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Eigenvalue bounds for the distance-t chromatic

number of a graph and their application to Lee codes

Aida Abiad∗ Alessandro Neri† Luuk Reijnders‡

Abstract

We derive eigenvalue bounds for the t-distance chromatic number of a graph,
which is a generalization of the classical chromatic number. We apply such bounds to
hypercube graphs, providing alternative spectral proofs for results by Ngo, Du and
Graham [Inf. Process. Lett., 2002], and improving their bound for several instances.
We also apply the eigenvalue bounds to Lee graphs, extending results by Kim and
Kim [Discrete Appl. Math., 2011]. Finally, we provide a complete characterization
for the existence of perfect Lee codes of minimum distance 3. In order to prove
our results, we use a mix of spectral and number theory tools. Our results, which
provide the first application of spectral methods to Lee codes, illustrate that such
methods succeed to capture the nature of the Lee metric.

Keywords: Distance chromatic number; Eigenvalues; Hypercube graph; Lee graph;
Perfect Lee code

1 Introduction

In the past, various distance based colorings have been investigated in the literature.
Distance based coloring was first studied in 1969 by Kramer and Kramer [30, 31], when
they introduced the notion of a t-distance coloring, for some natural number t. In this
type of coloring, we require that vertices at distance at most t receive distinct colors.
When t = 1, we recover the classical vertex coloring. Throughout the years, t-distance
colorings, in particular the case when t = 2, became a focus for many researchers; see e.g.
[11, 21, 22, 41].

The distance-t chromatic number of a graph G, denoted as χt(G), is the smallest
number of colours required in a t-distance coloring. For a positive integer t, the t-th
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power of a graph G = (V,E) on, denoted by Gt, is a graph with vertex set V in which
two distinct elements of V are joined by an edge if there is a path in G of length at
most t between them. Thus, the distance-t chromatic number is equivalently defined
as the chromatic number of the t-th power graph, that is, χt(G) = χ1(G

t). However,
even the simplest algebraic or combinatorial parameters of power graph Gt cannot be
deduced easily from the corresponding parameters of the graph G. For instance, neither
the spectrum [15], [3, Section 2], nor the average degree [17], nor the rainbow connection
number [10] of Gt can be derived in general directly from those of the original graph G.

The above, plus the fact that this parameter is known to be NP-hard to compute [34],
provides the initial motivation for the first part of this work, where several eigenvalue
polynomial bounds on χt(G) will be derived and optimized, analogously as it was done
for the t-independence number αt(G) (largest maximum size of a set of vertices at pairwise
distance greater than t) in [1]. In particular, we extend the best Ratio-type bound on
α2(G) for regular graphs [1, Corollary 3.3] to χ2(G) of general graphs, and show its
optimality.

In the second part of this paper, we present several applications of the new spectral
bounds on χt(G) to coding theory. In particular, we present several eigenvalue bounds
for χt(Qn) of the hypercube graph Qn, which turn out to give alternative proofs and also
bound improvements to known results by Ngo, Du and Graham [35]. Next, we focus on
a generalization of hypercube graphs, the so-called Lee graphs, which are associated with
the Lee metric. We investigate combinatorial and spectral properties of Lee graphs, and
use them to provide the first eigenvalue bounds for χ2(G(n, q)) of the Lee graph G(n, q),
extending results by Kim and Kim [28]. We computationally show that our bounds are
tight for several instances, and that they are competitive when we compare them with
the optimization bounds for Lee codes previously obtained via linear programming (LP)
by Astola and Tabus [7] and via semidefinite programming (SDP) by Polak [38]. Finally,
we provide a complete characterization for the existence of (not necessarily linear) perfect
Lee codes of minimum distance 3. Our results demonstrate that spectral methods succeed
to capture information about the Lee metric.

This paper is structured as follows. In Section 2 we provide an overview of the existing
spectral bounds on χt(G), and we prove an extension of one of them to non-regular graphs.
In Section 3 we use the spectral bounds from Section 2 to obtain an alternative bound
on χt(Qn). While for t ∈ {2, 3} we obtain an alternative proof to the bound on χt(Qn)
by Ngo, Du and Graham [35], for t ∈ {4, 5} our spectral bound sometimes outperforms
it. Next, in Section 4, we show several combinatorial and spectral properties of the Lee
graphs, and using number theory tools, we derive some novel characterizations of the
adjacency spectrum of these graphs. In Section 4.3 we apply our spectral bound on χt(G)
from Section 2 to Lee graphs, extending results by Kim and Kim [28]. Finally, we provide
a complete characterization for the existence of (not necessarily linear) perfect Lee codes
of minimum distance 3 in Section 5.
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2 Eigenvalue bounds for the distance chromatic num-

ber of a graph

In this section we give an overview of several spectral (Ratio-type) bounds on χt(G). This
was first investigated in [1] for regular graphs and for the so-called t-independence number
αt(G) (independence number of Gt), and this result was extended in [3] for χt(G) for
general graphs. Indeed, the distance-t chromatic number of a graph is directly related to
the t-independence number via the following inequality:

χt(G) ≥ |V |
αt(G)

. (1)

In addition to this general bound on χt(G), we obtain a slightly stronger version which
holds for regular graphs; see Theorem 2. Moreover, we also present closed formulas for
the best (general) Ratio-type bounds for χ2(G) (see Theorem 3 and Corollary 4) and
χ3(G) (see Corollary 5), based on similar results for α2(G) and α3(G) from [1] and [26],
respectively.

We start by stating a Ratio-type bound for χt(G) which holds for general graphs and
which was shown by Abiad et al. [3] using weight partitions and interlacing. Denote by
Rt[x] the set of polynomials in the variable x with coefficients in R and degree at most t.

Theorem 1 (General Ratio-type bound [3, Theorem 4.3]). Let G be a graph with n
vertices and eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn and adjacency matrix A. Let p ∈ Rt[x] with
corresponding parameters W (p) := maxu∈V {(p(A))uu} and λ(p) := mini∈[2,n]{p(λi)}, and
assume p(λ1) > λ(p). Then,

χt(G) ≥ p(λ1)− λ(p)

W (p)− λ(p)
. (2)

In addition to Theorem 1 which holds for general graphs, we can also obtain a slightly
stronger bound for regular graphs, by using the original Ratio-type bound on αt(G) [1,
Theorem 3.2], followed by the relation (1). This will be the bound that we will use in
coming sections for the applications to coding theory.

Theorem 2 (Ratio-type bound). Let G be a regular graph with n vertices and eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λn and adjacency matrix A. Let p ∈ Rt[x] with corresponding parameters
W (p) := maxu∈V {(p(A))uu} and λ(p) := mini∈[2,n]{p(λi)}, and assume p(λ1) > λ(p).
Then, the distance-t chromatic number of G satisfies the bound

χt(G) ≥ n
⌊

nW (p)−λ(p)
p(λ1)−λ(p)

⌋ . (3)

Proof. Apply [1, Theorem 3.2] to G, followed by (1).

2.1 Optimization of the Ratio-type bounds

In the following, we propose the linear optimization implementation of the previously seen
Ratio-type bounds on χt(G) from Theorem 1 and Theorem 2. The latter will be one of
the main tools in Sections 3 and 4.3.
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LP for the General Ratio-type bound for χt(G) (Theorem 1)

Let G = (V,E) have adjacency matrix A and distinct eigenvalues θ0 > · · · > θd. Note
that we can scale by a positive number and translate the polynomial used in Theorem
1 without changing the value of the bound. Hence, we can assume W (p) − λ(p) = 1.
Furthermore, λ(pk) < W (pk), so the scaling does not flip the sign of the bound. Hence,
the problem reduces to finding the p which maximizes p(λ1) − λ(p). For each u ∈ V
and ℓ ∈ [1, d], assume that W (pk) = (pk(A))uu, 0 = λ(pk) = pk(θℓ) and solve the Linear
Program (LP) below. The maximum of these dn solutions then equals the best possible
bound obtained by Theorem 1.

variables: (a0, . . . , at)

input: The adjacency matrix A and eigenvalues {θ0, . . . , θd} of a graph G.

A vertex u ∈ V, an ℓ ∈ [1, d]. An integer t.

output: (a0, . . . , at), the coefficients of a polynomial p

maximize

t∑

i=0

aiθ
i
0 −

t∑

i=0

aiθ
i
ℓ

subject to

t∑

i=0

ai((A
i)vv − (Ai)uu) ≤ 0, v ∈ V \ {u}

t∑

i=0

ai((A
i)uu − θiℓ) = 1

t∑

i=0

ai(θ
i
0 − θij) > 0, j ∈ [1, d]

t∑

i=0

ai(θ
i
j − θiℓ) ≥ 0, j ∈ [1, d]

(4)

Here the objective function is simply p(λ1)−λ(p). The first constraint says (p(A))uu ≥
(p(A))vv for all vertices v 6= u, which ensures W (p) = (p(A))uu. The second constraint
gives p the correct scaling and translation such that W (p)−λ(p) = 1. The third constraint
says p(θ0) > p(θj) for all j ∈ [1, d], which ensures p(λ1) > λ(p). And the final constraint
says p(θℓ) ≤ p(θj) for all j ∈ [1, d], which ensures λ(p) = p(θℓ).

LP for the Ratio-type bound for χt(G) (Theorem 2) for walk-regular graphs

We have already seen that the assumption of regularity let us obtain Theorem 2, which
is slightly stronger of Theorem 1, the latter of which holds in general. In this same vein,
regularity assumptions allow us to obtain a Linear Program (LP) (5) for Theorem 2, which
in practice is much faster than LP (4), computationally speaking.
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The LP we are going to describe is analogous to the LP from [18] for αt(G), but is
repeated here for completeness. As such, it also only applies to t-partially walk-regular
graphs. A graph G is called t-partially walk-regular for some integer t ≥ 0, if the number
of closed walks of a given length l ≤ t, rooted at a vertex v, only depends on l. In other
words, if G is a t-partially walk-regular graph, then for any polynomial p ∈ Rt[x] the
diagonal of p(A) is constant with entries. Given a t-partially walk regular graph with
adjacency matrix A, for every p ∈ Rt[x] the diagonal of p(A) is constant with entries

(p(A))uu =
1

n
tr p(A) =

1

n

n∑

i=1

p(λi) for all u ∈ V.

For instance, every (simple) graph is t-partially walk-regular for t ∈ {0, 1} and every
regular graph is 2-partially walk-regular.

Through the following LP, we are going to compute so-called t-minor polynomials,
defined by Fiol [18]. For a graph G with adjacency matrix A and distinct eigenvalues
θ0 > · · · > θd, consider the set of real polynomials Pt = {p ∈ Rt[x] : p(θ0) = 1, p(θi) ≥ 0,
for i ∈ [1, d]}. Then, a t-minor polynomial of G is a polynomial pt ∈ Pt such that

tr pt(A) = min{tr p(A) : p ∈ Pt}.
Let θ0 > · · · > θd be the distinct eigenvalues of G, and let m0, . . . , md be their

respective multiplicities. Then, for t < d we have the following LP:

variables: x1, . . . , xd

input: An integer t. The eigenvalues {θ0, . . . , θd} and multiplicities {m0, . . . ,md}
of a t-partially walk-regular graph G.

output: A vector (x1, . . . , xd) which defines a t-minor polynomial

minimize

d∑

i=1

mixi

subject to f [θ0, . . . , θm] = 0,m = t+ 1, . . . , d

xi ≥ 0, i = 1, . . . d

(5)

Note that in (5) f [θ0, . . . , θm] is recursively defined via

f [θi, . . . , θj ] :=
f [θi+1, . . . , θj ]− f [θi, . . . , θj−1]

θj − θi
,

with starting values f [θi] = xi. From the solution to this problem we get a vector
(x1, . . . , xd) which defines a t-minor polynomial by pt(θi) = xi (with x0 := 1).

2.2 Optimality of the Ratio-type bounds for t = 2, 3

Just as for the analogous bounds on αt(G), Theorems 1 and 2 actually give a class of
bounds, depending on choice of p. While we will see that one can easily translate the
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closed-formula bounds from [1, Corollary 3.3] and [26, Theorem 11] to obtain bounds on
χt(G) for regular graphs and t ∈ {2, 3}, (see Corollaries 4 and 5), this same idea does
not work when one drops the regularity assumption. Hence, a new approach is needed
for obtaining optimal bounds from Theorem 1 for small values of t. In the next result we
find the optimal polynomial for Theorem 1 when t = 2.

Theorem 3. Let G be a graph with n vertices and distinct eigenvalues θ0 > θ1 > · · · > θd
with d ≥ 2. Let ∆ be the maximum degree of G. Let θi be the largest eigenvalue such that
θi ≤ −∆

θ0
. Then,

χ2(G) ≥ (θ0 − θi)(θ0 − θi−1)

∆ + θiθi−1
. (6)

Moreover, this is the best possible bound that can be obtained from Theorem 1 for t = 2.

Proof. Let p ∈ R2[x] be as follows:

p(x) = x2 − (θi + θi−1)x.

Then p(λ1) = (θ0 − θi)(θ0 − θi−1) and W (p) = ∆. Furthermore, p(x) has its global
minimum at θi+θi−1

2
, hence θi (or analogously θi−1) realize λ(p). Thus λ(p) = −θiθi−1.

Plugging these values into (2) gives the desired bound.
To show optimality, we follow an analogous approach to the one by Abiad, Coutinho

and Fiol [1, Corollary 3.3]. We further make use of the fact that an eigenvalue as proposed,
θi ≤ −∆

θ0
, always exists [4].

Take some polynomial p(x) ∈ R2[x], and denote p(x) = ax2 + bx + c. Assume, a > 0
first. Note that a = 0 trivially leads to p(x) = x by the upcoming observations. The
case a < 0 will be investigated after. We observe that the bound in Theorem 1 does not
change under translation or positive scaling, and hence we can assume without loss of
generality that a = 1 and c = 0. Then, p(x) = x2 + bx has its global minimum at − b

2
.

Since p is a parabola, the eigenvalue θi for which p(θi) is minimal will be the one closest
to − b

2
. Now, we have two cases

• If θi 6= θd then we get
θi + θi+1

2
≤ −b

2
≤ θi + θi−1

2
,

in which case we know b = −θi + τ for −θi−1 ≤ τ ≤ −θi+1.

• If θi = θd, then we get
−b

2
≤ θd + θd−1

2
,

in which case we know b = −θi + τ for −θd−1 ≤ τ .

In either case, we find:

W (p) = ∆,

λ(p) = p(θi) = θ2i + (−θi + τ)θi = τθi.

6



We now write the bound in (2) as a function of τ

Φ(τ) =
θ20 + (τ − θi)θ0 − τθi

∆− τθi
=

(θ0 − θi)(θ0 + τ)

∆− τθi
.

This has derivative

Φ′(τ) =
(∆− τθi)(θ0 − θi)− θi(θ0 − θi)(θ0 + τ)

(∆− τθi)2
=

(∆ + θiθ0)(θ0 − θi)

(∆− τθi)2
.

Since θ0 > θi, we find that Φ(τ) is decreasing if θi < −∆
θ0
, constant if θi = −∆

θ0
and

increasing if θi > −∆
θ0
.

We investigate these cases individually. Recall, we want to find the best lower bound,
and thus we want to maximize Φ(τ).

i. If θi < −∆
θ0
, then Φ(τ) is decreasing, thus we want to take τ minimal, i.e. τ = −θi−1.

In this case p(x) = x2 − (θi + θi−1)x, which gives us the following expression for (2)
as a function of θi−1:

Φ(θi−1) =
(θ0 − θi)(θ0 − θi−1)

∆ + θiθi−1
.

Now we just need to optimize the above over θi. We do this by taking the derivative
with respect to θi−1:

Φ′(θi−1) =
−(θ0 − θi−1)(∆ + θiθi−1)− θi(θ0 − θi)(θ0 − θi−1)

(∆ + θiθi−1)2

=
−(θ0 − θi)(∆ + θiθ0)

(∆ + θiθi−1)2
.

Since we assumed θi < −∆
θ0
, we find the above is increasing in θi−1, and hence we

must take θi−1 maximal. This leads to θi being the largest eigenvalue less than −∆
θ0
.

ii. If θi = −∆
θ0
, then θi−1 > −∆

θ0
. Now since Φ(τ) is constant, we can take τ = −θi−1.

Then, θi−1 minimizes p(x) too, hence we can just call this θi, and what used to be
θi we call θi+1 and we are in the next case.

iii. If θi > −∆
θ0
, then Φ(τ) is increasing, thus we want to take τ maximal. Since

θd ≤ −∆
θ0
, we have that θi 6= θd, and hence we are in the case where τ is bounded

from above. Therefore, we get τ = −θi+1 and hence p(x) = x2 − (θi + θi+1)x, which
gives us the following expression for (2) as a function of θi+1:

Φ(θi+1) =
(θ0 − θi)(θ0 − θi+1)

∆ + θiθi+1

.

Now we just need to optimize the above over θi. We do this by taking the derivative
with respect to θi+1:

Φ′(θi+1) =
−(θ0 − θi+1)(∆ + θiθi+1)− θi(θ0 − θi)(θ0 − θi+1)

(∆ + θiθi+1)2

=
−(θ0 − θi)(∆ + θiθ0)

(∆ + θiθi+1)2
.
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Since we assumed θi > −∆
θ0
, we find the above is decreasing, and hence we must

take θi+1 minimal. This leads to θi+1 being the largest eigenvalue less than −∆
θ0
.

Since θi+1 also minimizes p(x), we can now shift indices similar to how we did in
the second case to find the bound

(θ0 − θi)(θ0 − θi−1)

∆ + θiθi−1
,

with θi the largest eigenvalue less than −∆
θ0
.

Now we return to the case a < 0. Here too, we can scale and translate to only have to
consider p(x) = −x2 + bx. Recall that to apply Theorem 1, we must have p(θ0) > λ(p).
I.e. we must have for all i ∈ [2, d]

−θ20 + bθ0 > −θ2i + bθi ⇐⇒ b >
θ20 − θ2i
θ0 − θi

= θ0 + θi =⇒ b > θ0 + θd.

In this case, λ(p) = p(θd) = −θ2d − bθd, and W (p) = −∆, hence we get the following
expression for (2) as a function of b:

Φ(b) =
−θ20 + bθ0 + θ2d − bθd

−δ + θ2d − bθd
=

b(θ0 − θd) + θ2d − θ20
−bθd − δ + θ2d

.

We take the derivative with respect to b:

Φ′(b) =
(−bθd − δ + θ2d)(θ0 − θd) + θd(b(θ0 − θd) + θ2d − θ20)

(−bθd − δ + θ2d)
2

=
(θ2d − δ)(θ0 − θd) + θd(θ

2
d − θ20)

(−bθd − δ + θ2d)
2

=
(θ0θd + δ)(θd − θ0)

(−bθd − δ + θ2d)
2
.

Clearly, θd − θ0 < 0. Furthermore, since θd ≤ −1, and θ0 ≥ δ we have θ0θd + δ ≤ 0,
and hence the above derivative in total is nonnegative. This means that we find the best
bound when b → ∞, which gives limb→∞ Φ(b) = θd−θ0

θd
. Now it is left to show that this

bound is always worse than (6). To do this, note that the derivative of θd−θ0
θd

with respect

to θd, is
θ0
θ2
d

, this means it is increasing. Hence, the best bound will be when θd = −∆
θ0
, i.e.

θ0 − θd
−θd

≤
θ0 +

∆
θ0

∆
θ0

= 1 +
θ20
∆
.

On the other hand, similar to before, we can take the derivative of (6) with respect to θi
and observe that (6) is minimal when θi = −∆

θ0
. This means

(θ0 − θi)(θ0 − θi−1)

∆ + θiθi−1
≥

(θ0 +
∆
θ0
)(θ0 − θi−1)

∆− ∆
θ0
θi−1

=
θ20 − θ0θi−1 +∆− ∆

θ0
θi−1

∆− ∆
θ0
θi−1

= 1 +
θ20 − θ0θi−1

∆− ∆
θ0
θi−1

= 1 +
θ0(θ0 − θi−1)
∆
θ0
(θ0 − θi−1)

= 1 +
θ20
∆
.
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Therefore, (6) is always at least as good as θd−θ0
θd

. Thus, we can conclude the best bound
that can be obtained from Theorem 1 is

χ2(G) ≥ (θ0 − θi)(θ0 − θi−1)

∆ + θiθi−1
.

Since we were able to provide an optimal polynomial for Theorem 1 when t = 2,
which holds for general graphs, the next question would be if we can do the same for
t = 3, especially considering that we have the approach of [26, Theorem 11] to work
with as a base. Unfortunately, this is not as simple. To prove a generalization of [1,
Corollary 3.3], we mostly just have to swap some θ0’s for ∆’s in the proof of [1, Corollary
3.3] and then deal with a few technicalities. On the other hand, in the proof of [26,
Theorem 11], the authors take advantage of the fact that W (p) = maxu∈V {(A3)uu} + bk
(for p(x) = x3+ bx2 + cx). This does not generalize nicely to non-regular graphs. Instead
of W (p) being linear in b, it is the maximum of |V | linear functions in b, which makes
several steps in the proof not work. Thus, finding the optimal polynomial for t = 3 in
Theorem 1 is not a trivial task.

On the other hand, and as mentioned earlier, if one assumes graph regularity, it is
straightforward to determine the optimal choices of p for t ∈ {2, 3} in Theorem 2. This
is illustrated in the following two corollaries.

Corollary 4. Let G be a k-regular graph with n vertices with distinct eigenvalues k =
θ0 > θ1 > · · · > θd with d ≥ 2. Let θi be the largest eigenvalue such that θi ≤ −1. Then

χ2(G) ≥ n
⌊

n θ0+θiθi−1

(θ0−θi)(θ0−θi−1)

⌋ .

Moreover, no better bound can be obtained from Theorem 2.

Proof. Apply [1, Corollary 3.3] to G, followed by (1) to obtain the desired bound. Now
we must show optimality. Assume there is some p which, when used to obtain a bound
from Theorem 2, gives a tighter bound on χ2(G). Then, this p will also result in a tighter
bound on α2(G) than the one from [1, Corollary 3.3]. This contradicts the optimality
assertion from [1, Corollary 3.3]. Thus, no such p can exist, and no better bound can be
obtained from Theorem 2.

Corollary 5. Let G be a k-regular graph with n vertices with adjacency matrix A and
distinct eigenvalues k = θ0 > θ1 > · · · > θd, with d ≥ 3. Let θs be the largest eigenvalue

such that θs ≤ −θ2
0
+θ0θd−∆3

θ0(θd+1)
, where ∆3 = maxu∈V {(A3)uu}. Then, the distance-3 chromatic

number satisfies:

χ3(G) ≥ n
⌊

n∆3−θ0(θs+θs−1+θd)−θsθs−1θd
(θ0−θs)(θ0−θs−1)(θ0−θd)

⌋ .

Moreover, no better bound can be obtained from Theorem 2.

Proof. Apply [26, Theorem 11] to G, followed by (1) to obtain the desired bound. The
proof of optimality is analogous to that of Corollary 4.
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3 Bounding the distance chromatic number of the

hypercube graph

In this section we investigate the distance chromatic number of hypercube graphs. The
hypercube graph of dimension n (or simply n-cube), denoted Qn, is the n-fold Cartesian
product of K2, the complete graph on two vertices. Hypercube graphs have a strong
connection to coding theory, as each vertex of Qn can be seen as a vector in An

2 = {0, 1}n.
Recall that one can define the Hamming distance dH(u, v) between two vectors u, v ∈ An

2

as the number of coordinate in which they differ. In particular, in the hypercube graph
Qn, there is an edge connecting two vertices if the Hamming distance of their vector
representation is 1. It is known that the t-independence number of Qn equals

A2(n, t + 1) := max{|C| : C ⊆ A2, dH(u, v) ≥ t + 1, ∀ u, v ∈ C, u 6= v},
one of the most interesting and studied quantities in coding theory. In fact, this connection
holds in a more general setting, see e.g. Abiad, Khramova and Ravagnani [2, Corollary 16].

The distance-t chromatic number of the hypercube graph has been of interest in past
research for its relation to A2(n, t + 1). However, not even the distance-2 chromatic
number is known for all Qn. The problem of determining χ2(Qn) was first studied in 1997
by Wan [42], motivated by a connection to optical networks, who provided a bound on
the distance-2 chromatic number of Qn and proposed the problem of finding bounds for
general t. Wan [42] conjectured that his upper bound was tight for all n, that is, that
χ2(Qn) = 2⌈log2(n+1)⌉. However, this conjecture turned out to be false, as 13 ≤ χ2(Q8) ≤ 14
[43, Section 9.1]. Kim, Du and Pardalos [27] showed a similar result for χ3(Qn), and they
also provided a more crude bound for the general distance-t chromatic number. In 2002,
Ngo, Du and Graham [35] improved upon and extended these previous bounds for χt(Qn)
by using a version of the Johnson bound.

Theorem 6 ([35, Theorem 1]). Let Qn be the hypercube graph of dimension n. Let
s := ⌊ t

2
⌋ and denote (

(
n

t

)
) :=

∑t

i=0

(
n

i

)
. Then the distance-t chromatic number of Qn

satisfies
((

n

s

))

+
1

⌊
n

s+1

⌋

(
n

s

)(
n− s

s+ 1
−
⌊
n− s

s+ 1

⌋)

≤ χt(Qn) ≤ 2⌊log2((
n−1

t−1
))⌋+1 if t even,

2





((
n− 1

s

))

+
1

⌊
n−1
s+1

⌋

(
n− 1

s

)(
n− 1− s

s+ 1
−
⌊
n− 1− s

s+ 1

⌋)


 ≤ χt(Qn) ≤ 2⌊log2((
n−2

t−2
))⌋+2 if t odd.

Of particular interest to us are the lower bounds from Theorem 6 for t ∈ {2, 3}, since
in Section 3 we will provide alternative spectral proofs for them. The existing proofs,
similarly as ours, rely on using existing bounds on αt(G)/Aq(n, d).

Corollary 7 ([35]). Let Qn be the hypercube graph of dimension n, with n ≥ 2. Then,
the distance-2 chromatic number satisfies

χ2(Qn) ≥
{

n+ 2 if n even,

n+ 1 if n odd.

10



In 2008, Jamison, Matthews and Villalpando [24] independently proved the same lower
bound as in Corollary 7.

Corollary 8 ([35]). Let Qn be the hypercube graph of dimension n, with n ≥ 3. Then the
distance-3 chromatic number satisfies

χ3(Qn) ≥
{

2n if n even,

2(n+ 1) if n odd.

For certain specific cases, exact values of χt(Qn) are known, as the following result
shows.

Theorem 9 ([19, Theorem 2.15]). Let Qn be the hypercube graph of dimension n, with

n ≥ 2. If 2(n−1)
3

≤ t ≤ n− 1, then χt(Qn) = 2n−1.

In particular, while finding the exact value of χ2(Qn) for small n has received much
attention (see e.g. [29, 33, 25, 43]), it continues to be an open problem even for n as small
as 9.

Next, we use the bounds from Corollaries 4 and 5 on hypercube graphs in order to
obtain alternative spectral proofs for Corollaries 7 and 8. Additionally, we provide new
bounds on χ4(Qn) and χ5(Qn) in Corollary 12. Before we present the new proof, we need
the following preliminary result.

Theorem 10 ([13, Theorem 9.2.1]). The hypercube graph Qn has adjacency eigenvalues
θl = (n− 2l) with multiplicities ml =

(
n

l

)
for l ∈ [0, n].

Alternative proof of Corollary 7. We apply Corollary 4 to Qn. For this we use Theorem
10, which tells us that the adjacency eigenvalues ofQn are {n, n−2, . . . ,−n}. In particular,
θ0 = n, θd = −n. For θi, we must split into two cases, n even or n odd. For n even we
have θi = −2, θi−1 = 0 and for n odd we have θi = −1, θi−1 = 1. This gives

χ2(Qn) ≥
(θ0 − θi)(θ0 − θi−1)

θ0 + θiθi−1
=

{
(n+2)n

n
= n + 2 if n even,

(n+1)(n−1)
n−1

= n + 1 if n odd,

as desired.

Alternative proof of Corollary 8. We apply Corollary 5 to Qn. For this, we use Theorem
10, which gives us that the adjacency eigenvalues of Qn are {n, n−2, . . . ,−n}. In particu-
lar, θ0 = n, θd = −n. Note that none of the hypercube graphs have a closed walk of length
3, this means all diagonal entries of A3 are 0, and thus ∆3 = 0. Recall θs is the largest

eigenvalue such that θs ≤ −θ2
0
+θ0θd−∆3

θ0(θd+1)
, in this case we have −θ2

0
+θ0θd−∆3

θ0(θd+1)
= −n2−n2−0

n(1−n)
= 0.

We must distinguish the cases n even and n odd. If n is even, then θs = 0 and θs−1 = 2,
if n is odd then θs = −1 and θs−1 = 1. We can now plug all these values into the bound
from Corollary 5 to obtain

χ3(Qn) ≥
(n− 0)(n − 2)(n + n)

0− n(0 + 2− n) + 0 · 2n =
2n2(n − 2)

n(n− 2)
= 2n if n even,

χ3(Qn) ≥
(n+ 1)(n − 1)(n + n)

0− n(−1 + 1− n)− 1 · 1 · n =
2n(n+ 1)(n − 1)

n(n− 1)
= 2(n + 1) if n odd,

as desired.
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While we do not have a closed expression for the best possible Ratio-type bound for
t ≥ 4 like we do for t = 2, 3, we can instead use LP (5) to obtain bounds for specific
graphs. In this particular case of hypercube graphs Qn, the polynomials obtained from
LP (5) for small n follow a clear pattern. We are able to extend this pattern to the general
case, at least for t = 4, 5, and obtain a closed expression bound in Corollary 12. As we
will see in Tables 1c and 1d, computational experiments suggest that the new bound from
Corollary 12 outperforms the previously known bound from Theorem 6 in certain cases.
Before stating this bound, we first need to characterize the diagonal entries of the powers
of the adjacency matrix of the hypercube graphs.

Lemma 11. Let Qn be the hypercube graph of dimension n with adjacency matrix A, let
i ∈ N. Then

(Ai)uu =
1

2n

n∑

i=0

(
n

i

)

(n− 2i)i.

Proof. We know trAi =
∑n

i=1 λ
i
i =

∑n

i=0

(
n

i

)
(n − 2j)i. By the walk-regularity of Qn, we

have (Ai)uu = 1
2n

trAi, which gives us the desired equality.

Corollary 12. Let t ∈ {4, 5} and let Qn be the hypercube graph of dimension n, with
n ≥ t. Let

m =

⌊√
n+ 3− t+ n+ 3− t

2
−
⌈
n+ 4− t

2

⌉⌋

.

Define

Rt,m =







{−(2m+ 4),−(2m+ 2), 2m, (2m+ 2)} if t = 4 and n even,

{−(2m+ 5),−(2m+ 3), (2m+ 1), (2m+ 3)} if t = 4 and n odd,

{−n,−(2m+ 4),−(2m+ 2), (2m+ 2), (2m+ 4)} if t = 5 and n even,

{−n,−(2m+ 3),−(2m+ 1), (2m+ 1), (2m+ 3)} if t = 5 and n odd,

and let ai =
1
2n

∑n

i=0

(
n

i

)
(n− 2i)i. Consider the polynomial

pt,m(x) =
∏

r∈Rt,m

(x− r),

which has coefficients:

bt,m,i = (−1)t+i
∑

S⊂Rt,m

|S|=(t−i)

∏

r∈S

r.

Then, the distance-t chromatic number satisfies

χt(Qn) ≥
pt,m(n)

∑t

i=0 aibt,m,i

.

12



Proof. We will use the polynomial pt,m in Theorem 2. By Lemma 11, we have

W (p) =

t∑

i=0

(At)uubt,m,i =

t∑

i=0

aibt,m,i.

Now if we denote by x1 < · · · < xt the roots of pt,m, we observe the following: If
t = 4, then pt,m(x) < 0 if and only if x1 < x < x2 or x3 < x < x4. Furthermore,
we observe that all the xi’s are eigenvalues of Qn and that they are chosen such that
|x1 − x2| = |x3 − x4| = 2. In particular, since the eigenvalues of Qn are all exactly 2
apart, we find that Qn has no eigenvalues which lie between x1 and x2 or between x3 and
x4. Hence, for all eigenvalues we have pt,m(λi) ≥ 0, with equality being achieved for the
aforementioned roots. So λ(p) = 0. For the case t = 5, since pt,m is of degree 5 we have
pt,m(x) < 0 if and only if x < x1 or x2 < x < x3 or x4 < x < x5 instead. Note that x1 is
the smallest eigenvalues of Qn, hence no eigenvalues fall in the first range. For the latter
two ranges, the same argument as in the case t = 4 applies as to why no eigenvalues of
Qn lie in there. Thus here too λ(p) = 0. Plugging these values into (2) gives the desired
bound.

As mentioned, the polynomials chosen in Corollary 12 are a generalization of polyno-
mials obtained from LP (5) for small values of n. These polynomials have a very specific
form, with roots occurring in pairs at eigenvalues of Qn such that λ(p) = 0 (in the case
t = 5 we have an additional root at −n to ensure the same effect). How far out these
pairs are from 0 increases as n increases.

Running LP (5) for larger t suggests polynomials with a similar pattern are optimal
for t > 5 as well, though it gets increasingly complex. For t ∈ {6, 7} the roots are
still manageable. As n increases, one pair of roots remains stationary around 0, whereas
the other two pairs move outward like before, with an additional root at −n for t =
7 analogously to the case for t = 5. However, determining simple closed formula for
m in these cases (i.e. the “rate” at which roots move away from 0) is not as simple.
On the other hand, we want to highlight the fact that, for t = 6, the values of n for
which m increases line up with a so-called crystal ball sequence (in particular, the crystal
ball sequence corresponding to the truncated square tiling), perhaps suggesting a deeper
connection there. Such a crystal ball sequence is obtained by taking the partial sums of
the coordination sequence of a tiling; see [36] for further details. For even larger t ≥ 8,
LP (5) returns polynomials whose multiple pairs of roots on each side of 0 move outward
at different rates, even further complicating the scenario.

Computational results

In Tables 1a, 1b, 1c, 1d from the Appendix, the performance of the new bounds from
Section 3 are presented. These were computed using SageMath.

In Tables 1a and 1b we compare the performance of the previously known bounds by
Ngo, Du and Graham (Corollaries 7 and 8) to known exact values of χt(Qn). Wherever
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there is no citation present in the “χt(Qn)” column, the value was obtained computation-
ally. An entry is replaced by “time” if it took more than 30 minutes to compute it. In
Tables 1c and 1d we compare the performance of the previously known bound by Ngo, Du
and Graham (Theorem 6) to our new spectral bound (Corollary 12). The entries in the
“χt(Qn)” column are obtained computationally, and replaced by “time” if it took more
than 30 minutes to compute.

Notably, our new bound from Corollary 12 sometimes outperforms the known bound
due to Ngo, Du and Graham from Theorem 6, for t ∈ {4, 5}.

4 The Lee metric and the Lee graph

In this section we focus on a graph theoretic interpretation of error-correcting codes
endowed with the Lee distance. Let q be a positive integer greater than 1, and let us
consider the q-ary alphabet Aq = {0, 1, . . . , q − 1}. Let n be a positive integer. We
can endow the set An

q with the Lee distance, which is defined, for b = (b1, . . . , bn), c =
(c1, . . . , cn) as

dL(b, c) =

n∑

i=1

min{|bi − ci|, q − |bi − ci|}.

An (n,M, d)q-Lee code is defined as a nonempty subset C ⊆ An
q of size |C| = M ≥ 2,

where
d = dL(C) := min{dL(b, c) : b, c ∈ C, b 6= c}.

The integer n is called the (code) length of C.

One of the central research questions in the theory of codes endowed with the Lee
metric is finding the largest size q-ary code of minimum Lee distance d and length n.
Formally, given q, n and d, the problem is finding the quantity

AL
q (n, d) := max{M : there exists an(n,M, d)q-Lee code}.

Just as the t-independence number of hypercube graphs is connected to the maximum
size of binary codes with minimum Hamming distance t + 1, we can relate AL

q (n, t + 1)
to the t-independence number of a family of graphs as well. To this end, Kim and Kim
[28] defined the Lee graph G(n, q) := Cq� · · ·�Cq, that is, the n-fold Cartesian product
of the q-cycle with itself. Note that the Lee graphs are a generalization of the hypercube
graphs, since Qn = G(n, 2). The Lee graph G(n, q) has qn vertices, and such vertices can
be represented as elements of An

q . Figure 1 shows an example of what G(n, q) looks like.
The Lee graph G(n, q) represents the Lee metric in An

q in the same way as the hy-
percube graph Qn represents the Hamming metric in An

2 . This will be made clear in the
following results. For a graph G = (V,E), a simple measure of the distance between
two vertices v, u ∈ V is the geodesic distance between two vertices, which is the length
in terms of the number of edges of the shortest path between the vertices, denoted by
dG(u, v). For two vertices that are not connected in a graph, the geodesic distance is
defined as infinite.
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Figure 1: The Lee graph G(2, 4).

In Section 4.3 we will apply the eigenvalue bounds on χt(G) from Section 2 to the Lee
graph, and for that we need the following preliminary results.

Lemma 13. Let G(n, q) be a Lee graph, and consider the vertices as vectors in An
q . Then

the geodesic distance in G(n, q) coincides with the Lee metric distance.

Proof. Let u, v ∈ V (G(n, q)) with u = (u1, . . . , un), v = (v1, . . . , vn). Denote di = min{q−
|ui − vi|, |ui − vi|}, then clearly dL(u, v) =

∑n

i=1 di. Note that two vertices are adjacent
in G(n, q) if and only if exactly one of the di is 1 and all others are 0. Hence, any path
between u and v must be of length at least dL(u, v). As we can always reduce the sum
of the di by 1 at each step, we can find a path of length exactly dL(u, v). This means
dG(n,q)(u, v) = dL(u, v). This holds for arbitrary u and v, meaning these distances are
indeed equivalent.

Corollary 14. Let G(n, q) be a Lee graph, and consider the vertices as vectors in An
q .

Then, U is a distance-t independent set of size M in G(n, q) if and only if it is an
(n,M, t+ 1)q-Lee code.

The next result will be useful later on to provide some new nonexistence conditions
on perfect Lee codes.

Corollary 15. Let G(n, q) be a Lee graph. Then, αt(G(n, q)) = AL
q (n, t + 1).

Proof. This follows directly from Lemma 14.

The implications of Corollary 15 will be explored in Section 4.3 by means of the new
spectral bounds on χt(G) from Section 2.

4.1 Combinatorial properties of the Lee graph

Next we investigate some combinatorial and spectral properties of Lee graphs that will
be needed to later on apply the corresponding eigenvalue bounds on such graphs. Indeed,
in order to apply the spectral bounds from Section 2 to G(n, q), we will have to use the
LP given in (5). For this to be possible, it must hold that G(n, q) is t-partially walk-
regular for a given t. In fact, we can easily show that G(n, q) is walk-regular, that is, it is
l-partially walk-regular for any positive integer l.
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Lemma 16. The Lee graph G(n, q) is walk-regular.

Proof. We can interpret Aq as the ring Z/qZ, and consider the vertices of G(n, q) as
elements of the module (Z/qZ)n Consider u0 = (0, . . . , 0) and take an arbitrary v0 ∈
(Z/qZ)n.. We will now show for any arbitrary walk from u0 to itself, there is a corre-
sponding walk from v0 to itself. Consider a closed walk from u0 to itself and consider the
vertices in this path: (u0, u1, . . . , ul, u0). Then, we can construct the following walk from
v0 to itself: (v0, v0 + u1, . . . , v0 + ul, v0). One can easily verify that any two distinct walks
from u0 to itself give rise to two distinct walks from v0 to itself.

Lemma 16 is crucial in order to use the Ratio-type eigenvalue bound on χt(G) and its
LP implementation (5) later on, since our optimization method requires the graph to be
partially walk-regular.

A graph is said to be distance-regular if it is regular and for any two vertices v and
w, the number of vertices at distance j from v and at distance k from w depends only
on j, k, and the distance between v and w. While G(n, q) is always walk-regular, it
is only distance-regular for very small cases (for example G(2, 5) is already not distance-
regular). This means that Delsarte’s LP bound [16] cannot be applied in a straightforward
manner, while our new eigenvalue bounds provide an easy method to be used. Using an
association scheme, Astola and Tabus [7] were able to overcome this difficulty and obtain
bounds AL

q (n, d) using the LP method.

4.2 Spectral properties of the Lee graph

In order to apply the spectral bounds on χt(G) from Section 2, we must first find the

adjacency spectrum of G(n, q). Denote by ζq the primitive qth root of unity ζq := e
2πi
q .

Lemma 17 ([14, Section 1.4.3]). The cycle graph Cq has adjacency spectrum

{
ζ lq + ζq−l

q : l ∈ [1, q]
}
.

Theorem 18 ([9, Pages 328-329]). Let G1, G2 be graphs with respective eigenvalues
{λ1, . . . , λn} and {µ1, . . . , µm}, then G1�G2 has eigenvalues {λi+µj : 1 ≤ i ≤ n, 1 ≤ j ≤
m}.

Corollary 19. The adjacency spectrum of the Lee graph G(n, q) is

{
n∑

i=1

ζ liq + ζq−li
q : l1, . . . , ln ∈ [1, q]

}

.

Unlike for the hypercube graphs Qn, the spectrum of G(n, q) is quite hard to get a
grip on. As seen in Lemma 19, the spectrum of G(n, q) consists of sums of cosines (note

ζ lq + ζq−l
q = 2 cos

(
2lπ
q

)

) making it quite difficult to theoretically determine θi and θs for

Corollary 4 and Corollary 5, respectively. However, with some careful analysis we are
able to still determine a closed expression of our bound on χ2(G(n, q)). Eigenvalues of
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G(n, q) close or equal to −1 play a central role in this approach. Lemma 20 establishes
the existence of eigenvalues close to −1 in most cases, Lemma 22 fully characterizes when
G(n, q) has −1 as an eigenvalue.

Lemma 20. Let G(n, q) be a Lee graph with q ≥ 4. Assume

(n, q) /∈ {(1, 5), (2, 5), (1, 6), (2, 7), (1, 9)}.

Then, G(n, q) has eigenvalues θ∗1, θ
∗
2 such that 0 ≥ θ∗1 > −1 and −1 ≥ θ∗2 ≥ −2.

Proof. We split into four cases:

1. The case q /∈ {5, 6, 7, 9, 10, 11}. First, we show that Cq has eigenvalues λ∗
1, λ

∗
2 such

that 1 > λ∗
1 ≥ 0 ≥ λ∗

2 > −1 and λ∗
1 − λ∗

2 < 1. For q ∈ [4, 20] \ {5, 6, 7, 9, 10, 11}, we
manually verify this holds. Now assume q ≥ 21. Let l1 = ⌊ q

4
⌋ and observe:

1

2
> 2 cos

(
6π

14

)

≥ ζ l1q + ζq−l1
q ≥ 0.

Similarly, we can define l2 = ⌈ q

4
⌉, and find

0 ≥ ζ l2q + ζq−l2
q ≥ 2 cos

(
4π

7

)

> −1

2
.

Thus, if we let λi = ζ liq + ζq−li
q , we have that λ∗

1, λ
∗
2 satisfy our assumptions, for

q ≥ 21.

Now we will construct eigenvalues of G(n, q) which satisfy 0 ≥ θ∗1 > −1 and −1 ≥
θ∗2 ≥ −2.

First θ∗1. We consider eigenvalues of the form θ∗a := aλ∗
1 + (n − a)λ∗

2 for a ∈ [0, n].
Clearly θn ≥ 0 ≥ θ0. If θ0 > −1, we are done. Hence, assume that this is not the
case and observe θ∗a − θa−1 = λ∗

2 − λ∗
1 < 1. However, this means that for any open

interval of length 1 between θn and θ0, there must be some a ∈ [1, n] such that θa
lies within this interval. In particular this holds for (−1, 0) and thus we have found
our desired eigenvalue θ∗1.

The approach for θ∗2 is similar, but requires one more observation. Recall that any
graph has an eigenvalue, say λ3, for which λ3 ≤ −1, including Cq. Furthermore,
we know that λ3 ≥ −2, since Cq is 2-regular. Now we consider eigenvalues of the
form θ∗a := aλ∗

1 + (n − 1 − a)λ∗
2 + λ3 for a ∈ [0, n − 1]. Clearly θn ≥ λ3 ≥ θ0. We

can assume θn ≤ −2 and θ0 > −1, since otherwise we are already done. Then, by
the same reasoning as above, there must exist some a ∈ [0, n − 1] such that θa lies
within [−2,−1]. This gives us θ∗2.
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2. The case q ∈ {5, 6, 7, 9, 10, 11}. Note that Cq has eigenvalues ζ
l
q + ζq−l

q for l ∈ [1, q].
In particular we observe that the sum of all q of these eigenvalues is equal to

q
∑

l=1

ζ lq + ζq−l
q = 2

q
∑

l=1

ζ lq = 0.

Hence, if θ∗1, θ
∗
2 are some desired eigenvalues of G(n, q) for some n, then by adding

the above sum, we can see that they are also eigenvalues of G(n+ q, q).

We can manually verify that for q ∈ {10, 11} we have such θ∗1, θ
∗
2 for n ∈ {1, . . . q},

for q ∈ {6, 9} we have them for n ∈ {2, . . . , q + 1} and for q ∈ {5, 7} we have them
for n ∈ {3, . . . , q + 2}. Hence, by induction we find that they always exist for all
larger n. The only case still left is q = 7, n = 1, where we can also manually verify
that the graph G(1, 7) has the desired θ∗1, θ

∗
2.

In the rest of this section we deal with the problem of characterizing when −1 is an
eigenvalue of G(n, q), in terms of n and q. We will see in Section 4.3 (Theorem 30) that
this problem naturally arises when trying to compute χ2(G(n, q)), which in turn is related
to the existence of perfect codes in the Lee metric; we will see the latter in Theorem 33.
For this purpose, we use a result by Lam and Leung [32] on vanishing sums of roots of
unity. Define

S(q) :=

{

(x0, . . . , xq−1) ∈ N
q :

q−1
∑

i=0

xiζ
i
q = 0

}

,

W (q) := {x0 + · · ·+ xq−1 : (x0, . . . , xq−1) ∈ S(q)}.

Theorem 21 ([32, Main Theorem]). Let q = pa11 · · · parr be the prime factorization of q,
with pi 6= pj for i 6= j. Then

W (q) = p1N+ · · ·+ prN.

We now define similarly

S ′(q) :=






(y0, . . . , y⌊ q

2
⌋) ∈ N

⌊ q

2
⌋+1 :

⌊ q

2
⌋

∑

i=0

yi(ζ
i
q + ζq−i

q ) = −1






,

W ′(q) := {y0 + y1 + · · ·+ y⌊ q

2
⌋ : (y0, . . . , y⌊ q

2
⌋) ∈ S ′(q)}.

With this notation, we have that −1 is an eigenvalue of G(n, q) if and only if n ∈ W ′(q).

Lemma 22. Let q = pa11 · · · parr be the prime factorization of q, with p1 < p2 < · · · < pr.
Then:

W ′(q) =







1

2
((−1 + 4N+

∑r

i=2 piN) ∩ 2N) , if q even,

1

2
((−1 +

∑r

i=1 piN) ∩ 2N) , if q odd.

18



Proof. Denote

T (q) :=







1

2
((−1 + 4N+

∑r

i=2 piN) ∩ 2N) , if q even,

1

2
((−1 +

∑r

i=1 piN) ∩ 2N) , if q odd.

We consider the even and odd case separately.

1. Assume q even, that is, p1 = 2. Then, y⌊ q

2
⌋ = y q

2

. Now observe that

(y0, . . . , y q

2

) ∈ S ′(q) =⇒ (1 + 2y0, y1, . . . , y q

2
−1, 2y q

2

, y q

2
−1, . . . , y1) ∈ S(q).

Hence,
W ′(q) ⊆ T (q),

On the other hand, let n ∈ T (q). Thus, n is of the form

n =
1

2

(

−1 +
r∑

i=1

yipi

)

,

for some y1, . . . , yr ∈ N such that
∑r

i=1 yi is odd and y1 is even. In particular, there
exists a j ∈ {1, . . . , r} such that yj ≥ 1. We now exhibit a linear combination of
the ζ iq + ζq−i

q ’s which equals −1 and whose coefficients sum to n. This is given, for
instance, by

y1
2
(ζ2 + ζ2)
︸ ︷︷ ︸

−2

+
r∑

ℓ=2

yℓ

pℓ−1

2∑

i=1

(
ζ ipℓ + ζpℓ−i

pℓ

)

︸ ︷︷ ︸
−1

+
1

2

((
r∑

ℓ=1

yℓ

)

− 1

)

(ζ0pr + ζprpr )
︸ ︷︷ ︸

2

=−
(

r∑

ℓ=1

yℓ

)

+

(
r∑

ℓ=1

yℓ

)

− 1 = −1.

2. Assume q odd. Then y⌊ q

2
⌋ = y q−1

2

. Now observe that

(y0, . . . , y q−1

2

) ∈ S ′(q) =⇒ (1 + 2y0, y1, . . . , y q−1

2

, y q−1

2

, . . . , y1) ∈ S(q).

Hence,

W ′(q) ⊆ 1

2
((W (q)− 1) ∩ 2N) = T (q),

where the final equality follows from Theorem 21.

On the other hand, let n ∈ T (q). Thus, n is of the form

n =
1

2

(

−1 +

r∑

i=1

yipi

)

,
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for some y1, . . . , yr ∈ N such that
∑r

i yi is odd. In particular, there exists a j ∈
{1, . . . , r} such that yj ≥ 1. We now exhibit a linear combination of the ζ iq + ζq−i

q ’s
which is −1 and whose coefficients sum to n. This is given, for instance, by

r∑

ℓ=1

yℓ

pℓ−1

2∑

i=1

(
ζ ipℓ + ζpℓ−i

pℓ

)

︸ ︷︷ ︸
−1

+
1

2

((
r∑

ℓ=1

yℓ

)

− 1

)

(ζ0pr + ζprpr )
︸ ︷︷ ︸

2

=−
(

r∑

ℓ=1

yℓ

)

+

(
r∑

ℓ=1

yℓ

)

− 1 = −1.

Thus, W ′(q) = T (q).

We can use Lemma 22 to derive some additional results, distinguishing when q is a
prime power or not.

Corollary 23. Let p1 be a prime number. If q = pa11 , then

W ′(q) =







∅ if p1 = 2,
{
1

2
(−1 + (1 + 2x)p1) : x ∈ N

}

. if p1 > 2.

In particular, there exist arbitrarily large n’s such that −1 is not an eigenvalue of G(n, q).

When q is not a prime power, things are different. First, recall the following well-known
fact.

Lemma 24. For any a, b ∈ N with gcd(a, b) = 1, we have

m ∈ aN+ bN

for every m > (a− 1)(b− 1).

Corollary 25. Let q = pa11 · · · · · parr , with r > 1 and p1 < . . . < pr. Then, −1 is an
eigenvalue of G(n, q) for every

n >







−1 + (2p1 − 1)(p2 − 1))

2
, if q even,

−1 + (p1 − 1)(p2 − 1))

2
, if q odd.

Proof. By Lemma 22, we have that W ′(q) = T (q). Moreover, one can check that

T (q) ⊇







1

2
((−1 + 2p1N+ p2N) ∩ 2N), if q even,

1

2
((−1 + p1N+ p2N) ∩ 2N), if q odd.

Using Lemma 24, we deduce that (p1N+ p2N) ⊇ {x : x > (p1 − 1)(p2 − 1)}, from which
we conclude.
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4.3 Bounding the distance chromatic number of the Lee graph

While Sopena and Wu [40] and Pór and Wood [39] have investigated the distance-2 chro-
matic number for products of cycles, they did this in a more general setting than G(n, q),
allowing the cycles to be also different. Kim and Kim [28] were the first to investigate
χ2(G(n, q)). Their work was motivated by past research on χ2(Qn) = χ2(G(n, 2)) and
the fact that there is a relation between χ2(G(n, q)) and perfect Lee codes. Kim and Kim
approached the problem of finding χ2(G(n, q)) by using notions and results from coding
theory, in particular perfect Lee codes. One simple lower bound on χ2(G(n, q)) follows
using the graph regularity.

Lemma 26 ([28, Lemma 2.1]). χ2(G(n, q)) ≥ 2n+ 1.

Using this connection to Lee codes, Kim and Kim [28] focused their study on the case
n = 3. For several smaller cases they were able to provide exact parameter values, as the
following result shows.

Theorem 27 ([28, Theorems 3.2, 3.4, 3.5, 3.7, 3.8 and Corollary 3.9]). Let q ≥ 3, then

χ2(G(3, q)) =







9 if q = 3, 5, 6,

8 if q = 4l and l not a multiple of 7,

7 if q = 7l.

In particular, χ2(G(3, q)) = 7 if and only if q = 7l.

Corollary 28 ([28, Corollary 3.9]). Assume that q = 3l or q = 5l. Then, χ2(G(3, q)) ≤ 9.

In what follows, we will use the results from Section 4.2 on the spectrum of G(n, q) to
obtain new eigenvalue bounds on χ2(G(n, q)). We start by investigating how the bound
from Corollary 4 behaves when both θi and θi−1 are close to −1.

Corollary 29. Let G be a k-regular graph with unique eigenvalues θ0 > · · · > θd. Let θi
be the largest eigenvalue such that θi ≤ −1. If θi ≥ −2 and θi−1 ≤ 0, then

χ2(G) ≥
{

k + 1, if θi = −1,

k + 2, else.

Proof. If θi = −1 we obtain:

χ2(G) ≥ (θ0 − θi)(θ0 − θi−1)

θ0 + θiθi−1

=
(k + 1)(k − θi−1)

k − θi−1

= k + 1.

Now, assume θi < −1. We write θi = −1 − ǫ1 and θi−1 = −1 + ǫ2 for 0 < ǫ1 ≤ 1 and
0 < ǫ2 ≤ 1. By Corollary 4, we get

χ2(G) ≥(θ0 − θi)(θ0 − θi−1)

θ0 + θiθi−1

=
(k + 1 + ǫ1 − ǫ2)(k + 1)− ǫ1ǫ2

k + 1 + ǫ1 − ǫ2 − ǫ1ǫ2

=
(k + 1 + ǫ1 − ǫ2 − ǫ1ǫ2)(k + 1) + kǫ1ǫ2

k + 1 + ǫ1 − ǫ2 − ǫ1ǫ2
> k + 1.
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On the other hand, since α := k + 1 + ǫ1 − ǫ2 − (k + 1)ǫ1ǫ2 ≥ 0, we have

(θ0 − θi)(θ0 − θi−1)

θ0 + θiθi−1
=

(k + 1 + ǫ1 − ǫ2)(k + 1)− ǫ1ǫ2
k + 1 + ǫ1 − ǫ2 − ǫ1ǫ2

≤ (k + 1 + ǫ1 − ǫ2)(k + 1)− ǫ1ǫ2 + α

k + 1 + ǫ1 − ǫ2 − ǫ1ǫ2
= k + 2.

Combining the above inequalities, we obtain

k + 2 ≥ (θ0 − θi)(θ0 − θi−1)

θ0 + θiθi−1

> k + 1,

and hence ⌈
(θ0 − θi)(θ0 − θi−1)

θ0 + θiθi−1

⌉

= k + 2.

Using Corollary 29, we can illustrate how the bound from Corollary 4 performs on
G(n, q), for q ≥ 4, by showing that it has eigenvalues within a certain range.

Theorem 30. If q ≥ 4, then the distance-2 chromatic number of G(n, q) satisfies:

χ2(G(n, q)) ≥







2n + 1 if − 1 is an eigenvalue of G(n, q),

2n + 2 else,

2n + 3 if n = 1, q = 5.

Proof. For (n, q) /∈ {(1, 5), (2, 5), (1, 6), (2, 7), (1, 9)}, we know from Lemma 20 thatG(n, q)
has eigenvalues θ∗1, θ

∗
2 such that 0 ≥ θ∗1 > −1 and −1 ≥ θ∗2 ≥ −2. Applying Corollary 29

to these cases gives us the desired result.
This leaves us with the cases of G(1, 5), G(2, 5), G(1, 6), G(2, 7) and G(1, 9). For these

we can manually check to find the bounds:

α2(G(1, 5)) ≥ 5,

α2(G(2, 5)) ≥ 5,

α2(G(1, 6)) ≥ 3,

α2(G(2, 7)) ≥ 6,

α2(G(1, 9)) ≥ 3.

Since G(2, 7) does not have −1 as an eigenvalue, and G(2, 5) and G(1, 6) and G(1, 9)
do have −1 as an eigenvalue, these four cases also behave as the rest. This means that
G(1, 5) is the only exception.

Additionally, we can show that the bound from Corollary 4 is tight in certain cases,
by using part of Theorem 27 from Kim and Kim [28].
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Proposition 31. Let l ∈ N
+, then

χ2(G(3, 7l)) =
(θ0 − θi)(θ0 − θi−1)

θ0 + θiθi−1
.

Proof. Lemma 22 tells us 3 = 1
2
(−1 + 7) ∈ W ′(7l), thus −1 is an eigenvalue of G(3, 7l).

Hence, by Corollary 29 we have χ2(G(3, q)) ≥ 7, which Theorem 27 tells us is tight.

Computational results

In Tables 2a, 2b, 2c and 2d in the Appendix, the results obtained by applying the bounds
of Section 4.3 are presented. These were computed using SageMath. Where applicable,
we also added the best known lower bounds on χt(G), obtained from the best known upper
bounds on AL

q (n, d) as seen in [7] and [38]. If for some graph, computing the theoretical
value, or solving the LP (5) took more than 30 minutes, the corresponding entry in the
table is replaced by “time”. Unfortunately, since the number of vertices of G(n, q) blows
up quite rapidly for n > 3, we do not have many data points in Table 2d. Even applying
the theoretically obtained bound from Corollary 4 becomes computationally intensive due
to the spectrum, which is made up of sums of cosines. Indeed, in theory LP (5) should
be able to handle quite large graphs (see [2]), however for this the spectrum needs to be
manually supplied, as the built in Sage function is rather slow. For comparison, we add
the previously best known bounds from [7] and [38]. We should note that computing our
eigenvalue bounds (using the closed formulas from Corollaries 4 and 5, or for larger t,
LP (5)) is, for small graphs like the ones we tested, significantly faster than solving an
SDP (like the one proposed in [38]), and in many cases our bounds perform fairly well,
as shown in Tables 2a, 2c, 2c, 2d.

5 A characterization of perfect Lee codes with mini-

mum distance 3

Let Br(c) = {b ∈ An
q : dL(b, c) ≤ r} denote the ball of radius r centered in c. Then,

we define the packing radius of C as the largest r such that Br(c) ∩ Br(c
′) = ∅ for every

c, c′ ∈ C with c 6= c′. We define the covering radius of C as the smallest r such that
⋃

c∈C Br(c) = An
q . A Lee code C ⊂ An

q is called a perfect Lee code if the packing and
covering radius of C coincide. In other words, the balls centered in the codewords of a
perfect Lee code with radius equal to the covering radius give a perfect tiling of the whole
ambient space An

q . Clearly, for this to be possible, d must be odd.
The problem of finding perfect Lee codes has a long history, dating back to 1968 when

Golomb and Welch [20] made the following conjecture:

Conjecture 32 ([20, Section 7]). Let d be odd. There exist no perfect (n,M, d)q-Lee codes
for n ≥ 3, q ≥ d ≥ 5.
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This conjecture is still widely open. We refer the interested reader to the extensive
survey given by Horak and Kim [23]. In this section, however, we will focus on the
existence of perfect Lee codes with minimum Lee distance d = 3, which is not mentioned
in Conjecture 32. This is due to the fact that perfect (n,M, 3)q-Lee codes exist in some
cases. This was already shown by Golomb and Welch themselves in [20]. The state-
of-the-art on perfect Lee codes of minimum distance d = 3 is discussed in [23, Section
B]. In this regard, Kim and Kim [28] made several key observations on the existence of
perfect (n,M, 3)q-Lee codes, and their connection to χ2(G(n, q)). Around the same time,
AlBdaiwi, Horak and Milazzo [5] characterized the parameters n and q such that there
exist a linear perfect (n,M, 3)q-Lee code. In this section we completely settle the problem
of the existence of perfect (n,M, 3)q-Lee codes, dropping the linearity assumption.

We first recall the following result of Kim and Kim, who gave a characterization of
the parameters for which perfect Lee codes exists in terms of χ2(G(n, q)).

Theorem 33 ([28, Theorem 2.2]). There exists a perfect (n,M, 3)q-Lee code if and only
if χ2(G(n, q)) = 2n+ 1.

This link allows us to derive nonexistence results of perfect (n,m, 3)q-Lee codes in
terms of n and q, using the eigenvalue results of Theorem 30.

Corollary 34. Let q ≥ 4 and let W ′(q) as defined in Lemma 22. If n /∈ W ′(q) then there
is no perfect (n,M, d)q-Lee code.

Proof. Since n /∈ W ′(q), G(n, q) does not have −1 as an eigenvalue. Theorem 30 tells
us that if q ≥ 4 and −1 is not an eigenvalue of G(n, q), then χ2(G(n, q)) ≥ 2n + 2. We
conclude the proof using Theorem 33.

Unfortunately, the condition given in Corollary 34 for the nonexistence of perfect Lee
codes of minimum distance d = 3 is not improving on the previously known results. In
particular, it is weaker than the following result.

Proposition 35 ([28, Corollary 2.5]). If there exists a perfect (n,M, 3)q-Lee code, then
2n+ 1 divides qn.

Nevertheless, next we show that we can completely characterize the values of n and
q such that there exist perfect (n,M, 3)q-Lee codes. We will do it by exploiting the
following characterization results concerning linear Lee codes obtained in [5]. We can
identify the alphabet Aq with the ring Z/qZ of integers modulo q. A linear code is a
subset C ⊆ (Z/qZ)n which is also a Z/qZ-submodule.

Theorem 36 ([5, Theorem 15]). Let 2n + 1 = ra11 · · · ratt be the prime factorization of
2n + 1. Then, there exists a linear perfect (n,M, 3)q-Lee code if and only if r1 · · · rt
divides q.

We can now put everything together, and show the main result of this section: a
characterization of when a perfect Lee code of minimum distance d = 3 exists. In terms
of the distance-2 chromatic number of G(n, q), this also improves on Theorem 30.
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Theorem 37. Let n, q ∈ N. The following are equivalent.

(1) There exists a perfect (n,M, 3)q-Lee code.

(2) 2n+ 1 divides qn.

(3) r1 · · · rt divides q, where 2n+ 1 = ra11 · · · ratt is the prime factorization of 2n+ 1.

(4) χ2(G(n, q)) = 2n+ 1.

Proof. By Theorem 36 and Proposition 35, it is enough to show the equivalence between
(2) and (3). For this purpose, write q = sb11 · · · sbℓℓ .

If r1 · · · rt divides q, then this means that t ≤ ℓ and up to reordering the si’s, we may
assume ri = si for each i = 1, . . . , t. The claim follows observing that ai ≤ n for every i.

On the other hand, if 2n+1 = ra11 · · · ratt divides qn, then, r1 · · · rt must divide s1 · · · sℓ,
and thus, also q.

Observe that by plugging n = 3 in Theorem 37, we immediately derive the second
part of the statement in Theorem 27.
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Appendix

n Corollary 7 [35] χ2(Qn)
2 4 4 [42] + [12]
3 4 4 [42] + [12]
4 8 8 [42] + [12]
5 7 8 [42] + [12]
6 8 8 [42] + [12]
7 8 8 [42] + [12]
8 11 13 [29]
9 11 ∈ {13, 14}
10 13 ∈ {15, 16}
11 13 ∈ {15, 16}
12 15 16 [42] + [12]
13 15 16 [42] + [12]
14 16 16 [42] + [12]
15 16 16 [42] + [12]

(a) Performance of bounds for χ2(Qn).

n Corollary 8 [35] χ3(Qn)
3 8 8
4 8 8
5 16 time
6 13 time
7 16 time
8 16 time
9 21 time
10 21 time
11 25 time
12 25 time
13 29 time
14 29 time
15 32 time

(b) Performance of bounds for χ3(Qn).

n Corollary 12 Theorem 6 [35] χ4(Qn)
4 16 16 16
5 16 16 16
6 32 32 time
7 43 43 time
8 43 43 time
9 57 52 time
10 57 69 time
11 79 69 time
12 90 86 time
13 102 106 time
14 121 107 time
15 127 128 time

(c) Performance of bounds for χ4(Qn).

n Corollary 12 Theorem 6 [35] χ5(Qn)
5 32 32 32
6 32 32 32
7 64 64 time
8 86 86 time
9 86 86 time
10 114 103 time
11 114 137 time
12 158 137 time
13 179 171 time
14 203 211 time
15 241 213 time

(d) Performance of bounds for χ5(Qn).

Table 1: Performance of bounds for χt(Qn).
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Graph Corollary 4 χ2

G(3,3) 9 9
G(3,4) 8 8
G(3, 5) 8 9
G(3, 6) 8 9
G(3,7) 7 7
G(3,8) 8 8
G(3, 9) 8 ≤ 9

(a) Performance of the Ratio-
type bound for χ2(G) on
G(3, q).

Graph Corollary 5 Best LB χ3

G(3,3) 27 N/A 27
G(3, 4) 13 N/A time
G(3, 5) 16 18 [7] time
G(3, 6) 12 16 [38] time
G(3, 7) 14 17 [38] time
G(3, 8) 13 N/A time
G(3, 9) 13 N/A time

(b) Performance of the Ratio-type bound
for χ3(G) on G(3, q).

Graph LP (5) Best LB χ4

G(3,3) 1 N/A 27
G(3, 4) 32 N/A time
G(3, 5) 32 42 [7] time
G(3, 6) 27 36 [7] time
G(3, 7) 27 35 [38] time
G(3, 8) 25 N/A time
G(3, 9) time N/A time

(c) Performance of the Ratio-type
bound for χ4(G) on G(3, q).

Graph Corollary 4 Best LB χ2

G(4,3) 9 N/A 9
G(4, 4) 11 N/A time
G(4, 5) 10 11 [38] time
G(4, 6) 9 9 [7] time

(d) Performance of the Ratio-type bound
for χ2(G) on G(4, q).

Table 2: Performance of the Ratio-type bound for χt(G) on G(n, q) compared to the best
known lower bounds from [7] and [38].
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