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We investigate the ground state and dynamics of a mixture of spin-1 and spin-2 Bose-Einstein
condensates of 87Rb atoms. For the experimentally measured interaction coefficients, the ground
state exhibits phase separation between the spin-1 ferromagnetic state and the spin-2 nematic state.
At the interface between them, a partially polarized spin state emerges. The uniformly mixed state
of the spin-1 polar state and spin-2 biaxial nematic state is metastable, and the phase separation
via nucleation can be triggered by a local perturbation.

I. INTRODUCTION

Macroscopic coherent matter waves with internal de-
grees of freedom, such as superfluid 3He [1], p-wave and
d -wave superconductors [2], and spinor Bose-Einstein
condensates (BECs) of atomic gases [3–7], have attracted
great interest because of their rich variety of quantum
features. In particular, the experimental systems of ul-
tracold atoms are highly controllable, and various stud-
ies on the spinor BECs, including studies on their spin-
mixing dynamics [7–10], topological excitation [11–16],
and spin textures [17, 18], have been reported.

The ground-state phases of the spinor BECs depend
on the spin-dependent interactions between atoms. For
the spin-1 BEC, there are two types of ground states: the
polar and ferromagnetic states [3–5]. The phase diagram
is more complicated for the spin-2 BEC, which includes
the cyclic phase [19–24]. The spin-3 BEC exhibits eleven
ground-state phases [25–27]. An external magnetic field
modifies the phase diagrams [7].

Mixtures of two or more spinor BECs can enrich the
physics further. The phase diagrams and many-body
properties of a binary mixture of spin-1 BECs have been
theoretically studied [28–42] and experimentally realized
for spin-1 87Rb and 23Na atoms [43]. Recently, the
research was extended to a three-component mixture
of spin-1 BECs [44–46]. The ground-state phase dia-
grams of a mixture of spin-1 and spin-2 BECs, including
their broken-axisymmetry phases [47], have also been re-
ported. The dynamics of a spin-1 BEC interacting with
a spin-2 BEC have been observed for 87Rb atoms [48].

Most of the previous studies on mixtures of spinor
BECs have been restricted to the single-mode approxi-
mation (SMA), where the spatial degrees of freedom are
frozen [29–31, 33–39, 42]. For a mixture of spin-1 and
spin-2 BECs, Ref. [47] also relied on the SMA, which
showed that the ground state of a 1:1 mixture for 87Rb
atoms is the polar state for spin-1 and the biaxial ne-
matic state for spin-2. However, the possibility arises
that phase separation occurs in a system much larger
than the spin healing length, which cannot be captured
by the SMA. The purpose of the present paper is to ex-
plore the possibility of phase separation in the spin-1 and
spin-2 BECs of 87Rb atoms.

In this paper, using mean-field theory, we show two
main results. First, the ground state of the mixture of
spin-1 and spin-2 BECs of 87Rb atoms exhibits phase sep-
aration into the two phases: the ferromagnetic state for
spin-1 and the nematic state for spin-2. In the interface
layer between these two phases, a distinct phase emerges
in which both components have partial magnetizations
into the opposite directions. Second, the uniformly mixed
state of the spin-1 polar state and spin-2 biaxial nematic
state can be metastable. If a local perturbation is im-
parted to this mixture, the phase separation is triggered,
which extends over the whole space. We will show that
the phase separation via nucleation can be observed even
in the presence of the inelastic collisional decay of spin-2
87Rb atoms.

This paper is organized as follows. Section II provides
a formulation of the problem. Section III reveals that the
ground state exhibits phase separation. Section IV shows
that there exists a uniformly mixed metastable state and
demonstrates the dynamics of phase separation via nucle-
ation. Section V proposes an experiment to observe the
phase separation via nucleation, and Sec. VI summarizes
the results.

II. FORMULATION OF THE PROBLEM

In the mean-field approximation at zero temperature,
the spin-1 and spin-2 BECs can be described by the

macroscopic wave function ψ
(f)
m (r), where f = 1, 2 is

the hyperfine spin and m = −f,−f + 1, ..., f is the
magnetic sublevel. The wave function is normalized as
∫

dr|∑m ψ
(f)
m (r)|2 = Nf , where Nf is the number of

spin-f atoms. The total energy of the mixture of spin-1
and spin-2 BECs is written as

E = E(1) + E(2) + E(12). (1)

Here and henceforth, superscripts (1), (2), and (12) refer
to the hyperfine spins. The energy of each spin compo-
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nent is given by

E(1) =

∫

dr

1
∑

m=−1

ψ(1)∗
m (r)

[

− ~
2

2M
∇2 + V1(r)

]

ψ(1)
m (r)

+
1

2

∫

dr
[

g
(1)
0 + g

(1)
1 F (1)(r) · F (1)(r)

]

ρ21(r),

(2)

E(2) =

∫

dr

2
∑

m=−2

ψ(2)∗
m (r)

[

− ~
2

2M
∇2 + V2(r)

]

ψ(2)
m (r)

+
1

2

∫

dr
[

g
(2)
0 + g

(2)
1 F (2)(r) · F (2)(r)

+ g
(2)
2

∣

∣

∣
A

(2)
0 (r)

∣

∣

∣

2
]

ρ22(r),

(3)
where M is the mass of an atom and V1(r) and V2(r)
are the external potentials. The interaction coefficients
in Eqs. (2) and (3) are defined as

g
(1)
0 =

4π~2

M

a
(1)
0 + 2a

(1)
2

3
, (4a)

g
(1)
1 =

4π~2

M

a
(1)
2 − a

(1)
0

3
, (4b)

g
(2)
0 =

4π~2

M

4a
(2)
2 + 3a

(2)
4

7
, (4c)

g
(2)
1 =

4π~2

M

a
(2)
4 − a

(2)
2

7
, (4d)

g
(2)
2 =

4π~2

M

7a
(2)
0 − 10a

(2)
2 + 3a

(2)
4

7
, (4e)

where a
(f)
F

is the s-wave scattering length of a collision
channel with the total spin F . In general, the macro-

scopic wave function can be decomposed into ψ
(f)
m (r) =

√

ρf (r)ζ
(f)
m (r), where ρf (r) is the density of spin-f

atoms and ζ
(f)
m (r) is the spin wave function satisfying

∑

m |ζ(f)m (r)|2 = 1. Using the spin wave function ζ
(f)
m (r),

we define the magnetization vector fields in Eqs. (2) and
(3) as

F (f)(r) =
∑

mm′

ζ(f)∗m (r)f
(f)
mm′ζ

(f)
m′ (r), (5)

where f (f) is the vector of spin-f matrices. The spin-
singlet scalar for spin-2 in Eq. (3) is defined as

A
(2)
0 =

1√
5

(

2ζ
(2)
2 ζ

(2)
−2 − 2ζ

(2)
1 ζ

(2)
−1 + ζ

(2)
0 ζ

(2)
0

)

. (6)

The interaction energy between spin-1 and spin-2 com-
ponents is given by [47]

E(12) =

∫

dr
[

g
(12)
0 + g

(12)
1 F (1)(r) · F (2)(r)

+g
(12)
2 P

(12)
1 (r)

]

ρ1(r)ρ2(r), (7)

where the interaction coefficients have the forms

g
(12)
0 =

4π~2

M

2a
(12)
2 + a

(12)
3

3
, (8a)

g
(12)
1 =

4π~2

M

a
(12)
3 − a

(12)
2

3
, (8b)

g
(12)
2 =

4π~2

M

3a
(12)
1 − 5a

(12)
2 + 2a

(12)
3

3
. (8c)

In Eq. (7), we defined

P
(12)
1 = |A1,1|2 + |A1,0|2 + |A1,−1|2, (9)

where

A1,1 =
1√
10
ζ
(1)
1 ζ

(2)
0 −

√

3

10
ζ
(1)
0 ζ

(2)
1 +

√

3

5
ζ
(1)
−1 ζ

(2)
2 ,

(10a)

A1,0 =

√

3

10
ζ
(1)
1 ζ

(2)
−1 −

√

2

5
ζ
(1)
0 ζ

(2)
0 +

√

3

10
ζ
(1)
−1 ζ

(2)
1 ,

(10b)

A1,−1 =

√

3

5
ζ
(1)
1 ζ

(2)
−2 −

√

3

10
ζ
(1)
0 ζ

(2)
−1 +

1√
10
ζ
(1)
−1 ζ

(2)
0 .

(10c)

In the present study, we neglect the effects of the exter-
nal magnetic field and the magnetic dipole-dipole inter-
action.
The coupled Gross-Pitaevskii (GP) equations are ob-

tained by the functional derivative of the total energy
as

i~
∂ψ

(f)
m

∂t
=

δE

δψ
(f)∗
m

. (11)

To obtain the ground state, we propagate the GP equa-
tion in imaginary time, where i on the left-hand side of
Eq. (11) is replaced by −1. The real- and imaginary-
time evolutions are numerically integrated using the
fourth-order Runge-Kutta method with the pseudospec-
tral scheme.
For visualizing the symmetry of spin states, it is con-

venient to use the spherical harmonic representation

S (θ, φ) =

f
∑

m=−f

ζ(f)m Y m
f (θ, φ), (12)

where Y m
f (θ, φ) is the spherical harmonics. Figure 1

shows several examples of the spherical harmonic rep-
resentations of spin states. Henceforth, we use the ab-
breviations, F, P, B, and U for the spin states (Fig. 1).
In the present paper, we restrict ourselves to the

BECs of 87Rb atoms. The s-wave scattering lengths

for spin-1 87Rb atoms are known to be a
(1)
0 = 101.8aB,

a
(1)
2 = 100.4aB [49], where aB is the Bohr radius. For

these values, the ground state of the spin-1 BEC is the F
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(a) F (1,0,0) (b) P (0,1,0) (c) P (-1,0,1)/

(d) B (1,0,0,0,1)/ (e) U (0,0,1,0,0)

phase

FIG. 1. Spherical harmonic representations of the spin-1 and
spin-2 states. The surface and its color represent the iso-
surface and phase of the complex function S (θ, φ). (a) Fer-
romagnetic state (abbreviated by F) and (b, c) polar state
(P) of spin-1. (d) Biaxial nematic state (B) and (e) uniax-
ial nematic state (U) of spin-2. Spin vectors are denoted by

ζ(1) = (ζ
(1)
1 , ζ

(1)
0 , ζ

(1)
−1) and ζ(2) = (ζ

(2)
2 , ζ

(2)
1 , ζ

(2)
0 , ζ

(2)
−1 , ζ

(2)
−2 ).

state (Fig. 1(a)). The scattering lengths for spin-2 atoms

were measured to be a
(2)
2 − a

(2)
0 = 3.51aB, a

(2)
4 − a

(2)
2 =

6.95aB [50], and (4a
(2)
4 + 3a

(2)
2 )/7 = 95.44aB [51], which

give a
(2)
0 = 87.96aB, a

(2)
2 = 91.47aB, and a

(2)
4 = 98.42aB.

For these values, the ground state of the spin-2 BEC is a
linear combination of the B and U states (Figs. 1(d) and
1(e)). In Ref. [48], the scattering lengths between spin-1

and spin-2 were measured to be a
(12)
3 − a

(12)
2 = 2.5aB

and a
(12)
1 − a

(12)
2 = 3.1aB. Combining these values

with (3a
(12)
1 + 5a

(12)
2 + 2a

(12)
3 )/10 = 98.006aB reported

in Ref. [51], we can determine all the interspin scat-

tering lengths as a
(12)
1 = 99.68aB, a

(12)
2 = 96.58aB,

and a
(12)
3 = 99.08aB. On the other hand, the ex-

periment in Ref. [52] gave a
(12)
3 − a

(12)
2 = 1.36aB and

a
(12)
1 −a(12)2 = 1.40aB. The corresponding interspin scat-

tering lengths are a
(12)
1 = 98.71aB, a

(12)
2 = 97.31aB, and

a
(12)
3 = 98.67aB. We refer to these two sets of scattering

lengths based on Refs. [48] and [52] as “set I” and “set
II”, respectively.

III. GROUND STATES

In this section, we present the ground states of a mix-
ture of spin-1 and spin-2 87Rb BECs. To obtain the
ground state, the imaginary-time evolution is started
from initial states with random complex numbers. We
repeat this procedure numerous times to ensure that the
obtained state is the true ground state. The global phase
rotation and spin rotation are applied to the obtained

−0.06

−0.04

−0.02

0

0.6 0.65 0.7 0.75 0.8

0.198

0.199

0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

F

A

A

R

F
F

F

FIG. 2. Ground state under the single-mode approximation.

The lines represent F
(1)
z , F

(2)
z , and |A(2)

0 |2 as functions of the
atomic number ratio R = N1/(N1 + N2), where the state is

rotated so that the magnetizations in the x-y direction, F
(1)
⊥

and F
(2)
⊥

, vanish. The spherical-harmonic representations of
spin-1 and spin-2 are shown for R = 0.2, 0.7, and 0.9. The
insets show magnifications of the dashed rectangle regions.

state appropriately, since the system has the U(1) sym-
metry and spin-rotation symmetry.

A. Single-mode approximation

First, we consider the ground state under the single-
mode approximation, which is valid if the size of the
atomic cloud is much smaller than the spin healing
lengths. We assume that ρ1(r) and ρ2(r) are fixed at
the same distribution and that ζ(f) does not depend
on the position. We define the atomic number ratio as
R = N1/(N1+N2). In Ref. [47], only the case of R = 0.5
was studied and the ground state for 87Rb was shown to
be the P state for spin-1 and B state for spin-2 (we here-
after refer to this state as “PB”). Here we extend this
result to other values of R.
Figure 2 shows the R dependence of the ground state.

For 0 < R . 0.6, the ground state is the PB state, con-
sistent with the results in Ref. [47]. For 0.6 . R . 0.77,
both spin-1 and spin-2 components acquire magnetiza-
tion with opposite directions. This state corresponds to
the a− state defined in Ref. [47]. For R & 0.77, the
ground state becomes the F state for spin-1 and U state
for spin-2. In the limit of R → 0 and R → 1, this result
is consistent with the well-known ground state of an in-
dividual spin-1 or spin-2 BEC. In Fig 2, parameter set I
of the scattering lengths is used; we have confirmed that
set II also gives qualitatively the same result.
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ρ
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1c

2a

1d

1a

2b

2c

2d

2e

1e
A

0
ZF

Z
F

1

0.5

0

-0.02

-0.01

0

-3 0 3

ZF

ZF

A0

-6 -3 0 3 6

-3 0 3 6

0.2

0.199

0.198

2e

1b 1c 1d 1e1a

2a 2d2b 2c
Spin-2

Spin-1

FIG. 3. Ground state of the one-dimensional system. (a)

ρ1(x), ρ2(x) (upper panel), F
(1)
z (x), F

(2)
z (x), and |A(2)

0 (x)|2
(lower panel). The magnetizations in the x-y direction are

zero. The insets show magnifications of |A(2)
0 (x)|2 and F

(2)
z (x)

in the dashed rectangle. (b) Spherical-harmonic representa-
tions of the spin-1 and spin-2 states at the positions marked
in (a). Parameter set I is used.

B. Phase separation

To study the miscibility of the spin-1 and spin-2 BECs,
we consider a one-dimensional system without external
potentials, V1 = V2 = 0. We normalize the length and
density by L = 1/

√
4πaBn0 and n0, respectively, where

n0 is the average density of both components.

Figure 3 shows the density and spin distributions of the
ground state, which is the main result in the former part
of the paper. The ground state exhibits phase separation
between spin-1 and spin-2. In the limits of x → +∞
and x → −∞ (i.e., deep in the spin-1 and spin-2 sides),

the spin state approaches the F state of spin-1 and the
nematic state of spin-2 (a linear combination of the U
and B states), respectively, consistent with the results in
Fig. 2. The behavior near the interface is also similar
to that in the intermediate region of R in Fig. 2: spin-1
transforms between the P and F states, whereas spin-
2 exhibits magnetization opposite to that of spin-1. It
is interesting to note that the spin-2 magnetization only
emerges near the interface, which is attributed to the in-
teraction with the spin-1 component. We have confirmed
that both parameter sets I and II give qualitatively the
same result.

IV. UNIFORMLY MIXED METASTABLE STATE

A. Metastability analysis

In this section, we show that the uniformly mixed PB
state can be a metastable state depending on the scat-
tering lengths, which is the main result in the latter part
of this paper. Before showing the metastability, we first
confirm that the energy of the uniformly mixed PB state
is larger than the separated ground state shown in Fig. 3.
The total energy of the uniformly mixed PB state in a
volume V containing N1 and N2 atoms of spin-1 and
spin-2 is given by

EPB
mix =

N2
1

2V
g
(1)
0 +

N2
2

2V

(

g
(2)
0 +

1

5
g
(2)
2

)

+
N1N2

V
g
(12)
0 . (13)

As shown in Fig. 3, the ground state exhibits phase sep-
aration between the F state of spin-1 and the nematic
state of spin-2 (we refer to this state as “FN”). For a suf-
ficiently large system, the bulk energy of each separated
region is dominant and the energy of the interface layer
can be neglected. In this case, the energy is evaluated to
be

EFN
separate =

N2
1

2V1

(

g
(1)
0 + g

(1)
1

)

+
N2

2

2V2

(

g
(2)
0 +

1

5
g
(2)
2

)

,

(14)
where V1 and V2 are the volume of each separated region,
satisfying V1 + V2 = V . The values of V1 and V2 are
determined such that the pressures of two regions are
balanced as

N2
1

2V 2
1

(

g
(1)
0 + g

(1)
1

)

=
N2

2

2V 2
2

(

g
(2)
0 +

1

5
g
(2)
2

)

. (15)

Using Eqs. (13)-(15), we obtain the difference between
the two energies

EPB
mix − EFN

separate = −N
2
1

2V
g
(1)
1 +

N1N2

V

×
{

g
(12)
0 −

[

(

g
(1)
0 + g

(1)
1

)

(

g
(2)
0 +

1

5
g
(2)
2

)]1/2
}

, (16)
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which is always positive for both parameter sets I and II.

We next examine the stability of the uniformly mixed
PB state using the Bogoliubov analysis. We divide the
wave function into the uniformly mixed state ΨPB and a
small deviation φ(r, t) as

Ψ
(f)(r, t) = e−iµ(f)t/~

[

Ψ
(f)
PB + φ(f)(r, t)

]

, (17)

where the chemical potential of the P state of spin-1 is

µ(1) = g
(1)
0 ρ1 + g

(12)
0 ρ2 and that of the B state of spin-2

is µ(2) = (g
(2)
0 + g

(2)
2 /5)ρ2 + g

(12)
0 ρ1. The small deviation

φ(r, t) is expanded as

φ(r, t) =
∑

k

[

u(k)ei(k·r−ωkt) + v∗(k)e−i(k·r−ω∗

kt)
]

.

(18)
Substituting Eqs. (17) and (18) into the GP equations in
Eq. (11) and neglecting the second- and third-order terms
of u(k) and v(k), we obtain the Bogoliubov-de Gennes
equation. The eigenenergies ~ωk of the Bogoliubov-de
Gennes equation are given in Appendix. For the sta-
ble system, all the eigenenergies must be real and posi-
tive. If eigenenergies for some wave number k are com-
plex, the corresponding eigenmodes grow exponentially
in time and the uniformly mixed PB state is dynami-
cally unstable. For the interaction coefficients in set I,
all the eigenenergies are found to be real and positive
for R = N1/(N1 + N2) . 0.6, which indicates that the
uniformly mixed PB state is metastable for R . 0.6.
However, applying the interaction coefficients in set II,
we find that complex eigenenergies appear for any R;
therefore, the uniformly mixed PB state is dynamically
unstable against phase separation for set II.

B. Phase separation dynamics via nucleation

To confirm the metastability of the uniformly mixed
PB state, we numerically solve the real-time evolution
of the one-dimensional GP equation for parameter set I
starting from the uniformly mixed PB state. To trigger
the phase separation, we add the term

B0e
−x2/a2

gf
∑

m′

(fx)
(f)
mm′ψm′(x, t) (19)

to the right-hand side of the GP equation, where g1 =
−1/2 and g2 = 1/2. Such a synthetic local magnetic field
can be generated by a laser beam [53–55].

Figure 4 shows the time evolution of the density distri-
butions of spin-1 and spin-2 components for a = 0.1 and
B0 = 2. The local perturbation at the center triggers the
phase separation, which extends over the whole space.
We confirmed that the phase separation does not occur
for B0 . 0.1, which indicates that the uniformly mixed
PB state is metastable.

t � � t � � t � �

t � �� t � �� t � ��
-25.6 0 25.6 -25.6 0 25.6 -25.6 0 25.6

-25.6 0 25.6 -25.6 0 25.6 -25.6 0 25.6
0

1

0

1 ρ
2

ρ
1

ρ
ρ

FIG. 4. Dynamics of the one-dimensional system starting
from the uniformly mixed PB state with the mixing ratio
R = 0.5, where the local perturbation in Eq. (19) is ap-
plied with a = 0.1 and B0 = 2. Red (light-gray) and
blue (dark-gray) lines show spin-1 and spin-2 density distri-
butions, respectively. Length and time are normalized by
L = 1/

√
4πaBn0 and ML2/~, respectively, where n0 is the

average density. The parameter set I is used. See the Supple-
mental Material for a movie of the dynamics [56].

C. Simple explanation of the metastability

Here, we provide a simple explanation for why the
uniformly mixed PB state is metastable, i.e., why there
is an energy barrier against phase separation. Let us
consider the uniformly mixed PB state with a ratio R,
say R = 0.5. Suppose that the phase separation be-
gins as R(r) = ρ1(r)/[ρ1(r) + ρ2(r)] = 0.5 + ǫ(r), where
ǫ(r) ≪ 1. According to Fig. 2 under the SMA, the lowest-
energy spin state is the PB state around R = 0.5; there-
fore, the local spin state is fixed to the PB state even
when the modulation ǫ(r) is present. In this case, the
interaction energy is given by

∫

dr

[

1

2
g
(1)
0 ρ21 +

1

2

(

g
(2)
0 +

1

5
g
(2)
2

)

ρ22 + g
(12)
0 ρ1ρ2

]

.

(20)
Hence, spin-1 and spin-2 are miscible (immiscible) for

g
(1)
0

(

g
(2)
0 + g

(2)
2 /5

)

−
(

g
(12)
0

)2

> 0 (< 0). The miscible

(immiscible) condition is satisfied for the parameter set
I (set II). Thus, for the parameter set I, the energy is
increased by a small modulation ǫ(r), which makes the
uniformly mixed PB state metastable. When R(r) devi-
ates substantially from 0.5, the local spin state no longer
remains in the PB state and Eq. (20) cannot be used.
As a result, the phase separation can reduce the energy,
which results in the dynamics shown in Fig. 4.
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FIG. 5. (a), (c) Time evolution of the one-dimensional density distributions ρf (x) =
∫
ρf (r, t)dydz and (b), (d) isodensity

surfaces at t ≃ 65 ms for the system trapped in the potential given in Eq. (21). The initial state is the metastable PB state,
and the local perturbation in Eq. (19) is added at t = 0 ms. The atomic loss is not included in (a) and (b), and included in (c)
and (d). The parameter set I is used. See the Supplemental Material for movies of the dynamics [56].

V. EXPERIMENTAL PROPOSAL

We consider a realistic three-dimensional system con-
fined in a radially harmonic and axially box-like potential
as

V1 = V2 =
Mω2

⊥

2
(y2+z2)+V0θ(x−x0)θ(−x−x0), (21)

where ω⊥ = 2π× 250 Hz, x0 = 38 µm, θ is the Heaviside
step function, and V0 is taken to be much larger than
the chemical potential. The box-like potential in the x
direction avoids complexity arising from inhomogeneous
density distribution for, e.g., a weak harmonic potential.
The number of 87Rb atoms is N1 = N2 = 2× 105.
We prepare the initial state as follows. First, the

ground state ψg(r) of the |f = 1,m = −1〉 state for N1 =
4 × 105 is prepared using the imaginary-time evolution
of the GP equation. This wave function is then trans-
ferred to the PB state as ψ(1)(r) = ψg(r)(0, 1, 0)/

√
2

and ψ(2)(r) = ψg(r)(1, 0, 0, 0, 1)/2, which is experimen-
tally possible using microwave and radio-frequency fields.
The obtained PB state has a cigar shape of length ≃ 76
µm, as shown in Fig. 5(a) (t = 0 ms).
In the real-time evolution, the local perturbation in

Eq. (19) is added, where B0 = 4~ω⊥ and a = 1µm. Fig-
ure 5(a) shows the dynamics of the density distributions.

The local perturbation around x = 0 triggers the spin
modulation, and the phase separation spreads over the
whole space, as shown in Figs. 5(a) and 5(b).
The spin-2 atom has a higher energy than the spin-1

atom as a result of the hyperfine splitting. If the transi-
tion from spin-2 to spin-1 occurs in collisional processes,
the relevant atoms escape from the system. This ef-
fect can be taken into account in the GP equation by
adding imaginary parts to the interaction coefficients,
which makes the time evolution nonunitary to simulate
the atomic loss [57]. For the inelastic two-body collisions
between spin-2 atoms, we replace the interaction coeffi-
cients as

ḡ
(2)
0 = g

(2)
0 − 2

7
i~b2 (22a)

ḡ
(2)
1 = g

(2)
1 +

1

14
i~b2 (22b)

ḡ
(2)
2 = g

(2)
2 +

5

7
i~b2 −

1

2
i~b0 (22c)

where b0 = 9.9×10−14 cm3/s and b2 = 24.3×10−14 cm3/s
are the loss coefficients for collision channels with total
spins 0 and 2, respectively [57]. We ignore the two-body
inelastic loss due to collisions between spin-1 and spin-
2 atoms, since the relevant loss coefficients are much
smaller than b0 and b2 [58, 59]. Figures 5(c) and 5(d)
show the results with the atomic loss. Although the
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spin-2 atoms decrease in time, the patterns of the density
distributions are similar to those of the system without
atomic loss. Thus, the phase separation via nucleation
can be observed in a realistic experimental system.

VI. CONCLUSIONS

We investigated the mixture of spin-1 and spin-2 87Rb
BECs, including the spatial degree of freedom within the
mean-field approximation. We showed that the ground
state exhibits phase separation between the spin-1 fer-
romagnetic state and the spin-2 nematic state. In the
interface region between them, another phase appears in
which both spin-1 and spin-2 components have magneti-
zations with opposite directions. We also found that the
uniformly mixed state of the spin-1 polar state and the
spin-2 biaxial nematic state is metastable for the s-wave
scattering lengths measured in Ref. [48]. If we impart
a local perturbation to this state, phase separation via
nucleation occurs. This phenomenon can be observed in
a realistic experiment even when the atomic loss due to
inelastic collisions occurs.
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Appendix. BOGOLIUBOV ANALYSIS OF THE

UNIFORMLY MIXED PB STATE

Diagonalizing the Bogoliubov-de Gennes equation de-
rived from Eqs. (11), (17), and (18), we obtain eight
eigenvalues as

√

εk

[

εk + (1−R)
(

8c
(2)
1 − 2c

(2)
2 /5

)]

,

√

(

εk + 2Rc
(12)
2 /5

){

εk + 2/5
[

Rc
(12)
2 − (1 −R)c

(2)
2

]}

,

√

εk

(

εk +Rc
(1)
0 + (1−R)

(

c
(2)
0 + c

(2)
2 /5

)

±M1/2
)

,

√

A±
√
B,
(A)

where εk = (~k)2/(2M), c
(f)
n = n0g

(f)
n with the total

density n0, and

M = 4R(1−R)
(

c
(12)
0

)2

+
[

Rc
(1)
0 − (1 −R)

(

c
(2)
0 + c

(2)
2 /5

)]2

,

A = εk
2 + εk

[

Rc
(1)
1 + (1−R)

(

c
(2)
1 − c

(2)
2 /5

)

+ 3c
(12)
2 /10

]

+ 3c
(12)
2 /40

[

4R(1−R)
(

c
(1)
1 + c

(2)
1 − c

(2)
2 /5− 2c

(12)
1

)

+ 3
(

c
(12)
2

)2

/5

]

,

B = αεk
2 + βεk + γ

with

α = 1/4
[

2Rc
(1)
1 − 2(1−R)

(

c
(2)
1 − c

(2)
2 /5

)

− 3(2R− 1)c
(12)
2 /5

]2

+R(1−R)
(

2c
(12)
1 − 3c

(12)
2 /5

)2

,

β = 3c
(12)
2 /40

{

9
(

c
(12)
2

)2

/25 + 6c
(12)
2 /5

[

R(3− 4R)c
(1)
1 − (1−R)

(

(1 − 4R)
(

c
(2)
1 − c

(2)
2 /5

)

+ 8Rc
(12)
1

)]

+ 8R(1−R)

[

2
(

c
(12)
1

)2

+Rc
(1)
1

(

c
(1)
1 − 2c

(12)
1

)

+ (1−R)
(

c
(2)
1 − c

(2)
2 /5

)(

c
(2)
1 − c

(2)
2 /5− 2c

(12)
1

)

−
(

c
(2)
1 − c

(2)
2 /5

)

c
(1)
1

]

}

,

γ = 9
(

c
(12)
2

)2

/1600
[

4R(1−R)
(

c
(1)
1 + c

(2)
1 − c

(2)
2 /5− 2c

(12)
1

)

+ 3c
(12)
2 /5

]2

.

The two eigenvalues
√

A±
√
B in Eq. (A) are doubly repeated eigenvalues.
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[27] H. Mäkelä and K.-A. Suominen, Ground states of spin-3
Bose-Einstein condensates for conserved magnetization,
Phys. Rev. A 75, 033610 (2007).

[28] M. Luo, Z. Li, and C. Bao, Bose-Einstein conden-
sate of a mixture of two species of spin-1 atoms,
Phys. Rev. A 75, 043609 (2007).

[29] Z. F. Xu, Y. Zhang, and L. You, Binary mix-
ture of spinor atomic Bose-Einstein condensates,
Phys. Rev. A 79, 023613 (2009).

[30] Y. Shi, Ground states of a mixture of two species
of spinor Bose gases with interspecies spin exchange,
Phys. Rev. A 82, 023603 (2010).

[31] Z. F. Xu, J. Zhang, Y. Zhang, and L. You, Quantum
states of a binary mixture of spinor Bose-Einstein con-
densates, Phys. Rev. A 81, 033603 (2010).

[32] Z. F. Xu, J. W. Mei, R. Lü, and L. You,
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