-
ing is happening, and has evidence that corresponds to 60% of their mass. The
uncertainty mass means that A is relying 40% on the base rate.

Trust discount To model the influence that one agent has on another, subjec-
tive logic has trust opinion, an opinion an agent has about another agent as a
source of information.
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Definition 3. (Trust opinion) Let TB = {tB , tB} be a trust domain, where tB
means “B is a good source of information” and tB means “B is not a good source
of information”. Then ωA

tB , or ωA
B for short, is the (trust) opinion that A has

about the trustworthiness of B as a source of information.

We use trust opinions to model an agent’s updated opinion after communica-

tion: ω
[A;B]
X is a new opinion generated by taking belief mass ωB

X proportional to

the belief mass of the trust opinion ωA
B . And ω

[A;B]
X represents A’s opinion about

X after communicating with B, ωA
B represents A’s opinion about B’s trust-

worthiness, and ωB
X represents B’s opinion about X. The operation is denoted

ω
[A;B]
X = ωA

B ⊗ ωB
X .

There are several options for computing this value, depending on the situation
being modeled. Developing an accurate function for opinion updates in social
networks is a focus of the current paper.

Example 2. Let ωA
B = ((1, 0), 0,aAB) with PA

B(tB) = 1 and ωB
X = ((0.6, 0), 0.4,

(0.5, 0.5)) with PB
X(x) = 0.8. Here, A completely trusts B and B is 80% sure

that x is true with 60% of their mass assigned to x.
PA

B(tB) = 1, i.e. A completely trusts B. Then, A by trusting B (in short

[A;B]) will hold the same opinion as B about X. Therefore, ω
[A;B]
X = ωB

X . By
the opinion that A has about X by trusting B, A is 60% sure that x is true with
80% of their mass assigned to x.

Example 3. Let ωA
B = ((0.5, 0.5), 0,aAB) with PA

B(tB) = 0.5 and ωB
X = ((0.8, 0),

0.2, (0.5, 0.5)) with PA
X(x) = 0.9. Here, A trusts B by 50% and B is 80% sure

that x is true with 60% of their mass assigned to x.
PA

B(tB) = 0.5. Then, [A;B] will hold 50% of the belief mass of each value

from B. Therefore, ω
[A;B]
X = ((0.4, 0), 0.6, (0.5, 0.5)) with P

[A;B]
X (x) = 0.7. By the

opinion that A has about X by trusting B, A is 70% sure that x is true with
40% of their mass assigned to x.

Belief fusion To model A’s concurrent interactions with multiple other agents,
we use belief fusion [10,11]. Belief fusion combines a set of opinions into a single
opinion which then represents the opinion of the collection of sources. There is
more than one possible definition for the belief fusion operator. The possible
definitions differ in their properties and applications. Below, we omit the details
of the calculation of the fusion operators and instead, explain the intuition. For
more details, see [10]. For our model, we consider the following operators from
[10,11]:

– Cumulative belief fusion (denoted ω
(A⋄B)
X = ωA

X ⊕ ωB
X): Used when it is

assumed that the amount of independent evidence increases by including
more sources. The idea is to sum the amount of evidence of the opinions. It
is non-idempotent. E.g.a set of agents flips a coin several times and produces
an opinion about the bias of the coin. An opinion produced by cumulative
belief fusion represents all the experiments made by the agents.
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– Averaging belief fusion (denoted ω
(A⋄B)
X = ωA

X⊕ωB
X): It is used when includ-

ing more sources does not mean that more evidence supports the conclusion.
The idea is to take the average of the amount of evidence of the opinions. It
is idempotent, but it has no neutral element. E.g. After observing the court
proceedings, each member of a jury produces an opinion about the same
evidence. The verdict is the fusion between those opinions.

– Weighted belief fusion (denoted ω
(A⋄̂B)
X = ωA

X⊕̂ωB
X): It is used when we take

the average of the amount of evidence of the opinions weighted by their lack
of uncertainty. In particular, opinions with no belief mass are rejected. It is
idempotent and it has a neutral element uX = 1. E.g. a group of medical
doctors needs to decide on a diagnosis. Each of them has an opinion, but
some of them are more certain (assigned more belief mass) than others.
Those opinions must have more weight than the others upon fusion.

Each of these operators is defined in the Appendix B.

4 A Subjective Logic model for social networks

We describe how to use subjective logic to model a social network. Existing no-
tions from subjective logic work well for modeling the relevant aspects of agents’
opinions about an issue in a social network, except for the update function. Our
goal is to expand subjective logic with an appropriate update function.

4.1 Static elements of the model

The static elements represent a snapshot of a social network at a given point in
time. They include the following components:

– A (finite) set A = {A0, A1, . . . , An−1} of n ≥ 1 agents. An agent is a user in
a social network

– A domain of k disjoint events X = {x0, x1, . . . , xk−1} and a random variable
X over X. A domain is a generalization of a proposition from binary logic
by having multiple truth values for a proposition. A proposition from binary
logic would have a domain of size 2. It can represent topics that cannot
be answered with just a YES or NO. In the examples in this work, we use
a domain of size two for simplicity, and the random variable X represents
opinions about a single issue.

– A set of opinions {ωAj

X }Ai∈A, one for each agent, about a single random
variable X.

4.2 Dynamic elements of the model

The dynamic elements of the model formalize the evolution of agents’ beliefs as
they interact and communicate about their opinions over time. They include:
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– A set of trust opinions {ωAi

Aj
}Ai,Aj∈A over the domain TAj

= {tAj
, taj

} where
Ai, Aj ∈ A and i ̸= j. Each trust opinion represents how much Ai trusts Aj

as a source of evidence. We consider trust opinion as dogmatic, i.e. the uncer-
tainty mass is iTj = 0 for all trust opinions. Therefore, PAi

Aj
(tAj ) = bAi

Aj
(tAj

).

Throughout this paper, we represent a trust opinion only by PAi

Aj
(tAj

).

– A time frame T = {0, 1, 2, . . . , tmax} representing the discrete passage of
time.

– An update function f such that

ω
Ai[t+1]
X = f(ω

Ai[t]
X , {ωAi

Aj
}Aj∈A, {ω

Aj [t]
X }Aj∈A). (1)

An update function f takes Ai’s opinions at time t and updates it using all
other agents’ opinions and trust opinions to them. Here we consider that
agents have complete trust in themselves. Otherwise, we can define this
function with Ai’s opinion included in the set of opinions {ωAi

Aj
}Aj∈A.

5 Applying trust discount and belief fusion

The intuition behind our planned update function is to fuse agent A’s current
opinion with all the opinions that A can gather by trusting other agents. Define
a dogmatic opinion as an opinion with no uncertainty, i.e. uX = 0. For this
update function, we are not considering situations with dogmatic opinions, be-
cause it means the agent has an infinite amount of evidence and the belief fusion
operators remove non-dogmatic opinions when at least one is present.

Definition 4. (Update function with Belief Fusion and Trust) Let ω
A0[t]
X , · · · ,

ω
An−1[t]
X be non-dogmatic opinions. Let ⊕ be a belief fusion operator. Define the

update function for ω
An[t+1]
X as

ω
An[t+1]
X = ω

A[t]
X ⊕

⊕
Am∈A
m ̸=n

(ωAn

Am
⊗ ω

An[t]
X ). (2)

Our goal in this section is to understand the effects and properties of the
proposed update function applied to only two agents. Doing so will properly
set a foundation to understand the same effects and properties on a large-scale
model. Now we define the update function for two agents with examples and
experiments.

Definition 5. (Update function for two agents with Belief Fusion and Trust)

Let ω
A[t]
X and ω

B[t]
X be non-dogmatic opinions. Let ⊕ be a belief fusion operator.

Define the update function for ω
A[t+1]
X as

ω
A[t+1]
X = ω

A[t]
X ⊕ (ωA

B ⊗ ω
B[t]
X ). (3)
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We call (ωA
B ⊗ ω

B[t]
X ) the opinion that A will learn by interacting with B.

ω
A[t+1]
X is the opinion that A holds after merging their previous opinion (ω

A[t]
X )

with the opinion that A learned (ωA
B ⊗ ω

B[t]
X ).

Example 4. For brevity, we write the value of PA
B(tB) where it should be ωA

B . If

ω
A[t]
X = ((0, 0), 1, (0.5, 0.5)), P

A[t]
X (x) = 0.5

ωA
B = ((0.5, 0.5), 0,aAB), PA

B(tB) = 0.5

ω
B[t]
X = ((0.8, 0), 0.2, (0.5, 0.5))) P

B[t]
X (x) = 0.9,

(4)

then

ω
A[t+1]
X = ((0, 0), 1, (0.5, 0.5))⊕ (0.5⊗ ((0.8, 0), 0.2, (0.5, 0.5)))

= ((0, 0), 1, (0.5, 0.5))⊕ ((0.4, 0), 0.6, (0.5, 0.5)).
(5)

Agent A is 50% sure about x and B is 90% about x. Both trust each other
by 50%. As we show below, there are different outcomes depending on the choice
of fusion operator.

Example 5. Now consider these two agents iteratively updating their opinion
over time.

ω
A[0]
X = ((0.2, 0), 0.8, (0.5, 0.5)) P

A[0]
X (x) = 0.6 PA

B(tB) = 0.5

ω
B[0]
X = ((0.8, 0), 0.2, (0.5, 0.5)) P

B[0]
X (x) = 0.9 PB

A(tA) = 0.5
(6)

Here, initially agent A is 60% sure about x and B is 90% about x. Both trust
each other by 50%. The iterated evolution of PA

X(x) and PB
X(x) over 20 time

steps is shown in Fig. 1.

Fig. 1. PA
X(x) (blue) and PB

X(x) (orange) updated 20 times as in Example 5.

Say that weak convergence means that A cannot move further from B upon

update, i.e. P
A[t]
X ≤ P

A[t+1]
X ≤ P

B[t]
X or P

A[t]
X ≥ P

A[t+1]
X ≥ P

B[t]
X . We expected

that the update function would weakly converge byPA
X(x) andPB

X(x) converging

to some value between P
A[0]
X (x) = 0.6 and P

B[0]
X (x) = 0.9. But because evidence
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keeps accumulating over time, with cumulative belief fusion, PA
X(x) and PB

X(x)
converge to 1. Therefore, the update function with cumulative fusion does not
weakly converge.

For averaging and weighted belief fusion, PA
X(x) and PB

X(x) converge to 0.5,
violating weak convergence. With epistemic opinions, increasing uncertainty over
time is expected, but the same happens with aleatory opinions because the trust
discount removes an amount of evidence from each agent at every step.

Example 6. In this case, A and B have the same opinion and the same trust.

ω
A[0]
X = ((0.6, 0), 0.4, (0.5, 0.5)) P

A[0]
X (x) = 0.8 PA

B(tB) = 0.5

ω
B[0]
X = ((0.6, 0), 0.4, (0.5, 0.5)) P

B[0]
X (x) = 0.8 PB

A(tA) = 0.5
(7)

Here, A and B have the same opinion. They are 80% sure about x. Both
trust each other by 50%. The evolution of PA

X(x) and PB
X(x) is shown in Fig. 2.

Fig. 2. PA
X(x) and PB

X(x) (both orange) updated 20 times as in Example 6.

Even starting with the same opinion, agents A and B do not keep the same
opinion over time. With cumulative belief fusion, A and B keep accumulating
evidence and PA

X(x) and PB
X(x) converge to 1. With averaging or weighted

belief fusion, uncertainty keeps increasing, and PA
X(x) and PB

X(x) converge to
0.5. The example shows none of the belief fusion operators make the update
idempotent with respect to the agents’ opinions. None of these operators can
represent the case where agents with the same opinion, when interacting, keep
the same opinion over time.

In this section, we showed that an update function when belief fusion and
trust discount do not have ideal properties that can be useful to model a rational
update in a social network. Even without these properties, in the next section,
we show that an update function with cumulative belief fusion can represent a
different kind of bias not explored in Alvim, Knight, and Valencia’s work [1,2,3].

6 Analysis of the update function with cumulative belief

In this section, we analyze the cumulative belief fusion operator, which we believe
in practice provides some interesting outcomes in simple simulations of social
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networks, even though it does not always weakly converge, as seen above. We
will show that the cumulative belief function is promising for modeling belief
updates in social networks.

Recalling the definition of cumulative belief fusion, it is assumed that the
amount of evidence increases by including more sources. An opinion in subjective
logic can be translated to a Beta PDF using the amount of evidence for each state
in the domain as parameters. Say that rAX(x) are rAX(x) the amount of evidence
supporting the state x for agents A and B respectively. The cumulative fusion
operator gets the sum rAX(x)+rAX(x) to be the amount of evidence of the merged
opinion and translates it back to a subjective logic opinion. More details are
presented in the appendix. For repeated interactions using the cumulative belief
fusion, we interpret repeated evidence contained in an opinion as reinforcement
of the belief in the state.

We did many simulations using the two-agent update function with cumu-
lative fusion and we found three cases for initial epistemic opinions with the
projected probability PA

X(x) ranging from 0 to 1.
Suppose that X = {x, x} and all opinions are epistemic. Recall that the

update function for two agents with trust discount and belief fusion is

ω
A[t+1]
X = ω

A[t]
X ⊕ (ωA

B ⊗ ω
B[t]
X ) (8)

where A and B are agents, ω
A[t]
X and ω

B[t]
X are non-dogmatic epistemic opinions,

and ωA
B is a trust opinion. Also, recall that ωA

B ⊗ ω
B[t]
X is the opinion that A

learns after trusting B about X. The update function behaves like these three
cases:

1. Consensus: This case happens when both agents are agreeing or disagreeing
at the same time, not necessarily with the same projected probability, i.e.

P
A[0]
X (x) < 0.5 and PA

B(tb)⊗P
B[0]
X (x) < 0.5 or

P
A[0]
X (x) > 0.5 and PA

B(tb)⊗P
B[0]
X (x) > 0.5

(9)

When these agents interact, they will accumulate evidence about the same
outcome in each interaction. The fusion leads bA

X(x) and bB
X(x) to converge

to 0 or 1, depending on what they are agreeing upon, and both with un-
certainty mass to 0. Increasing the trust discount or the uncertainty will
increase the speed of convergence.
This represents a situation when two agents agree that x is TRUE, with
different levels of projected probabilities. That leads them to be completely
certain about the proposition.

Example 7. Let A and B be initially in consensus agreeing that x is TRUE
as follows.

ω
A[0]
X = ((0.2, 0.0), 0.8, (0.5, 0.5)) P

A[0]
X x = 0.6 PA

B(tb) = 0.5

ω
B[0]
X = ((0.4, 0.0), 0.6, (0.5, 0.5)) P

B[0]
X x = 0.7 PB

A(tb) = 0.5
(10)
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A is 60% sure about x and B is 70% sure about x. Both trust each other by
50%. On the limit of the interactions between A and B, both will be sure by
100% that x is true.

P
A[t]
X (x) = P

B[t]
X (x)

t→∞−−−→ 1 (11)

Similarly if both disagree that x is TRUE, i.e. that x is TRUE, P
A[t]
X (x) and

P
B[t]
X (x) will converge to 0.

Fig. 3. On the left, the evolution of P
A[t]
X (x) and P

A[t]
X (x) for the Example 7. On the

right, the similar case for when both agents disagree that x is TRUE.

2. Balanced opposite: This case happens when both agents are learning the
exact opposite opinion that A already had, i.e.

P
A[0]
X (x) = 1−PA

B(tb)⊗P
B[0]
X (x), ∀x ∈ X (12)

Because contrary pieces of evidence cancel each other, the fusion leads b
A[0]
X (x)

to be a vacuous opinion. The speed of convergence is defined by the trust
opinion. The more an agent trusts another, the faster the convergence.
This represents a situation when two agents support opposite views but with
the same projected probability. That leads them to be completely indecisive
about the proposition.

Example 8. Let A and B have balanced opposite opinions.

ω
A[0]
X = ((0, 0.4), 0.6, (0.5, 0.5)) P

A[0]
X (x) = 0.3 PA

B(tB) = 1

ω
B[0]
X = ((0.4, 0), 0.6, (0.5, 0.5)) P

B[0]
X (x) = 0.7 PB

A(tA) = 1
(13)

A is 30% sure about x and B is 70% sure about x. Both trust each other by
100%. On the limit of interactions between A and B, both will be sure by
50% that x is true.

P
A[t]
X (x) = P

B[t]
X (x)

t→∞−−−→ 0.5 (14)
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Fig. 4. Evolution of P
A[t]
X (x) and P

A[t]
X (x) for the Example 8.

3. Unbalanced opposite: This happens when there are opposite beliefs, but they
don’t have the same projected probability in their respective views. In other
words, both are in conflict but one agent is more radical than the other.

(P
A[0]
X (x) < 0.5 and PA

B(tb)⊕PB
X > 0.5

or P
A[0]
X (x) > 0.5 and PA

B(tb)⊕PB
X < 0.5)

and P
A[0]
X ̸= 1−PA

B(tb) P
B[0]
X (x)

(15)

In this case, contrary pieces of evidence will cancel each other, but one agent
will transmit more evidence than the other upon interaction. The agents
that transmit more evidence will win in the limit. Increasing the trust or
becoming more radical will increase the speed of convergence.
– If A is sure that x is TRUE more than B is sure that x is FALSE

discounted by the trust, i.e.

P
A[t]
X (x) > 1−PA

B(tb)⊗P
B[t]
X (x) (16)

then, A and B will eventually both agree that x is TRUE in some degree,
i.e.

P
A[t]
X (x) = P

B[t]
X (x)

t→∞−−−→ p ∈ (0.5, 1] (17)

– If A is sure that x is FALSE more than B is sure that x is TRUE
discounted by the trust, i.e.

P
A[t]
X (x) < 1−PA

B(tb)⊗P
B[t]
X (x) (18)

then, A and B will eventually both agree that x is FALSE in some degree,
i.e.

P
A[t]
X (x) = P

B[t]
X (x)

t→∞−−−→ p ∈ [0, 0.5) (19)

The unbalanced opposite is the most interesting case. It can represent some
bias when conflicting agents are interacting. The behavior is different from any
update function described by [3]. After experiments, we found that
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– If the agents are too far, they will radicalize, i.e. P
A[t]
X (x)

t→∞−−−→ 0 or

P
A[t]
X (x)

t→∞−−−→ 1
– Otherwise, they will converge to some value at the winning outcome. [0, 0.5)

if A is sure that x is FALSE more than B is sure that x is TRUE discounted
by the trust, or (0.5, 1] if A is sure that x is TRUE more than B is sure that
x is FALSE discounted by the trust.

This behavior shows that we have a fixed-point for P
A[0]
X (x) for each P

B[t]
X (x)

such that P
B[0]
X (x) = P

B[t]
X (x) when t goes to infinity, in other words, for every

initial A’s opinion there is an initial B’s opinion such that A’s and B’s opinions
will both eventually converge to B’s initial opinion, when A and B communicate
repeatedly. Fig. 5 shows the results from the experiments. We found the fixed-

points by a binary search for each P
A[0]
X (x).

Fig. 5. Fixed point for P
A[0]
X (x) for each P

B[t]
X (x)

The experiments show that the fixed-point function has a curve similar to
the logistic function. Each fixed-point represents the boundary between the re-
gion where two agents will radicalize and the region where they will eventually
agree on some less radical point. We believe that the radicalization phenomenon
happens because the agents are transmitting evidence in an unstable way, when
the proportion of evidence x vs. x increases over time. They do not radicalize
when the agents are transmitting evidence in a stable way, when the proportion
of evidence x vs. x is the same over time.

7 Future Work and Conclusions

In this work, we described a subjective logic model for social networks. It is
defined by a set of agents representing users in a social network, a domain of
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disjoint events that can be used to represent a topic that cannot be answered
with simply YES or NO, a set of multinomial opinions to represent the opinion
of each user, trust opinions to represent the relationship between users and an
update function to represent the interaction between users.

The main focus of this work is to define an update function. Many update
functions can be used depending on what kind of interaction is represented.
We did experiments with three update functions using cumulative belief fusion,
averaging belief fusion, and weighted belief fusion, with trust discount. The ex-
periments showed that none of these functions have useful properties to model
the rational update function described in [3] such as idempotency, weak conver-
gence, and non-increasing uncertainty.

Through experiments, we showed that our update function with cumulative
belief fusion has the potential to represent a kind of interaction not described
in [3], even though it does not meet our initial desired properties for an update
function. We also showed that if the agents disagree about a proposition, i.e. they
have opposite opinions, there is a close enough distance between them where the
update is stable, and they converge to a non-radical point. But if they are far
enough, they will still converge, but also radicalize, converging to completely
agree or completely disagree about the proposition. This is different from the
update function describing confirmation bias from [3], where . The next step for
the update function with cumulative fusion is to have a clear definition of this
behavior by calculating the convergence of the update function for each case.
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2.

Multinomial probability density over a domain of cardinality k is expressed
by the k-dimensional Beta PDF. Assume a domain X of cardinality k, and a
random variable X over X with probability distribution pX . The Beta PDF can
be used to represent probability density over pX .

The multivariate Beta PDF takes as variable the k-dimensional probabil-
ity distribution pX . The strength parameters for the k possible outcomes are
represented as k positive real numbers αXx, each corresponding to one of the
possible values x ∈ X. The strength parameters represent evidence/observations
of X = x where x ∈ X.

Definition 6. (Multivariate Beta Probability Density Function). Let X be a
domain consisting of k mutually disjoint values. Let αX represent the strength
vector over the values of X, and let pX denote the probability distribution over
X. With pX as a k-dimensional variable, the multivariate Beta PDF denoted
Beta(pX , αX) is expressed as:

Beta(pX , αX) =

Γ

(∑
x∈X

αX(x)

)
∏
x∈X

Γ (αX(x))

∏
x∈X

pX(x)(αX(x)−1), where αX(x) ≥ 0, (20)

with the restrictions that pX(x) ̸= 0 if αX(x) < 1.
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Now assume that x ∈ X represents a frequentist event. Let rX(x) denote the
number of observations for x. The strength vector αX can be expressed as a
function of the observations rX(x) and the base rate aX :

αX(x) = rX(x) + aX(x)W , where rX(x) ≥ 0 ∀x ∈ X. (21)

By expressing the strength vector αX in terms of the evidence observation
rX , the base rate aX , and the non-informative prior weight W , we get the rep-
resentation of the Beta PDF denoted BetaeX(pX , rX ,aX). The exact definition
of BetaeX(pX , rX ,aX) is described at [10].

Given a Beta PDF BetaeX(pX , rX ,aX), the expected distribution over X can
be written as

EX(x) =
rX(x) + aX(x)W

W +
∑

xj∈X
rX(xj)

, ∀x ∈ X. (22)

The Beta model translates observation evidence directly into a PDF over a
k-component probability variable. The representation evidence, together with
the base rate, can be used to determine subjective opinions. In other words, it
is possible to define a bijective mapping between Beta PDFs and opinions.

The bijective mapping between ωX and BetaeX(pX , rX ,aX) is based on the
requirement for equality between the projected probability distribution PX de-
rived from ωX and the expected probability distribution EX derived from
BetaeX(pX , rX ,aX). This means that the more evidence in favor of a partic-
ular outcome x, the greater the belief mass on the outcome. Furthermore, the
more total evidence available, the less uncertainty mass.

Definition 7. (Mapping: Opinion ↔ Beta PDF) Let ωX = (bX , uX ,aX) be an
opinion and let BetaeX(pX , rX ,aX) be a Beta PDF, both over the same variable
X ∈ X. These are equivalent through the following mapping,

∀x ∈ X
bX(x) =

rX(x)

W +
∑

xi∈X
rX(xi)

uX =
W

W +
∑

xi∈X
rX(xi)

⇔




rX(x) =

WbX(x)

uX

1 = uX +
∑

xi∈X
bX(xi)

if uX ̸= 0

rX(x) = bX(x) · ∞
1 =

∑
xi∈X

bX(xi)
if uX = 0

(23)

This equivalence between opinions and Beta PDFs is very powerful because
it makes it possible to determine opinions from statistical observations.

B Appendix: Belief fusion operators

This appendix shows a more detailed definition of the belief fusion operators
intuitively described at Sec. 3. Here, we will define the belief fusions in terms
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of Beta PDFs. Since there is a mapping between opinions and Beta PDFs, the
direct definition for each operator will be omitted. These definitions can be found
at [10,11].

Cumulative belief fusion The cumulative belief fusion is used when it is
assumed that the amount of independent evidence increases by including more
sources. The idea is to sum the amount of evidence of the opinions.

Let X be a domain, and X be a random variable over X. W.l.o.g., let A and
B be agents, and ωA

X and ωB
X be opinions. The cumulative belief fusion between

A and B is denoted ω
(A⋄B)
X and it can be represented as a Beta PDF.

Definition 8. (Cumulative Belief Fusion) Let X be a domain, and X be a ran-
dom variable over X. Let A and B be agents, and ωA

X and ωB
X be opinions. The

cumulative belief fusion between ωA
X and ωB

X is denoted:

ω
(A⋄B)
X = ωA

X ⊕ ωB
X (24)

Let BetaeX(pX , rAX ,aAX) and BetaeX(pX , rBX ,aBX) be the Beta PDFs equivalent
to ωA

X and ωB
X , respectively.

The opinion ω
(A⋄B)
X is the opinion equivalent to BetaeX(pX , r

(A⋄B)
X ,a

(A⋄B)
X )

defined as:

BetaeX(pX , r
(A⋄B)
X ,a

(A⋄B)
X ) = BetaeX(pX , rAX ,aAX)⊕ BetaeX(pX , rBX ,aBX)

= BetaeX(pX , (rAX + rBX),a
(A⋄B)
X ).

(25)

More specifically, for each values x ∈ X the accumulated source evidence
r(A⋄B) is computed as:

r(A⋄B)(x) = rAX(x) + rBX(x), ∀x ∈ X. (26)

The fusion of three or more opinions is defined at [11]. It can be verified that
the cumulative fusion operator is commutative, associative, and non-idempotent.

Averaging Belief Fusion The averaging belief fusion is used when including
more sources does not mean that more evidence supports the conclusion. The
idea is to take the average of the amount of evidence of the opinions.

Let X be a domain, and X be a random variable over X. W.l.o.g., let A and
B be agents, and ωA

X and ωB
X be opinions. The averaging belief fusion between

A and B is denoted ω
(A⋄B)
X = ωA

X and it can be represented as a Beta PDF.

Definition 9. (Averaging Belief Fusion) Let X be a domain, and X be a random
variable over X. Let A and B be agents, and ωA

X and ωB
X be opinions. The

averaging belief fusion between ωA
X and ωB

X is denoted:

ω
(A⋄B)
X = ωA

X⊕ωB
X (27)
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Let BetaeX(pX , rAX ,aAX) and BetaeX(pX , rBX ,aBX) be the Beta PDFs equivalent
to ωA

X and ωB
X , respectively.

The opinion ω
(A⋄B)
X is the opinion equivalent to BetaeX(pX , r

(A⋄B)
X ,a

(A⋄B)
X )

defined as:

BetaeX(pX , r
(A⋄B)
X ,a

(A⋄B)
X ) = BetaeX(pX , rAX ,aAX)⊕BetaeX(pX , rBX ,aBX)

= BetaeX(pX , (rAX + rBX)/2,a
(A⋄B)
X ).

(28)

More specifically, for each values x ∈ X the accumulated source evidence
r(A⋄B) is computed as:

r(A⋄B)(x) =
rAX(x) + rBX(x)

2
, ∀x ∈ X. (29)

The fusion of three or more opinions is defined at [11]. It can be verified that
the cumulative fusion operator is commutative, idempotent, but non-associative.

Weighted Belief Fusion The weighted belief fusion is used when including
more sources does not mean that more evidence supports the conclusion. The
idea is used when we take the average of the amount of evidence of the opinions
weighted by their lack of uncertainty. In particular, opinions with no belief mass
are rejected.

Let X be a domain, and X be a random variable over X. W.l.o.g., let A and
B be agents, and ωA

X and ωB
X be opinions. The averaging belief fusion between

A and B is denoted ω
(A⋄̂B)
X = ωA

X and it can be represented as a Beta PDF.

Definition 10. (Weighted Belief Fusion) Let X be a domain, and X be a random
variable over X. Let A and B be agents, and ωA

X and ωB
X be opinions. The

averaging belief fusion between ωA
X and ωB

X is denoted:

ω
(A⋄̂B)
X = ωA

X⊕̂ωB
X (30)

Let BetaeX(pX , rAX ,aAX) and BetaeX(pX , rBX ,aBX) be the Beta PDFs equivalent
to ωA

X and ωB
X , respectively. Also, let cAX be the confidence that A has in their

opinion. Formally:

cAX = 1−
i∑

x∈X
bA
X(x) (31)

The opinion ω
(A⋄̂B)
X is the opinion equivalent to BetaeX(pX , r

(A⋄̂B)
X ,a

(A⋄̂B)
X )

defined as:

BetaeX(pX , r
(A⋄̂B)
X ,a

(A⋄̂B)
X ) = BetaeX(pX , rAX ,aAX)⊕̂BetaeX(pX , rBX ,aBX)

= BetaeX(pX , (cAXrAX + cBXrBX)/2,a
(A⋄̂B)
X ).

(32)

More specifically, for each values x ∈ X the accumulated source evidence
r(A⋄B) is computed as:

r(A⋄̂B)(x) =
cAXrAX(x) + cBXrBX(x)

cAX + cBX
, ∀x ∈ X. (33)
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The fusion of three or more opinions is defined at [11]. It can be verified that
the cumulative fusion operator is commutative, idempotent, but non-associative.
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