
In industrial embedded software, are some
compilation errors easier to localize and fix than

others?

Han Fu∗†, Sigrid Eldh∗‡, Kristian Wiklund∗, Andreas Ermedahl∗†, Philipp Haller† and Cyrille Artho†
∗Ericsson AB, Stockholm, Sweden

Email: {han.fu, sigrid.eldh, kristian.wiklund, andreas.ermedahl}@ericsson.com
† KTH Royal Institute of Technology, Stockholm, Sweden

Email: {phaller, artho}@kth.se
‡ Mälardalen University, Västerås, Sweden

Abstract—Industrial embedded systems often require special-
ized hardware. However, software engineers have access to such
domain-specific hardware only at the continuous integration (CI)
stage and have to use simulated hardware otherwise. This results
in a higher proportion of compilation errors at the CI stage than
in other types of systems, warranting a deeper study.

To this end, we create a CI diagnostics solution called “Shadow
Job” that analyzes our industrial CI system. We collected over
40000 builds from 4 projects from the product source code
and categorized the compilation errors into 14 error types,
showing that the five most common ones comprise 89 % of all
compilation errors. Additionally, we analyze the resolution time,
size, and distance for each error type, to see if different types of
compilation errors are easier to localize or repair than others.

Our results show that the resolution time, size, and distance
are independent of each other. Our research also provides
insights into the human effort required to fix the most common
industrial compilation errors. We also identify the most promising
directions for future research on fault localization.

Index Terms—continuous integration, software build, compi-
lation error, fault localization

I. INTRODUCTION

Agile development [1] relies on continuous integration
(CI) [2]. In large industries, many agile teams submit code
changes concurrently. A previous paper [3] shows that depen-
dency issues in hardware-in-the-loop testing result in a signif-
icant portion of build failures. This is because the hardware
platform is developed alongside the software system. Toward
the end of the development cycle, hardware prototypes are
made available to the CI test bed. Software developers can
then integrate their changes with the new platform. The tests
of that integration can only be done in full on the CI platform,
as it would be prohibitively expensive to procure a hardware
prototype for each developer.

Therefore, industrial hardware-software co-development
fundamentally differs from typical open-source projects often
studied in the literature. Compilation errors occur very fre-

This work was partially supported by the Wallenberg Artificial Intelligence,
Autonomous Systems and Software Program (WASP) funded by the Knut and
Alice Wallenberg Foundation.

quently at this integration stage and are responsible for most
of the CI failures [3].

Our goal is to investigate opportunities to enhance fault
localization and program repair by addressing these problems
in this unique setting and streamlining the process. To locate
a faulty module, analyzing and repairing the error can account
for a significant part of the development effort, leading to
lower productivity, higher costs, and a potentially longer time
to market [4], [5]. Hence, automation of fault localization can
be a key differentiating ability for any business or activity [6].

In this paper, we set out to investigate the main research
question, which has five sub-research questions: RQ. What
are the key factors contributing to compilation errors in the
context of industrial embedded system CI?

We studied the localization and resolution of compilation
errors in industrial embedded systems to identify the potential
of automatic remedies for typical errors.

Our proposed CI diagnostics solution, called “Shadow Job”,
is designed to address our research questions. We analyze over
40000 builds and identify 14 compilation error types represent-
ing 98 % of the failed compilations. Amongst all errors, five
most common ones comprise 89 % of all compilation errors.
The main reason for the high rate of compilation errors is the
disparity in the hardware and software development setups,
prior to the CI compilation process. Our results shows the
potential of adopting fault localization and automatic program
repair techniques for these kinds of issues in CI systems.

Our contribution focuses on conducting a thorough analysis
of compilation errors to inform our efforts in developing
automatic solutions. This analysis encompasses spatial and
temporal aspects, including the examination of resolution
times, size, and distance by tracing the corresponding fixes.

These metrics provide information about the time taken
to resolve errors, the extent of code modifications required,
and the spatial distribution of fixes within the code base. Our
analysis reveals that the long resolution times for frequent error
types do not necessarily result in larger resolution sizes.

Our paper is structured as follows: Section II presents
the background and motivation of our research. Section III

ar
X

iv
:2

40
4.

14
82

3v
1

 [
cs

.S
E

]
 2

3
A

pr
 2

02
4

provides an overview of related work on compilation errors in
CI and dependency errors. Section IV details our study design,
outlining the employed methodologies. Section V presents the
results of our study. In Section VII, we draw conclusions based
on our findings. Section VIII outlines future work.

II. BACKGROUND

Continuous Integration (CI) automates the integration of
code changes from multiple contributors and teams into a
shared software project. CI revolves around regularly merging
code changes into a central repository, triggering builds and
tests through automated tools.

A. Industrial context

For large industrial embedded systems, it is common for
teams to submit a high volume of code to serve multiple
product variations in a centralized CI system. Despite success-
ful local compilation and testing, developers may encounter
several dependency issues during compilation in the CI.

Fig. 1 illustrates a notable distinction between the setups
used by software engineers and the CI environment in a
hardware and software co-development context. Most effort
is spent on integrating the software with the hardware [7].

During the software development phase, engineers make use
of both software and hardware simulators to establish essential
functionality. Subsequently, they transition to submitting their
code into the CI loop, where it undergoes quick and thorough
testing in conjunction with a hardware prototype. The adoption
of a centralized CI environment, serving both software and
hardware, offers convenience for globally distributed develop-
ment teams. Unfortunately, this unified setup often introduces
an interface mismatch between the software engineer’s initial
setup and the CI environment.

Software

SW / HW Simulation

Software engineer's setup

Software

HW prototype

CI Setup

Fig. 1: Development Dependency

Many industry projects involve distributed teams, where
team members are working in different locations or time zones.
Miscommunications or misunderstandings about code changes
can lead to undeclared items when changes are integrated.

Due to the fast-paced and intense delivery cycle, the de-
velopment of hardware and software is typically conducted
asynchronously. To aid developers, prioritization is given to the
setup of hardware in the centralized Continues Integration (CI)
environment. In the early stages, the software team primarily
relies on simulators for development, compilation, and local
testing. A mismatch becomes evident between hardware and
software development, when developers commit to the CI. The
discrepancy is characterized by a significant misalignment in
development progress or objectives, which can pose challenges

Compilation TestingCommit

Fig. 2: CI pipeline

for achieving synchronization and integration between hard-
ware and software components.

The gap between the CI build system and the local de-
velopment environment cannot be ignored. Addressing this
disparity is crucial for ensuring consistent software behavior
and efficient debugging in the context of our development
process. In the context of this study, we introduce Listing 1 as
an illustrative case exemplifying a communication breakdown
between the hardware and software development. Within this
example, the variable err is defined in a separate file.

Listing 1: Code Example
1 Error: cannot convert ’ProductError’ to

’const char*’
2 Error code:
3 CATCH_THROW_ERROR(err);
4 Fixing code:
5 if (err)
6 {TRACE_ERROR(SSTR(err)); return false;}

Notably, the error message in this instance underscores an
attempt to pass a ProductError object as an argument to a
function explicitly designed to accept a const char*. The
ProductError object originates from the hardware design.
However, the original software design did not account for the
ProductError attribute, resulting in a failure within the
CI process. Consequently, this incongruity leads to a failure
within the CI compilation process. Our findings shed light on
the resource requirements for resolving various compilation
errors, providing developers with insights to effectively prior-
itize their efforts in addressing these issues.

B. The CI pipelines under study

Continuous integration seeks to make integrating changes
from multiple contributors easier by sharing smaller updates
more frequently. The developer submits a code change to be
integrated with other system components, which is then tested
to ensure that no regression has occurred. It is possible to
quickly provide feedback to the developer on the quality of a
code change, with the correct architecture and test planning.

Implementing a CI system for embedded software can
provide immediate feedback, reducing error correction costs
when multiple teams are working on the same project [8].
The CI process in this context is commit-based, with a build
triggered as soon as a commit is pushed.

As shown in Fig. 2, a pipeline is a series of actions that
run sequentially, and the actions are always run together as
an atomic unit. The steps that form the CI pipeline consist of
distinct subsets of tasks named commit, compilation, testing,
and delivery. The CI under study is running with software that
is written in C/C++.

Our study was centered on four key projects: three test
frameworks and one core product, each with a decade-long
implementation history. This deliberate selection offers us
a holistic perspective on the Ericsson CI system. All four
projects undergo testing and verification using the same CI
infrastructure, despite involving globally distributed develop-
ers and development teams. This setup enables the shadow job
machinery to comprehensively collect data across all projects.

Definitions: A commit is a set of files that pushes the latest
changes of the source code to the main branch. A patch is a
file containing the set of differences between two versions.1

A patch is associated with a commit. Compilation consists of
code formatting, static analysis, and the actual compilation.
Testing executes unit and integration tests on the product.

III. RELATED WORK

CI has seen substantial recent development, capturing at-
tention from both research and industry. Hilton et al. [9] find
that CI is widely used within the most popular open-source
projects. Studying its usage, cost, and benefits, they find that
CI helps projects release twice as often. Vasilescu et al. [10]
study 246 GitHub projects using CI aiming for productivity
and quality, showing that CI helps detect more bugs by core
developers. Vassallo et al. [11] compare CI build errors in 349
Java open-source projects and 418 projects in an industrial
organization. They reported that open-source projects’ most
frequent failure types are testing, compilation, and dependency
issues. Furthermore, industrial projects’ most frequent failure
types are testing, release preparation, and static analysis.

Beller et al. [12] investigate the impact of CI and conclude
that CI build failures are caused by test failures. The test
execution part of the test-debug-fix cycle is already automated
to a large extent in the software industry [13]. This is partially
due to the agile “revolution”, which had brought expecta-
tions of quick feedback to developers on product quality.
As a result, continuous integration has emerged as a critical
productivity-enhancing tool in the software industry over the
last decade [14].

Relatively little research has been conducted on compilation
errors in industrial CI environments.

A. Compilation errors in CI

The feedback from the compiler is one of the most important
influences in software development. Zhang et al. [15] study
compilation errors on 3 799 open-source projects. They inves-
tigate the most common compilation error types and their fix
time. They manually analyze 325 broken builds to summarize
fix patterns of the ten most common compilation error types.
Previous research [16] has highlighted that compilation error
messages can be challenging to interpret and may not be as
effective, especially for novice developers. Compilation error
messages can be notoriously difficult to comprehend, as shown
by Rosen et al. [17]. In the context of novice programmers, the
work of Traver [18] shows that compilers can detect common

1As the project involves several repositories, we consider a patch to be the
union of the outputs of each intra-repository git diff command.

programming errors, but they usually do not pinpoint error
locations accurately.

Seo et al. [19] studied compilation errors in Google’s
build process, focusing on Java and C++ environments in a
software-centric, cloud-based system. Our research identifies
dependency issues as the main cause of compilation errors,
constituting 84 % of errors across 7 categories. While aligning
with Seo’s findings, our embedded system and fully automated
remote CI system result in significantly different dependency
error proportions.

Previous research has shown the prevalence of compilation
errors in industrial CI systems [3]. Notably, our study inves-
tigates a hardware-based platform, unlike Seo’s study, which
was based on a purely software platform. Our results align
with Seo’s in terms of error categorization, as we also classify
errors into 5 categories. However, our approach to calculating
resolution time differs from Seo’s methodology. Specifically,
we calculate resolution time from the last failure CI build,
preceding the successful build, rather than from the first failure
CI build. This modification allows us to mitigate the influence
of unrelated code changes in our analysis. These differences
underscore the importance of our investigation within our
specific context.

Barrak et al. [20] study on 27 675 Travis CI builds of
15 GitHub projects. They identified that features from the
build history, author, code complexity, and code/test smell
dimensions are the most important predictors of build failures.
Ivens et al. [21] conducted an analysis of 18 industrial projects
within a software company, wherein they calculated 13 metrics
for each project based on existing literature related to build
failure analysis. Their findings revealed significant correlations
between the factors under study and the duration required for
correcting build failures. They observed that build failures
involving a higher number of modified lines of code and
files tended to necessitate longer correction times. Previous re-
search has explored CI issues in closed-source projects within
industrial settings, and our study takes a more specialized
approach by investigating the intricacies of compilation within
embedded systems. Our research addresses a critical gap in
understanding the CI process within this niche area.

B. Dependency errors

Software bugs have been studied extensively, yet rarely have
studies been conducted on dependency bugs. Kerzazi, Khomh,
and Adams [22] study build failures. Our previous work shows
that dependency errors take a significant portion of industrial
build failures [3]. Fischer-Nielsen et al. [23] characterize the
dependency bugs in the Robot Operating System (ROS) and
study the pervasiveness and potential solutions of these bugs.
Khazem et al.’s research [24] into how portable software
can be given changes to the toolchain (C/C++ compiler) or
standard C library demonstrates the challenge of produc-
ing reproducible platform-independent software. Zakaria et
al. [25] explore mechanisms to find dependencies of High-
Performance Computing (HPC) in the context of a taxonomy
of software distribution. Resolving dependency errors is a

known subject in software configuration management [26]. To
date, there has been a lack of sufficient work in identifying
the precise locations of dependency errors.

C. Fault localization with log parsing

Fault localization techniques are widely proposed and de-
veloped in a broad spectrum. Wong et al.’s study catalog
provides a comprehensive overview of such techniques and
discusses critical issues and concerns pertinent to software
fault localization [6].

Log parsing is crucial for fault localization, but manual log
structuring using rule-based approaches is time-consuming and
not scalable [27]. Academic research has proposed automated
log analysis techniques like LogRAM, DeepLog, and Log-
Tools [28]–[30]. However, limited research has been conducted
in complex industrial settings.

Logs serve as a valuable resource for diagnosing system
failures. Prior research has explored reconstructing failed
executions or differentiating execution flows based on log
data [31]–[33]. Another line of work focuses on identifying
root-cause-related log messages by comparing logs during
failure periods with reference logs without failures. Notable
approaches in this realm include LogCluster [34], Log3C [35],
and Onion [36]. The aforementioned studies lack systematic
analysis within the industrial CI system, let alone a specific
focus on compilation errors.

Ziftci and Reardon [37] study integrating fault localization
techniques into a continuous integration system at Google.
Their work indicates that various fault localization techniques
are unsuitable for rapid development cycles, as at Google.
Hassan and Zhang [38] carry out a study on a large software
project at IBM, using classifiers to predict whether a build
would pass a certification process.

Our study builds upon these prior efforts by combining log
parsing and commit tracing techniques to gain insights into
compilation errors within an industrial CI context.

IV. STUDY DESIGN

A. CI diagnostics solution

We propose a CI diagnostics solution that analyzes the
outcomes of each CI invocation without disrupting the original
pipeline. This solution, which analyzes the build outcomes,
is referred to as a shadow job. A shadow job is a duplicate
of a configuration that runs in parallel with the main job.
Its design enables it to gather data from each execution step
without disrupting the original CI pipeline. It is essential that
our diagnostic solution does not disrupt the regular CI process;
furthermore, it should be efficient.

In highly active product environments, adding new steps to
the main job can be both expensive and resource intensive. A
more practical approach is to design a separate CI diagnostic
solution that operates in parallel, utilizing a low-cost server,
since the allocated hardware and software resources are al-
ready in use when the main job is triggered. This parallel
design enables the implementation of the diagnostic solution
without impacting the main job, ensuring scalability and the

independent addition of new functionalities to the shadow job.
By decoupling the diagnostic process from the main job, the
solution can operate efficiently, providing valuable insights
without disrupting the primary development workflow.

As illustrated in Fig. 3, the shadow job collects data from
commits, source code, and compilation logs in the CI system.
In step 1, the shadow job gathers commits that merge into the
main branch of the product. Within each commit, the shadow
job collects the patch that triggers the compilation errors and
the patch that fixes the compilation errors for later comparison.
In step 2, the shadow job collects the compilation build logs.
Step 1 and step 2 are interconnected, since one commit with
multiple changes in step 1 triggers the compilation build log
in step 2. The shadow job collects and analyzes the build logs
based on merged commits. If a commit is merged, the shadow
job follows patches to locate each build log triggered by each
patch.

In step 3, if a build fails, the shadow job extracts the
error messages and the corresponding error code position (line
number in the code) to obtain the error code position. In step
4, the shadow job extracts the error correction patch’s delta
code position (line number in the code). Similar to steps 1
and 2, steps 3 and 4 are interconnected.

In step 5, the shadow job compares the errors and delta
code positions. In step 6, we calculate the resolution time,
resolution size, and resolution distance.

We design the following studies to answer five research
questions about the prevalence of different compilation errors
(RQ1), the resolution time, size, and distance of different
types of fixes (RQ2–4), and whether these metrics are
correlated (RQ5):

1) RQ1: What are the most common compilation errors in
an industrial CI system?
As our previous research [3] shows, compilation errors are a
major contributor to CI build errors. We want to understand
industrial CI systems’ most common compilation errors and
some of their causes. If the build fails, we collect the corre-
sponding commit Change-ID for each build. In addition, the
corresponding exception types are stored.

Next, error messages from the build log are systematically
categorized into distinct classes, encompassing Dependency,
Syntax, Type Mismatch, Semantic, and Others [19], facilitating
a comprehensive analysis of their characteristics. Because
builds with more than two compilation errors are rare, we
can analyze data from patches that fix broken builds quite
reliably, as most fixes target one or two compilation errors.
Furthermore, we assume that the patch leading to the first
successful build after a series of failures is the patch that fixes
the compilation error.

2) RQ2: What is the resolution time for fixing different
compilation errors?
Here we measure developers’ elapsed time on fixing different
compilation error types, corresponding to the collected com-
pilation error builds. Additionally, we highlight and describe
example instances of fixes.

Compilation in CI

Log collection Error code position

Source code & Commit

Commit

Delta code position

Comparison

Shadow Job
Resolution time

Resolution size

Resolution distance

Fig. 3: Shadow Job

It is important to note that resolution time can be influenced
by various human factors and the specific error-handling
processes employed by different companies or organizations.
Within large and complex organizations, multiple developers
may be involved in resolving errors, which can potentially
introduce permission issues when code changes span across
different functions.

As discussed in Section II, there is often a mismatch
between software and hardware design at the early stages
of development. Consequently, even if software developers
successfully compile and test their code locally with the
simulator, there is still a possibility of compilation failures
in the CI environment. In such cases, developers may need to
wait for an updated version of the hardware design in the CI
system.

Our research is centered on establishing the relationship
between the commit that initiates the compilation error and
the commit responsible for its resolution. In contrast, other
studies, such as the one by Seo et al. [19], focus on the
time between the completion of the first failing build and the
start of the subsequent successful build. This approach may be
useful in analyzing the overall cost of resolving compilation
errors and avoids underestimating the resolution time. Our
method accounts for the fact that the fix process has to be
managed and delegated, and we assume that intermediate
commits may correspond to unrelated tasks. Therefore, we
specifically consider the failing build preceding the successful
build within a series of builds.

Figure 4 illustrates how we measure the resolution time. In
this example, there are at least two failing builds before the
first successful build. We measure the time from the beginning
of the lastest failing build to the beginning of the successful
build, capturing the duration of the resolution process. While
this may under-approximate the time taken to resolve a prob-
lem, we believe it is more accurate in our situation, taking into
account the embedded development process.

Build Failure Build Failure Build Success

Resolution Time

Build Success

Fig. 4: Resolution Time

3) RQ3: What is the size of error corrections?
In addition to analyzing resolution time, we also look at the
resolution size of each fix. We utilize the information in the
failed build log, including the commit ID and the faulty line

of code in the faulty files. With this information, we can
extract the faulty file. Next, we proceed to extract the first
subsequent successful compilation build. We can determine
the resolution size by comparing the faulty file with the
corresponding file from the successful build. The number of
deletions and additions to the file determines the resolution
size as follows:

Size 0 indicates either a permission change or an alteration
of a binary file. Size 1 indicates a single line of code being
deleted or added. Size 2 indicates a single line of code being
modified, one line being added and another one deleted, or
two lines being deleted or added, respectively.

4) RQ4: What are the resolution distances for different
error types?
We aim to analyze the distance between the lines of code
where the fixes are made and the lines of code indicated by
the error messages. This information helps us identify the
code sections that need to be modified in order to address
the compilation errors effectively. Therefore, we investigate
the feasibility of automatically locating error corrections. The
failed build log includes a commit id and faulty line of code
of faulty files. With this information, we extract faulty lines
of code and their build environment to reproduce the faulty
build. We also extract the patch within one merged commit
that leads to the failed CI build caused by compilation error
as the error code base with the number E. We then extract the
next patch that leads to the CI build passing the compilation
stage as the fixing code base, with the number Fn. Finally, we
compare the error code base and fixing code base to have the
code difference. In addition, we also extract the indication of
the error line of code from the CI failure log.

We calculate the resolution distance as shown in Equation 1.
We may discover multiple fixing locations in one patch with
line numbers F1, F2, ..., and Fn. We then take the minimum of
all distances between the compilation error location E and the
nearest fix Fi. Thus, the resolution distance D is the minimum
value in a tuple (D1, D2, ..., Dn).

D = min(D1, D2, . . . , Dn), where
Di = |Fi − E| for i = 1, 2, . . . , n

(1)

5) RQ5: Which types of compilation errors are suitable
to apply fault localization and automatic program repair in
industrial embedded systems?
We want to understand the correlation between resolution
distance and resolution size. Based on their frequency of
occurrence, we focus our investigation on the top four error
types. These error types are deemed significant for potential

automated fault localization and automated program repair.
Furthermore, we have gathered sufficient data to explore
any potential correlation between these error types and their
resolution attributes.

To calculate the correlation matrix based on resolution
distance and each error type’s corresponding resolution size
and time, we use the Pearson correlation coefficient [39] as
a statistical measure that quantifies the strength of the linear
relationship between different continuous variables.

B. Data collection

Our data collection was conducted on a single project at
Ericsson over the course of a year. This project is highly active
and involves the development of embedded software.

As our data were collected from the centralized CI system,
our data collection lacks errors encountered when a developer
compiles locally. We therefore do not count errors that devel-
opers can resolve locally before committing.

V. STUDY RESULTS

A. Results for RQ1

To answer RQ1, we automatically collect the build logs
through the shadow job in step 2 in Fig. 3. We map the error
messages into 14 compilation error types based on the Yocto
project [40] compiler configuration files. The Yocto Project is
an open-source collaboration project that provides templates,
tools, and methods to help create custom Linux-based systems
for embedded products.

Key insight of RQ1:

Dependency issues contribute to 76 % of all compila-
tion errors, highlighting the challenges in reconciling the
disparities between the embedded CI system and local
development environments.

Table I shows 14 types of compilation errors and their
proportion distribution. The ratio of compilation error types
ranges from 0.36 % to 40.05 %. Subsequently, we classify the
different error types into 5 classes, as illustrated in Fig. 5.

As can be seen from Table I, the top five types of compila-
tion errors are responsible for 89.25 % of all errors. Error type
was not declared takes the majority of compilation errors, with
40.05 %. This is significantly higher than other pure software
projects reported by Seo et al. [19]. This error message
indicates that the compiler has encountered a reference to a
variable or function that has not been declared. The reason
this cannot be found in the local environment before commit
is that there is a gap between the local environment and the
CI environment, especially at the early stage of development.

We want to understand the implications of the gap between
the local and CI development environment. We adopt the
classification of compilation errors from the literature [19] to
categorize different error types into classes—the classes of
each error type are shown as the second column in Table I.

TABLE I: Compilation Error Statistics

No. Error type Class %

1 was not declared Dependency 40.05
2 has no member named Dependency 20.18
3 expected X before Y token Syntax 11.77
4 does not name a type Dependency 8.89
5 no declaration matches Type mismatch 8.36
6 no such file or directory Dependency 2.76
7 ld returned Dependency 2.21
8 invalid conversion Type mismatch 1.53
9 unused variable Dependency 1.14

10 does not have any field named Type mismatch 0.82
11 cannot allocate an object of Semantic 0.73
12 of non-class type Other 0.71
13 cannot convert Type mismatch 0.49
14 static assertion failed Syntax 0.36

P
er

ce
nt

ag
e

0

20

40

60

80

Dependency Syntax Type Mismatch Sematic Other

Fig. 5: Compilation error class

Grouping these subclasses of faults allows us to identify com-
mon characteristics and similarities, indicating that they can
be addressed using similar automated solutions. Dependency
refers to errors that are missing packages, libraries, or other
resources. Error types like was not declared, has no member
named, does not name a type, no such file or directory, ld re-
turned, and unused variable fall into class Dependency. Syntax
refers to errors that occur when the compiler or interpreter
encounters code that does not follow the rules or syntax of
the programming language. Error types like expected X before
Y token and static assertion failed fall into class Syntax. Type
mismatch refers to a mismatch between the types of variables
or expressions used in an operation or assignment. Therefore,
error types like no declaration matches, invalid conversion,
does not have any field named, and cannot convert fall into
class Type mismatch. Semantic error indicates a problem with
the meaning or interpretation of the code rather than its syntax
or dependencies. Therefore, cannot allocate an object of falls
into class Semantic. Error type of non-class type indicates that
the variable involved in the operation is not a class or struct
type. We categorize it as Other.

Fig. 5 shows the distribution of different classes. It shows
the Dependency class takes 76 %. Our finding further sub-

stantiates our previous research [3]. The proportion is also
significantly higher than purely software projects reported by
Seo et al. [19]. The gap between local and CI development
environments with embedded systems in the loop is much
larger then we expect. In addition, we also see that Type
mismatch and Syntax have similar proportions, around 12 %.
Our result is therefore different from Seo et al. [19] reporting
that Type mismatch is the second biggest class.

B. Results for RQ2

This section examines each error type’s resolution time.
Fig. 6 shows the box plot for resolution times. The box is
bounded by the 25 and 75 percentiles, and the line within the
box is the median value. We normalize resolution times to a
scale of [0,1] for confidentiality reasons.

Errors that occur more frequently tend to require a
longer resolution time. For example, the error types of
was not declared and has no member named exhibit a
noticeably longer resolution time compared to other error
types. Additionally, their distribution has a higher variance
than that of other error types. In our CI system, each
modification involves various patches; these patches not
only fix compilation errors but also introduce different
functionalities. Consequently, a larger dataset leads to a wider
distribution of resolution times. This aligns with the fact that
the was not declared error accounts for 40.05 % of errors, as
illustrated in Table I.

Key insight of RQ2:

The observation that compilation errors require a sig-
nificant effort to resolve despite their high frequency
is counterintuitive and surprising. One would typically
expect that the more frequently a specific type of error
occurs, the faster the resolution process would be.

Based on their frequency of occurrence, we focus our
investigation on the top four error types, which collectively
constitute 81 % of our dataset.2 These error types are deemed
significant for potential automated fault localization and auto-
mated program repair, given their substantial representation in
our data.

Certain error types, such as no declaration matches, no such
file or directory, and unused variable, are relatively simple
to resolve, as indicated by shorter resolution times. As the
frequency of errors decreases, it typically leads to a reduction
in resolution time. Error types like ld returned (a linker error)
take longer to fix due to their complexity. Linker errors
often arise when a project has complex dependencies between
different modules or libraries. These dependencies can be
difficult to identify and resolve, especially in larger projects. In
an embedded system, each hardware has its own specific set of
libraries. Therefore, during local development, the software is

2Due to the sensitive and proprietary nature of the industrial context, we
are unable to share specific detailed data, including the total number of errors.

0.00 0.25 0.50 0.75
Normalized time

was not declared
has no member named

expected X before Y token
does not name a type

no declaration matches
no such file or directory

ld returned
invalid conversion

unused variable
does not have any field named

cannot allocate an object of
of non-class type

cannot convert
static assertion failed

Fig. 6: Resolution time statistics

0 2 4 6
Line of code

was not declared
has no member named

expected X before Y token
does not name a type

no declaration matches
no such file or directory

ld returned
invalid conversion

unused variable
does not have any field named

cannot allocate an object of
of non-class type

cannot convert
static assertion failed

Fig. 7: Resolution size statistics

typically compiled with the libraries specific to the hardware
being used. This approach is more practical and efficient
than providing cross-compilation for all different hardware
configurations, which would be costly and time-consuming.

C. Results for RQ3

In this section, we examine the resolution size of each error
type. Remember that we count both additions and deletions
here, so four lines typically correspond to two deleted and two
added lines (which can be an edit within two lines); changes
in binary files count as zero lines. Similar to Fig. 6, Fig. 7
displays a box plot illustrating the distribution of resolution
sizes for each error type.3 Additionally, Fig. 8 presents the
distribution of resolution sizes for all errors, categorized into
0–7 lines of code.

Key insight of RQ3:

The majority of resolution size to compilation errors are
changes between 1 and 4 lines.

3In case two quartiles have the same number of data points, the quartile
boundaries are calculated using the average between the largest element of
the lower quartile and the smallest element of the higher quartile, which
sometimes results in fractions.

Pe
rc
en

ta
ge

0

6

12

18

24

30

Size (LOC)
0 1 2 3 4 5 6 7

Fig. 8: Resolution size distribution

0 20 40
Line of code

was not declared
has no member named

expected X before Y token
does not name a type

no declaration matches
no such file or directory

ld returned
invalid conversion

unused variable
does not have any field named

cannot allocate an object of
of non-class type

cannot convert
static assertion failed

Fig. 9: Resolution distance statistics

As shown in Fig. 7, the most prevalent error type, identified
as was not declared, tends to have a relatively small resolution
size, typically ranging from 1 to 4 lines of code. The top 5
error types generally have a smaller resolution size, usually
fewer than 4 lines of code. The error type ld returned leads
to a noticeably larger resolution size and time, which is due
to the complexity of the linking process. Linking processes
can be intricate, particularly in a large embedded system
with numerous dependencies. Additionally, linker errors may
arise because of platform-specific differences. Reproducing the
same platform can be challenging when the developer does not
have the same environment as the CI system.

As depicted in Fig. 8, the most frequent resolution size
observed is 3 (in approximately 27 % of the cases). The second
most common resolution size is 2, constituting around 20 %
of the occurrences. Larger resolution sizes such as 5, 6, and
7 are much less common.

D. Results for RQ4

We measure the resolution distance in RQ4 in Sec-
tion IV-A4. Fig. 9 displays a box plot illustrating the distribu-
tion of resolution distance for each error type.

As shown in Fig. 9, the error types was not declared
and has no member named exhibit a relatively large distance
between them. The was not declared error type demonstrates a

larger resolution distance. The difference in resolution distance
between the was not declared and has no member named errors
can be attributed to the specific nature of the corrections re-
quired. In the case of the was not declared error, the correction
typically involves adding a declaration at the beginning of the
file, rather than modifying the specific code line indicated by
the error message.

The was not declared error type typically occurs 25 to 42
lines away from the error message location, while the has
no member named error type primarily appears 15 to 38
lines away from the error message location. This discrepancy
can be attributed to the fact that header files often provide
declarations for functions and classes that are defined in
separate source files. As a result, resolving the was not
declared error may require modifications at the beginning of
the file, leading to a larger resolution distance.

Key insight of RQ4:

Many frequently occurring error types are close to the
reported location and therefore good targets for automatic
fault localization. However, the top two most frequent
error types require a full syntactic source code analysis to
locate automatically due to their large resolution distance.

E. Results for RQ5

The results of RQ2 in Section IV-A2 and RQ3 in Sec-
tion IV-A3 indicate that the top 4 error types are more
representative and exhibit greater consistency. Moreover, the
top 4 error types account for 80.89 % of the dataset, making
it reasonable to focus our discussion primarily on these error
types.

The top 4 error types demonstrate a relatively smaller
resolution size and a distance of usually up to 50 lines from
the location of the compilation error. While they do not require
extensive modification to be fixed, many fixes for the top 2
error types are “far away” from the error message location
in terms of resolution distance and size. This finding suggests
that the error types was not declared and has no member named
may be challenging for automatic fault localization techniques.

Due to their larger resolution distances and sizes, these error
types may require more manual intervention, code analysis,
and extensive code modifications to rectify. As a result,
automated fault localization methods that primarily rely on
localizing errors based on error messages or limited code
regions may not be effective in accurately pinpointing the root
cause of these particular error types.

We evaluate the correlation between resolution distance,
size, and time for each of the four most common error types.
Table II presents the correlation values for the top 4 error types
and overall error types, measuring 3 types of correlations:
distance to size, distance to time, and size to time. Fig. 10
illustrates the heatmap for the top 4 error types based on
resolution sizes and distances.

0 2 4 6
Size

0
10

20
30

40
50

60
D

is
ta

nc
e

(a) was not declared

0 2 4 6
Size

0
10

20
30

40
50

60
D

is
ta

nc
e

(b) has no member named

0 2 4 6
Size

0
10

20
30

40
50

60
D

is
ta

nc
e

(c) expected X before Y token

0 2 4 6
Size

0
10

20
30

40
50

60
D

is
ta

nc
e

0

90

(d) does not name a type

Fig. 10: Heat map showing the distribution of fix size and distance for the four most common compilation errors

TABLE II: Correlation Between Key Attributes

Error Distance–Size Distance–Time Size–Time

was not declared 0.227 0.034 −0.287

has no member named 0.047 −0.091 0.155

expected X before Y token 0.053 0.114 0.057

does not name a type 0.220 −0.040 0.082

All errors −0.069 0.192 0.077

In Table II, the first row represents the correlation values
for the error type was not declared. The highest positive
correlation is between distance and size, with a value of 0.227.
The highest negative correlation is between size and time,
with a value of −0.287. These values are all low, showing
that resolution distance, size, and time are almost unrelated
to each other. A small fix that is close to the location of the
compilation error may still be hard to find for a human.

The findings align with the heatmap presented in Fig. 10 (a)-
(d), where each cell’s shade corresponds to the color bar on
the right side of the heatmap. The bottom shade represents the
minimum value, while the top shade represents the maximum
value.

In Fig. 10 (a), the first column displays a nearly consistent
color, indicating that errors rarely occur when the resolution
size is 0. Moving to the second column, where the resolution
size is two lines of code, the color changes based on the
frequency of occurrence. Specifically, when the resolution size
is two lines of code, the majority of resolution distances cluster
around 30 lines of code.

Key insight of RQ5:

Resolution distance, size, and time are independent of each
other.

The fixes for the error type has no member named tend to
cluster around a resolution size of 2–4 lines of code and a
resolution distance of 0–20 lines of code, as shown in Fig. 10

(b). Compared to the error type was not declared, fixing has
no member named appears to require relatively less effort.
The heatmaps in Fig. 10 (c) and (d) indicate slightly varying
resolution distances for different errors, but the resolution sizes
for the most common errors are quite similar.

F. Threats to validity

1) Internal: In a complex industrial embedded CI system,
dependency-related failures are prevalent [3]. Extracting data
from real-use code prevents us from rerunning executions with
specific environments after discarding outdated dependency
build packages, limiting our adoption of fault localization and
automated program repair in such a CI system.

Furthermore, a single commit often includes multiple
changes. When calculating resolution distance and size, we
consider only the files indicated by the error message, poten-
tially leading to occasional miscalculations. Given that most
errors are related to dependency declarations, we find this
approach suitable.

While our method of calculating resolution time aligns with
the development process according to our judgment, a more
precise measurement would involve accounting for working
hours, capturing the actual time designers spent fixing errors.

The current approach to computing change size, encompass-
ing both code and binary changes, may pose challenges. To
enhance clarity and ensure the visibility of binary changes, it
is suggested to consider a separation between changes in code
and binaries.

2) External: In calculating both resolution time and res-
olution distance, it is inevitable that the human factor in-
fluences the study results. Variances in development pace,
work methodologies, developers’ habits, and the distribution
of teams and developers are key factors that can affect the
outcomes. To mitigate these influences, conducting in-depth
analyses through interviews with developers emerges as a
valuable approach.

In addition to this, the correlation coefficient choice depends
on data characteristics and assumed relationships between
variables. Opting for the Pearson correlation, suited to lin-
ear relationships in our data, may limit the study scope to

linear dependencies. Exploring alternative metrics like min-
max resolution time and distance, employing machine learning
models, and utilizing different analyses such as SHAP [41] can
provide a broader perspective on metric dependencies.

VI. DISCUSSION

Our analysis of over 40000 builds reveals that a signifi-
cant portion of industrial build failures can be attributed to
a dependency on its hardware-in-the-loop CI system. The
integration of software with hardware prototypes in CI poses
a challenge in bridging the gap between the CI and local
development environments. The complexities introduced by
hardware-in-the-loop testing and the difficulty in reproducing
the hardware-in-the-loop environment accurately within the CI
system contribute to build failures that are hard to resolve.
Addressing this mismatch is crucial for improving the stability
and reliability of the build process in an embedded industrial
CI system.

Our finding of resolution time reveals that defects that
occur more frequently tend to require a longer resolution time.
Therefore, it would be highly advantageous to prioritize the
development of automated solutions for resolving the most
frequently occurring error types.

A lengthy resolution time for the top 4 errors does not
necessarily mean a large resolution size. In fact, the majority of
fixes involve changes of only 1 to 4 lines of code. This quan-
tification of resolution size inspires developers by highlighting
the success of small fixes. Existing automated program repair
approaches designed for one-line changes can be applicable in
addressing these compilation errors efficiently.

Further examination of the top 4 error types shows that reso-
lution time, size, and distance are independent attributes. This
suggests that compilation errors possess inherent statistical
characteristics that render them more conducive to automated
detection and remediation.

That says no specific type of compilation error lends itself
to a single simple strategy for automated fixes. Due to this,
we should prioritize frequently occurring errors. In light of the
absence of such data, it is advantageous to prioritize techniques
that specifically target the most common error types.

In summary, our study suggests that automated fault local-
ization and program repair efforts show promise for the iden-
tified error types. However, addressing resolution distance and
size separately is crucial for developing effective techniques in
these contexts. Our results indicate a significant potential for
implementing automatic fault localization techniques for com-
pilation errors, emphasizing the need for tailored approaches.

VII. CONCLUSION

We conducted a statistical analysis on over 40000 builds in
a highly active product using a scalable CI diagnostics solution
called “Shadow Job.” We extracted compilation errors into
14 error types and classified them into 5 classes. The results
highlight the significance of the compilation step in industrial-
embedded development CI systems. 76 % of compilation er-
rors are due to dependencies between hardware and software

and a mismatch between the embedded environment (offered
by the CI system) and the local development environment.

Our study also categorized, quantified, and analyzed com-
pilation errors based on three key attributes: resolution time,
size, and distance. More frequent compilation errors require
more time to be resolved, although the size of the fixes is
always small, mostly within one or two lines of changes. The
fix location can be relatively far away from the location of the
compilation error, but resolution time, size, and distance are
not correlated among each other.

The fact that the five most frequent compilation errors make
up 76 % of all compilation errors suggests that a collection of
specialized strategies to prevent or automatically locate and
repair these five errors can be useful.

VIII. FUTURE WORK

In future work, a key focus will be on the practice of auto-
matic fault localization and automatic program repair, specif-
ically targeting the reduction of compilation errors caused by
configuration issues and dependency problems. Large modular
systems often have numerous dependencies reflected in their
configuration settings, which are typically stored in different
formats that have evolved independently.

To further enhance our ”Shadow Job” implementation, we
aim to expand its capabilities beyond diagnosis and providing
valuable error location information. Our goal is to develop
an automated solution that can automatically fix identified
errors. For instance, for multi-line compilation errors in the C
language, one approach could involve using a neural network-
based approach, such as DeepFix [42]. Alternatively, a novel
approach would involve leveraging a large language model
like Keep [43] to address these errors.

By incorporating advanced techniques such as neural net-
works or large language models, we can enhance the auto-
mated resolution capabilities of our system, facilitating the
efficient and effective handling of multi-line code fixes. This
approach holds promise for reducing the manual effort re-
quired to fix complex compilation errors and improving the
overall development process.

We also intend to extend the study to other projects and/or
companies. This will address the external validity threats and
apply the findings to more CI pipelines to validate our results.

REFERENCES

[1] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta, “Ag-
ile software development methods: Review and analysis,” CoRR,
vol. abs/1709.08439, 2017.

[2] L. Chen, “Continuous delivery: Huge benefits, but challenges too,” IEEE
Softw., vol. 32, no. 2, pp. 50–54, 2015.

[3] H. Fu, S. Eldh, K. Wiklund, A. Ermedahl, and C. Artho, “Prevalence
of continuous integration failures in industrial systems with hardware-
in-the-loop testing,” in IEEE International Symposium on Software
Reliability Engineering Workshops, ISSRE 2022 - Workshops, Charlotte,
NC, USA, October 31 - Nov. 3, 2022, pp. 61–66, IEEE, 2022.

[4] L. Jonsson, “Increasing anomaly handling efficiency in large organiza-
tions using applied machine learning,” in 35th International Conference
on Software Engineering, ICSE ’13, San Francisco, CA, USA, May 18-
26, 2013 (D. Notkin, B. H. C. Cheng, and K. Pohl, eds.), pp. 1361–1364,
IEEE Computer Society, 2013.

[5] N. Kerzazi and F. Khomh, “Factors impacting rapid releases: an in-
dustrial case study,” in 2014 ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement, ESEM ’14, Torino,
Italy, September 18-19, 2014 (M. Morisio, T. Dybå, and M. Torchiano,
eds.), pp. 61:1–61:8, ACM, 2014.

[6] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” IEEE Trans. Software Eng., vol. 42, no. 8,
pp. 707–740, 2016.

[7] V. Antinyan, M. Staron, W. Meding, P. Österström, E. Wikstrom,
J. Wranker, A. Henriksson, and J. Hansson, “Identifying risky areas of
software code in Agile/Lean software development: An industrial expe-
rience report,” in 2014 Software Evolution Week - IEEE Conference on
Software Maintenance, Reengineering, and Reverse Engineering, CSMR-
WCRE 2014, Antwerp, Belgium, February 3-6, 2014 (S. Demeyer, D. W.
Binkley, and F. Ricca, eds.), pp. 154–163, IEEE Computer Society, 2014.

[8] S. Planning, “The economic impacts of inadequate infrastructure for
software testing,” National Institute of Standards and Technology, vol. 1,
2002.

[9] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig, “Usage,
costs, and benefits of continuous integration in open-source projects,”
in Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering, ASE 2016, Singapore, September 3-7,
2016 (D. Lo, S. Apel, and S. Khurshid, eds.), pp. 426–437, ACM, 2016.

[10] B. Vasilescu, Y. Yu, H. Wang, P. T. Devanbu, and V. Filkov, “Quality and
productivity outcomes relating to continuous integration in GitHub,” in
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2015, Bergamo, Italy, August 30 - September
4, 2015 (E. D. Nitto, M. Harman, and P. Heymans, eds.), pp. 805–816,
ACM, 2015.

[11] C. Vassallo, G. Schermann, F. Zampetti, D. Romano, P. Leitner, A. Zaid-
man, M. D. Penta, and S. Panichella, “At tale of CI build failures:
An open source and a financial organization perspective,” in 2017
IEEE International Conference on Software Maintenance and Evolution,
ICSME 2017, Shanghai, China, September 17-22, 2017, pp. 183–193,
IEEE Computer Society, 2017.

[12] M. Beller, G. Gousios, and A. Zaidman, “Oops, my tests broke the
build: an explorative analysis of Travis CI with GitHub,” in Proceedings
of the 14th International Conference on Mining Software Repositories,
MSR 2017, Buenos Aires, Argentina, May 20-28, 2017 (J. M. González-
Barahona, A. Hindle, and L. Tan, eds.), pp. 356–367, IEEE Computer
Society, 2017.

[13] V. Garousi and F. Elberzhager, “Test automation: Not just for test
execution,” IEEE Softw., vol. 34, no. 2, pp. 90–96, 2017.

[14] S. Stolberg, “Enabling agile testing through continuous integration,”
in 2009 Agile Conference, Chicago, IL, USA, 24-28 August 2009
(Y. Dubinsky, T. Dybå, S. Adolph, and A. S. Sidky, eds.), pp. 369–374,
IEEE Computer Society, 2009.

[15] C. Zhang, B. Chen, L. Chen, X. Peng, and W. Zhao, “A large-
scale empirical study of compiler errors in continuous integration,”
in Proceedings of the ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/SIGSOFT FSE 2019, Tallinn, Estonia, August 26-30,
2019 (M. Dumas, D. Pfahl, S. Apel, and A. Russo, eds.), pp. 176–187,
ACM, 2019.

[16] B. A. Becker, P. Denny, R. Pettit, D. Bouchard, D. J. Bouvier, B. Har-
rington, A. Kamil, A. Karkare, C. McDonald, P. Osera, J. L. Pearce,
and J. Prather, “Compiler error messages considered unhelpful: The
landscape of text-based programming error message research,” in Pro-
ceedings of the Working Group Reports on Innovation and Technology
in Computer Science Education, ITiCSE-WGR 2019, Aberdeen, Scotland
Uk, July 15-17, 2019 (B. Scharlau, R. McDermott, A. Pears, and
M. Sabin, eds.), pp. 177–210, ACM, 2019.

[17] S. Rosen, R. A. Spurgeon, and J. K. Donnelly, “PUFFT - the PURDUE
university fast FORTRAN translator,” Commun. ACM, vol. 8, no. 11,
pp. 661–666, 1965.

[18] V. J. Traver, “On compiler error messages: What they say and what
they mean,” Adv. Hum. Comput. Interact., vol. 2010, pp. 602570:1–
602570:26, 2010.

[19] H. Seo, C. Sadowski, S. G. Elbaum, E. Aftandilian, and R. W. Bowdidge,
“Programmers’ build errors: a case study (at Google),” in 36th Interna-
tional Conference on Software Engineering, ICSE ’14, Hyderabad, India
- May 31 - June 07, 2014 (P. Jalote, L. C. Briand, and A. van der Hoek,
eds.), pp. 724–734, ACM, 2014.

[20] A. Barrak, E. E. Eghan, B. Adams, and F. Khomh, “Why do builds fail?
- A conceptual replication study,” J. Syst. Softw., vol. 177, p. 110939,
2021.

[21] G. Silva, C. I. M. Bezerra, A. G. Uchôa, and I. Machado, “What
factors affect the build failures correction time? A multi-project study,”
in Proceedings of the 17th Brazilian Symposium on Software Compo-
nents, Architectures, and Reuse, SBCARS 2023, Campo Grande, Brazil,
September 25-29, 2023, pp. 41–50, ACM, 2023.

[22] N. Kerzazi, F. Khomh, and B. Adams, “Why do automated builds
break? an empirical study,” in 30th IEEE International Conference on
Software Maintenance and Evolution, Victoria, BC, Canada, September
29 - October 3, 2014, pp. 41–50, IEEE Computer Society, 2014.

[23] A. Fischer-Nielsen, Z. Fu, T. Su, and A. Wasowski, “The forgotten case
of the dependency bugs: on the example of the robot operating system,”
in ICSE-SEIP 2020: 42nd International Conference on Software Engi-
neering, Software Engineering in Practice, Seoul, South Korea, 27 June
- 19 July, 2020 (G. Rothermel and D. Bae, eds.), pp. 21–30, ACM, 2020.

[24] K. Khazem, E. T. Barr, and P. Hosek, “Making data-driven porting
decisions with Tuscan,” in Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA 2018,
Amsterdam, The Netherlands, July 16-21, 2018 (F. Tip and E. Bodden,
eds.), pp. 276–286, ACM, 2018.

[25] F. Zakaria, T. R. W. Scogland, T. Gamblin, and C. Maltzahn, “Mapping
out the HPC dependency chaos,” in SC22: International Conference for
High Performance Computing, Networking, Storage and Analysis, Dal-
las, TX, USA, November 13-18, 2022 (F. Wolf, S. Shende, C. Culhane,
S. R. Alam, and H. Jagode, eds.), pp. 34:1–34:12, IEEE, 2022.

[26] N. Ratti and P. Kaur, “A conceptual framework for analysing the source
code dependencies,” in Advances in Computer and Computational
Sciences (S. K. Bhatia, K. K. Mishra, S. Tiwari, and V. K. Singh, eds.),
(Singapore), pp. 333–341, Springer Singapore, 2018.

[27] K. Rodrigues, Y. Luo, and D. Yuan, “CLP: efficient and scalable search
on compressed text logs,” in 15th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2021, July 14-16, 2021
(A. D. Brown and J. R. Lorch, eds.), pp. 183–198, USENIX Association,
2021.

[28] H. Dai, H. Li, C. Chen, W. Shang, and T. Chen, “Logram: Efficient
log parsing using nn-gram dictionaries,” IEEE Trans. Software Eng.,
vol. 48, no. 3, pp. 879–892, 2022.

[29] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection
and diagnosis from system logs through deep learning,” in Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS 2017, Dallas, TX, USA, October 30 - November
03, 2017 (B. Thuraisingham, D. Evans, T. Malkin, and D. Xu, eds.),
pp. 1285–1298, ACM, 2017.

[30] J. Zhu, S. He, J. Liu, P. He, Q. Xie, Z. Zheng, and M. R. Lyu,
“Tools and benchmarks for automated log parsing,” in Proceedings of
the 41st International Conference on Software Engineering: Software
Engineering in Practice, ICSE (SEIP) 2019, Montreal, QC, Canada,
May 25-31, 2019 (H. Sharp and M. Whalen, eds.), pp. 121–130, IEEE
/ ACM, 2019.

[31] X. Fu, R. Ren, S. A. McKee, J. Zhan, and N. Sun, “Digging deeper into
cluster system logs for failure prediction and root cause diagnosis,” in
2014 IEEE International Conference on Cluster Computing, CLUSTER
2014, Madrid, Spain, September 22-26, 2014, pp. 103–112, IEEE
Computer Society, 2014.

[32] J. Lou, Q. Fu, S. Yang, J. Li, and B. Wu, “Mining program workflow
from interleaved traces,” in Proceedings of the 16th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
Washington, DC, USA, July 25-28, 2010 (B. Rao, B. Krishnapuram,
A. Tomkins, and Q. Yang, eds.), pp. 613–622, ACM, 2010.

[33] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, W. Li, and D. Ding, “Fault
analysis and debugging of microservice systems: Industrial survey,
benchmark system, and empirical study,” IEEE Trans. Software Eng.,
vol. 47, no. 2, pp. 243–260, 2021.

[34] Q. Lin, H. Zhang, J. Lou, Y. Zhang, and X. Chen, “Log clustering based
problem identification for online service systems,” in Proceedings of
the 38th International Conference on Software Engineering, ICSE 2016,
Austin, TX, USA, May 14-22, 2016 - Companion Volume (L. K. Dillon,
W. Visser, and L. A. Williams, eds.), pp. 102–111, ACM, 2016.

[35] S. He, Q. Lin, J. Lou, H. Zhang, M. R. Lyu, and D. Zhang, “Identifying
impactful service system problems via log analysis,” in Proceedings
of the 2018 ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November 04-

09, 2018 (G. T. Leavens, A. Garcia, and C. S. Pasareanu, eds.), pp. 60–
70, ACM, 2018.

[36] X. Zhang, Y. Xu, S. Qin, S. He, B. Qiao, Z. Li, H. Zhang, X. Li,
Y. Dang, Q. Lin, M. Chintalapati, S. Rajmohan, and D. Zhang, “Onion:
identifying incident-indicating logs for cloud systems,” in ESEC/FSE
2021: 29th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, Athens, Greece,
August 23-28, 2021 (D. Spinellis, G. Gousios, M. Chechik, and M. D.
Penta, eds.), pp. 1253–1263, ACM, 2021.

[37] C. Ziftci and J. Reardon, “Who broke the build? automatically iden-
tifying changes that induce test failures in continuous integration at
Google scale,” in 39th IEEE/ACM International Conference on Soft-
ware Engineering: Software Engineering in Practice Track, ICSE-SEIP
2017, Buenos Aires, Argentina, May 20-28, 2017, pp. 113–122, IEEE
Computer Society, 2017.

[38] A. E. Hassan and K. Zhang, “Using decision trees to predict the certi-
fication result of a build,” in 21st IEEE/ACM International Conference
on Automated Software Engineering (ASE 2006), 18-22 September 2006,
Tokyo, Japan, pp. 189–198, IEEE Computer Society, 2006.

[39] A. Rutherford, “Applied multiple regression/correlation analysis for the

behavioral sciences,” British Journal of Mathematical & Statistical
Psychology, vol. 56, p. 185, 2003.

[40] H. Khandelwal, P. Mankodi, and R. Prajapati, “Enhancement of au-
tomation testing system using Yocto project,” in 2017 International
conference of Electronics, Communication and Aerospace Technology
(ICECA), vol. 1, pp. 697–700, 2017.

[41] S. M. Lundberg and S. Lee, “A unified approach to interpreting model
predictions,” in Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA (I. Guyon, U. von Luxburg,
S. Bengio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan, and
R. Garnett, eds.), pp. 4765–4774, 2017.

[42] R. Gupta, S. Pal, A. Kanade, and S. K. Shevade, “Deepfix: Fixing
common C language errors by deep learning,” in Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence, February 4-9,
2017, San Francisco, California, USA (S. Singh and S. Markovitch,
eds.), pp. 1345–1351, AAAI Press, 2017.

[43] C. S. Xia and L. Zhang, “Keep the conversation going: Fixing 162 out of
337 bugs for $0.42 each using ChatGPT,” CoRR, vol. abs/2304.00385,
2023.

	Introduction
	Background
	Industrial context
	The CI pipelines under study

	Related work
	Compilation errors in CI
	Dependency errors
	Fault localization with log parsing

	Study Design
	CI diagnostics solution
	RQ1
	RQ2
	RQ3
	RQ4
	RQ5

	Data collection

	Study Results
	Results for RQ1
	Results for RQ2
	Results for RQ3
	Results for RQ4
	Results for RQ5
	Threats to validity
	Internal
	External

	Discussion
	Conclusion
	Future work
	References

