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Abstract—Commit Message Generation (CMG) approaches
aim to automatically generate commit messages based on given
code diffs, which facilitate collaboration among developers and
play a critical role in Open-Source Software (OSS). Very recently,
Large Language Models (LLMs) have demonstrated extensive
applicability in diverse code-related tasks owing to their powerful
generality. Yet, in the CMG field, few studies systematically
explored their effectiveness. This paper conducts the first com-
prehensive experiment to investigate how far we have been in
applying LLM to generate high-quality commit messages and
how to go further beyond in this field.

Motivated by a pilot analysis, we first clean the most widely-
used CMG dataset following practitioners’ criteria. Afterward,
we re-evaluate diverse state-of-the-art CMG approaches and
make comparisons with recent LLMs, demonstrating the superior
performance of LLMs against state-of-the-art CMG approaches.
To delve deeper into LLMs’ ability, we further propose four
manual metrics following the practice of OSS, including Accu-
racy, Integrity, Applicability, and Readability, and assess various
LLMs accordingly. Results reveal that GPT-3.5 performs best
overall, but different LLMs carry different advantages.

To further boost LLMs’ performance in the CMG task, we
propose an Efficient Retrieval-based In-Context Learning (ICL)
framework, namely ERICommiter, which leverages a two-step
filtering to accelerate the retrieval efficiency and introduces
semantic/lexical-based retrieval algorithm to construct the ICL
examples, thereby guiding the generation of high-quality com-
mit messages with LLMs. Extensive experiments demonstrate
the substantial performance improvement of ERICommiter on
various LLMs for code diffs of different programming languages.
Meanwhile, ERICommiter also significantly reduces the retrieval
time while keeping almost the same performance. Our research
contributes to the understanding of LLMs’ capabilities in the
CMG field and provides valuable insights for practitioners
seeking to leverage these tools in their workflows.

Index Terms—Commit Message Generation, Large Language
Model, Empirical Study, In-Context Learning.

I. INTRODUCTION

IN the domain of software development, well-structured
commit messages are essential for they provide insights

into related information of code changes, facilitating better un-
derstanding and collaboration among team members. However,
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writing commit messages manually can be time-consuming,
and they are sometimes uninformative or even absent [1].
To overcome this issue, there have been substantial efforts
in developing techniques to automatically generate commit
messages, such as retrieval-based [2]–[4], and learning-based
approaches [5]–[7].

In recent years, Large Language Models (LLMs) have
shown exceptional performance across various domains of
code intelligence, such as comment generation [8], [9], code
translation [10], and automated program repair [11]. Moreover,
some studies have also conducted preliminary investigations
on the performance of LLM in the CMG field. Nonetheless,
they either only tested on limited LLMs [7], [12], such as
ChatGPT, or merely included few and monolingual experi-
mental samples [13], lacking a systematic and comprehensive
evaluation. Another study [14] focuses on improving pre-
trained language models’ CMG performance by including
commit-related issues as extra information. However, recent
studies [15]–[18] revealed that most of the commits (62.9%)
are not linked to issues, such as a bug fix or feature request,
where false issue-commit links and less informative issues
are prevalent. In addition, parameter tuning is also required,
making it hard to apply to most LLMs in practice.

To fill the above gap, this paper conducted a systematic
empirical study on diverse LLMs via automatic and manual
evaluation, as well as proposed a training-free approach to
boost their performance in the CMG task further. Initially, a
pilot analysis in this paper found that human-authored commit
messages in the most widely used CMG dataset, namely
MCMD, are generally of poor quality, often lacking critical
“why” (i.e., the reason or purpose behind code changes)
and “what” (i.e., the specific changes made to the code)
information, which are deemed two essential elements for a
commit message [19]. Considering most previous proposed
CMG approaches [2], [20], [21] were assessed on these
datasets (e.g., MCMD [5]), leading to misleading guidance for
developers in practice. This paper first cleans up the MCMD
dataset according to the requirements of practitioners, ensuring
all samples contain both “what” and “why” information.
Subsequently, we further re-evaluate a wide range of state-of-
the-art CMG approaches of various categories against recent
LLMs, including GPT-3.5, LLaMA-7B/13B, and Gemini, in
terms of a series of automated evaluation metrics following
previous studies [2], [4], [22], [23], showing that LLMs
demonstrate superior performance against previous proposed
CMG approaches. In particular, GPT-3.5 performs best and
surpasses the best-performing CMG approach, namely RACE,
by 83.85% and 27.20% in the METEOR and BLEU metrics,
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respectively. Notably, a purely retrieval-based CMG approach,
namely NNGen, outperforms many learning-based approaches
on the cleaned dataset, demonstrating the importance of similar
examples in the CMG task. To delve deeper into the CMG
capability of LLMs, aligning with the requirements of OSS
practice, we further conduct extensive manual assessments,
covering aspects of Accuracy, Integrity, Applicability, and
Readability. Manual assessments demonstrate that GPT-3.5
still performs the best among its various counterparts, but dif-
ferent LLMs carry different advantages. LLMs tend to convey
more about “What” information but less detailed concerning
“Why” owing to the limited available code context.

To better tap into the potential of LLMs and enhance the
quality of commit messages generated by them, considering
the impressive enhancement of ICL with LLM in extensive
domains [24]–[27], and the high impact of similar examples
in the CMG task as mentioned before, we propose an Efficient
Retrieval-based In-Context Learning framework (ERICom-
miter) applicable to various LLMs in the CMG task. ERICom-
miter leverages two-step filtering to extract high-quality exam-
ple candidates to reduce the volume of the retrieval database.
thereby accelerating retrieval efficiency. Subsequently, ERI-
Commiter retrieves a group of the most similar examples
for ICL, where both semantic and lexical retrieval engines
are examined. Our experimental results demonstrate notable
improvements in different metrics compared to using LLMs
alone. Specifically, GPT-3.5 obtains improvements of 15.2%,
4.75%, and 13.72% at most in terms of METEOR, BLEU,
and ROUGE-L, respectively. Moreover, ERICommiter boosts
the CMG performance of Gemini by 199.43%, 155.36%, and
167.77% at most in terms of each evaluation metric in order.
Besides, our proposed two-step filtering method reduces the
retrieval time to 6.22% for lexical-based retrieval and 7.15%
for semantic-based retrieval, concurrently keeping almost the
same performance, which effectively improves the practicality
of the LLM-based CMG system. This research contributes
significantly to the realm of commit message generation,
summarized as follows:

• We constructed a high-quality, multi-lingual CMG test
set using a three-step filtration process on the MCMD
dataset to meet the practitioner’s needs.

• We carry out the first systematic empirical study to in-
vestigate the performance of various recent LLMs against
state-of-the-art CMG approaches of diverse categories.
Besides, manual assessment aligning with the practical
utility from a wide range of perspectives is proposed
in this paper and conducted on LLM-generated commit
messages.

• We propose an Efficient Retrieval-based In-context learn-
ing framework applicable to LLMs in the CMG field,
namely ERICommiter. Extensive experiments are con-
ducted to demonstrate its effectiveness.

II. RELATED WORKS

A. Commit Message Generation

Commit Message Generation (CMG) aims to produce ap-
propriate messages to describe a commit of code changes

(i.e., code diff s) in version control systems, which greatly
facilitates collaboration among developers in open-source
software practice. Over the years, various automated CMG
approaches have been successively proposed. Liu et al. [3]
propose a simpler and faster approach, named NNGen, to
generate concise commit messages using the nearest neighbor
algorithm. Tao et al. [5] perform a human evaluation and
find the BLEU metric that best correlates with the human
scores for the task. Liu et al. [28] propose ATOM, which
advances commit messages by explicitly incorporating abstract
syntax trees to represent code changes. Moreover, ATOM
integrates both retrieved and generated commit messages using
hybrid ranking. On top of that, the approach [29] coined
as ChangeScribe is proposed to generate commit messages
automatically from change sets. RACE is a method that treats
retrieved similar commits as an exemplar and utilizes it to gen-
erate readable and informative commit messages [2]. Recently,
introducing retrieved relevant results into the training process
has been found useful in most generation tasks [30]–[32]. Shi
et al. [2] treat the retrieved similar commit as an exemplar
and train the model to utilize the exemplar for enhancing
commit message generation. Additionally, many neural-based
approaches have been used to learn the semantics of code
diff s and translate them into commit messages. For example,
NMTGen [33] and Commit-Gen [34] adopt the Seq2Seq neu-
ral network with different attention mechanisms for translating
them into commit messages. CommitBERT [35] leverages
CodeBERT as an initial model to resolve the large gap
between programming language and natural language, making
it easier for the Neural Machine Translation (NMT)-based
model to learn the contextual representation. PtrGNCMsg [6]
outperforms recent approaches based on the NMT structure,
and first enables the prediction of out-of-vocabulary words.
Very recently, researchers started to explore the potential of
LLMs in the CMG field. Zhang et al. [13] explored the CMG
performance of UniXcoder [36] and ChatGPT 1 for long code
diff s and whole message generation. Lopes et al. [7] carried
out a series of automatic and manual analyses on ChatGPT to
investigate its CMG performance against previous proposed
CMG approaches. However, different from this work, they
either only experiment on limited LLMs or lack practical
improvement and systematic evaluations for LLMs.

B. What Is A Good Commit Message

It is undeniable that the quality of commit messages affects
the effectiveness of communication among developers. How-
ever, commit messages are often of poor quality as developers
lack the time and motivation to craft a good message. Hence,
there is an urgent need to establish a universal standard for
defining what constitutes a good commit message. Ma et
al. [37] suppose that the quality of the commit message is
in terms of informativeness, clearness, and length. On the
other hand, Tian et al. [19]contend that the most frequently
recognized expectation of a commit message is to summarize
the changes in this commit ( noted as “What” ) and describe
the reasons for the changes ( noted as “why”) through a survey

1https://openai.com/blog/chatgpt/
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of both academic papers and developer forums and validate the
standards with experienced OSS developers. On top of that,
they propose three classification models that can automatically
identify and construct a high-quality commit message dataset.
Additionally, some researchers have conducted studies based
on Tian’s understanding of what constitutes a good commit
message. For instance, Li et al. [18] develop a machine
learning classifier to automatically identify whether a commit
message contains “What” and “Why” information, taking into
account both the commit messages and the issue report/pull
request links. In summary, it is commonly acknowledged that
a good commit message should explain what was changed,
and why a change was made.

C. Large Language Models on Code

Recently, a number of Large Language Models (LLMs)
that are pre-trained on source code have been proposed,
which mainly consist of three categories from the perspective
of model structure, i.e., encoder-only models, decoder-only
models, and encoder-decoder models.

(1) Encoder-only models contain an encoder only and are
normally pre-trained with a series of code comprehension
tasks, such as masked language modeling [38] and replaced
token detection [39], leading to their powerful capability in
code representation. Typical examples include CodeBERT [40]
and GraphCodeBERT [41]. (2) Decoder-only models are pre-
trained with the objective of next-token prediction language
modeling in an unsupervised fashion [42], [43], where GPT
[44]–[46] series in the Natural Language Processing (NLP)
field are successful paradigms. To this end, many decoder-only
models optimized for code have been proposed based on the
similar idea, such as LLaMA [47], CodeX [48], GPT-CC [49],
and CodeGen [50], which can be utilized in generation tasks.
(3) Encoder-decoder models are composed of an encoder
and a decoder, which are typically pre-trained with denoising-
based tasks. For example, CodeT5 [21] is pre-trained with
tasks of identifier tagging, masked identifier prediction, and
bimodal dual generation. UniXCoder [36] and PLBART [51]
are pre-trained with the denoising sequence-to-sequence mod-
eling task. Due to their encoder-decoder structure, tasks of
both representation and generation can be successfully applied.

III. PILOT ANALYSIS

Previous studies [5], [16], [17], [19] have confirmed that the
quality of manually written commit messages on Version Con-
trol Systems (VCS) is generally poor. However, mainstream
commit message datasets, such as the MCMD, have not yet
been verified for quality issues, nor has there been research on
cleaning and curating a high-quality dataset. This pilot analysis
aims to conduct a series of quantitative and qualitative studies
based on sampling to examine whether the MCMD dataset
impacts the objective evaluation of commit message generation
models and whether it requires cleaning.

A. Experimental design

1) Data set preparation: This study employs a Multi-
programming-language Commit Message Dataset (MCMD)

for experimentation, which has been extensively applied in
previous CMG studies [2], [3], [5]. The MCMD dataset covers
five major Programming Languages (PLs), including Java,
Python, JavaScript, C++, and C#. To control experimental
costs while ensuring a statistically valuable evaluation, we
sample data points from the MCMD test set for Java, Python,
and JavaScript, using a 95% statistical confidence and a
5% confidence interval method, focusing our evaluation on
these three prevalent programming languages. Detailed sample
volumes of each PL are shown in Table I. This design
enhances the statistical significance of experimental results,
strengthening the research’s empirical foundation.

TABLE I
DATA VOLUME BEFORE AND AFTER SAMPLING

PL Test Sets Volume Sampling volume

Java 20159 376
Python 25837 378

JavaScript 24773 378

2) Experimental Model Preparation: In this preliminary
experiment, we utilize a state-of-the-art LLM, i.e., GPT-3.5,
for experiments. GPT-3.5 is a decoder-only LLM, pre-trained
on a huge amount of human-written text/code, capable of cap-
turing complex language patterns and contextual information.
In the experiment, we adopt the version of gpt-3.5-turbo and
set the following model parameters: max tokens is set to 50
for controlling the length of generated messages. temperature
and top p are set to 0.8 and 0.95 by default, respectively.
Besides, we design a basic prompt for GPT-3.5 and obtain its
first output for evaluation. The basic prompt can be formally
defined as:

“${Code Diff}\nYou are a programmer who makes the
above code changes. Please write a commit message for the
above code change.”

where ${Code Diff} is the placeholder for a code diff
snippet. The generated results are collected and compared
with those produced by the state-of-the-art CMG approach,
i.e., RACE [2] in terms of automated assessment metrics
mentioned in III-A3.

3) Automated assessment: Following the previous studies
in the CMG field [2], [7], [13], we adopt METEOR, BLEU,
and ROUGE-L to assess the performance of each model.

• METEOR [52]: This metric measures the word-level
matching between machine-generated text and reference
text. METEOR considers several factors, including exact
word matches, synonym matches, and stemming (mor-
phological variations). It also accounts for word order by
incorporating a penalty for misaligned words.

• BLEU [53]: The computation of this metric relies on the
overlap of n-grams (contiguous sequences of n words)
between the generated text and one or more reference
texts.

• ROUGE-L [54]: This metric focuses on the longest
common subsequence between the generated text and the
reference text, which measures the longest sequence of
words that appears in both texts in the same order.
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Fig. 1. Two Key Elements Included in A Good Commit Message.

B. Experimental results and analysis

Comparing the results between GPT-3.5 and RACE on the
sampled dataset, we find that GPT-3.5 does not outperform
RACE regarding automated assessment metrics as shown in
Table II, which contradicts the usual impression reflected
in the literature concerning LLM-applied code intelligence
[10], [11], [55]. To delve deeper into the reasons behind this
abnormal result, we introduce manual evaluation. Specifically,
we select commit messages generated by GPT-3.5 with BLEU
scores lower than 50% of those generated by RACE for human
analysis and strictly follow the criterion of good commit
messages to proceed with the assessment, thereby exploring
why GPT-3.5 does not perform as well as we expected.

TABLE II
PERFORMANCE COMPARISON BETWEEN GPT-3.5 AND RACE ON THE

SAMPLED DATASET

Model Java Python JS

BLEU Met. Rou. BLEU Met. Rou. BLEU Met. Rou.
RACE 25.66 15.46 32.02 21.79 14.68 28.35 25.55 16.31 31.79

GPT-3.5 18.94 12.79 15.27 17.85 8.88 11.36 15.56 8.31 12.00

According to the widely acknowledged definition in previ-
ous studies [14], [18], [19], a good commit message contains
two key elements of “What” (i.e., what was done) and “Why”
(i.e., why it was done). The “What” part reveals the specific
changes made in the code, such as fixing a bug, adding a
new feature, and improving existing code. The “Why” section
provides background information on the changes, explaining
why such modifications are necessary, such as enhancing
performance, addressing security vulnerabilities, or improving
user experience. Fig. 1 explicitly describes the purpose and
reasons behind commits.

During the manual assessment, we select the results of
GPT-3.5 and ground truths for comparison, thereby analyzing
the specific areas where GPT-3.5 falls short. To ensure a
thorough analysis, we use a structured approach involving a
diverse group of evaluators (including the authors of this article
and additional programmers with 3-5 years of development
experience). Each evaluator is assigned a set of ground truth
and GPT-3.5-generated commit message pairs for assessment.
To ensure the accuracy and reliability of the assessment results,
we adopt a dual assessment mechanism [56] whereby two
independent evaluators assess each commit message together.

Subsequently, we use the Kappa consistency test [57] to
measure the agreement of the assessment results between the
two evaluators. For each ground truth and GPT-3.5-generated
commit message sample, evaluators assess the following two
aspects:

Element 1: Existence of “What” Content (0/1): Check
whether the generated statements clearly present a description
or expression of what has been done.

Element 2: Existence of “Why” Content (0/1): Examine
whether the generated text provides the reasons or background
for why this was done.

In the manual assessment, the Kappa score of the assess-
ment results was 0.65, indicating a high degree of consistency
between the evaluators, thus demonstrating the accuracy and
reliability of our assessment method. The specific evalua-
tion results are shown in Fig. 2. where each bar denotes
a comparison between GPT-3.5-generated commit messages
and ground truths in terms of the percentage of their commit
messages containing or missing “What”/“Why” information.
For example, GPT-3.5-Java represents the evaluation result of
commit messages for the Java PL generated by GPT-3.5.

The research results indicate that some ground truth commit
messages themselves are not entirely accurate or detailed.
Many ground truth messages lack descriptions of “what” and
“why,” while the GPT-3.5 demonstrates a relatively superior
ability to generate these contents. This implies that, from
the perspectives of “what” and “why,” GPT-3.5-generated
commit messages are more informative and of higher quality
compared with ground truths. Therefore, the ground truths
of the MCMD dataset are inherently flawed because their
samples are extracted from VCS, such as Github, in the wild,
which cannot accurately reflect the capabilities of CMG ap-
proaches. Considering most of the previous CMG approaches
are evaluated on the MCMD dataset [2], [3], [6], [23], [33],
[34], and there is no other widely acknowledged multi-lingual
CMG dataset, it is urgent to clean this dataset up and reassess
previous mainstream CMG approaches, including LLMs.

x Conclusion of Pilot Analysis:
(1) The MCMD dataset, widely used in the CMG tasks,
can not accurately reflect the current capabilities of the
CMG approaches due to the low data quality.
(2) There is an urgent need for a thorough cleanup
of the MCMD dataset and reassessment to ensure
more objective and precise evaluations of the CMG
techniques in the following sections.

IV. CONSTRUCTION OF THE HIGH-QUALITY TEST SET

As mentioned above, the quality of ground truths signifi-
cantly affects the objectivity and authenticity of assessment.
Therefore, a pivotal step in this study is to construct a
meticulously curated, higher-quality, and reliable CMG dataset
covering mainstream PLs for assessing and validating the
CMG performance of diverse models systematically. Consider-
ing the trade-off between limited human effort and assessment
validity, we meticulously curate 500 high-quality samples for
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Fig. 2. The Proportion (%) of Containing/Missing “What”/“Why” Elements
in Comparison between GPT-3.5-Generated Commit Messages and Ground
Truths.

each PL from the MCMD test set. Throughout this process,
to improve the efficiency of sample selection as much as
possible, we conduct meticulous three-stage screening of com-
mit messages in all PLs (including Java, Python, JavaScript,
C++, C#) covered in the MCMD dataset. We hope the newly
constructed test set can not only be used to evaluate the
performance of CMG models but also serve as reference tem-
plates for developers to enhance code quality and collaboration
efficiency within teams. This section outlines the three-step
screening procedure for curating this test set, including (1)
filtering out non-target languages, (2) automatically filtering
good commit messages through a deep learning model, and
finally (3) further selecting high-quality samples manually.

Step 1: Precise Filtering of Non-Target PL samples.
Based on our observations, although the MCMD dataset is

divided into five categories according to PLs, each sub-dataset
of a PL is mixed with a large amount of data from other PLs.
For instance, when dealing with a sub-dataset targeting Java,
we encounter the inclusion of many code diff s from other
PLs, such as C++, Python, and even HTML. This issue arises
because PLs are simply partitioned by projects according to
the explanation of the original authors, which severely affects
the accuracy of previous studies’ experimental results under
different PLs and poses a major obstacle to the evaluation in
this paper.

To tackle this problem, we employ regular expressions as
the primary filtering tool, where files with suffixes (e.g., .java,
.py, .js, .cpp, .cs) that do not belong to the target PL are filtered
out, thereby completing the first-step cleaning. Through this
approach, we significantly enhance the PL purity of each sub-
dataset, establishing a sturdy and precise basis for subsequent
data analysis and model assessment. The data volume after this
first-step cleaning is shown in Table III, over half of the non-
target samples for each PL have been eliminated, effectively
reducing the human effort in the following manual selection
step.

Step 2: Automated Filtering of samples Containing
“What” and “Why”.

TABLE III
NUMBER OF DATASETS AFTER FILTERING AT EACH STEP

PL Original Step1 Step2 Step3 Kappa
Java 20159 11746 4167 500 0.59

Python 25837 14012 4601 500 0.56
C# 18702 9224 3432 500 0.62

C++ 20141 5778 2029 500 0.57
JavaScript 24773 10816 3855 500 0.61

TABLE IV
PERFORMANCE OF BI-LSTM IN OUR STUDY

Metrics C-Why C-What C-Good

Precision 44.60% 85.37% 68.56%

Recall 52.03% 34.80% 51.34%

F1 48.03% 47.01% 58.47%

In our study, we recognize that manually filtering out
commit messages to identify those containing both “What”
(what was done) and “Why” (why it was done) elements
is time-consuming and labor-intensive. To address this issue,
we introduce an automated method based on Bi-LSTM [58]
to efficiently identify high-quality commit messages, which
was proposed by [19] and adhered to the definition of “good
commit message” during the identification.

Since Tian et al. [19] did not publish the trained parameters,
we try our best to replicate this Bi-LSTM model following
their instructions and train the model from scratch. After-
ward, we apply it to our commit messages following their
preprocessing procedures such as text cleaning, vocabulary
standardization, and encoding.

The replication results are shown in Table IV, where “C-
Why”, “C-What”, and “C-Good” represent the performance of
Bi-LSTM on identifying commit messages containing “Why”,
“What”, and both elements. Although the replicated perfor-
mance is slightly weaker than that reported in the original
paper [19], it still effectively filters out those high-quality
commit messages to a great extent. After the filtering process,
approximately one-third of the data remained from the step-1
filtering, as shown in Table III, which further improves the
density of high-quality samples and is helpful in reducing the
efforts of manual selection in the third step.

Step 3: Manual Selection of Samples with “What” and
“Why”.

After the automated filtering process, we proceeded to the
stage of manual assessment, aiming to select high-quality com-
mit messages from the remaining samples precisely. To ensure
the accuracy and objectivity of the selection, we purposely
selected individuals with 3-5 years of programming experience
to serve as evaluators. The specific process of manual selection
is as follows:

We employ a dual-evaluator mechanism, dividing evaluators
into pairs and conducting independent evaluations in a back-to-
back manner [56] to minimize mutual influence on opinions.
Each evaluator assigns a score of 0 or 1 to each commit mes-
sage. Here, a score of 0 indicates that the commit lacked either
the “What” or “Why” element, while a score of 1 indicates
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that the commit contained a clear and detailed description of
“What” and “Why.” When both evaluators provide consistent
scores (either both 0 or both 1), deciding whether to retain or
discard the commit is simple: discard for all 0s or retain for
all 1s. In instances of conflicting scores, a third evaluator will
be brought in for arbitration.

To validate the effectiveness of the assessment, we compute
Cohen’s kappa coefficient [57] of agreement for the scores
assigned by the two evaluators. This statistical measure is
employed to assess the Consistency between evaluators, with
a high kappa score indicating a higher level of reliability in
the evaluation results. The kappa scores for each language
are calculated as shown in Table III. In our case, the overall
mean value of the kappa score is 0.59, which shows that our
assessment process is effective.

Through such screening, we ultimately construct a high-
quality, multi-lingual test set comprising 500 commit messages
for each of the five PLs. The commit messages in the test
set are comprehensive and explanatory, with each one being
unanimously recognized by evaluators as an outstanding com-
mit message that meets our quality standards. We have open-
sourced this dataset on GitHub. The data distribution for each
language before and after each cleaning and filtering step is
presented in Table III.

V. STUDY DESIGN

This section details the design of specific experiments,
including studied models, implementation, and evaluation
methodology.

A. Models and Implementations

In this study, we select the most widely used and state-of-
the-art CMG approaches for a systematic comparison with a
series of recent LLMs of diverse sizes and families.

• NNGen [3]: A retrieval-based approach employs the
nearest neighbor algorithm to fetch the top-k similar code
differences, determined by cosine similarity between bag-
of-words vectors of code differences. It then selects the
most similar result based on BLEU scores between each
of them (top-k results) and the input code diff s to generate
commit messages.

• CommitGen [34]: A model that treats code diffs as
plain texts and adopts a Seq2Seq neural network with
different attention mechanisms to translate them into
commit messages.

• NMTGen [33]: In this context, NMTGen is used to
learn the semantics of code diff s and translate them into
commit messages.

• PTrGNCMSG [6]: A model that incorporates the pointer-
generator network into the Seq2Seq model to handle out-
of-vocabulary words.

• CoRec [23]: A hybrid model that considers retrieved
results during the inference stage. It uses an encoder-
decoder neural model to encode input code diffs during
training and generate commit messages. At the inference
stage, it uses the trained encoder to retrieve the most sim-
ilar code diff from the training set, then reuses a trained

encoder-decoder to encode the input and retrieved code
diff, combining the probability distributions (obtained by
two decoders) of each word to generate commit messages.

• CodeBERT [35]: Leverages CodeBERT, a pre-trained
language model for source code, to learn the semantic
representations of code diff s and adopts a Transformer-
based decoder to generate commit messages.

• LLaMA [47]: An open and efficient large foundational
language model released by Meta AI. LLaMA has four
versions with parameter sizes of 7B, 13B, 33B, and 65B.
These models can be used for various natural language
processing tasks, including code-related tasks, making
them suitable for commit message generation tasks. In
this article, we use both llama-7b-chat and llama-13b-
chat. They can generate accurate commit messages by
learning the semantics of code differences.

• Gemini [59]: An artificial intelligence model released
by Google DeepMind, capable of handling text, images,
audio, video, and code. Gemini can understand and gen-
erate high-quality code in mainstream PLs and provides
comprehensive security assessments. We use the Gemini-
pro model for this article. Its deep understanding of code
enables it to play a role in commit message generation
tasks, producing accurate and descriptive commit mes-
sages.

• GPT-3.5 [46]: A model based on the GPT-3 architec-
ture, performing exceptionally well in various natural
language processing tasks. GPT-3.5’s robust language
understanding and generation capabilities make it suit-
able for commit message generation tasks, where it can
generate accurate and descriptive commit messages by
understanding the context of code changes. The same as
the pilot analysis, we adopt the version of gpt-3.5-turbo
for experiments.

For the implementation of LLMs, we follow the hyper-
parameter setting in Section III-A2, while for other state-
of-the-art CMG approaches, we extract their published CMG
results for comparison, as their experiments were all conducted
on the MCMD dataset. As such, the assessment among LLMs
and other CMG approaches is fair.

B. Evaluation Methodology
To achieve a systematic evaluation, we first adopt automated

assessment in terms of METEOR, BLEU, and ROUGE-L, as
mentioned in Section III-A3, to make comparisons among
current CMG approaches and recent LLMs. This solves the
problem: RQ1: How is the performance of recent LLMs
against current CMG approaches?

To delve deeper into the LLMs’ performance in the CMG
task, we further arrange a series of manual assessments.
Aligning with the practice of OSS, we not only focus on
the existence of “What”/“Why” elements (i.e., Integrity) for
LLM-generated commit messages but also involve Accuracy,
Applicability, and Readability in the assessment, as these
aspects impact the internal and external quality of the software
product and their usability in OSS practice [60], [61].

Specifically, we employ three-level Likert scales which
allows participants to express their degrees of positive or
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TABLE V
KAPPA SCORE OF MANUAL ASSESSMENTS

Language Java Python C# C++ JavaScript Average
Kappa score 0.54 0.53 0.54 0.57 0.57 0.55

Fig. 3. An Overview of Various LLMs’ Performance Among Different
Aspects of Manual Assessment

negative attitudes, from “disagree” to “neutral” to “agree,” or
from “poor” to “neutral” to “good” [62] in expert interviews
to collect high-quality feedback from participants with experi-
ence and professional backgrounds based on their experience
and observations. Then we design five survey questionnaires
corresponding to the five PLs studied, inviting two industry
experts for each language to participate in interviews. Each
questionnaire comprises ten test items, exploring the perfor-
mance of different LLMs in generating commit messages
through various problem descriptions, including Accuracy,
Integrity, Applicability, and Readability. This design facilitates
a comprehensive understanding of participants’ perceptions
across different aspects, offering multi-dimensional and com-
prehensive qualitative feedback.

Then, we obtain 10 interview results, covering five PLs. To
validate the evaluation’s effectiveness and the questions’ uni-
versality, we separately calculated Cohen’s kappa consistency
coefficients between the scores given by the two experts for
each language. Since each evaluator is required to evaluate
the full range of questions for each PL, the Kappa Score is
calculated by PLs, which are presented in Table V. It can
be observed that Cohen’s kappa consistency coefficients for
each PL are all larger than 0.5, indicating a high level of
Consistency. We list a radar chart in Fig. 3 to present the
average performance of various LLMs among different aspects
of the human evaluation. This manual assessment addresses
the following research questions RQ2-RQ5:
RQ2: How accurate is the commit message generated
by LLMs? Different from the automated metric mentioned
above, Accuracy in manual assessment reflects more on the
semantic equivalency, which is highly important for developers
to understand the code changes. Human evaluators can assess

the relevance and adequacy of commit messages beyond strict
literal Consistency, considering the contextual and semantic
nuances that automated metrics may overlook.

Towards the Accuracy aspect, evaluators are required to
examine whether the commit messages accurately reflect the
specific technical details of code changes and analyze whether
the commit messages are closely associated with the content
and purpose of the code changes, ensuring that no vital
change information is omitted and no irrelevant information
is included.

RQ3: How integral is the commit message generated by
LLMs? Integrity measures whether LLM-generated commit
messages contain “What” and “Why” elements, which are hard
to precisely detected in an automated manner. Commit mes-
sages implying clear modification illustration and motivation
allow for an easier understanding of code changes, simplify
the code review process, and aid debugging in OSS practice.

Evaluators should assess how well a commit message de-
scribes the code changes (“What”) and clarify the reasons or
motivations behind them (“Why”). Evaluators assign corre-
sponding scores based on the thoroughness of the commit
messages.

RQ4: How applicable is the commit message generated
by LLMs? Applicability assesses to what extent OSS devel-
opers accept to use the LLM-generated commit messages. As
commit messages are critical documentation for code changes,
aiding in code review, version control, and team communica-
tion, evaluating their Applicability helps determine whether
LLM-generated commit messages can effectively fulfill these
roles and contribute to a smoother and more efficient OSS
development process.

In order to understand individual behavior and decision-
making in the Applicability assessment , we use an “immersive
context” approach, a technique commonly used in sociological
research [63]. Specifically, evaluators were guided to place
themselves in a hypothetical role, assuming they were the
programmers writing the evaluated information. We inquired
with evaluators about their willingness to adopt the provided
commit message if they had authored the code in question.

RQ5: How readable is the commit message generated
by LLMs? The motivation for evaluating the Readability of
commit messages generated by LLMs lies in the importance
of clear and understandable documentation in software devel-
opment. Readable commit messages enhance communication
among team members, facilitate code maintenance, and con-
tribute to effective project management.

Evaluators are required to evaluate commit messages based
on factors such as fluency, clarity of structure, accuracy of
expression, and correct use of grammar. This scoring reflects
the Readability and comprehensibility of the commit message.

Through the process mentioned above, we were able to
holistically assess the overall capabilities of LLMs in commit
message generation, providing valuable insights and guidance
for the field of software development.
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TABLE VI
PERFORMANCE COMPARISON OF LLMS AGAINST STATE-OF-THE-ART CMG APPROACHES

Java Python C# C++ JS Avg.
Model

Met. BLEU Rou. Met. BLEU Rou. Met. BLEU Rou. Met. BLEU Rou. Met. BLEU Rou. Met. BLEU Rou.
IR-based NNGen 14.28 22.23 18.85 8.66 20.58 15.82 12.41 21.54 17.96 7.82 16.53 13.38 10.60 19.84 16.25 10.75 20.14 16.45

CommitGen 2.38 3.77 6.89 1.71 4.01 6.94 1.92 3.87 4.83 1.12 2.91 4.38 1.98 3.83 6.12 1.82 3.68 5.83
End-to-end NMTGen 2.64 3.93 7.30 2.41 4.84 8.35 1.89 3.36 4.86 1.62 3.37 5.00 3.28 6.48 6.96 2.37 4.40 6.49

PTrGNCMSG 11.86 14.95 17.02 7.48 16.55 15.68 8.57 12.42 12.64 6.8 12.35 13.05 8.05 13.46 14.21 8.55 13.95 14.52

CoRec 6.42 10.30 12.04 4.85 10.49 12.32 4.90 8.41 9.80 2.79 6.58 7.83 5.24 9.66 10.46 4.84 9.09 10.49
Hybrid

RACE 11.54 21.41 19.08 10.61 23.75 21.00 12.11 22.74 20.46 6.66 16.01 12.57 11.09 21.41 19.23 10.40 21.06 18.47
Pre-Trained CodeBERT 9.59 14.01 16.80 7.66 16.56 17.73 7.72 12.46 14.38 4.51 11.23 9.87 7.58 13.12 15.72 7.41 13.48 14.90

LLaMA-7B 19.43 23.90 14.01 14.71 20.94 12.14 17.44 23.23 15.01 15.10 20.43 12.61 17.65 22.88 14.90 16.87 22.28 13.73

LLaMA-13B 17.09 25.97 15.10 13.88 24.80 14.04 16.27 25.39 15.52 13.21 23.04 13.04 15.47 24.32 14.70 15.18 24.70 14.48

Gemini 16.53 26.16 17.62 11.87 24.96 14.34 15.33 11.01 6.30 12.76 24.20 15.13 13.76 24.78 15.97 14.05 22.22 13.87

GPT-3.5 21.19 27.72 19.04 18.00 26.86 17.80 20.3 27.25 19.10 17.05 24.99 16.70 18.94 27.15 19.04 19.10 26.79 18.34

LLM

↑48.39 ↑24.70 ↓-0.21 ↑69.65 ↑13.09 ↓-15.24 ↑63.58 ↑19.83 ↓-6.65 ↑118.03 ↑51.18 ↑24.81 ↑70.78 ↑26.81 ↓-0.99 ↑83.85 ↑27.20 ↓-0.72

VI. RESULTS AND DISCUSSION

A. RQ1: How is the performance of recent LLMs against
current CMG approaches?

Table VI re-evaluates the performance of state-of-the-art
CMG approaches of diverse categories against various recent
LLMs on our cleaned multi-lingual CMG test set.

As observed, NNGen, a purely retrieval-based model, out-
performs most learning-based CMG approaches and even
performs neck-to-neck with RACE, the latest state-of-the-art
CMG approach, which comes out with an opposite conclusion
to prior studies [2]. A plausible explanation is that learning-
based approaches are deviated by low-quality training sam-
ples in the MCMD dataset, which neglect the expression
of “What” and “Why” elements when generating commit
messages. Conversely, similar code diff s are likely to have
identical commit messages; thus, those filtered high-quality
test examples are more likely to find high-quality similar
examples in the training set. As a result, NNGen, a purely
retrieval-based CMG approach, surpasses the performance
of many learning-based CMG approaches, underscoring the
importance of similar exemplars in the CMG task.

Furthermore, when comparing CMG methods with LLMs,
LLMs exhibit a substantial advantage in multiple metrics.
Because LLMs, such as GPT-3.5, possess a more significant
number of parameters and are trained on much more extensive
human-written code/text, which enables them to demonstrate
more robust performance even without specialized training for
specific tasks. However, although RACE has fewer parameters
than LLMs, it surpasses most LLMs in terms of the ROUGE
metric and performs neck-to-neck with GPT-3.5 on this met-
ric, demonstrating the powerful ability of RACE to generate
high-quality commit messages in a long range of continuous
sequences. Focusing on the comparison between GPT-3.5 and
RACE, we find that GPT-3.5 significantly outperforms RACE,
the latest state-of-the-art CMG approach, with an improvement
of 83.85% in terms of METEOR and 27.20% in terms of
BLEU, which completely opposite to the experimental results
in the pilot analysis, showing that the original MCMD dataset
indeed distorts the performance evaluation among models and
the construction of the cleaned test set is necessary.

In the comparison among LLMs, GPT-3.5 surpasses other
LLMs in most evaluation metrics, which may be attributed
to its larger number of parameters. Regarding the comparison

between GPT-3.5 and Gemini, the conclusions of this study
are consistent with those of Akter et al. [64], indicating that
GPT-3.5 has a relatively clear advantage in tasks related to
coding. To be specific, in terms of the METEOR metric, GPT-
3.5 leads by an average of 13.21%-35.94% compared to other
LLMs. In the BLEU metric, GPT-3.5’s average lead ranges
from 8.46% to 20.57%. Furthermore, in the ROUGE-L metric,
GPT-3.5 maintains an average lead of 26.66%-33.57% over its
counterparts.

x Answer to RQ1: LLMs have demonstrated im-
pressive performance in the CMG domain, overall
surpassing all current CMG approaches, with GPT-3.5
leading among LLMs, particularly on our cleaned high-
quality CMG test set.

B. RQ2: How accurate is the commit message generated by
LLMs?

Fig. 4 demonstrates the manual assessment results in terms
of Accuracy, where GPT-3.5 still performs the best among
different LLMs. In particular, GPT-3.5 has an average score of
2.68 in the question, while the other three LLMs have mean
scores of 1.85, 1.88, and 1.63, respectively. Compared with
the automated metrics, manually evaluated Accuracy tends to
measure the overall semantic equivalency instead of literal
equivalency, showing that GPT-3.5 has an outstanding ability
to capture the entire semantics of code diff s. In addition,
we note that LLaMA-13B outperforms LLaMA-7B overall
according to Table VI, yet it underperforms LLaMA-7B in
terms of the aspect of Accuracy during the manual evalua-
tion. Considering the focus on the semantic equivalency of
the Accuracy, we conjecture that LLaMA-7B is superior in
generating high-quality commit messages from the perspective
of overall semantics, while LLaMA-13B prefers to generate
commit messages with higher literal accuracy.

Taking a Python code diff as an example, we list different
LLMs’ generated commit messages in Figure 5, it can be ob-
served that among the commit messages generated by the four
LLMs, the commit message generated by GPT-3.5 directly and
clearly emphasizes the core content of the code change, i.e.,
ensuring that the message history is returned in list form. It
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Fig. 4. Manual Assessment Results in Terms of Accuracy

Fig. 5. A Python Example of Generated Commit Messages on Accuracy.

conveys the essence of the code change without introducing
unnecessary information or incorrect statements, aligning more
closely with the original code change situation. Looking at
the commit messages generated by the other three LLMs for
this code change, we find that these commit messages only
mention “return in reverse order” and do not explicitly state
the change key of “return in the form of a list.”

x Answer to RQ2: Manual assessment has demon-
strated that GPT-3.5 exhibits the best performance
among all LLMs in terms of Accuracy in the CMG task,
showcasing its exceptional ability to capture technical
details and accurately reflect code changes.

Fig. 6. Manual Assessment Results in Terms of Integrity

C. RQ3: How integral is the commit message generated by
LLMs?

Fig. 6 demonstrates the Integrity concerning “What” and
“Why” information of the commit messages generated by
different LLMs. Firstly, we focus on evaluating commit mes-
sages in the “What” aspect. As can be seen, GPT-3.5 excels
with a mean score of 2.56, while the other three LLMs have
mean scores of 1.93, 2.1, and 1.75, respectively. This indicates
that commit messages generated by GPT-3.5 are often more
detailed and comprehensive, reflecting the actions the code
changes have taken. Fig 7 demonstrates an example of a
code diff in C#, and it is observed that among the commit
messages generated by the four models, GPT-3.5-generated
commit messages contain more precise and more explicit
“what” information. It provides an apparent description of the
essence of the code change, namely “add debug assertion” in
the code. At the same time, the commit messages from other
models are relatively vague or simplified.

Secondly, we examine the evaluation of commit messages
in the “Why” aspect. Apparently, GPT-3.5 also performs
exceptionally well, with a mean score of 2.18, while the
other three LLMs have mean scores of 1.43, 2.1, and 1.7,
respectively. This indicates that commit messages generated
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Fig. 7. A C# Example of Generated Commit Messages on Integrity.

by GPT-3.5 more clearly explained the reasons and moti-
vations behind the code changes. Using the aforementioned
C# language test question as an example, among the commit
messages generated by the four models, GPT-3.5-generated
commit messages contain more explicit “why” information,
i.e., “check if a node is empty or its children do not end
with a semicolon,” while the “why” information in the commit
messages generated by the other LLMs are relatively vague
(as shown in Fig. 7). This also indicates GPT-3.5’s significant
advantage in understanding and expressing the motivation
behind code changes, making practitioners collaborate with
their team members more smoothly in OSS development.

It is noteworthy that all LLMs examined generally score
higher in terms of the “what” aspect than the “Why” aspect
when generating commit messages. This phenomenon may
stem from the limitations of the code snippets themselves.
Actually, in development practice, code snippets rely on each
other closely and have their own specific functionalities, which
can only be reflected when they are placed in the whole
repository. Nonetheless, code diff samples in the MCMD
dataset only comprise fragments. In this case, although LLMs
can easily understand the specific content of code changes,
they can hardly capture the motivation behind code diff s owing
to the lack of adequate context information of the whole
repository.

x Answer to RQ3: GPT-3.5 excels in generating
commit messages with Integrity, significantly outper-
forming other LLMs. It provides more detailed and
comprehensive descriptions of code changes from both
“What” and “Why” perspectives. All LLMs perform
relatively weaker in expressing “Why” information in
commit messages owing to the limited code context.

Fig. 8. Manual Assessment Results in Terms of Applicability

D. RQ4: How applicable is the commit message generated by
LLMs?

Fig. 8 illustrates the manual assessment results concerning
the Applicability of different LLMs by PLs, indicating that
GPT-3.5 excels in Applicability compared to Gemini, LLaMA-
7B, and LLaMA-13B. Among these models, the mean scores
were 2.37 for GPT-3.5, 1.65 for Gemini, 1.83 for LLaMA7B,
and 1.63 for LLaMA13B. We continue to take Python code
diff as an example, as shown in Fig. 5. Compared to other
LLMs, the commit messages generated by GPT provide clear,
concise, professionally accurate descriptions that accurately
convey the core content and purpose of the code changes.
This clear and concise description helps evaluators swiftly
grasp the purpose and impact of the code changes, leading
to greater acceptability among them. In contrast, commit
messages generated by other models tend to be more redundant
and less straightforward in conveying information.

GPT-3.5 stands out for its Applicability, producing commit
messages that align closely with programmers’ requirements
and are more apt for real-world usage. This reflects its ex-
ceptional performance in comprehending and expressing lan-
guage. This finding has practical implications for developing
automated code commenting tools, aiding in enhancing devel-
opment efficiency and alleviating the burden on programmers.

x Answer to RQ4: Compared to other LLMs, GPT-
3.5 demonstrates higher Applicability in generating
commit messages. Its concise and accurate descriptions
effectively convey the details of code changes, thereby
gaining higher acceptance among evaluators.

E. RQ5: How readable is the commit message generated by
LLMs?

Fig. 9 demonstrates the Readability assessment for diverse
LLMs, where GPT-3.5, Gemini, LLaMA-7B, and LLaMA-
13B have mean scores of 2.81, 2.49, 2.42, and 2.56, re-
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Fig. 9. Manual Assessment Results in Terms of Readability

spectively, showing that GPT-3.5 exhibits a certain degree of
superiority in this aspect. Simultaneously, we observe that,
among all test dimensions, Readability scores are generally
higher and distributed relatively evenly compared to scores
in other aspects mentioned before. GPT-3.5 has a slight
advantage, while the other three LLMs perform comparably.
Taking a Java code diff as an example (as shown in Fig. 10),
one evaluator commented, “Overall, each commit message
in this example is easy to understand, demonstrating good
accuracy and readability. However, I particularly appreciate
the commit messages generated by GPT-3.5, which succinctly
and accurately address the specific issues being addressed.
Specifically, GPT-3.5 articulates the generated text in a more
natural manner, ensuring smooth expression. Moreover, from
a structural perspective, commit messages generated by GPT
exhibit a relatively clear structure, aiding in our understanding
of the content and purpose of code changes. Additionally,
GPT-3.5 demonstrates relatively good grammar, avoiding com-
mon syntactical errors. In contrast, compared to GPT-3.5,
commit messages generated by Gemini lack accuracy, as
they do not mention operations in the ‘onClose’ method.
Commit messages generated by LLaMA-7B exhibit decent
expression, yet they overlook crucial elements such as ‘error
message’, resulting in expression deficiencies. LLaMA-13B-
generated commit messages only mention ‘update’ regarding
the change content, which is not precise enough and lacks
specific descriptions of updates.”

This finding holds significant practical implications in OSS
practice, as Readability directly affects programmers’ under-
standing and acceptance of code changes. Overall, although
GPT-3.5 has a slight advantage in Readability, the differences
among the four models are insignificant, indicating the power-
ful capabilities of recent LLMs in logical structure, grammar,
and language expression when generating commit messages.
This is crucial for the practical application of automatically
generating commit messages and provides guidance for better
integrating the application of LLMs into OSS practices in the
future.

Fig. 10. A Java Example of Generated Commit Messages on Readability.

x Answer to RQ5: Manual assessments have found
that LLMs perform well in terms of Readability.
Among them, GPT-3.5 has a slight edge, reflecting its
natural and fluent conveyance of code change informa-
tion. This finding emphasizes the overall maturity and
effectiveness of LLMs in generating readable commit
messages.

VII. ERICOMMITER

In the previous six sections, we conduct an empirical study
on the use of LLMs for the automatic generation of commit
messages. Our evaluation, through both automated and manual
analysis, highlighted the superiority of LLMs in producing ac-
curate, relevant, and informative commit messages compared
with state-of-the-art CMG approaches of diverse categories.
In this section, considering the prominent efficacy of incor-
porating retrieved samples for references in CMG approaches
(as mentioned in Section VI-A) and the extensive applicability
of In-Context Learning (ICL) for LLMs [24], [65], [66], we
carry an idea of retrieving similar samples towards the target
code diff to construct ICL examples, thereby guiding LLMs’
generation and further improving their performance in the
CMG task. However, the volume of the database for retrieval
is exceptionally huge and full of noise. For example, each
PL in the MCMD dataset contains over 200,000 samples, but
not all samples are good candidates for retrieval, while the
retrieval database in practice can be even larger. To accelerate
the retrieval efficiency and make this approach practical, we
propose a two-step filtering method to reduce the database
volume before retrieving and ensure the CMG performance
remains almost the same concurrently. To summarize, we
introduce the Efficient Retrieval-based In-context Learning
framework, named ERICommiter, suitable for different LLMs
in the CMG field. Here’s how it works: (1) We employ a two-
step filtering process to eliminate less informative and low-
quality samples, constructing the reduced retrieval database.
(2) Based on the reduced database, we retrieve similar samples
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Fig. 11. Comparison of Length in Commit Messages.

to build ICL examples. (3) LLMs are guided to generate more
accurate and informative commit messages via ICL.

A. Methodology

1) Two-Step Filtering on the Retrieval Database: Two-step
filtering first harnesses the length of commit messages as a
selection criterion to drop those less informative ones and then
adopts Bi-LSTM to filter low-quality commit messages from
a semantic perspective, thereby reducing the volume of the
retrieval database.

Length-based Filtering: An intuitive hypothesis is high-
quality commit messages are relatively longer (i.e., contain-
ing more tokens) because they include both “What” and
“Why” information about code diff s, such as the specific
functionalities, implementations, and underlying modification
motivations. To substantiate this hypothesis, we plot violin
diagrams to compare the distribution of token counts in the
MCMD’s test set and our cleaned high-quality test set, as
shown in Fig. 11. The distribution discrepancies in token
counts between them are obvious; the cleaned high-quality test
set carries more tokens for each commit message on average,
showing that length-based filtering on the retrieval database is
reasonable. In this experiment, we adopt the average length
of the cleaned high-quality test set as the threshold to filter
samples in the MCMD’s training set (i.e., retrieval database).

Semantic-based Filtering: Secondly, to further filter out
high-quality commit messages, we again utilize the Bi-LSTM
constructed in Section IV to capture and understand the
critical elements of “What” and “Why” in commit messages,
thereby effectively filtering out high-quality commit messages
semantically.

These two filtering steps are applied to the original training
set. The first step, based on the length of commit messages,
eliminates overly short commit messages, and the second step
uses the Bi-LSTM model to further filter out high-quality
samples from a semantic perspective. Through these two
filtering steps, we obtain a much smaller but relatively high-
quality training set as the reduced retrieval database.

2) Retrieval Method: In this study, we investigate two
commonly used retrieval methods in academia: lexical-based
retrieval and semantic-based retrieval. These methods are used
to select commit messages similar to the test samples from the
training set.

Lexical-based Retrieval: uses the BM25 algorithm [67],
a widely-used information retrieval function based on the
bag-of-words model [68], evaluating the relevance between
documents and queries by considering Term Frequency (TF)
and Inverse Document Frequency (IDF). This method excels
at keyword matching and is suitable for quickly retrieving doc-
uments related to specific query conditions (such as specific
PLs or keywords) in extensive text collections.

Semantic-based Retrieval exerts a pre-trained code model,
namely CodeReviewer, a Transformer-based encoder-decoder
model designed with four pre-training tasks for the code
review process. CodeReviewer takes code diff s as input and
splits them into token sequences using the RoBERTa tokenizer.
To enhance comprehension of the code diff format, we replace
the special markers ”-” and ”+” in the code diff file, which
represent line deletion and insertion, with the special tokens
[DEL] and [ADD], respectively. Additionally, lines that remain
unchanged, indicated by the absence of any marker, are
denoted by the token [KEEP].

The output of the model includes token representations
from the encoder and the generated token sequence from the
decoder. In this study, we only use the pre-trained encoder
and the last layer representation of the special token [CLS]
to represent the vectorized code diff. We then measured the
similarity between diff s by calculating the cosine angle be-
tween two [CLS] token representations, providing an effective
method to assess the similarity between code changes. In
experiments, we fix the number of retrieved examples to 1
by default, considering the efficiency issue.

B. Experimental Setting of ERICommiter

To investigate the effectiveness and efficiency of ERICom-
miter, we further propose RQ6-RQ8 and their evaluation
procedures below.
RQ6: How does ERICommiter perform against individual
LLMs? This RQ aims to examine the effectiveness of ERI-
Commiter compared with individual LLMs tested. To make a
fair comparison, we retrieve the most similar sample from the
reduced retrieval database for ERICommiter while selecting
one fixed example for individual LLMs. Due to computational
overhead and resource constraints, we include two PLs (i.e.,
Java and Python) and two LLMs (i.e., GPT-3.5 and Gemini)
for experiments, both semantic and lexical-based retrieval
methods are assessed.
RQ7: How efficient is ERICommiter? This RQ aims to
inspect the effectiveness of the two-step filtering in improving
the efficiency of ERICommiter and its influence on ERI-
Commiter’s performance. Following the settings of RQ6, we
disassemble the two-step filtering module of ERICommiter,
namely ERICommiter*, for comparison.
RQ8: How does the number of retrieved examples in-
fluence the performance of ERICommiter? Based on the
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experimental setting in RQ6, we further alter the number of
provided examples N={1, 3, 5, 10} to evaluate the influence
of example numbers. Notably, due to the input token limit of
GPT-3.5-turbo (4,096 tokens at most), we could only feed one
example for it. However, to more comprehensively understand
the impact of the number of examples on LLMs’ generation
performance, we introduce the version of GPT-3.5-16k as
an additional experimental subject, which can accommodate
16,385 tokens for input. Although the GPT-3.5-16k may not
perform as well as the GPT-3.5-turbo overall, the two LLMs
are consistent in basic principles. Therefore, when evaluating
the influence of the example number on LLM with ICL, we
can replace GPT-3.5-turbo with GPT-3.5-16k to observe the
performance variation for GPT-3.5 series LLMs.

TABLE VII
PERFORMANCE COMPARISON OF ERICOMMITER AGAINST VARIOUS

UNDERLYING LLMS

Java Python
Model

Met. BLEU Rou. Met. BLEU Rou.

Lexicial-based Retrieval

GPT-3.5 20.40 28.27 18.50 17.02 28.96 18.33

ERICommiter(GPT-3.5) 23.54 30.40 21.98 19.60 29.53 19.91
Gemini 5.96 11.24 6.66 3.65 7.59 5.22

ERICommiter(Gemini) 16.00 23.76 17.18 12.06 22.72 14.49
Semantic-based Retrieval

GPT-3.5 20.40 28.27 18.50 17.02 28.96 18.33

ERICommiter(GPT-3.5) 21.81 29.89 20.13 19.03 29.05 19.55
Gemini 5.96 11.24 6.66 3.65 7.59 5.22

ERICommiter(Gemini) 15.54 24.19 17.44 11.20 20.86 13.17

C. Experimental Results of ERICommiter

RQ6: How does ERICommiter perform against indi-
vidual LLMs? Table VII showcases the experimental re-
sults between ERICommiter and its underlying LLMs with
lexical/semantic-based retrieval methods, respectively. Ap-
parently, ERICommiter improves LLMs’ CMG performance
across different PLs consistently. Utilizing a lexical-based
retrieval approach, GPT-3.5 achieves average enhancements
of 15.26%, 4.75%, and 13.72% in the METEOR, BLEU, and
ROUGE-L, respectively. Besides, Gemini exhibits substantial
improvements of 199.43%, 155.36%, and 167.77% in terms
of each evaluation metric on order. As for the setting of
semantic-based retrieval, GPT-3.5 demonstrates average gains
of 9.36%, 3.02%, and 7.73% in terms of METEOR, BLEU,
and ROUGE-L, respectively. Meanwhile, Gemini shows sig-
nificant enhancements of 183.79%, 145.02%, and 157.08% in
terms of each metric in order. In summary, similar examples
significantly improve the effectiveness of in-context learning
for commit message generation with LLMs.

To better illustrate ERICommiter’s performance compared
to individual LLMs that only include fixed examples in the
prompt, we further evaluated the performance of ERICom-
miter following the manual evaluation procedure described in
Section V-B. We present radar charts in Fig. 12, showcasing
the enhancement of commit message quality across five key
aspects after employing ERICommiter on GPT-3.5 and Gemini

with lexical/semantic-based retrieval methods. For example,
ERICommiterL(GPT-3.5) denotes the results of ERICommiter
with GPT-3.5 leveraging the lexical retrieval method. To be
specific, both GPT-3.5 and Gemini demonstrate significant
improvements in terms of all aspects, especially Accuracy
and Applicability, when generating commit messages. Judg-
ing from all the above, ERICommiter substantially enhances
LLMs’ CMG performance by retrieving high-quality examples
from real-world projects with in-context learning. That’s to
say, the examples obtained through retrieval are similar to
target code diff, whereas the fixed examples may be irrelevant.
Therefore, the proposed framework, namely ERICommiter,
can generate commit messages with LLMs that exhibit su-
perior performance.

Fig. 12. An Overview of ERICommiterr’s Performance Among Different
Aspects of Manual Assessment

x Answer to RQ6: Our proposed framework, namely
ERICommiter, consistently and substantially improves
its underlying LLMs’ performance when generating
commit messages for code diff s in diverse PLs.

RQ7: How efficient is ERICommiter? Table VIII illus-
trates the efficacy and efficiency comparison between ERI-
Commiter and ERICommiter*, where the latter does not
contain the two-step filtering module. As can be seen, ERI-
Commiter performs neck-to-neck with ERICommiter* overall,
but ERICommiter reduces the retrieval time to 6.22% for
lexical-based retrieval and 7.15% for semantic-based retrieval,
which substantially improves the operating efficiency of the
framework. Besides, the lexical-based retrieval method costs
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TABLE VIII
PERFORMANCE COMPARISON BETWEEN ERICOMMITER WITH/WITHOUT

TWO-STEP FILTERING MODULE

Java Python AVG
Model

Met. BLEU Rou. Met. BLEU Rou. Time(s)

Lexicial-based Retrieval

ERICommiter(GPT-3.5) 23.54 30.40 21.98 19.60 29.53 19.91 35.99
ERICommiter(GPT-3.5)∗ 24.35 32.11 23.73 18.80 30.21 19.73 594.22

ERICommiter(Gemini) 16.00 23.76 17.18 12.06 22.72 14.49 35.99
ERICommiter(Gemini)∗ 16.52 25.31 17.34 11.72 24.23 16.50 594.22

Semantic-based Retrieval

ERICommiter(GPT-3.5) 21.81 30.89 20.13 19.03 29.05 19.55 0.81
ERICommiter(GPT-3.5)∗ 22.24 30.86 22.30 18.22 30.06 20.06 11.31

ERICommiter(Gemini) 15.54 24.19 17.44 11.20 20.86 13.17 0.81
ERICommiter(Gemini)∗ 14.90 23.85 18.48 10.01 20.79 11.31 11.31
Φ ERICommiter∗ refers to ERICommiter without the two-step filtering module.

much more time than the semantic-based method. The rea-
son is that BM25 relies on an inverted index for document
retrieval. An inverted index is a data structure that maps
each word to a list of documents containing that word. For
each code diff retrieval, BM25 needs to traverse the inverted
lists of every word in the entire dataset and calculate a
score based on factors such as the frequency of words in
the document, document length, and the inverse document
frequency (IDF) of the word in the entire dataset, resulting
in slow retrieval speeds. In contrast, semantic retrieval only
needs to perform the operation of converting the code diff into
a fixed-dimensional vector once and then use cosine similarity
to measure the similarity, which has very low computational
complexity. In certain scenarios where ERICommiter shows
a slight underperformance compared to ERICommiter*, we
suspect that the two-step filtering process might exclude
some samples that are highly similar to specific target code
diff s. This could result in the retrieved examples misleading
the LLMs into generating lower-quality commit messages.
Nonetheless, the significantly reduced time overhead makes
ERICommiter a practical framework in reality.

x Answer to RQ7: ERICommiter substantially re-
duces the retrieval time cost compared with ERI-
Commiter* and carries almost the same performance,
showing the high practicality of ERICommiter in real
software development and maintenance.

RQ8: How does the number of retrieved examples in-
fluence the performance of ERICommiter? Fig. 13 demon-
strates the results of ERICommiter provided with various
retrieved examples. As can be seen, with an increasing number
of provided examples, the performance of the LLMs generally
shows an upward trend in most situations. As more examples
are available, they offer richer contextual information, aiding
the model in accurately understanding and generating commit
messages relevant to the target code diff.

However, this trend does not apply in all cases. In some
LLMs, when the number increases excessively, their perfor-
mance decreases. A potential explanation is more examples
may include more noises, as samples that are similar to the
target code diff in the retrieval database are limited. Therefore,

selecting an appropriate number of high-quality examples is
crucial for optimizing model performance.

The relatively stable performance of METEOR in Fig. 13
could be attributed to the nature of the METEOR metric itself
and the characteristics of LLMs. METEOR is designed to
balance precision and recall while incorporating synonymy
and stemming, which puts more emphasis on semantics rather
than literal matching than other metrics. LLMs derive their
understanding of semantics primarily from the code diff itself.
While additional examples can help LLMs learn the structure
and format of commit messages, they do not necessarily alter
the underlying semantics.

x Answer to RQ8: The performance of ERICom-
miter, mainly in BLEU and ROUGE-L metrics, im-
proves with more retrieved examples, but excessive
examples can introduce noise and reduce effectiveness.
Selecting an optimal number of high-quality examples
is crucial for maximizing performance.

VIII. THREATS TO VALIDITY

In this section, we carefully considered the following threats
to the validity of our research.

A. Internal Validity

One threat to the internal validity lies in the potential of data
leakage that the cleaned dataset may have a certain overlap
with the training samples of LLMs examined. As the MCMD
dataset was crawled from Github, it is inevitable that LLMs
might have seen some project code during their pre-training
stage. However, samples in the MCDM dataset are all code
diff s owing to the characteristic of the CMG task, which
carries a totally different input format against the pre-training
samples of LLMs [22], [69], [70]. In addition, we thoroughly
reviewed all testing results and found that exactly no LLM-
generated commit message is identical to the ground truth.
Meanwhile, our proposed framework, namely ERICommiter,
also achieved substantial improvement over its underlying
LLMs. Considering all the factors above, we believe the threat
of data leakage is limited.

B. External Validity

One potential threat to external validity is that we did not
exhaustively evaluate all existing LLMs, but selected four
LLMs for evaluation. However, among the LLMs we selected,
there are both open-source LLMs (Gemini, LLaMA) and
closed-source LLMs (GPT-3.5), and we also chose LLMs
with different parameter sizes (LLaMA-7B and LLaMA-13B).
Besides, LLMs of diverse families are also included (GPT-3.5,
LLaMA, and Gemini). Therefore, our evaluation of LLMs is
relatively representative and can mitigate this threat. In the
future, we can involve more LLMs for experiments.

Another threat to external validity concerns certain manual
errors or inaccuracies during the data cleaning process for the
MCMD dataset. To address this, we excluded non-target PL
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Fig. 13. The Influence of the Number of Retrieved Examples on ERICommiter

samples by regular expressions and harnessed a deep learning-
based model to conduct further filtering semantically to im-
prove the density of high-quality samples, thereby making the
following manual selection more concentrated on high-quality
samples and improving the selection efficiency. In addition,
we introduced a pairwise evaluation mechanism to manually
select high-quality commit messages, where kappa consistency
scores among the evaluators are all over the required criterion,
demonstrating a rigorous and convincing procedure. Hence, we
believe this threat can be minimal.

C. Construct Validity
The lack of comprehensive evaluation metrics also poses a

threat to validity. In this study, we select METEOR, BLEU,
and ROUGE-L as the assessment metrics for CMG approaches
and LLMs because they are widely used in the CMG domain.
Additionally, aligning with the OSS practice, we also propose
four manual evaluation aspects, covering Accuracy, Integrity,
Applicability, and Readability, to systematically measure dif-
ferent kinds of approaches’ commit message generation abil-
ities. Therefore, the evaluation metrics adopted in this paper
are representative and comprehensive.

IX. CONCLUSION

This paper serves as the first systematic study investigating
the capability of LLMs in generating commit messages based

on given code diff s. Specifically, motivated by our pilot analy-
sis, we first screen and construct a high-quality test set through
a rigorous three-step cleaning based on the most widely used
Commit Message Generation (CMG) dataset, namely MCMD.
Afterward, we assess the CMG performance of recent LLMs
against state-of-the-art CMG approaches of diverse categories
and carry out an in-depth manual analysis of LLM-generated
commit messages from aspects of Accuracy, Integrity, Ap-
plicability, and Readability aligning with the Open-Source
Software (OSS) practice. Results demonstrate the superiority
of LLMs in the CMG task where GPT-3.5 performs the best.
Finally, we further propose an Efficient Retrieval-based In-
context learning framework, namely ERICommiter, to improve
LLMs’ CMG performance. Comprehensive experiments prove
the remarkable efficacy and efficiency of ERICommiter, show-
ing its practicality in OSS development and maintenance.

Implications for Practitioners: The research highlighted
the significant benefits of using LLMs for Commit Message
Generation (CMG) in the OSS practice. By re-evaluating
state-of-the-art CMG approaches and LLMs, we presented a
more objective and authentic result for practitioners to instruct
their applications of CMG approaches in daily development
and maintenance. Besides, our proposed ERICommitter sub-
stantially enhances LLMs’ CMG performance in a training-
free manner and boasts a low time overhead, making it an
effective and efficient LLM-based CMG approach that can be



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 16

extensively deployed in modern software engineering practice.
Implications for Researchers: This work carried out the

first systematic empirical study on LLMs’ performance in the
CMG field. A series of automatic and manual assessments
demonstrate their prospects and limitations, shedding light on
the research of future alternative approaches. Besides, we con-
structed a high-quality test set cleaned from the most widely
used CMG dataset, namely MCMD, facilitating researchers
to evaluate future CMG approaches from a more practical
perspective. Finally, our proposed framework, namely ERI-
Commiter, promoted the advancement of CMG approaches,
especially with LLMs, proving the potential of in-context
learning in generating commit messages.
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