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SHARP ILL-POSEDNESS FOR THE NON-RESISTIVE MHD
EQUATIONS IN SOBOLEV SPACES

QIONGLEI CHEN, YAO NIE, WEIKUI YE

ABSTRACT. In this paper, we prove a sharp ill-posedness result for the incompressible
non-resistive MHD equations. In any dimension d > 2, we show the ill-posedness of the
non-resistive MHD equations in H % ~1(R?) x H 2 (R%), which is sharp in view of the results
of the local well-posedness in H*~'(R?) x H*(R?)(s > £) established by Fefferman et
al.(Arch. Ration. Mech. Anal., 223 (2), 677-691, 2017). Furthermore, we generalize the
ill-posedness results from H2~1(R%) x H2 (R?) to Besov spaces B§ ¢ ' (R9) x B,,% ¢(R%) and
Bﬁ;l(Rd) X Biq (R9) for 1 < p < 00,q > 1. Different from the ill-posedness mechanism
of the incompressible Navier-Stokes equations in B;qu Bl 22], we construct an initial
data such that the paraproduct terms (low-high frequency interaction) of the nonlinear

term make the main contribution to the norm inflation of the magnetic field.

1. Introduction

Magneto-hydrodynamics (MHD) is concerned with the study of the mutual interaction
between magnetic fields and electrically conducting fluids. In this paper, we investigate

the Cauchy problem for the incompressible non-resistive MHD equations in R? for d > 2:
(Ou— Au+VP=0b-Vb—u-Vu,

ob+u-Vb=1>0-Vu,

divu = divb =0,

\ (u,b)|t=0 = (ug, bo).

(1.1)

Here the initial data (ug, by) is divergence-free, u = (u',u?, - - -, u?) represents the velocity

field, b = (b',0?,--- ,b?) denotes the magnetic field and P is the scalar pressure. The
non-resistive MHD system ([ILT]) can be applied to describe strong collisional plasmas, or
plasmas with extremely small resistivity due to these collisions [4, [I§].

Compared with the viscous and resistive MHD system, the study of well-posedness of
the non-resistive MHD system ([LT]) becomes much more difficult owning to the hyperbolic
type of magnetic equation. In recent years, there has been some significant progress in
the global well-posedness of the system ([LI) with smooth initial data that is close to
some nontrivial steady state (see [1I, 19 21|, 23] 26] and the references therein). For the

Key words and phrases. The non-resistive MHD equations; I1l-posedness; Besov spaces.
1


http://arxiv.org/abs/2404.14825v1

2 Q. CHEN, Y. NIE, W. YE

local-in-time existence of solutions to the non-resistive MHD system (I1]), Jiu and Niu
[T4] firstly showed the local well-posedness result in H*(R?) x H?*(R?) with s > 3 via
viscous approximations. By means of a new commutator estimate, Fefferman et al. [11]
proved the local-in-time existence and uniqueness of strong solutions in H*(RY) x H*(R?)
for s > g, d = 2,3. Later, relying on maximal regularity estimates for the Stokes equation,
the authors in [I2] established the local-in-time existence and uniqueness of solutions in
H*7"e(RY) x H*(R?) for s > £,0 < e < 1,d = 2,3. Indeed, via time-space mixed Besov
spaces LlT(B;% Irl), one can generalize well-posedness result to H*~(R?) x H*(R?) for s > £.
With respect to Besov spaces, Chemin et al. [§ made generalisation of the main result
in [I1] and obtained the local existence with initial data (ug,by) € Bi;l(Rd) X Bil(Rd),
d = 2,3. Meanwhile, the authors in [§] proposed an interesting problem whether or
not the solution for the Cauchy problem of the system (LLI) exists locally in time and
is unique in corresponding homogeneous Besov spaces. Subsequently, Li, Tan and Yin

[17] solved this problem by showing the local existence and uniqueness of the solution
LA . d
in B}, 1(Rd) x By (RY) for 1 < p < 2d and d > 2. Ye, Luo and Yin [24] generalized
LA . d
the local existence result in B 1(]Rd) x B {(R?) from 1 < p < 2dto 1 < p < oo and
proved that the solutlon map from the 1n1t1al data (ug, by) to solution (u,b) is continuous

from B” - X B”1 to C([0,T7; B” - X Blf, ) for d > 2,1 < p < 2d, which combined Wlth

the result in [I7] shows the local well-posedness of the system (L)) in Bp%, 1_1 X B o, if
1 < p < 2d for d > 2. Unfortunately, whether the system (1) is well-posed or not in
Bp%l_l X Bﬁl(2d < p < 00) is still open.

When b = 0, the system (L)) is reduced to the classical incompressible Navier-Stokes
equations. Well-posedness issues of the Navier-Stokes equations in different types of the
critical spaces have attracted attention of many researchers and there have been many
relevant results until now (e.g. [3l 5, [7, 13, [15] [16] 20} 22 25]). In the context of the critical
Besov spaces Bpg q_ 1(p < 00,q < ), the well-posedness of global strong solution with small
initial data was established by Planchon [20], Cannone [5] and Chemin [7]. By showing
the solution map is discontinuous at origin, Bourgain-Pavlovié¢ [3], Yoneda [25] and Wang
[22] verified the ill-posedness of the Navier-Stokes equations in B;},q(l < ¢ < o0). These
results imply the ill-posedness of the non-resistive MHD system (L)) in B!, x B, , for
q=>1

Throughout the current literature, Fefferman et al. in [11] established the local-in-time
existence and uniqueness of strong solutions in H*(R?) for s > ¢ to the system (L)
and suspected that it seems ill-posed in H g(Rd). Subsequently, they in [12] proved that
this system is local well-posedness in H*™~!(R?) x H*(R?) for s > ¢ and concluded that



3

this result is nearly optimal in the scale of Sobolev spaces. In view of their interest on
the sharp well-posedness result of this system in Sobolev spaces, we are focused on the
problem whether this system is well-posed or not in H2 ' (R%)x H2 (R?). Furthermore, the
problem whether the non-resistive MHD system ((ILT]) is well-posed or not in Bp%, . ' Bp% q
if 1 < p < o0,q¢ > 1 remains unsolved. Therefore, we are interested in the following
question:
Question:
Is the system () well-posed or ill-posed in H2 (R x H2 (R?) and B,,%,;I(Rd) X Bp%q(Rd)
forl<p<oo,q>17¢

In the important work [3] of Bourgain-Pavlovi¢, they showed that the worst contribu-
tion on regularity of solution to the Navier-Stokes equations in a short time stems from
the remainder terms (high-high frequency interaction), which is a part of the Bony de-
composition of the convection term u - Vu. This core idea that remainder terms in the
convection term prevent from the continuity of solution mapping has also been applied
to other ill-posedness results of Navier-Stokes equations [22, 25].

Different from the mechanism of the Navier-Stokes equations in Besov spaces, it is
the paraproduct terms (low-high frequency interaction) not the remainder terms of the

nonlinear term b- Vu of the system (L)) that may lead to the discontinuous solution map
da

of the magnetic field b in the context of Bf,. This observation forces us to construct an
d d d

example to saturate the paraproduct operator from B; L X Bpé q to Bﬁ q for ¢ > 1. More

precisely, the key ingredient is to construct two Schwartz functions f, g such that

|77 (4 o) 7 (G- | g s llgll
(5 izt # 7 Govrcipconn) g ~ 171 g Nl o

Furthermore, f, g satisfy the following estimates: for ¢ > 1 and % <a<l,

1Al o +llgll o < (nlnN)=F, |l f]]

d d
P P s
Bp.q Bp.q B

~ N1 ~ (Inln N) "N,

hS1i=0

a llgll 4
>¥3 > P
,1 Bp,l Bqu
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Based on such scalar functions f and g, we construct a special initial data by whose
frequency is supported in a family of cuboids in different dyadic annuli. Distinct from
the structure of by, the frequency of ug is higher and locates in one cuboid with different
direction from that of by. By using the Lagrangian coordinates in the equation of the
magnetic field and the asymmetric structure between wug and by, we can show that the
frequency of the second approximation concentrates on the superposition of many cuboids
and thereby the norm inflation phenomenon occurs for a short time.

Firstly, let us recall a the local-in-time existence and uniqueness of strong solutions in
H* for s > £ to the non-resistive MHD equations (1.1).
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Theorem 1.1 ([12]). Let d > 2. Take s > % and 0 < € < 1. Suppose that the initial con-
ditions satisfy ug € H*77¢(RY) and by € H*(RY). Then there exists T, > 0 such that the
non-resistive MHD system (1)) has a unique solution (u,b) with b € C([0,T,); H*(R%))

and
we O([0,T2); H 1 (RY) N L2([0, To); H*(RY)) N LY([0, T.); H**H(R?)).

Remark 1.2. By using the time-space mized Besov spaces EIT(BQ%IFI), one can show that
the system (1)) is locally well-posed in H*~'(R?) x H*(R?) for s > ¢. That is, let d > 2
and s > £, if initial data (uo,bo) € H*~'(R?) x H*(R?), there exists T, > 0 such that the
system (1)) has a unique solution (u,b) with u € C([0,T.); H*~*(R%)) N L}([0,T.); B55")

and b € C([0,T.); H*(RY)).

This theorem guarantees that for any initial data (ug,by) € S(R?), there locally exists
a unique solution (u,b) to the non-resistive MHD equations ([L.T]).
Next, we are in position to state our ill-posedness result by constructing special Schwarz

functions as initial data.

Theorem 1.3. Let d > 2. The system (1) is ill-posed in H:"'(R?) x HE(RY) in the
sense of “norm inflation”. More precisely, for any 6 > 0, there exists a solution (u,b) to
the non-resistive MHD equations (1) such that initial data (ug,by) € S(R?) satisfies

luoll g+ + Ilbol,4 <
and for some 0 <t <9,

16CE, ) g >

H?2

S| =

Remark 1.4. Note that the system (L)) is locally well-posed in H*~1(R?) x H*(R?) with
s > £, Theorem[L3 shows the sharp ill-posedness for (L)) in H:Y(RY) x H2(RY). As it
1s known, the Navier-Stokes equations are locally well-posed in the critical Sobolev space
H%_l(Rd). On the other hand, Theorem[I.3 shows that the non-resistive MHD equations
is ill-posed under the framework of the critical Sobolev space HEL(R%) x H2 (R%). Inter-
estingly, in our example, the “norm inflation” happens to the magnetic field not the flow
field (see(330])), which reflects that the velocity field plays a more important role than the

magnetic field in the interaction between the two fields of the non-resistive MHD system.

We are indeed able to prove a stronger statement than Theorem More precisely,

we can show the following main result:

Theorem 1.5 (Main result). Let d > 2, 1 < p < oo and ¢ > 1. For any § > 0,
there exists a solution (u,b) to the non-resistive MHD equations (LIl) such that initial



5

data (ug, by) € S(R?) satisfies that the Fourier transforms of (ug, by) are supported on an

annulus and

luoll , 4y + llboll 4 <0,
By By

and for some 0 <t <9,

1)l

B

>

S| =

Sla

q

Because the Fourier transforms of (ug, by) in Theorem are supported on an annulus,

one obtains that [lug 4, ~ ||u0||B§2,1 and |[|bo|, ¢ ~ ||b0||3§2' Taking advantage of

H% < H %’ we immediately conclude Theorem by Theorem Moreover, one can
immediately show the ill-posedness in the corresponding nonhomogeneous Besov spaces
by the proof of Theorem

d_ d
Corollary 1.6. The system (1)) is ill-posed in B4 1(]Rd)><B;§’,[1(]Rd) forl1 <p<oo,q>1.

Ld_
Remark 1.7. Recall that the Navier-Stokes equations are locally well-posed in By 4 1(p <

00,q < 00) for large initial data and whether the Navier-Stokes equations are well-posed

.d_q
or not for large initial data in Bj. (p < 00) remains open. Different from the Navier-
Stokes equations, Theorem[I.3 shows that the non-resistive MHD system (L)) is ill-posed

L d_ . d
in Bry (RY) x B2o(RY) with 1 < p < 00,q > 1.

Below we list the local well-posedness/ill-posdeness results of the non-resistive MHD
d d

system in the homogeneous Besov spaces By, X Bjg.

.d_q . d
Local well-posedness/ill-posedness of the system (1)) in Bfy, X Bpg

Results Range Category

[17, 24] g=1,1<p<2d Local well-posedness
[24] g=1,2d<p< o0 Local existence

[3, 22, 25] g>1,p=o0 Il-posedness
Theorem g>1,1<p< [ll-posedness

As is shown in the table, our result completes the well-posedness and ill-posedness of
the non-resistive MHD equations in critical homogeneous Besov spaces except for the case

2d <p<oo,q=1.
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2. Preliminaries

To begin with, we review briefly the so-called Littlewood-Paley decomposition theory
introduced e.g., in [2 [6]. Suppose (x, ) be a couple of smooth functions with values in
0, 1], where supp x C {f € Rd“ﬂ < %} and supp ¢ C {f € ]Rd}% <€) < %} Moreover,
we assume that ¢ satisfies

Y @i =1, Ye e RN{0},  where p;(€) = p(277).
JEL
Let us define the homogeneous localization operators as follows.

Aju=¢;(D)u= 2dj/ 9 2Zyu(z—y)dy, Vj€EL,
RS

Sju=x(27D)u = de/ h(27y)u(z — y) dy, Vj € Z,

RS

where g = .%o and h = %~ 'y. The nonhomogeneous dyadic blocks A; are defined by
Aju =0, ifj < =2 A_qu=x(D)u= /3 h(y)u(z — y) dy,
"

Aju = p;(D)u = 2dj/ 9g(2y)u(z —y)dy,  Vj=>0.

R3
Definition 2.1 ([2] Homogeneous Besov spaces). Let s € R and 1 < p,q < oo, The

homogeneous Besov space B;q consists of all tempered distributions u € S, such that

def
Bpa

lulls;, = |[@I1A5ull)sez|, < oo

‘zq (z)

Definition 2.2 ([2] Nonhomogeneous Besov spaces). Let s € R and 1 < p,q < co. The

nonhomogeneous Besov space B, , consists of all tempered distributions u such that

def

s =
BPvfI

[ < 0.

‘(WsllﬁjUIle)jez

‘zq (z)

In the context of this paper, we often use the following mixed type time-spatial space.

Definition 2.3. Let T > 0, s € R and (p,q) € [1,00]?. The mized time-spatial Besov

space £§B; consists of all uw € S;, such that

7q
def

HUHL;B;,Q = < 00.

‘ (27| Ajull Ly 1v ) jez

)ZQ(Z)
Lemma 2.4 ([2]). Let 1 <p <p; < o0 and s € (—dmin{pil, 1- %},1+ pil]. Let v be a

A
vector field such that Vv € LL(B!

p1,1
such that all solutions f € LT (B (R?)) of the transport equation

Of +v-Vf=g, f(0,2)= folx).

(R%)). There exists a constant C' depending on p, s, p,



with initial data fy € B;l(Rd) and g € L} (R*; B;l(Rd)), we have, fort € [0,T],

loc

t
R e
! 0

e ) < €0 (14 iy, 07);

where V,, (t) = fot |Vol| o  ds.

Byl (RY)
Lemma 2.5 ([10]). Let s € R and 1 < ry,79,p,q < 00 with o < ry. Consider the heat

equation

Ou— Au = f, (0, z) = ug(x).

. L s—24 2
Assume that ug € B (RY) and f € L (Bpy e (R%)). Then the above equation has a
2

N C
unique solution u € L1} (By g™ (R?)) satisfying

U a2 < C'(||uogl| s + ool 2 .
[l 5wy (lluoll g5, oy ”fHﬁ?(Bp,q%% (Rd)))

Lemma 2.6 ([2]). Assume that u is a smooth vector field. And ®(t,z) satisfies
t
(2.1) O(t,x) =2+ / u(s, ®(s,x))ds.
0
Then, for allt € RY, the flow ®(t,z) is a C diffeomorphism over R, and we have
t
I D)1 < exp (/ | Du(s)l| = ds).
0

Lemma 2.7 ([23]). Let u € S(R?) with divu = 0. The flow ® is defined by u in ZI)).
Then ® and the inverse ®~ are C' measure-preserving global diffeomorphism over RY.
There holds that

t
Juod| s, §C’exp</ [Du(s)llzz ds) [l
’ 0

B SE (-1,1), p,q€[l,00)?

Proof. Using Lemma 2.7 in Chapter 2 of [2], we infer that for 1 < p < oo and any j, k € Z,
145 ((Asu) 0 @) l1» <CYAgar]lp min {27 D& e, 27| DO 1 }
<C||Agul| o (| D®|| e + || DD || ) min {277, 277K
Therefore, for s € (—1,1) and u € BS (R%), we have
2|1 A (u o @) v

<2 (18, () 0 @) s + 3 18, (B 0 2) 1)

k<j k>j

<O(|D®|| = + DL [|z=) (Y 2" + Y 27727 Ay s

k<j k>j



8 Q. CHEN, Y. NIE, W. YE
=C(| DO| = + [| DD [ 1) (Y 25 D=2 Ay o + Y~ 207 HOFD25 | A 1)
k<j k>j

Then taking ¢? norm on both sides of the above inequality, thanks to s € (—1,1), one
obtains that

CID®| L + [[D7[[ <)

Combining with Lemma [2.6] we complete the proof of this lemma. O

3. Proof of Theorem

First of all, we introduce the parameters in this section. Let N be a large enough
integer defined later. For any ¢ > 1, a is a constant satisfies that % <a<l.

Before constructing initial data (ug, by), we introduce two smooth functions @E({ ), 5(5 )
satisfies that

suppP(€) = {€ €RY 1< & <2, (InlnN)™P <& <2(InlnN) ™ Z7A2} = A,
3.1 ~
( PE =1L, VEe {(eR3<&6E<I 2 InnN) <& < H(InlnN)~hi £ 2} =
and
suppp(€) = {€ €RY 1< <2, (InlnN)™ <& <2(nlnN)Li>2) :=C,
3.2 N
( P =1,Vee{€eR)3<g < I 3l N) ' <& < I(InlnN) ™ i>2}:=D.
We construct initial data (ug, by) as follows:
[ pa(f 2Y0(27N) L 2V
w=(~7 (gl 2Nd(1nlnN)3+d> 7 <2Nd(lnln N)3+d)’0’ -0,
_ 1 (&26(279¢) o1 (002778
i _(_ 24 7 (E 2idjo ) 24 7 ( 2idjo )’0"“’())’

N . N N . N
SIsT 2IsT%

(3.3)

where .Z ! denotes the inverse Fourier transformation. Actually, the initial data (ug, by)
depends on N from the above definition. To begin with, we need to verify that the initial
.d_q . d
data (ug, by) is small in Bg, (R%) x BZ,(R%) for all ¢ > 1.
3.1 Estimates of initial data (ug, by).
By the definition of (ug, by) in (B3], we have

& 2Yg2TN Vg2
Uo(8) = ( £, 2V4(In In N)P+e’ 2Nd(In In N)#Hd 077 O)’

~ (279¢) (279¢)
e = (-2 % d’wg 3 ¢2]df, 0....0).

<<y <<y

(3.4)

oz
MIZ
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It is easy to verify that divug = divby = 0. Assume that ¢(¢£) € C®(RY), (¢) =1 on A

and that @Z is supported in an annulus ,ZL where
{f € Rd‘ 1<6<3,3(InnN)™" <& <3(InlnN)~', i # 2}.
Moreover, ¢ satisfies that | D¥4)||z~ < C(Inln N)*,Vk > 0.

Noting the supp @E({) C A, we obtain

~ 2N ~ ~ -~
o(§) = 2Nd<1n e~ 6vETOUET. 47,0, 0).

For uf, we have uj = K x9(2N.), where

K(z)=—(2n)% [ 2@ Vo)™t de = —(2r)7 22V [ £4(¢)e? € ac.
(@) =~ (2m) Lﬁy< s = —(am 12 [ @igeeag
Let M = |1+ gJH, we have

(1+ 28 )M K ()] = — (2m) 722V [ ((1d = Ag)M e =€) 245(¢) d¢]

Rd

~ et [ (00— A EE)e o

2ﬂ_ 22Nd‘ Z Caﬁ/ z2Nm§aa 8ﬁ%>df‘

lof+[8|<2M

§C2Nd Z caﬁ(lnlnN)‘O‘H‘ﬁ'“‘(d_l)
laf+|Bl<2M

<C2N(Inln N)*M.

Due to M > %l, we can infer from the above inequality that

|K(x)| de <C(Inln N)2M2Nd/ (14 [2¥2*) "M dz
R4

Rd

<C(Inln N)?M/ (1+ |2[)~M do
Rd

<C(lnln N)**,
Therefore, with the aid of Young’s inequality, one has
c2N
. ! < - N,
(35) R e Ly P TCART P
C(Inln N)2+d2N C
e (I PAD | I
(Inln V) BE, Inln N
2N C
. 2 = oN. <
(36) 1815 = TprEe Y@ g < o

1 z] denotes the floor function.
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In terms of by, noting the support of (E(&), it is easy to verify that % ~ (Inln N)~L In

the same way as estimating of ||u|| a_;, we obtain that
prq

i 1227 N7 \ioa

N 4N
2 SIS

Similarly, it is easy to verify that for N large enough and all 1 < p < oo, we have

luoll 4 < C(Inln N)™H, uoll P 2%, ol ayn <227,

(3 8) pl pl Bpl
Ibol| .« < N'7°, [bol| . pin S 2V, [lbol| piie S 2*N,

Bzf)yl pl pl

3.2 Local well-posedness for (ug, b)) with the form of (3.4).

We begin to establish a locally well-posed result for the system (II]) with the initial
data constructed in (34]).

Proposition 3.1. Let initial data (ug,by) be defined by BA). Given 1 < r < 2d, there
exist constants Cy and Ny such that for N > Ny and T = (In N)~'272V  the system (1)

has a unique local solution (u,b) associated with initial data (ug,by) satisfying
L4 . d . d . d
we C(0.T], By N BT N LN (0.T), B n BT,
. 4 5442
b S C([Ou T]7 BrT,l N Brr,l )7

and the following estimates hold for allt < T':

(3.9) ||u||£oo(B%,1)+HuH i < 2Cy(InIn N)™!
t 7,1 r,1
1 < 202N
(3.10) ol ) 1l n) < 2C02%,
11 < 2052%Y,
(3.11) il ) 0l y 10 < 2Co
(3.12) ||b|| s < 20N,
Brll)
1 < 203 N1—29N
(3.13) ||b||£?(3flﬂ)_ Co ,
(3.14) ||by|£§o(3flﬂ) < 2CIN1=92N

Proof. According to the local well-posedness theory of system (1.1) in [18], there ex1sts 2
positive time T} such that the system (1.1) possesses a unique solution (u,b) € B ' B[l
with initial data (ug, by) satisfying

we C(0. Tl By ) 0 £1(0. Tol, B,

. d

b e C([0,Ty), BL,).
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Furthermore, the uniform estimates in [18] shows that, for any small enough 7, there exist
Co > 1and a0 < T, < Ty, where T,, depends on ug and by, such that for any 0 < Ty < T,

U d_ + b(t < Co(llu + ||bo]| . «
Oty IO st S Collll s+ ol )

(3.15)
: <.

Since (ug, by) € S(R?), one can deduce that for short time Ty,

Ju HL2 ([0,To], BT )ncl([o,To},Bffl

. d . d
we (0, T, By 0 B ) N LY ([0, To), B, nB:,),
Indeed, using Lemma 2.1-Lemma 2.2, one has that

Huch([O,To];Bflﬂ)ﬂﬁl([OvTOLB;jS)

To
<loll o+ [ T b )
r,1 0
To
Sl g+l o Bl s +C [ O] O] 20
r,1 r,1 7,1

L3([0,To] Bfl *([0,70], Bfl )

<
_HUOHB%Jrl + CUH HLOO([() Tol: Br+1)m£1([0 To], Br+3)

(3.16) 4 Cllluoll g + llboll o ToliBll Bl

7“1 7“1 T} )

Taking V on E.q.(1.1)2 and using Lemma 2.2, we obtain that

100, iy < Mol

To
+C/ [u(t) d+1||b( M e + M@ LasallO@ON 40 + ||“(t>HBff3”b(t)H' dt

d
T
r,1 r,1 r,1 Br',l

<ol 2+ CuBON ot

"‘C\/ TOHbH dio H H

cdyg .43
> ([0,To); BT, ) L£o2([0,To}; B,y )NL([0,To], B, )

+CVTo([[uoll a—s + [1boll g )lull

d d
4y 2443
Bl £22((0,To; By INL([0,To]. By

+ C(l[uoll ,a- +||bo|| f)ll @l

d .
.dy3
By £1([0,70],B,7y ")

Plugging estimate ([BI6) into the above inequality yields that

191l sl S < [lboll . d+2+0(||uO|| v+ [1boll g )llwoll a4

d d
[OT} ) 7«71 ':1 Tl

+C(77+(||uO|| a 1+||bo|| praaiol

7“1 7“

"'_C\/TOHbH 4o H |

. i+1 . i+3
([0, Tol;Bly ) L0 TolBy )NLY(0, o], B )

Ldy
L£eo([0,10]:B,; )
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(3.17) C(VTo +n)([|uoll, o L+ [lboll _)IIUII

Q+1 5 Q+3 .
(10,01 )L (0,70 BT )

Collecting the estimates (3.10) and (B.17) together, for taking n and T} small enough, by

continuity argument, we have

lull , + ol

(0, Tol: B, NLL(0,T0], B E‘X’(OT]B )

<C([luoll . _71,||bo|| _)(IIUOII d+1+||bo|| d4s)-

'rl 'rl 'rl 7‘1

Now we need to show that T, can be extended to (In N)~'272¥. To prove this, we are
focused on showing a priori estimates (3.9)-(3.14) on [0, 2(In N)~1272V).
With the aid of Lemma 2.4] we have

1 <
B18) bl e <Ol e ol + 1B Tl o)
Taking advantage of Lemma 2.5 one can deduce that
3.19 u a, +|u < C(|Ju +u2 + T2 .
(3.19) I ”5%0(351 L HUT g S (I oH 4o el 5 6] T<Bfl>)
Similarly, we can obtain that
b < b
Ity <Ol Dol
2 b b
(3.20) Iyt B+ I8l )
With the aid of Lemma [Z5] one can infer that
|IU||£%O(BT%1) + ”u“a;@?“)

(3.21) <C(|Juoll .2 + VT|lull || || g +T||b|| ||b|| d+1)

Br,l E’ ) 'rl) )
and

il o+ ol
T

Cllull g+ VTNl e Tl s
3.22 +T|bll  a |IBll L ai, 4+ TB|? :
(3:22) I I+ TS )
Taking derivative on E.q.(I]),, we obtain by Lemma [2.4] that

Il 50, esClly Yol o+ CIBI_ e il e

(3.23) +CTull a0 d+2+0f||b|| apull | a.s).

cxBr LR By, cxB By
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Since initial data (ug, by) satisfies ([3.8)), let constant Cy > max{2C?, 16}, we can infer from

the above estimates that there exist a positive time 77 such that for ¢ < T3, estimates

(39)-(B.14) hold. We define
T* := sup {O <t< 2_2N+1(1n N)_l‘(BZQI) — (BI4)) hold on the time interval [O,t]}.

If 7% =272"*1(In N)~!, we complete the proof. Otherwise, for ¢t < T* < 272N (In )~
combining (3.9) with (B.I8)), we have

||b||£oo(B% : <exp(20Cy(Inln N) ) (N1 + 4C5N " *(InIn N)™1) < CoN'2,
T 1

where the last inequality holds for large enough N. Utilizing (8I9) and the above in-

equality, one has

] ot lull , i <O(C(Inln N)™ +4Cy(Inln N)=2 4+ 27 (In N)2CaN?729)
T 7,1

.d_
‘C%O(Br”zl

<Cy(Inln N)™*.

In the same way as deriving the above inequality, plugging (3.9), (3.12) (3.I3) and (3.10)
into ([3.20) yields that for large N,

||b||£oo(B%H) <exp(20Cy(Inln N)™1) (2N + 402N 22N 4 403N =2V (Inln N) ™)
T r,1

<C3Nt—2N,

Similarly, owing to (B.10), (8.12) and (3.13), we have
lull .4 + y|uy|£1 e <C(2N +8C2(In N) 22" + 8CH(In N)"LN?2027N) < 2V,

T( 7,1
and we can deduce by (BI0)-(3I4) that

Ju] + lull, paoa) SO +8CH(In N)722% 4 8CH(In N) 122

d
Py |
L%O(Br’cl ) T( 1

+8CeN?2(In N) !N 4+ 8CE(In N) "t N?72%)

<Cp2*M.
Finally, plugging the above inequality, (39), (B12)-[BI4) into ([3:23)), one obtains that

||b||£oo(B%+2) <exp(20Cy(Inln N) 1) (22 4 4CCEN'*22N + 16CCY(In N) "t N1722V)
T

7,1

SCSLNI_Q22N.

The above estimates contradict to the definition of T*. Therefore, T* = 272V (In N)~'.
U
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3.3 Norm inflation.

In this section, we show a norm inflation phenomenon for the magnetic field b(¢, z).

Before doing this, we define the flow map ®(z,t) by

dP(z,t)
o LD it (1),
O(x,t)|i=0 = z,

In the following, 7' = (In N)~'1272¥. We rewrite the magnetic field b(¢,z) on [0,7] as

follows:
b(t, ®(x,t)) = bo(x) +/0 (b-Vu)(s,®(z,s))ds.

Based on the above equality, we decompose b(T, ®(x,T')) into the following three parts:

b(T,®(x,T)) =bo(x) + /OT(bo Ve ug)(t, x) dt

- -
g

B

+ /0 (b- Vu)(s, ®(z, ) ds — /0 (by - Ve up) (¢, ) dt

7

g

IS
Now, we aim to estimate the lower bound of ||]B||Bo and the upper bound of ||IS||Bo

Estimates of ||[B||Bgoq' Due to BO . Bgooo and ||f||Loo > |£(0)| = |f]Rd £) d¢|, we

have

172 54 zC)AN/TbO-WA das|
oo 0
o [ [ [ paehim (€ - e aie —m andsag

T
[ | @(z—Nsﬁ%(n)(sQ—m)e—s*f—“%%(s—n)dndsds)
R4 R4

—c)/Rd/ [ B e — me G — n) dnds dg
_[B

For IB, by the definitions of by and ug, taking change of variables, one yields that

B N 1 — e TlE=nl*
Iy —C} /Rd /Rd PN () (&2 — nz)wug(f — ) dndg

_ S(9-N 5(2‘”7) 1 — e Tle=nl 2Ny (2N (¢ — p))
_C’/Rd /Rd p(277¢) 2jdja (& — 1) € —n? ONI(TnTn )P+ dnd¢
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(/Z;('f]) = J—N = 1—6_T22N‘5_2j7N7~7|2 1;(5_2] N~ )
_c)/Rd /R a — (& — 27 Vi) T o N dij dé|.

N 4N
7§]§ 5

Noting the fact that 3, ¢ and ¢ support on an annulus C := {¢ e RS2 < [¢] < 5}, and
2N < 2%
such that

(325) o <[¢—2 Vi <e, &-2Nip~ 1, i€ € supp B(E), 7 € supp o(7).

Therefore, we can easily deduce from 7' = 272V (In N)~! that

7| < 1 for large enough N, we obtain that there exist constants ¢y, ¢;

IP > Co(1 — e ™M™y (InIn N)>24(Inln N) >IN,

Owning to
%wmlnm-% if 7 € supp &(7); & ~ (Inln N)~1, if € € supp ) (€),

combining with ([B:2H), we have

o H(277 1 — e~ Tl 9Ny (2N (e —
[%3 :C’ /Rd /Rd S0(2 Ng) N<Z<4N @(M ' n) (51 - 771) ‘ ’ w( (5 TZ)) d77 dg‘

mo 275e [§—nl*  2Y(Inln N)3+d
:C‘ / / Z 7]2 gb 2j_N7~]1)1 — €~—T22N|§~—2J’*Nﬁ|2 {ﬁ\(é - 2j—N7~7) dﬁ dé‘
riJRe Ty moJ € —2-Np)2  (InlnN)3+d

<Cy(1 — e~ ™M™ (InIn N)~24(InIn N) >IN,
Hence, we can deduce from the above two estimates that
75| 5o, =Co(1 - e~ N (InIn N)?2(Inln N) 34N
(3.26) — (1 = e MY (InIn N)~24(Inln N)3~IN -,
Choosing N large enough such that ¢o(In N)~! < %, utilizing the following inequality
2

l—e _x>2forz€[()l], l1—e ™ <uaforz>0,

one can infer from (B.26) that

[ Cgco (In N)"'(InIn N)* 24 (InIn N) 3 IN1-
— Oy (In N)H(Inln N)"*(InIn N) 34N
(3.27) >C(In N)"}(Inln N)~ 13 Nte,

Estimates of ||I5]| 5 . We decompose ||I°|| 50 , into the following three parts:
00,q 0,

T
1% o, . gH/O (bo(I)—bo)-((Vu)o(I))dtHBgM
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e (00 @ = (T dl

T
+ H/ bO-V(u—emuo)(z) dtHBO
0 00,q

=10+ 15+ 5.
L d .
For I7, using B); < BY, , and Lemma 27, we obtain for d < p < 2d that

I} <CT|bo® — boll _ a I(Vu) o 2]
o BP

da
oo'P
LT B, LT B,

T
(3.28) <Cexp ( / I1Du(s) e ds) TVl ], g

p,l T p,1

With the aid of Proposition B.1], we have for T < Tj),

41)

£o([0,7],B7 5t )

T
exp (/ |Du(s) |1z ds) <exp (Tu]
0
(3.29) <exp(27*(InN)7t. 20022N) < C.
Combining the above inequality with ([B28), (B11) and ([BIZ), one obtains that

2
a flull” 4
oD .24
oo B o3P
T “p,1 T Pp,1

(3.30) I; < OT*||o] < 027N (In N) 2NN < O(In N) 2N,

In terms of I3, taking advantage of Newton Leibniz formula, one can deduce that

ls<0f||bo|| gt (Ve o @ = (Vu)()] , 4

T p,1 T p,1

—C\beoH ol a9((V7~t)(9<1>+(1—9) )db| | a

T pl
1

_C\F||bo|| o | [ (D*0) (0D + (1 —0)z)- (D —2)dd]|

LF p,1 0 T5p,1

<CVTlboll _ s 19 -2l g/u (D2u) (0D + (1 — O)z)|| 4 do.

T p,1

With the aid of ([3.24), Lemma 27 and ([3:29)), we have

t
15 <OVTl g || [ wovas] gl g
L%"B%1 0 L°°B TBp,l

(3.31) <SOVITIbol g llull o llull | 4.
L¥Byy L¥EBy,, LBy,

By (BII) in Proposition Bl we have that for T < 272V (In N)~! and d < p < 2d,

HUH 9 S22 < HUH d+1 + ”u” di3 < 2C022N-
B 1BP

TPp,1 t Ly p,1
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Plugging the above estimate, (3.8) and ([B.10) into (B.31)) yields that
(3:32) I§ <C27 N (InN)7E 2V 22V < ON'T(ln N) R,

By Lemma 25 we can bound I3 as follows:

I3 <CTboll  a llu—ePuoll 4,

LT p,1 T “p,1

<CT|boll o ([lu-Vull oy +[16- VO~ ayy)
Ly p,1 LTBp,l Ly p,1

<CTlll o (VTlul g ull | oo
L%on,l L%on,l T p,1

+ Tl a ol s +TOI* ay,)

LT Bp,l L’%o p,1 L%OBpp’l

The above inequality combined with Proposition Bl shows that

15 <C272N(In N)"*N'"((In N)—%QWV + (In N)~122Y 4 (In N) "I N20-e))
(3.33) <C(InN) 2N

Collecting ([B30)- (3:33)) together yields that
(3.34) 17%]l g, < C(In N)"2N'" 4+ C(In N) "2 N'~* < C(In N) 2 N'~.

Estimates of Hb(T)Hqu In view of (B27) and (B34), for % < a < 1, we can deduce
that
16T, @, Ty 217 — Mool — 1) s

>C(InN)~(Inln )~ =%N1=0 — ON 7" — C(In N)"3N'—®

>C(In N)'(Inln N)~ 134 Ni=e,

Therefore, we obtain from Lemma 2.7, the above inequality and ([8.29) that

1b(z, T

B

> Clo(T, @, 7))l

q

(3.35) > C(InN)H(Inln N) 24N = 00, as N — oo.

Sla

Meanwhile, we can deduce from ([B.9) that

(3.36) ||u(z,t)]] i, <C(InlnN)™t =0, as N — oo.

L d_q R =~
LE(BL, INLhBE)

Therefore, combining ([B.3), B.7) and (3.33]), we complete the proof of Theorem by
setting 6 = (Inln N)~! for sufficiently large N.
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Finally, by the construction of initial data (ug, by) in ([B.3]), we immediately obtain the
da

following corollary which shows that Bp; ¢ with ¢ > 1 is not an algebra. More precisely,
ford>1,1<p<oo0andqg>1, there exist f and g such that
Il o £ CIA

d
p,q

a gl a-
5P 5P
Byp.q Bp.q

Corollary 3.2. Let 1 < p < o0,q > 1 and % < a < 1. Let N be large enough integer.

There exist two scalar functions f~ and g" such that

1A S(nlnN)™' =0, as N — oo,

a + gV 2
" g ||B§q

meanwhile,
NN ¢ 2 N"*(Inln N)™ — oo, as N — oo.
BP

Proof. Let fV and ¢" be defined by
N _ g1 5(2_%) N _ g1 $(2_N§)
U N<Z<4NJ ( 27d jo >’ g =7 <2Nd(ln1n]\f)>’
23I>75

where ¢ and ¢ are consistent with those in @I and B2). From (&0) and (37), one
easily deduces that

L sh S Na~*, ||9N|| a <C(1H1HN)

Therefore, for large enough N, due to a > E’ we have

171+ Ng™1 3 (Inln N)~*

d
By embedding B g B”q and ||h||z~ > |R(0)] = | fRd €) d¢|, one obtains that
16 > Ol o> ClAN(Y ")l

d
BP
Bp.q

>0] [ | s ma¥s —manag]

_ 6(277m) P27V (E — n))
= N<Z<4N /R /R 2" 2nd 2Nd(InIn N) d”dg‘

C 3 1) U= 2 d d
B NZ4N /Rd /Rd 5 lnlnN 5’
<<=

——o

We easily deduce from (3.23]) that
19 N|| >C Z *(InIn N)™' > ON'"*(Inln N)~!

N<]<4N

'Um&

Therefore, we complete this proof. O
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