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Abstract

The widespread application of Electronic Health Records (EHR) data in the

medical field has led to early successes in disease risk prediction using deep

learning methods. These methods typically require extensive data for train-

ing due to their large parameter sets. However, existing works do not exploit

the full potential of EHR data. A significant challenge arises from the infre-

quent occurrence of many medical codes within EHR data, limiting their clini-

cal applicability. Current research often lacks in critical areas: 1) incorporating

disease domain knowledge; 2) heterogeneously learning disease representations

with rich meanings; 3) capturing the temporal dynamics of disease progression.

To overcome these limitations, we introduce a novel heterogeneous graph learn-

ing model designed to assimilate disease domain knowledge and elucidate the

intricate relationships between drugs and diseases. This model innovatively in-

corporates temporal data into visit-level embeddings and leverages a time-aware

transformer alongside an adaptive attention mechanism to produce patient rep-

resentations. When evaluated on two healthcare datasets, our approach demon-

strated notable enhancements in both prediction accuracy and interpretability

over existing methodologies, signifying a substantial advancement towards per-
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sonalized and proactive healthcare management.

Keywords: Health event prediction, Heterogeneous graph learning, Medical

knowledge graph, Time-aware transformer, Adaptive attention merging

1. Introduction

Electronic Health Records (EHR) encapsulate a wealth of patient visit in-

formation within medical institutions, encompassing diverse clinical data such

as diagnoses, admission times, medical histories, and prescribed drugs. The

adoption of EHR across numerous healthcare models has facilitated significant

advances in disease prediction through deep learning models like Recurrent Neu-

ral Networks (RNNs)(Bai et al., 2018; Yin et al., 2019a; Ma et al., 2017) and

Convolutional Neural Networks (CNNs)(Nguyen et al., 2017). Utilizing EHR

enhances not only the accuracy of disease prediction but also broadens its ap-

plication to various health prediction tasks, including mortality rates, hospital

stay durations, risk assessment, and medication recommendations. Through

deep learning, intricate relationships between patient data and diseases can be

deciphered from the voluminous EHR data, aiding physicians in evaluating pa-

tient health and tailoring care. Despite these advancements, challenges persist

in effectively leveraging diagnostic features for learning:

1. Comprehensively assimilate knowledge derived from the medical

domain. The GRAM(Choi et al., 2017), an ontology-based model, lever-

ages the hierarchical structure of medical ontologies to represent various

medical diseases effectively. Building on GRAM, the KAME(Ma et al.,

2018b) method enhances the disease prediction performance by utilizing

high-level knowledge. However, these methods primarily focus on the hi-

erarchical relationships between diseases and their ancestors, neglecting

the horizontal (co-occurrence) relationships among different diseases. In

the realm of health event prediction, offering a reliable explanation for

the implicit relationships between diseases continues to be a significant

challenge.
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Figure 1 An example of a patient’s visit record sequences

Visit 1

Hypertension

Asthma

Visit 2

Heart failure

Diabetes

ICD-9 Code Set

‘4011’

‘42820’

Visit 3

Hodgkins disease

Cancer of kidney and renal 
pelvis

12/10/2015
interval :31 days

06/22/2019

‘1890’

01/10/2016

⚫ Tacrolimus
⚫ Warfarin

⚫ Metformin
⚫ Aldosterone 

antagonists

Next Visit

？？？

？？？

2. Heterogeneously learning disease representations with rich mean-

ings. In clinical diagnostics, patients diagnosed with diverse diseases may

receive identical or similar drugs. Current works(Lu et al., 2021) iden-

tify concealed connections between diseases by analyzing patient-disease

interactions. Nevertheless, the scarcity of clinical data within EHRs ham-

pers the ability to derive significant disease representations based solely on

disease co-occurrence. It is suggested that a complex relationship exists,

suggesting diseases treated with the same drugs may demonstrate hidden

correlations or similarities, thereby increasing the likelihood of patients

receiving diagnoses for related diseases sequentially. This could be due to

common biological targets or biological pathways linking these diseases,

suggesting underlying shared biological mechanisms. Figure 1 shows the

patient’s visit record sequences. Through analyzing clinical records and

drug usage, we aim to unravel the intricate associations between diseases,

thereby enhancing our comprehension of disease mechanisms and improv-

ing health event prediction accuracy.

3. Modeling temporal information on disease progression. Patient

admission times are meticulously documented in EHRs. However, many
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existing models() inadequately leverage temporal information, leading to

suboptimal outcomes and an inability to track the dynamic progression of

diseases. The incorporation of temporal data enables the capture of the

evolving nature of diseases over time. For example, Figure 1 displays the

chronological sequence of a patient’s visits alongside the disease’s dynamic

shifts. Integrating this temporal aspect allows models to intricately discern

the critical phases and pathways of disease development. Such integration

fosters a thorough comprehension of diseases’ dynamic behavior, thereby

enhancing the precision of predictive models and the efficacy of clinical

decisions.

To overcome these limitations, we propose an innovative model THAM, a

novel Time-aware Heterogeneous graph Transformer with Adaptive attention

Merging for health event prediction, which amalgamates hierarchical disease

representation with insights from medical domain knowledge, the implicit con-

nections between diseases and drugs, and temporal data from patient visits.

Initially, we apply medical domain knowledge to structure disease represen-

tations hierarchically. Subsequently, a heterogeneous graph neural network is

employed to derive meaningful disease insights by exploiting both the observed

co-occurrences of diseases during patient visits and the interactions between dis-

ease manifestations and drug use. Furthermore, we have designed two stages: a

preliminary evaluation stage and a comprehensive evaluation stage. During the

preliminary evaluation phase, we introduce a Time-aware Transformer featuring

a local-based attention mechanism designed to ascertain the preliminary atten-

tion weights for each patient visit. This method incorporates time information

into the visit vectors via specific non-linear functions, thereby overcoming the

constraints associated with a monotonically decaying time function. In the sub-

sequent comprehensive evaluation phase, we posit that a patient’s most recent

visit record comprehensively reflects their disease progression. Consequently,

we designate the embedding vector of the latest visit as the ”comprehensive

vector.” This vector serves as the query vector, while the time interval data
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are converted into key vectors using particular non-linear functions, facilitat-

ing the generation of comprehensive attention weights for each visit through

the dot-product attention mechanism. Finally, the Adaptive attention merging

mechanism is employed to acquire representations for patients by incorporating

both types of attention. The main contributions of this work are summarized

as follows:

• We harness the extensive knowledge within the medical domain to cap-

ture the hierarchical correlations among diseases. Furthermore, we sug-

gest acquiring disease representations endowed with rich meanings via

drug-disease heterogeneous co-occurrence graphs and disease ontology co-

occurrence graphs.

• We have designed two different stages: the preliminary evaluation stage

and the comprehensive evaluation stage. In the preliminary stage, time

data are integrated into the representation of medical visits. The compre-

hensive evaluation stage amalgamates information from individual visits

with overall visit data to analyze disease progression. Additionally, it

learns the relationship between the comprehensive visit vector and tem-

poral data, proficiently capturing the dynamics of disease evolution over

time.

• We conducted experiments on two real-world public datasets to evaluate

the performance of the proposed model. The results indicate that THAM

outperforms state-of-the-art models in terms of prediction accuracy, con-

firming the validity of the proposed model.

2. Related Work

The widespread adoption of deep learning techniques in recent years has

spurred their application in predictive analyses utilizing EHRs. These deep

learning approaches have achieved demonstrably superior predictive accuracy

compared to traditional machine learning models.
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2.1. Models leveraging external knowledge

GRAM(Choi et al., 2017), KAME(Ma et al., 2018b), DMKAP(Li et al.,

2023) and some models(Ma et al., 2019; Ye et al., 2021b) enhance the quality

of medical representation learning by utilizing the hierarchical information of

nodes in the medical ontology knowledge graph, their aim is to leverage the

static attention mechanism built on the knowledge DAG. PRIME(Ma et al.,

2018a) proposed a log-linear model that automatically learns the importance

of different disease knowledge. Furthermore, to address the problem of data

incompleteness in the medical field, some papers(Zhang et al., 2019; Yin et al.,

2019b; Li et al., 2020a) combine the KnowLife knowledge graph with clinical

expertise to compensate for this deficiency. CGL(Lu et al., 2021) constructs

a patient-disease observation graph and a disease ontology graph using clinical

observation information and medical knowledge. It learns representations using

collaborative graph methods while incorporating unstructured text data. G-

BERT(Shang et al., 2019) is a model that combines GNN(Scarselli et al., 2008)

and BERT(Devlin et al., 2018). It fully utilizes ICD-9-CM1(Slee, 1978) hier-

archical information and introduces the language model pre-training paradigm

into the healthcare domain. GNDP(Li et al., 2020b) learns the spatial and tem-

poral patterns from patients’ sequential graph, in which the domain knowledge is

naturally infused. MedPath(Ye et al., 2021a) extracts personalized knowledge

graphs (PKGs) from large-scale online medical knowledge graphs and learns

PKG embeddings using GNNs. Chet(Lu et al., 2022) constructs a global dis-

ease co-occurrence graph with multiple node attributes based on the patient’s

medical histories, simulating disease transition processes. However, these works

only consider limited relationships between disease knowledge and lack consid-

eration for the temporal information of disease progression.

1International Classification of Diseases, Ninth Revision, Clinical Modification
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2.2. Models capturing temporal relationships

This line of research focuses on acquiring the temporal characteristics and

dependencies within the context of patient visit sequences. Electronic Health

Records (EHRs) are not only sequential but also temporal. Each visit in the

EHR data is accompanied by a timestamp, as the progression of diseases is in-

herently connected to time. T-LSTM(Baytas et al., 2017) effectively handles

irregular time intervals in longitudinal medical records using a time decay strat-

egy, thereby capturing the underlying structure in these irregular time series.

DoctorAI(Choi et al., 2016a) employs a Recurrent Neural Network (RNN) to

forecast patient diagnoses in subsequent visits and the time interval between

their current and upcoming appointments. RETAIN(Choi et al., 2016b) intro-

duces a reverse time attention model based on RNNs, leveraging two RNNs to

learn the weights of visits and medical codes within visits. Dipole(Ma et al.,

2017) models longitudinal EHR data using bidirectional RNN and applies three

attention mechanisms. Additionally, Concare(Ma et al., 2020) improves multi-

head self-attention by considering the time intervals between consecutive visits.

Timeline(Bai et al., 2018) develops a timeline model to capture the time in-

tervals between visits, enhancing prediction accuracy. Concare and Timeline

both acknowledge the attenuation of relevant patient information if there is a

time gap between consecutive visits. However, these works consider the correla-

tion between diseases and time but ignore the cross-sectional and longitudinal

hierarchical relationships among diseases.

3. Methodology

3.1. Problem Formulation

Electronic Health Records (EHRs) comprise numerous short-term or long-

term visit records for patients. Let C = {c1, c2, . . . , c|C|} denote the set of

medical codes in the EHR dataset, where |C| represents the total number of

medical codes in the dataset. Similarly, let D = {d1, d2, . . . , d|D|} denote the
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set of all drugs used by patients in the EHR dataset, where |D| represents the

total number of drugs in the dataset.

EHR dataset. Let P = {pu | u ∈ U}, where U is the set of patients in P , and

pu = {V u
1 , V u

2 , . . . , V u
T } represents all visit records for patient u. Each visit V u

i =

{Cu
i , D

u
i }, where Cu

i and Du
i are subsets of C and D. Let rt represent the tem-

poral information corresponding to the visit Vt. Then, ∆u = {∆1,∆2, . . . ,∆T },

where ∆t = rt − rt−1.

Disease Prediction Task. The core objective of this task is to predict the

occurrence of diseases in the (T+1)-th visit based on the previous T visit records

for a given patient u. This can be represented by a binary vector ŷ ∈ {0, 1},

where ŷi = 1 indicates that disease ci is predicted in Cu
(T+1).

Heart Failure Prediction Task. 2The core objective of this task is to predict

a binary value ŷ ∈ {0, 1} based on the previous T visit records for a given patient

u. ŷi = 1 indicates that patient u is predicted to be diagnosed with heart failure

in the (T + 1)-th visit.

For convenience, we will remove the superscript u from pu, V u
i , Cu

i , Du
i and

∆u in the rest of this paper.

3.2. Overview of the proposed model

The model we proposed aims to fully utilize patient visit records in EHR data

to predict the future health events of patients. In this section, we will elaborate

on the seven main components of the model, and the schematic diagram of the

model is shown in Figure 2.

3.2.1. Hierarchical Representation for Medical Codes

In the medical domain, contemporary disease classification systems such as

ICD-9-CM and ICD-10(Organization, 2004) are employed to systematically cat-

egorize disease concepts at various levels using medical coding, thus establishing

2The codes of heart failure start with 428 in ICD-9-CM
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Figure 2 The model structure of the proposed model.

Disease

Drug

GNN

layer = 1
layer = 2

layer = L

Visit representation 
learningHeterogeneous Graph Relation Learning

V1 V2 VTVT-1
...

Timeline

Pos1

V1

Δ1 Δ2 ΔT-1 ΔT

Pos2

V2

PosT-1

VT-1

...
PosT

VT

Multi-Head Attention

Add & Norm

Feed forward

Add & Norm

h1 h2 hT-1 hT...Local-based Attention

α1 α2 αT-1 αT...

Preliminary Evaluation Phase

Comprehensive Evaluation Phase

h*

Δ1 Δ2 ... ΔT

Dot-product Attention
Query

Key1

β1 β2 ... βT-1

Key2 KeyT

Ov

c1 c2 ... cT-1 cT

βT

Adaptive attention merging

Prediction

Disease Hierarchical knowledge Graph

li1

li4

li2

li3

Extracting hierarchical information

...

Time-aware
Transformer

Encoder

a hierarchical structure akin to a tree. In this structure, each node is linked to

a single parent node, with leaf nodes often denoting specific diseases and their

ancestor nodes representing broader disease concepts. For instance, Hepatitis

is classified as a specific disease, whereas Viral infection serves as its broader

category. Typically, medical codes assigned during patient visits correspond

to specific diseases (leaf nodes). Nonetheless, we contend that the representa-

tion of a specific disease should encompass both the disease itself and its broader

category since diseases sharing common ancestors may exhibit similarities. Con-

sequently, we recursively generate virtual child nodes for each non-leaf node and

fill them into the virtual leaf nodes.

We posit that the hierarchical structure comprises H layers, with each layer

h hosting mh nodes. An embedding matrix is established for every layer within

this hierarchy. Consequently, the embedding matrix pertinent to layer h is

expressed as Lh ∈ Rmh×mc , where mc denotes the embedding size. We select

corresponding embedding vectors for disease ci based on its position and that
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of its ancestors at various levels in the tree. We then construct the hierarchical

representation Li ∈ RHmc of ci by concatenating the embedding vectors from

each level: Li = li1 ⊕ li2 ⊕ . . . ⊕ liH , where ⊕ represents concatenation. This

process culminates in the generation of a comprehensive embedding matrix for

all diseases, represented as L ∈ R|C|×Hmc .

3.2.2. Graph Definition

In healthcare, it is common for patients to be diagnosed with a combination

of certain diseases, such as chronic obstructive pulmonary disease (COPD) and

heart failure, likely due to shared risk factors. We hypothesize that diseases di-

agnosed during the same visit, as well as distinct diseases treated with the same

drug, may exhibit similarities. This hypothesis is grounded in the assumption

that different diseases might share common biological targets; drugs that inter-

act with these targets can modulate or influence physiological processes, result-

ing in therapeutic effects, which in turn suggest underlying similarities among

the diseases. To explore these potential connections, we posit the following

assumptions to reveal hidden relationships between diseases:

• Disease similarity derived from medical concepts. If two diseases

belong to the same abstract disease concept, there may be some medical

similarity between them.

• Disease similarity derived from drug usage. When two diseases are

treated with identical or comparable drugs, it suggests the possibility of a

similarity between the diseases. This similarity arises from the potential

sharing of common biological targets, further leading to the inference that

these diseases may also possess similar risk factors.

Based on the above assumptions, we constructed a drug-disease heteroge-

neous co-occurrence graph and a disease ontology co-occurrence graph, denoted

as M = {MDC ,MCC}.

MDC is a heterogeneous drug-disease co-occurrence graph derived from EHR

data, with nodes representing drugs and medical codes. We utilize a matrix

10



BDC ∈ R|D|×|C| to represent the graph MDC . Whenever a patient is diagnosed

with disease cj and concurrently uses drug di during a visit, we insert an edge
−−−−→
(di, cj) into the graph MDC and let BDC [i][j] = BDC [i][j]+1. Subsequently, we

normalize the BDC . MCC is a disease ontology co-occurrence graph also derived

from EHR data, with nodes symbolizing medical codes. If two distinct diseases

ci and cj are simultaneously diagnosed in a patient’s visit record, we add two

edges
−−−−→
(ci, cj) and

←−−−−
(ci, cj) into the graph MCC . However, we conjecture that

the mutual influence between two diseases is not symmetrical. For instance,

while patients with asthma might frequently develop sinusitis, the reverse is

less common. Thus, to mitigate computational complexity and disregard low-

frequency co-occurrences, we introduce a threshold λ. Only nodes that meet

the definition of formula 1 will be considered.

Ki = {cj |
eij∑|C|
j=1 eij

≥ λ} (1)

The eij represents the co-occurrence frequency of ci and cj . Then, we define the

adjacency matrix ACC ∈ R|C|×|C| to store the edge weights of the graph MCC :

ACC [i][j] =


0 if i = j or cj /∈ Ki,

eij∑
cj∈Ki

eij
otherwise.

(2)

ACC is an asymmetric matrix and quantifies the extent of mutual influence

between two diseases. We contend that constructing this matrix enhances in-

terpretability.

3.2.3. Heterogeneous Graph Relation Learning

We have designed a graph neural network (GNN) learning method that lever-

ages a heterogeneous co-occurrence graph and a disease ontology co-occurrence

graph to derive meaningful representations of diseases. Initially,each drug is

assigned an embedding vector, N ∈ R|D|×md is the embedding matrix of all

drugs with the size of md. We set H
(0)
D = N , H

(0)
C = L, and H

(l)
C ∈ R|C|×m(l)

c ,

H
(l)
D ∈ R|D|×m

(l)
d representing the hidden features of medical codes and drugs

at the l-th layer.
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• Aggregation: We incorporate two different co-occurrence matrices, ACC

and BDC , as contextual information into node embeddings, and map the

medical code features H
(l)
C to the drug dimension, serving as the aggrega-

tion operation in the GNN:

M
(l)
D = H

(l)
D + BDCH

(l)
C W

(l)
CD ∈ R|D|×m

(l)
d (3)

Here W
(l)
CD ∈ Rm(l)

c ×m
(l)
d is a trainable parameter utilized for mapping

medical code embeddings to the dimension of drug embeddings. We per-

form mapping of H
(l)
D to the dimension of medical codes and subsequently

aggregate the two co-occurrence matrixs as contextual information into

the embeddings of the corresponding nodes:

M
(l)
C = H

(l)
C + BT

DCH
(l)
D W

(l)
DC + ACCH

(l)
C ∈ R|C|×m(l)

c (4)

W
(l)
DC ∈ Rm

(l)
d ×m(l)

c is also a trainable parameter used for mapping drug

embeddings to the dimension of medical code embeddings.

• Update: We use the following formula 5 to update the hidden repre-

sentation of medical codes and drugs as the update operation in GNN.

Assuming a total of L layers, the update formula for each layer is as fol-

lows:

H
(l+1)
{D,C} = σ(BatchNorm(M

(l)
{D,C}W

(l)
{D,C})) (5)

W
(l)
{D,C} maps M

(l)
{D,C} to the (l+1)-layer, and then we use the BatchNorm

to normalize the hidden representation. σ represents the non-linear acti-

vation function. Here, we use LeakyReLU(Xu et al., 2015), which helps

alleviate the gradient vanishing problem. Additionally, the small slope

introduced by LeakyReLU increases the non-linearity of the model, which

is particularly important for GNNs as they need to capture complex graph

structure information. By enhancing non-linearity, it helps GNNs learn

complex relationships between nodes more effectively.
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3.2.4. Representation of Visits

We posit that the representation of a visit should be obtained by averag-

ing the embeddings corresponding to the diseases diagnosed during that visit.

Therefore, the initial embedding vector ot of visit t should be represented as:

ot =
1

|Ct|
∑

cj∈Ct

Hj
C ∈ Rm(L)

c (6)

Although RNN-based models(Choi et al., 2016a,b; Ma et al., 2017) consider

the role of temporal information and operate under the premise that disease

information decays at a stable rate, this assumption may not always apply.

Particularly for some chronic diseases, the progression can be markedly slow,

often leading to intervals exceeding a year between patient visits. For patients

with such conditions, if the diagnostic codes from two sequential visits are sim-

ilar, this might suggest that the disease has not intensified. In these instances,

the attenuation of time-sensitive information should be less severe, rather than

unduly diminishing the significance of the data. Hence, we introduce a function

designed to integrate temporal data into the visit vector, thereby establishing

the final visit vector vt:

ft = Wf

(
1− tanh

((
We

∆t

180
+ be

)2
))

+ bf ∈ Rm(L)
c (7)

vt = ot + ft ∈ Rm(L)
c (8)

Here We ∈ Ra, be ∈ Ra, Wf ∈ Rm(L)
c ×a, and bf ∈ Rm(L)

c . In the patient’s

visit sequence, if the interval between the occurrences of one disease and an-

other disease is shorter, formula 7 is easier to be activated. To simplify the

representation, we will use m instead of m
(L)
c in the rest of the paper.

3.2.5. Preliminary Evaluation Phase

For each patient’s visit record, we can obtain an input matrix V = [v1, v2, . . . , vT ].

We generate a corresponding positional encoding for all visits in order, The gen-

erated positional encodings will be added to the medical visit vector vt to obtain
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a new representation of the visit v′t:

Pos(t,2i) = sin

(
t

100002i/m

)
∈ Rm (9)

Pos(t,2i+1) = cos

(
t

100002i/m

)
∈ Rm (10)

v′t = vt + Post (11)

Where m represents the dimension size of the visit embedding, i is the detention

of the position embedding Pos. The Time-aware Transformer Encoder (denoted

as TTE) is employed to capture the long-term dependency between each visit:

[h1, h2, . . . , hT ] = TTE([v′1, v
′
2, . . . , v

′
T ]) ∈ RT×z (12)

Where ht ∈ Rm represents the hidden representation of each visit, we use local-

based attention(Luong et al., 2015) to calculate the preliminary attention weight

α for each visit. This operation simulates the behavior of doctors during diag-

nosis, as they highly focus on visit history related to the target disease.

α = Softmax([h1, h2, . . . , hT ]wα) ∈ RT (13)

Here wα ∈ Rb is a context vector for local-based attention and α is the attention

weight of visit.

3.2.6. Comprehensive Evaluation Phase

In medical practice, doctors typically assess disease progression and forecast

outcomes by synthesizing data from individual visits with overarching diagnos-

tic information. We maintain that a patient’s latest visit record encompasses

comprehensive details of their disease trajectory(Choi et al., 2016b; Luo et al.,

2020). Consequently, we set h∗ = hT and designate h∗ as the comprehensive

visit vector. Initially, h∗ is converted into a query vector Q:

Q = LeakyReLU(WQh∗ + bQ) ∈ Rq (14)
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Where WQ ∈ Rq×m, bQ ∈ Rq are both trainable parameters. LeakyReLU allows

negative values to have a small positive output, increasing the robustness of the

results. When analyzing comprehensive diagnostic information, doctors need

to combine the time information of disease onset to obtain the most important

time points for the patient’s condition. To simulate this process, we embed

each temporal interval information ∆t into the same space as the query vector,

treating it as the key vector:

Kt = LeakyReLU

(
Wk

(
1− tanh

((
Wt

∆t

180
+ bt

)2
))

+ bk

)
∈ Rq (15)

Here Wt ∈ Ra, bt ∈ Ra,Wk ∈ Rq×a, bk ∈ Rq are trainable parameters. We em-

ploy scaled dot-product attention(Vaswani et al., 2017) to learn the correlation

between the comprehensive visit vector and the temporal information. This

enables us to derive the comprehensive attention weight β:

β = Softmax

(
QKT

√
q

)
∈ RT (16)

3.2.7. Adaptive attention merging

We have derived two distinct attention weights: the preliminary attention

weight α and the comprehensive attention weight β. The preliminary evaluation

phase serves as an initial assessment of each visit’s significance and its temporal

association, whereas the comprehensive evaluation phase offers a retrospective

analysis of temporal information’s relevance. The amalgamation of these two

weights yields more robust attention weights. Thus, we introduce an adaptive

attention merging mechanism, the comprehensive visit vector is mapped into a

two-dimensional space and normalized through a Softmax layer:

δ = Softmax(Wxh∗ + bx) ∈ R2 (17)

Where Wx ∈ R2×q, bx ∈ R2 are trainable parameters.We concatenate the pre-

liminary attention weight α with the comprehensive attention weight β to obtain

robust attention weight γ:

γ = α⊕ β ∈ RT×2 (18)
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Subsequently, we generate the overall attention weights η:

η = γ ⊙ δ ∈ RT×2 (19)

Where ⊙ denotes the element-wise multiplication, which utilizes broadcasting

mechanisms.Finally, we normalize the overall attention weight and obtain the

overall attention score η′t for each visit, as shown below:

η′t =
ηt∑T
i=1 ηi

(20)

3.2.8. Prediction and Inference

After obtaining the overall attention weight for each visit, we can obtain the

patient’s output through attention pooling:

O =

T∑
t=1

η′t ht ∈ Rm (21)

We use a multi-layer perceptron with a sigmoid activation function on the

model’s output O to compute the predicted probability ŷ. In the Diagnosis

prediction task, we predict the diseases the patient will have at the T + 1 visit,

it is a multi-label classification. In the Heart failure prediction task, we predict

whether the patient will be diagnosed with heart failure at the T + 1 visit, it

is a binary classification. Therefore, the loss function of this model is binary

cross-entropy loss:

L = − 1

|N |

|N |∑
i=1

(
yTi log(ŷi) + (1− yi)

T log(1− ŷi)
)

(22)

y is the true label of medical codes or heart failure, |N | is the number of samples.

During the inference stage, we set the model to eval mode and obtain the medical

code embeddings HC after GNN learning, and combine them with the patient’s

visit representation and time information. Given a new patient for inference, we

continue to execute and make predictions from Eq.(8). Algorithm 1 describes

the overall training process of the proposed THAM.
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Algorithm 1 Training Procedure of THAM
Input: Training set Tt, and validation set Tv

Output: Trained model parameter

1: Randomly initialize the parameter ω of THAM and drug embedding matrix N

2: Obtain the hierarchical embedding matrix L of all diseases based on the medical knowledge

graph

3: Construct heterogeneous drug-disease co-occurrence matrix BDC and disease ontology

co-occurrence matrix ACC from Tt

4: Set H
(0)
D = N , H

(0)
C = L

5: for epoch = 1 to EPOCH do

6: Randomly shuffle the order of samples in training set Tt.

7: for (p,∆, y) ∈ Tt do

8: for l = 0 to L− 1 do

9: M
(l)
{D,C} = Aggregation(H

(l)
{D,C}, ACC , BDC)

10: H
(l+1)
{D,C} = Update(M

(l)
{D,C})

11: end for

12: Calculate the preliminary visit embeddings o using Eq.(6)

13: Calculate the final visit embeddings v using Eq.(7)-(8)

14: Calculate the new visit embedding v′ using Eq.(9)-(11)

15: Utilizing transformer TTF , encode v′ to derive h according to Eq.(12)

16: Calculate the preliminary attention weight α using Eq.(13)

17: Calculate the comprehensive attention weight β using Eq.(14)-(16)

18: Calculate the overall attention score η′ for each visit using Eq.(17)-(20)

19: O =
∑T

t=1 η
′
tht

20: ŷ = MlpWithSigmoid(O)

21: Calculate the prediction loss L using Eq.(22)

22: Update model parameters ω according to the gradient of L

23: end for

24: Calculate the average validation loss Lv using validation set Tv

25: if Lv < Lmin
v then

26: ωbest = ω

27: Lmin
v = Lv

28: end if

29: end for
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Table 1: Statistics of MIMIC-III and MIMIC-IV datasets

Dataset MIMIC-III MIMIC-IV

# patients 7,493 10,000

Max. # visit 42 93

Avg. # visit 2.66 3.79

# codes 4,880 5985

Max. # codes per visit 39 39

Avg. # codes per visit 13.06 13.51

# drugs 3202 3070

Max. # drugs per visit 164 193

Avg. # drugs per visit 37.36 25.38

4. Experiments

4.1. Experimental Setup

4.1.1. Dataset

To evaluate our proposed model, we focused on two extensively recognized

datasets in the realm of critical care research: MIMIC-III(Johnson et al., 2016)

and MIMIC-IV(Johnson et al., 2023). Table 1 displays the comprehensive details

pertaining to the MIMIC-III and MIMIC-IV datasets. Both datasets emanate

from the extensive de-identified clinical data collected at the Beth Israel Dea-

coness Medical Center in Boston, Massachusetts, encompassing detailed records

from patients admitted to the Intensive Care Units (ICUs). MIMIC-III covers

data from over 40,000 ICU admissions between 2001 and 2012, incorporating a

vast spectrum of information including patient demographics, vital signs, lab-

oratory test results, diagnoses, and diagnostic codes. MIMIC-IV extends this

dataset, covering approximately 60,000 ICU admissions from 2008 to 2019, thus

providing an updated and expanded database that reflects more recent clinical

practices and patient demographics.

To ensure a comprehensive analysis, we selected patients from MIMIC-IV
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who were admitted between 2013 and 2019, avoiding temporal overlap with the

MIMIC-III dataset and ensuring the distinctiveness of the patient cohorts under

investigation. And we included patients who had multiple visits ( # of visits

≥ 2) in order to eliminate cases where there were no visit records available as

labels.We adopted a randomized approach to divide both datasets into train-

ing, validation, and testing segments. This partitioning facilitates a balanced

assessment of the model’s predictive accuracy and generalizability. Specifically,

for MIMIC-III, the data was divided into 6000 training, 500 validation, and 993

testing samples. For MIMIC-IV, the distribution comprised 8000 training, 1000

validation, and 1000 testing samples. In the context of heart failure prediction,

the label will be assigned as 1 if the patient is diagnosed with heart failure

during their most recent visit.

This methodical preparation and segmentation of the datasets are critical

for evaluating the model’s capability to accurately predict outcomes and events

based on the rich clinical data available. By treating the last visit of a patient as

the label and all preceding visits as features, we aim to harness the longitudinal

data structure inherent in these databases, thereby enhancing the model’s ability

to forecast critical care outcomes with higher precision and reliability. Through

this analytical framework, our research endeavors to contribute significantly to

the advancement of predictive modeling in critical care, ultimately aiming to

improve patient outcomes through data-driven insights and interventions.

4.1.2. Baselines

To evaluate the performance of our proposed model, it is necessary to com-

pare it with various state-of-the-art models in the fields of electronic health

record analysis and disease prediction. We selected the following methods as

baselines:

• RNN/CNN/Attention-based model: Dipole(Ma et al., 2017), RE-

TAIN(Choi et al., 2016b), Deepr(Nguyen et al., 2017) and Timeline(Bai

et al., 2018).
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• Graph-based model: GRAM(Choi et al., 2017), KAME(Ma et al.,

2018b), G-BERT(Shang et al., 2019), CGL(Lu et al., 2021), Chet(Lu et al.,

2022) and BioDynGraph(Li et al., 2024).

4.1.3. Parameter Settings

We use the Xavier method to randomly initialize the embeddings for dis-

eases and drugs. Sinusoidal Position Embeddings are used to generate position

embeddings.

• In the disease prediction task. On the MIMIC-III dataset, the em-

bedding sizes for mc,md are 48 and 64. The layer number L of GNN

is 2. The hidden dimensions m
(1)
c ,m

(2)
c and m

(1)
d are 64, 192 and 64,

a = 64, q = 64, b = 32, λ = 0.01. For the hyper-parameters of Time-aware

Transformer Encoder, we set the multi-head number as 4, the number of

encoder layer is 1, and the size of middle feed-forward network as 1024.

On the MIMIC-IV dataset, both mc and md are set to 64, and m
(2)
c is

set to 256. The remaining parameters are consistent with those on the

MIMIC-III dataset. We set the number of epochs to 200, with an initial

learning rate of 1e-1. The learning rate is decayed to 1e-2, 1e-3, and 1e-4

at epochs 10, 100, and 200 respectively.

• In the heart failure prediction task. On the MIMIC-III dataset, we

set mc = 7 and md = 16 , m
(1)
c , m

(2)
c , and m

(1)
d set to 10, 28, and 16

respectively. a = 16, q = 16, b = 32. We set the number of encoder layers

to 1. On the MIMIC-IV dataset, mc and md are set to 5 and 16, and m
(1)
c ,

m
(2)
c , and m

(1)
d set to 10, 20 and 16 respectively. Other parameters remain

the same as in the MIMIC-III dataset. We set the number of epochs to

100, with an initial learning rate of 1e-2. The learning rate is decayed to

1e-3, 1e-4, and 1e-5 at epochs 2, 3, and 20 respectively.

We use the Adam(Kingma & Ba, 2014) as the optimizer. The model is im-

plemented using Python 3.10.13 and PyTorch 1.12.0 with CUDA 11.5, running
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on a machine with an Intel E5-2697 CPU, 251GB memory, and GeForce RTX

3090 GPU.

4.1.4. Experiment Evaluation

We use weighted F1 score (w-F1) and recall at k (R@k) as performance

evaluation metrics for disease prediction. w-F1 is the weighted sum of F1 scores

for all disease codes, with a higher w-F1 indicating higher accuracy in disease

prediction. R@k represents the coverage of correctly predicted diseases among

the top-k predictions, with a higher R@k indicating higher coverage. As for

heart failure prediction, the evaluation metrics are AUC and F1 score. AUC

measures the area under the Receiver Operating Characteristic (ROC) curve,

and its magnitude is positively correlated with the ability to distinguish between

positive and negative cases. The F1 score is the harmonic mean of precision

and recall, aiming to provide a balanced performance measure considering both

precision and recall. A higher F1 score indicates better overall performance in

terms of false positive and false negative rates.

4.2. Experiment Result

4.2.1. Diagnosis prediction and Heart Failure prediction results

In this section, we evaluated the performance of the THAM in comparison

to existing baselines using two public datasets. The models were independently

trained five times with distinct parameter initializations, with outcomes re-

ported as mean(standard deviation). Table 2 showcases the evaluation metrics:

w-F1 (%) and R@k (%), where k is set at [10,20]. Since the average diag-

nosis number in a visit is around 13. THAM surpassed other models, which

can be chiefly attributed to its comprehensive exploitation of EHR data. By

uncovering hidden drug-disease associations and leveraging temporal visit in-

formation, THAM can trace the trajectory of disease progression. In contrast,

CGL’s limited approach focuses solely on patient-disease interactions, yielding

less nuanced insights into diseases. THAM also surpasses Chet, which learns

disease combinations and transitions, demonstrating the superiority of THAM’s
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disease representation. We notice that G-BERT has a lower w-f1 score, which

may be due to the removal of pre-training in the original model and its in-

ability to handle simple sequences effectively. GRAM and KAME also achieve

relatively lower scores, which may be attributed to their use of static graphs

for disease representation learning, without capturing dynamic features of user

activity. Additionally, our proposed THAM performs significantly better on the

MIMIC-IV dataset compared to the MIMIC-III dataset, possibly because the

MIMIC-IV dataset is larger, indicating that our proposed model benefits from

more training data to fully demonstrate its effectiveness.

Table 3 presents the results of using AUC (%) and F1 (%) for heart failure

evaluation, showing that our proposed model performs better compared to other

baseline models. Additionally, we noticed that the performance metrics of all

models are better on the MIMIC-IV dataset than on MIMIC-III. We believe

that the main reason for this improvement is the larger training set available

in MIMIC-IV, as models based on deep learning require a sufficient amount of

data to learn satisfactory parameters.

Table 2: Diagnosis prediction results on MIMIC-III and MIMIC-IV using w-F1 (%) and R@k

(%).

MIMIC-III MIMIC-IV

Models w-F1 R@10 R@20 w-F1 R@10 R@20

RETAIN 20.43 (0.30) 26.15 (0.20) 34.78 (0.22) 24.71 (0.24) 28.02 (0.47) 34.46 (0.13)

Dipole 19.35 (0.33) 24.98 (0.27) 34.02 (0.21) 23.69 (0.24) 27.39 (0.34) 35.48 (0.29)

Deepr 18.87 (0.21) 24.74 (0.25) 33.47 (0.17) 24.08 (0.17) 26.29 (0.25) 33.93 (0.21)

Timeline 20.46 (0.18) 25.75 (0.13) 34.83 (0.14) 25.26 (0.30) 29.00 (0.21) 37.13 (0.39)

GRAM 21.52 (0.10) 26.51 (0.09) 35.80 (0.09) 23.50 (0.11) 27.29 (0.27) 36.36 (0.30)

KAME 21.10 (0.13) 24.97 (0.18) 33.99 (0.24) 21.88 (0.17) 25.10 (0.22) 34.85 (0.15)

G-BERT 19.88 (0.19) 25.86 (0.12) 35.31 (0.13) 24.49 (0.20) 27.16 (0.06) 35.86 (0.19)

BioDynGrap 25.21 (0.14) 28.15 (0.15) 38.10 (0.12) 27.09 (0.18) 30.13 (0.21) 38.65 (0.18)

CGL 21.92 (0.12) 27.13 (0.30) 36.49 (0.15) 25.41 (0.08) 28.52 (0.42) 37.15 (0.29)

Chet 22.63 (0.08) 28.64 (0.13) 37.87 (0.09) 26.35 (0.13) 30.28 (0.09) 38.69 (0.15)

THAM 25.46 (0.07) 31.00 (0.16) 41.10 (0.14) 30.79 (0.22) 35.30 (0.16) 44.90 (0.20)
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Table 3: Heart failure prediction results on MIMIC-III and MIMIC-IV using AUC (%) and

F1 (%)

Models MIMIC-III MIMIC-IV

AUC F1 AUC F1

RETAIN 83.21 (0.26) 71.32 (0.17) 89.02 (0.26) 67.38 (0.21)

Dipole 82.08 (0.29) 70.35 (0.21) 88.69 (0.24) 66.22 (0.15)

Deepr 81.36 (0.13) 69.54 (0.08) 88.43 (0.18) 61.36 (0.12)

Timeline 82.34 (0.31) 71.03 (0.24) 87.53 (0.13) 66.07 (0.21)

GRAM 83.55 (0.19) 71.78 (0.14) 89.61 (0.12) 68.94 (0.19)

KAME 82.88 (0.12) 72.03 (0.07) 89.05 (0.15) 69.36 (0.22)

G-BERT 81.50 (0.24) 71.18 (0.12) 87.26 (0.12) 68.04 (0.17)

BioDynGraph 75.13 (0.12) 68.15 (0.17) 87.00 (0.08) 69.02 (0.11)

CGL 84.19 (0.16) 71.77 (0.10) 89.05 (0.15) 69.36 (0.22)

Chet 86.14 (0.14) 73.08 (0.09) 90.83 (0.09) 71.14 (0.15)

THAM 87.13 (0.07) 74.82 (0.11) 93.57 (0.16) 76.49 (0.20)

4.2.2. Ablation Study

In order to investigate the effectiveness of components of the model, we per-

formed an ablation experiment. Specific components of the model were either

removed or modified: THAMa− randomly initializing the disease embedding

matrix, THAMb− without embedding time information, and THAMc− not us-

ing the adaptive attention merging mechanism. The ablation experiment was

conducted on the MIMIC-IV dataset:

• THAMa−: Instead of connecting embedding vectors at different levels,

we randomly initialize the embedding matrix of diseases. This contrast

is intended to emphasize the importance of hierarchical information in

diseases.

• THAMb−: We remove the embedded time vector in Eq.(8) and directly

use the ot from Eq.(6) as the final visit vector for subsequent predictions.

This contrast aims to explore the importance of time information.
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• THAMc−: We cancel the comprehensive evaluation phase and use the

preliminary attention weights obtained from Eq.(13) as the overall at-

tention weights for subsequent predictions, without using the Adaptive

attention merging mechanism. This approach aims to demonstrate that

the most recent medical records contain all the information about the dis-

ease progression. It is essential to fully utilize the most recent medical

records.

• THAMd−: Building upon THAMc−, we continue to remove the embed-

ded time vector and retain the structure of Transformer to learn hidden

states and utilize the local-based attention mechanism to learn patient

representation.

Table 4: Diagnosis prediction and heart failure prediction for THAM variants on the MIMIC-

IV dataset.

Models
Diagnosis Heart failure

w-F1 R@10 R@20 AUC F1

THAMa- 28.68 33.34 42.13 91.30 74.51

THAMb- 30.48 34.82 44.21 93.10 75.72

THAMc- 29.58 34.18 43.13 92.42 75.24

THAMd- 28.77 34.07 42.78 91.98 74.83

THAM 30.79 35.30 44.90 93.57 76.49

The results of the ablation experiments are presented in Table 4. We noticed

that for THAMa−, which utilizes a randomly initialized disease embedding ma-

trix, all the metrics except w-F1 show a significant decrease. This indicates the

importance of obtaining meaningful disease representations by leveraging the

hierarchical relationships among diseases, as it has a crucial impact on achiev-

ing good patient representations. In the case of THAMb−, the decline in metrics

is not substantial. Despite not incorporating time information in the visit rep-

resentation, it still outperforms all ablation models. This can be credited to
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its utilization of medical domain knowledge, including hierarchical embedding

matrices. Furthermore, during the comprehensive evaluation phase, it learns

the correlation between comprehensive visits and time information, further af-

firming the effectiveness of time information modeling. On the other hand,

THAMc− retains the time information embedding but forsakes the comprehen-

sive evaluation phase, resulting in comparatively inferior performance compared

to THAMb−. This validates that relying solely on preliminary representations

leads to a significant loss of crucial information and impairs predictive per-

formance. THAMd− discards both time information embedding and the com-

prehensive evaluation phase, it slightly outperforms THAMa− in all metrics.

We postulate that meaningful disease representations have a more substantial

impact on model performance compared to time information. These findings

collectively constitute a comprehensive ablation study, accentuating the signif-

icance of each component within THAM. Upon analyzing the results in Table

4, it is evident that even with the removal of individual components, THAM’s

performance remains superior to the current baseline models. This further un-

derscores the robustness and superiority of our proposed model, emphasizing the

importance of leveraging medical domain knowledge, the relationship between

drugs and diseases, as well as the significance of time information.

4.2.3. Prediction Analysis

• Emerging diseases. The term ”Emerging diseases” refers to ailments

identified in subsequent patient visits that were not present in earlier visits.

• Occurred diseases. The term ”Occurred diseases” refers to diseases that

have also appeared in early visits during subsequent patient visits.

Our objective is to leverage the ability to predict such emerging diseases as a

measure of a model’s capacity to learn diagnostic similarity between patients.

While proficient prediction of previously diagnosed diseases is a baseline expec-

tation, the ability to identify new, potential diagnoses based on similar patient

data is equally crucial. In this context, patients treated with the same drug are
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considered similar, and a diagnosis of an emerging disease in one patient might

be predictive for the other. The R@k (k = 20, 40) is employed to analyze the

performance of different models in predicting both previously diagnosed and

emerging diseases, given the relatively small number of newly predicted dis-

eases by each model. This metric reflects the proportion of accurately predicted

occurred or emerging diseases against the total confirmed diagnoses. GRAM,

CGL, and Chet were selected as comparison models due to their shared utiliza-

tion of hierarchical (horizontal and vertical) disease relationships. This selection

facilitates the assessment of the effectiveness of our proposed drug-disease on-

tology graph and disease ontology graph. As shown in Table 5, the test set

results demonstrate that our proposed model THAM, achieves better perfor-

mance in predicting both emerging and occurred diseases compared to existing

baseline models. These findings substantiate the efficacy of our proposed het-

erogeneous graph and disease ontology graph learning approach in leveraging

patient similarity patterns to predict potential future diagnoses.

Table 5: R@k of predicting occurred/emerging diseases on MIMIC-III.

Models
Occurred diseases Emerging diseases

R@20 R@40 R@20 R@40

GRAM 21.05 23.11 15.32 22.50

CGL 21.79 25.13 16.33 23.58

Chet 19.93 22.70 16.80 24.25

THAM 22.48 25.45 17.01 24.50

4.3. Interpretability analysis

In this section, we discuss the representations of diseases and drugs trained

by the model. The diseases in the ICD-9-CM standard are classified into dif-

ferent categories. To demonstrate our model’s disease classification ability and

illustrate the similarity among diseases, we utilize t-SNE(Van der Maaten & Hin-

ton, 2008) to visualize the embedding vectors of 4,880 diseases and 3,202 drugs
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from the MIMIC-III dataset. Additionally, we compare the disease embedding

vectors produced by several baseline models that incorporate the hierarchical

relationship of diseases. In Figure 3, the different colors represent the various

categories of diseases classified by the ICD-9-CM standard. From Figure 3, it

is evident that all models have successfully classified diseases into correspond-

ing clusters according to real-world classification standards, this indicates that

we have successfully learned excellent disease representations by leveraging the

correlation between drugs and diseases. Compared to CGL, THAM has a more

distinctive way of classifying diseases. As shown in Figure 4, we map the dis-

ease embedding vectors into a 3D space and the drug embedding vectors into

a 2D space. It can be observed that THAM still possesses excellent disease

classification capability. Therefore, we can infer that obtaining better disease

representations through the utilization of drug and time information is crucial.
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Figure 3 Code embeddings in three levels acquired by the GRAM, CGL, and

THAM models. Each level represents different disease types, as indicated by

the corresponding colors.

(a) GRAM level 1 (b) GRAM level 2 (c) GRAM level 3

(d) CGL level 1 (e) CGL level 2 (f) CGL level 3

(g) THAM level 1 (h) THAM level 2 (i) THAM level 3

4.4. Parameter sensitivity analysis

We conducted a comprehensive sensitivity analysis on the model’s hyperpa-

rameters to ascertain their impact on performance. This analysis was carried

out on the MIMIC-III and MIMIC-IV datasets, using disease prediction metrics

as indicators. Modifications included varying the dimension m of disease codes,
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Figure 4 3D spaces of code embeddings acquired by model THAM and drug

embeddings in 2D space.

(a) THAM level 1 (b) THAM level 2 (c) THAM level 3

(d) Drug embeddings

initially set at 32 and incrementally increased by 32 up to a maximum of 256.

In this evaluation of disease code dimensions, we set the number of layers for

the encoder to 2. On the MIMIC-III dataset, the model exhibited its optimal

performance when the disease code dimension was set to 192, with most indi-

cators reaching their peak values. The scores were as follows: w-F1 at 25.46%,

R@10 at 31.00%, R@20 at 41.10%, and R@40 at 50.62%, surpassing other con-

figurations. It is noteworthy that the model’s performance improved gradually

as the disease code dimension increased from 32 to 192, at which point all indi-

cators reached their peak values. Beyond this dimension, all indicators showed

slight declines. On the MIMIC-IV dataset, the model exhibited the best overall

predictive performance with a disease code dimension of 256. This observation

suggests that increasing the disease code dimension on both datasets can result

in excellent performance. These findings imply that the proposed model neces-
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Figure 5 The Impact of code dimensions on Performance of MIMIC-III and

MIMIC-IV.
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sitates more parameters for effectively learning and representing complex data

features. For a visualization of the model’s performance across varying disease

code dimensions, refer to Figure 5. In addition, we conducted an evaluation of

the sensitivity of the model’s encoder layers. Initially, we set the disease code

dimension to the previously determined optimal value. The number of encoder

layers was incrementally increased from 1 to 5. On the MIMIC-III dataset, the

model achieved its best predictive performance with 2 encoder layers, yielding

a w-F1 at 25.46%, R@10 at 31.00%, R@20 at 41.10%, and R@40 at 50.62%.

These scores outperformed other configurations, but further increases in the

number of encoder layers resulted in slight declines in performance. Similarly,

on the MIMIC-IV dataset, the model also peaked with 2 encoder layers, achiev-

ing a w-F1 score of 30.79%, R@10 score of 35.30%, R@20 score of 44.90%, and

R@40 score of 55.30%, followed by gradual declines. These findings indicate

that an excessive number of encoder layers does not necessarily improve the

predictive performance of the model. Thus, the results confirm that setting the

number of encoder layers to 2 can achieve highly favorable performance on both

datasets. The performance of the model with varying numbers of encoder layers

can be observed in Figure 6. Setting the disease code dimension to 192 and the

number of encoder layers to 2 has both showcased remarkable performance on

both datasets. This underscores the model’s robustness across hyperparameters.
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Figure 6 The Impact of Encoder Layers on Performance of MIMIC-III and

MIMIC-IV.
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The analysis of parameter sensitivity yields valuable insights into the model’s

optimal performance.

4.5. Case Study

We randomly selected two patients, with IDs 92 and 9412, from the MIMIC-

III dataset. By analyzing their historical admission records, we extracted a

heterogeneous subgraph that offers insights into our proposed method for het-

erogeneous graph learning. In Figure 7, diseases are represented by grey circles,

and drugs by orange nodes. The weights of the edges between diseases indicate

their co-occurrence frequency, while the weights of the dashed edges connect-

ing diseases and drugs also represent their co-occurrence frequency. Notably,

both patients were treated with the same drug, such as Meropenem, and were

diagnosed with pneumonia simultaneously. This suggests that these patients

may have similar or related diseases in the future. The construction of a het-

erogeneous graph allows us to uncover hidden relationships between drugs and

diseases. To enhance the interpretability of the model, paths and weights in the

graph are converted to corresponding adjacency matrices. To maintain conci-
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Figure 7 Heterogeneous subgraphs extracted from the visit records of Patient

1 and Patient 2.

Patient1(ID:94)

Pneumonia

Patient2(ID:9412)

Essential hypertension

Hyposmolality

Cervical radiculitis

Cellulitis and abscess of leg

Metoprolol

Disease Node

Drug Node

Chronic ulcer of leg or foot

pid : 94, History ICD-9 codes: [['276.1', '723.4', '424.0', '458.9', '079.99', '401.9', '427.89', '788.41'],['335.20', '518.84', '486', '427.31', '401.9', '600.00', '427.89', '285.9']] 
Used drugs: ['Lorazepam', 'Neutra-Phos', 'Insulin', 'Latanoprost 0.005% Ophth. Soln.', 'Zolpidem Tartrate', 'Cosyntropin', 'Acetaminophen', 'Magnesium Sulfate', 'Heparin', 'Docusate Sodium', 'SW', 'Insulin
Human Regular', 'Gabapentin', 'Pneumococcal Vac Polyvalent', 'Timolol Maleate 0.5%', 'Norepinephrine', 'Metronidazole', 'Lisinopril', 'Aspirin', 'Levofloxacin', 'Bisacodyl', 'Tamsulosin HCl', 'Potassium Chloride',
'Dexamethasone', 'Potassium Chl 40 mEq / 1000 mL D5 1/2 NS', 'Ibuprofen', 'NS', 'Lansoprazole Oral Suspension', 'D5W', 'Iso-Osmotic Dextrose', 'Phenazopyridine HCl', 'Vancomycin HCl', 'Heparin Flush CVL 
(100 units/ml)', 'Dextrose 5%', 'D5 1/2NS', 'Ferrous Sulfate', 'Ampicillin-Sulbactam', 'Lorazepam', 'CefTRIAXone', 'Potassium Phosphate', 'Latanoprost 0.005% Ophth. Soln.', 'Lidocaine 0.5%/Epinephrine',
'Zolpidem Tartrate', 'traZODONE HCl', 'HydrALAZINE HCl', 'Acetaminophen', 'Ketoconazole 2% ', 'Mirtazapine', 'Magnesium Sulfate', 'Heparin', 'Albumin 25% (12.5 g)', 'Fentanyl Patch', 'Naloxone HCl',
'Propofol', 'Midazolam HCl', 'Scopolamine Patch', 'Albuterol', 'Phenylephrine HCl', 'Fentanyl Citrate', 'Senna', 'SW', 'Gabapentin', 'Timolol Maleate 0.5%', 'Rilutek', 'Midodrine HCl', 'Lansoprazole Oral
Disintegrating Tab', 'Lisinopril', 'Heparin Flush PICC (100 units/ml)', 'Dextrose 5%', 'Pantoprazole Sodium', 'Sodium Chloride 0.9%  Flush', 'NS (Mini Bag Plus)', 'Meropenem', 'Levofloxacin', 'Bisacodyl',
'Potassium Chloride', 'Alteplase (Catheter Clearance)', 'Ketorolac', 'NS', 'Docusate Sodium (Liquid)', 'DopAmine', 'D5W', 'Iso-Osmotic Dextrose', 'Lansoprazole Oral Suspension', 'Morphine Sulfate', 'Furosemide',
'Piperacillin-Tazobactam Na', 'Calcium Gluconate', 'Vial', 'Ibuprofen Suspension', 'Vancomycin HCl', 'Heparin Flush CVL  (100 units/ml)', 'Lidocaine 5% Patch', 'Metoprolol']

pid : 9412, History ICD-9 codes: [['996.74', '682.6', '707.13', '780.39', '496', '008.45', '785.4', '401.9'],['486', '584.9', '491.21', '682.6', '728.88', '707.13', '428.0', '518.81', '440.23', 'E884.3', '922.2', '272.4', '401.9',
'V49.76', '345.90']]
Used drugs: ['D5 1/2NS', 'Aztreonam', 'Lorazepam', 'Insulin', 'MethylPREDNISolone Sodium Succ', 'Acetaminophen', 'Heparin', 'Docusate Sodium', 'Lactulose', 'Phenytoin', 'Heparin Sodium', 'Fentanyl Citrate',
'Senna', 'Gabapentin', 'Metoprolol', 'Papain-Urea Ointment', 'Becaplermin Gel 0.01%', 'Morphine SR (MS Contin)', 'Ipratropium Bromide Neb', 'Pantoprazole', 'MetRONIDAZOLE (FLagyl)', 'Meropenem', 'NS
(Mini Bag Plus)', 'Sodium Chloride 0.9%  Flush', 'Aspirin', 'Bisacodyl', 'Levofloxacin', 'Atorvastatin', 'Oxycodone-Acetaminophen', 'Potassium Chloride', 'PredniSONE', 'Ketorolac', 'NS', 'Amlodipine', 'D5W', 'Iso-
Osmotic Dextrose', 'Furosemide', 'Morphine Sulfate', 'Sodium Bicarbonate', 'Vancomycin HCl', 'Albuterol 0.083% Neb Soln', 'Dextrose 5%']

Disease intersection:{'486', '401.9'}
Drug intersection:['Metoprolol', 'Iso-Osmotic Dextrose', 'Bisacodyl', 'Fentanyl Citrate', 'NS (Mini Bag Plus)', 'Meropenem', 'Aspirin', 'Senna', 'Sodium Chloride 0.9%  Flush', 'Insulin',
'Acetaminophen', 'D5 1/2NS', 'Docusate Sodium', 'Morphine Sulfate', 'Potassium Chloride', 'D5W', 'Dextrose 5%', 'Levofloxacin', 'Lorazepam', 'Heparin', 'Ketorolac', 'NS', 'Gabapentin',
'Vancomycin HCl', 'Furosemide']

Meropenem
Insulin

Coexistence

Disease

Drug

Atorvastatin

sion, only a subset of the diagnosed diseases and drug records of the patients

are displayed in the figure, while the complete historical admission records of

the two patients are recorded below in Figure 7.

5. Conclusion and future work

This paper introduces THAM, a model that utilizes heterogeneous graph

learning methods, models time information and Adaptive attention merging

mechanism. It aims to learn meaningful representations of diseases and drugs,

enabling the prediction of future health events and exploration of disease pro-

gression over time. We demonstrate the superiority of THAM over baseline

methods using the widely-used MIMIC-III and MIMIC-IV datasets. THAM

effectively leverages visit data from electronic health records (EHR) and show-

cases its efficacy in predicting health events, thereby enhancing personalized
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and prospective healthcare management. In ablation study, we analyze the con-

tributions of hierarchical disease information, time information, and adaptive

attention merging mechanisms. In conclusion, THAM presents a novel strategy

that significantly improves the accuracy of health event prediction.

In the future, our plans include exploring the expansion of the model’s capa-

bilities to integrate a broader range of medical ontologies and electronic medical

record systems. This expansion will further enhance its applicability and ac-

curacy. Additionally, we will investigate the potential of THAM to adapt to

real-time data inputs, supporting dynamic and continuous patient monitoring

systems. Furthermore, this model can be extended to incorporate multimodal

data such as imaging and genomic information. This extension will greatly en-

rich the predictive capabilities of the model and provide a more comprehensive

view of patient health.

CRediT authorship contribution statement

Shibo Li: investigation, software, writing—original draft preparation, writ-

ing—review and editing, visualization, formal analysis, data curation. Hengliang

Cheng: writing—review and editing, software, visualization. Runze Li: writ-

ing—review and editing. Weihua Li: Conceptualization, methodology, inves-

tigation, supervision, project administration, funding acquision.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or

personal relationships that could have appeared to influence the work reported

in this paper.

Data availability

The link to the dataset used in the paper is as follows: (1) https://mimic.

mit.edu/docs/iii/ (2) https://mimic.mit.edu/docs/iv/

33

https://mimic.mit.edu/docs/iii/
https://mimic.mit.edu/docs/iii/
https://mimic.mit.edu/docs/iv/


Acknowledgements

This work is supported by the National Natural Science Foundation of China

under Grant 32060151, and the Yunnan Provincial Foundation for Leaders of

Disciplines in Science and Technology, China under Grant 202305AC160014,

and the Innovation Research Foundation for Graduate Students of Yunnan Uni-

versity under Grant ZC-23234341.

References

Bai, T., Zhang, S., Egleston, B. L., & Vucetic, S. (2018). Interpretable repre-

sentation learning for healthcare via capturing disease progression through

time. In Proceedings of the 24th ACM SIGKDD international conference

on knowledge discovery & data mining (pp. 43–51).

Baytas, I. M., Xiao, C., Zhang, X., Wang, F., Jain, A. K., & Zhou, J. (2017).

Patient subtyping via time-aware lstm networks. In Proceedings of the 23rd

ACM SIGKDD international conference on knowledge discovery and data

mining (pp. 65–74).

Choi, E., Bahadori, M. T., Schuetz, A., Stewart, W. F., & Sun, J. (2016a).

Doctor ai: Predicting clinical events via recurrent neural networks. In

Machine learning for healthcare conference (pp. 301–318). PMLR.

Choi, E., Bahadori, M. T., Song, L., Stewart, W. F., & Sun, J. (2017). Gram:

graph-based attention model for healthcare representation learning. In Pro-

ceedings of the 23rd ACM SIGKDD international conference on knowledge

discovery and data mining (pp. 787–795).

Choi, E., Bahadori, M. T., Sun, J., Kulas, J., Schuetz, A., & Stewart, W.

(2016b). Retain: An interpretable predictive model for healthcare using re-

verse time attention mechanism. Advances in neural information processing

systems, 29 .

34



Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-

training of deep bidirectional transformers for language understanding.

arXiv preprint arXiv:1810.04805 , .

Johnson, A. E., Bulgarelli, L., Shen, L., Gayles, A., Shammout, A., Horng, S.,

Pollard, T. J., Hao, S., Moody, B., Gow, B. et al. (2023). Mimic-iv, a freely

accessible electronic health record dataset. Scientific data, 10 , 1.

Johnson, A. E., Pollard, T. J., Shen, L., Lehman, L.-w. H., Feng, M., Ghassemi,

M., Moody, B., Szolovits, P., Anthony Celi, L., & Mark, R. G. (2016).

Mimic-iii, a freely accessible critical care database. Scientific data, 3 , 1–9.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980 , .

Li, Q., You, T., Chen, J., Zhang, Y., & Du, C. (2024). Biodyngrap: Biomedical

event prediction via interpretable learning framework for heterogeneous

dynamic graphs. Expert Systems with Applications, 244 , 122964.

Li, R., Yin, C., Yang, S., Qian, B., & Zhang, P. (2020a). Marrying medical

domain knowledge with deep learning on electronic health records: a deep

visual analytics approach. Journal of medical Internet research, 22 , e20645.

Li, W., Li, H., Yang, B., Zhou, L., Yang, X., Zhang, M., & Wang, B. (2023).

Knowledge-aware representation learning for diagnosis prediction. Expert

Systems, 40 , e13175.

Li, Y., Qian, B., Zhang, X., & Liu, H. (2020b). Knowledge guided diagnosis

prediction via graph spatial-temporal network. In Proceedings of the 2020

SIAM International Conference on Data Mining (pp. 19–27). SIAM.

Lu, C., Han, T., & Ning, Y. (2022). Context-aware health event prediction via

transition functions on dynamic disease graphs. In Proceedings of the AAAI

Conference on Artificial Intelligence (pp. 4567–4574). volume 36.

35



Lu, C., Reddy, C. K., Chakraborty, P., Kleinberg, S., & Ning, Y. (2021). Col-

laborative graph learning with auxiliary text for temporal event prediction

in healthcare. arXiv preprint arXiv:2105.07542 , .

Luo, J., Ye, M., Xiao, C., & Ma, F. (2020). Hitanet: Hierarchical time-aware

attention networks for risk prediction on electronic health records. In Pro-

ceedings of the 26th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining (pp. 647–656).

Luong, M.-T., Pham, H., & Manning, C. D. (2015). Effective ap-

proaches to attention-based neural machine translation. arXiv preprint

arXiv:1508.04025 , .

Ma, F., Chitta, R., Zhou, J., You, Q., Sun, T., & Gao, J. (2017). Dipole: Di-

agnosis prediction in healthcare via attention-based bidirectional recurrent

neural networks. In Proceedings of the 23rd ACM SIGKDD international

conference on knowledge discovery and data mining (pp. 1903–1911).

Ma, F., Gao, J., Suo, Q., You, Q., Zhou, J., & Zhang, A. (2018a). Risk prediction

on electronic health records with prior medical knowledge. In Proceedings of

the 24th ACM SIGKDD International Conference on Knowledge Discovery

& Data Mining (pp. 1910–1919).

Ma, F., Wang, Y., Xiao, H., Yuan, Y., Chitta, R., Zhou, J., & Gao, J. (2019).

Incorporating medical code descriptions for diagnosis prediction in health-

care. BMC medical informatics and decision making , 19 , 1–13.

Ma, F., You, Q., Xiao, H., Chitta, R., Zhou, J., & Gao, J. (2018b). Kame:

Knowledge-based attention model for diagnosis prediction in healthcare.

In Proceedings of the 27th ACM international conference on information

and knowledge management (pp. 743–752).

Ma, L., Zhang, C., Wang, Y., Ruan, W., Wang, J., Tang, W., Ma, X., Gao,

X., & Gao, J. (2020). Concare: Personalized clinical feature embedding via

36



capturing the healthcare context. In Proceedings of the AAAI Conference

on Artificial Intelligence (pp. 833–840). volume 34.

Van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-sne. Journal

of machine learning research, 9 .

Nguyen, P., Tran, T., Wickramasinghe, N., & Venkatesh, S. (2017). Deepr:

A convolutional net for medical records. IEEE Journal of Biomedical and

Health Informatics, 21 , 22–30. doi:10.1109/JBHI.2016.2633963.

Organization, W. H. (2004). International Statistical Classification of Diseases

and related health problems: Alphabetical index volume 3. World Health

Organization.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., & Monfardini, G. (2008).

The graph neural network model. IEEE transactions on neural networks,

20 , 61–80.

Shang, J., Ma, T., Xiao, C., & Sun, J. (2019). Pre-training of graph aug-

mented transformers for medication recommendation. arXiv preprint

arXiv:1906.00346 , .

Slee, V. N. (1978). The international classification of diseases: ninth revision

(icd-9).

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,

Kaiser,  L., & Polosukhin, I. (2017). Attention is all you need. Advances in

neural information processing systems, 30 .

Xu, B., Wang, N., Chen, T., & Li, M. (2015). Empirical evaluation of rectified

activations in convolutional network. arXiv preprint arXiv:1505.00853 , .

Ye, M., Cui, S., Wang, Y., Luo, J., Xiao, C., & Ma, F. (2021a). Medpath: Aug-

menting health risk prediction via medical knowledge paths. In Proceedings

of the Web Conference 2021 (pp. 1397–1409).

37

http://dx.doi.org/10.1109/JBHI.2016.2633963


Ye, M., Cui, S., Wang, Y., Luo, J., Xiao, C., & Ma, F. (2021b). Medretriever:

Target-driven interpretable health risk prediction via retrieving unstruc-

tured medical text. In Proceedings of the 30th ACM International Confer-

ence on Information & Knowledge Management (pp. 2414–2423).

Yin, C., Zhao, R., Qian, B., Lv, X., & Zhang, P. (2019a). Domain knowledge

guided deep learning with electronic health records. In 2019 IEEE Inter-

national Conference on Data Mining (ICDM) (pp. 738–747). doi:10.1109/

ICDM.2019.00084.

Yin, C., Zhao, R., Qian, B., Lv, X., & Zhang, P. (2019b). Domain knowl-

edge guided deep learning with electronic health records. In 2019 IEEE

International Conference on Data Mining (ICDM) (pp. 738–747). IEEE.

Zhang, X., Qian, B., Li, Y., Yin, C., Wang, X., & Zheng, Q. (2019). Knowrisk:

an interpretable knowledge-guided model for disease risk prediction. In 2019

IEEE International Conference on Data Mining (ICDM) (pp. 1492–1497).

IEEE.

38

http://dx.doi.org/10.1109/ICDM.2019.00084
http://dx.doi.org/10.1109/ICDM.2019.00084

	Introduction
	Related Work
	Models leveraging external knowledge
	Models capturing temporal relationships

	Methodology
	Problem Formulation
	Overview of the proposed model
	Hierarchical Representation for Medical Codes
	Graph Definition
	Heterogeneous Graph Relation Learning
	Representation of Visits
	Preliminary Evaluation Phase
	Comprehensive Evaluation Phase
	Adaptive attention merging
	Prediction and Inference


	Experiments
	Experimental Setup
	Dataset
	Baselines
	Parameter Settings
	Experiment Evaluation

	Experiment Result
	Diagnosis prediction and Heart Failure prediction results
	Ablation Study
	Prediction Analysis

	Interpretability analysis
	Parameter sensitivity analysis
	Case Study

	Conclusion and future work

