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SUPERIORITY OF STOCHASTIC SYMPLECTIC METHODS VIA THE

LAW OF ITERATED LOGARITHM

CHUCHU CHEN, XINYU CHEN, TONGHE DANG, JIALIN HONG

Abstract. The superiority of stochastic symplectic methods over non-symplectic counter-
parts has been verified by plenty of numerical experiments, especially in capturing the as-
ymptotic behaviour of the underlying solution process. How can one theoretically explain
this superiority? This paper gives an answer to this problem from the perspective of the
law of iterated logarithm, taking the linear stochastic Hamiltonian system in Hilbert space
as a test model. The main contribution is twofold. First, by fully utilizing the time-change
theorem for martingales and the Borell–TIS inequality, we prove that the upper limit of the
exact solution with a specific scaling function almost surely equals some non-zero constant,
thus confirming the validity of the law of iterated logarithm. Second, we prove that stochastic
symplectic fully discrete methods asymptotically preserve the law of iterated logarithm, but
non-symplectic ones do not. This reveals the good ability of stochastic symplectic methods in
characterizing the almost sure asymptotic growth of the utmost fluctuation of the underlying
solution process. Applications of our results to the linear stochastic oscillator and the linear
stochastic Schrödinger equation are also presented.

1. Introduction

The stochastic Hamiltonian system (SHS) serves as a fundamental model in various physical
and engineering sciences. One of the most relevant feactures of the SHS is that its phase flow
preserves the stochastic symplectic structure pathwisely. Concerning the numerical approx-
imation of the SHS, one may anticipate that numerical methods preserve the symplecticity,
leading to the pioneering works (see [11, 12]) of G. N. Milstein and co-authors on stochastic
symplectic methods. The construction and analysis of stochastic symplectic methods have fur-
ther been developed in recent decades; see monographs e.g. [7, 8, 13] and references therein.
There have been plenty of numerical experiments that demonstrate the superiority of sto-
chastic symplectic methods over non-symplectic counterparts in the long-term computation,
especially in capturing the asymptotic behaviour of the underlying solution process.

The study on the rigorous explanation of the superiority is a recent subject, and different
perspectives are provided. One of the perspectives is based on the stochastic modified equa-
tion and the backward error analysis, providing insights into the convergence properties of
the truncated stochastic modified equation and the estimate of the Hamiltonian deviation for
stochastic symplectic methods. For instance, for the stochastic Langevin equation, which is a
special SHS, the backward error analysis of stochastic symplectic methods is performed by the
corresponding stochastic modified equation at the level of the stochastic differential equation
(see [15]) and at the level of the associated Kolmogorov equation (see [17, 10]). For the SHSs
with additive noise or with multiplicative noises for which the Hamiltonian Hr(p, q), r ≥ 1
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associated to the diffusion parts depend only on p or only on q, authors in [16] develop the
approach of constructing the stochastic modified equations of weak k+k′ order (k′ ≥ 1) apart
from the weak k order stochastic symplectic methods via their generating functions. The
author in [2] presents a backward error analysis for a stochastic symplectic method of weak
order one by constructing the stochastic modified equation at the level of the associated Kol-
mogorov equation, and obtains an expansion of the weak error associated with the numerical
scheme. For the SHS driven by rough path, authors in [3] construct a new type of stochastic
modified equation for stochastic symplectic method, which is proved to have a Hamiltonian
formulation, and obtain the pathwise convergence order of the truncated stochastic modified
equation. Authors in [6] consider both the Itô SHS with separable Hamiltonian and additive
noise and the Stratonovich SHS, and present long-term estimates of the Hamiltonian devi-
ation for stochastic symplectic methods by virtue of the corresponding stochastic modified
equations and the backward error analysis.

Another perspective to theoretically explain the superiority of stochastic symplectic meth-
ods is via the large deviation principle, which indicates the good ability in approximating
the exponential decay speed of rare event probabilities related to the exact solution. To be
specific, authors in [5] and [4], taking the linear stochastic oscillator and the linear stochas-
tic Schrödinger equation as the test equations, respectively, prove that stochastic symplectic
methods asymptotically preserve the large deviation principle of observables of the exact so-
lution, but non-symplectic ones do not. From these results, atypically large deviations of
observables from the average value are illustrated for the SHS and its stochastic symplectic
methods.

In order to comprehend the good ability of stochastic symplectic methods in capturing the
asymptotic behaviour of the underlying solution process, this paper presents a new perspec-
tive to quantify the typical fluctuation of solution processes of the SHS and its stochastic
symplectic methods as time goes to infinity. In classical probability theory, the fundamental
probabilistic limit theorem for describing the maximum possible fluctuation of a stochas-
tic process pathwisely over the long term is known as the law of iterated logarithm (LIL),
providing the specific scaling function that characterizes the almost sure asymptotic growth
of the process. One of the most important examples possessing the LIL is the standard

Brownian motion B(t), which satisfies lim supt→∞
|B(t)|
f(t) =

√
2 a.s. with the scaling function

f(t) =
√
t log log t; see e.g. [14]. This result shows that the utmost fluctuation of Brown-

ian motion asymptotically grows as
√
2t log log t. With the aid of the LIL, we are going to

investigate the following questions:

(i) Does the SHS obey the LIL with some scaling function f? Namely, is the upper limit
of the exact solution with the scaling function f a.s. equal to some non-zero constant
γ?

(ii) If so, is there a numerical method that also obeys the LIL with the same scaling
function f? Namely, is the upper limit of the numerical solution with the scaling
function f a.s. equal to some non-zero constant γ∆ which may depend on the mesh-
size ∆?

(iii) Further, can the numerical method asymptotically preserve the LIL of the exact so-
lution? Namely, does γ∆ converge to γ as ∆ takes limit?

In this paper, we take the linear SHS in the Hilbert space U× U

d

(

X(t)
Y (t)

)

=

(

0 B

−B 0

)(

X(t)
Y (t)

)

dt+

(

α1

α2

)

dW (t),

(

X(0)
Y (0)

)

=

(

X0

Y0

)

(1)
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as a test model, and investigate the LILs for both the exact solution and its numerical methods.
Here, X,Y ∈ U with (U, 〈·, ·〉R) being a real-valued separable Hilbert space, X0, Y0 ∈ U

are deterministic, {W (t)}t≥0 is a U-valued Q-Wiener process on a filtered probability space
(Ω,F , {Ft}t≥0,P), B is a self-adjoint linear operator. Precise assumptions on W and B are
given in Section 2. To prove the LIL for the exact solution of (1), the difficulty lies in that the
stochastic convolution in the mild form of the exact solution is not a martingale, leading to
the non-trivial analysis. To overcome this difficulty, the key is to extract a suitable martingale
difference series providing the predominant contribution to the upper limit, where the time-
change theorem is fully utilized to prove the remainder after the extraction converges to 0.
Based on this analysis, we present the lower bound of the LIL. To further prove the upper
bound of the LIL, we introduce an approach based on the Borell–TIS inequality, through
which the delicate estimate of the small probability that the exact solution deviates from the
scaling function is established. With the detailed analysis, we finally obtain the LIL for X (t)
with the scaling function f(t) =

√
t log log t, namely,

lim sup
t→∞

X (t)√
t log log t

=
√

α2
1 + α2

2 sup
j∈N+

√
ηj a.s.,

where X (t) ∈ {‖X(t)‖R, ‖Y (t)‖R, (‖X(t)‖2
R
+ ‖Y (t)‖2

R
)
1
2}, and {ηj}j∈N+ is the sequence of

eigenvalues of Q.
To further study the LIL for numerical methods, we apply the spectral Galerkin method in

spatial direction, and a class of one-step numerical methods in temporal direction to obtain a
general class of fully discrete numerical methods {XM,τ (tn), Y

M,τ (tn)}n∈N+ . Here, M, τ are
the spectral projection dimension and time step-size, respectively. The compact form of the
numerical solution is formulated based on dimensionality reduction and iteration argument,
with the explicit expression of coefficients being presented. The key in the proof of the LIL
lies in the technical estimates for the discrete stochastic convolution of the numerical solution.
We prove that the stochastic symplectic methods obey the LIL with the same scaling function
f as that of the exact solution case. Further, we present that as τ → 0 and M → ∞, the
limit for the LIL of stochastic symplectic methods coincide with the one for that of the exact
solution, namely,

lim
M→∞

lim
τ→0

lim sup
n→∞

X
M,τ
sym (tn)√

tn log log tn
=
√

α2
1 + α2

2 sup
j∈N+

√
ηj a.s.,

where X
M,τ
sym (tn) denotes the numerical counterpart of X for stochastic symplectic methods.

By contrast, we prove that the non-symplectic methods do not obey the LIL. Finally, we
apply theoretical results to the linear stochastic oscillator and the linear stochastic Schrödinger
equation and obtain the LILs for both exact solutions and their stochastic symplectic methods.

This paper is organized as follows: In Section 2, we prove the LIL for the exact solution
of the linear SHS based on the time-change theorem for martingales and the Borell–TIS
inequality. In Section 3, we establish the LIL for stochastic symplectic methods of the linear
SHS, and prove the asymptotic preservation of the LIL of the exact solution. Section 4 is
devoted to applications of theoretical results to the linear stochastic oscillator and the linear
stochastic Schrödinger equation, respectively.

At the end of this section, we give some notations for the following content. We use log t to
denote the natural logarithm loge t and use 〈M〉(t) to denote the quadratic variation process
of a martingale M(t). Let R = O (hp) denote |R| ≤ Chp for all sufficiently small h and
f(h) ∼ hp claim that f(h) and hp are equivalent infinitesimal. Denote by Var(·) the variance
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for random variables. Let i be the imaginary unit. For a complex-valued number x, let ℜx be
its real part and ℑx be its imaginary part. Throughout this paper, let C denote an arbitrary
constant which may vary from one line to another.

2. LIL for exact solution of linear SHS

In this section, we investigate the LIL for the linear SHS (1) based on the time-change
theorem for martingales and the Borell–TIS inequality.

We consider a densely defined, linear, self-adjoint and positive definite operatorB : dom(B) ⊂
U → U which is not necessarily bounded but with compact inverse. Suppose Bek = λkek
for some non-decreasing sequence {λk}k∈N, where {ek}k∈N forms an orthonormal basis of
(U, 〈·, ·〉R). Let W (t) be a U-valued Q-Wiener process on a complete filtered probability space
(Ω,F , {Ft}t≥0,P), which can be represented as W (t) =

∑+∞
k=1

√
ηkβk(t)ek. Here, {βk}∞k=1

is a sequence of independent standard one-dimensional Brownian motions, and Q is a non-
negative symmetric operator on U with finite trace, whose eigenvalues and eigenvectors are,
respectively, ηk and ek, k ∈ N

+.
The exact solution of (1) reads as

X(t) = cos(Bt)X0 + sin(Bt)Y0 + α1

∫ t

0
cos((t− s)B)dW (s) + α2

∫ t

0
sin((t− s)B)dW (s),

Y (t) = − sin(Bt)X0 + cos(Bt)Y0 − α1

∫ t

0
sin((t− s)B)dW (s) + α2

∫ t

0
cos((t− s)B)dW (s).

Below, we give the LIL result for the exact solution of the linear SHS.

Theorem 2.1. For X (t) ∈ {‖X(t)‖R, ‖Y (t)‖R, (‖X(t)‖2
R
+ ‖Y (t)‖2

R
)
1
2}, the LIL holds:

lim sup
t→∞

X (t)√
t log log t

=
√

α2
1 + α2

2 sup
j∈N+

√
ηj a.s.

To prove Theorem 2.1, we introduce the following auxiliary process

X̃(t) := cos(Bt)X0 + sin(Bt)Y0 + a1

∫ t

0
cos((t− s)B)dW (s) + a2

∫ t

0
sin((t− s)B)dW (s)

with a1, a2 ∈ C, and study the LIL for X̃(t) in a complex-valued Hilbert space. To proceed,
we give some notations. Let H be the complex-valued Hilbert space corresponding to U with
the complex inner product 〈·, ·〉C and the real inner product 〈·, ·〉R = ℜ〈·, ·〉C. We would like
to mention that {ek}k∈N also forms an orthonormal basis of (H, 〈·, ·〉C).

Proposition 2.2. X̃(t) obeys the following LIL:

lim sup
t→∞

‖X̃ (t) ‖R√
t log log t

= sup
∑∞

j=1(ρ
2
1,j+ρ22,j)=1

√

φ(ρ),

where ρ :=
∑∞

j=1 (ρ1,j + iρ2,j) ej with ρ1,j , ρ2,j ∈ R, and

φ(ρ) :=
∞
∑

j=1

((ℜa1ρ1,j + ℑa1ρ2,j)2 + (ℜa2ρ1,j + ℑa2ρ2,j)2)ηj .
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Proof of Theorem 2.1. (i) Proof of the LIL for {‖X(t)‖R}t≥0. Using Proposition 2.2 with
a1 = α1, a2 = α2, we have

lim sup
t→∞

‖X (t)‖
R√

t log log t
=
√

α2
1 + α2

2 sup
∑

∞
j=1(ρ

2
1,j+ρ22,j)=1

(
∞
∑

j=1

ρ21,jηj)
1
2 ≤

√

α2
1 + α2

2 sup
j∈N+

√
ηj.

Since the operator Q has finite trace, there exist N0 ∈ N
+ and j0 ∈ {1, . . . , N0} such that

supj∈N+ ηj = supj∈{1,2,...,N0} ηj = ηj0 . Letting

ρ1,j =
{1, j = j0,

0, j 6= j0

and ρ2,j = 0 for all j ∈ N
+, we have

sup
∑

∞
j=1(ρ

2
1,j+ρ22,j)=1

(

∞
∑

j=1

ρ21,jηj)
1
2 ≥ ηj0 = sup

j∈N+

√
ηj ,

which leads to

lim sup
t→∞

‖X (t)‖
R√

t log log t
=
√

α2
1 + α2

2 sup
j∈N+

√
ηj.

(ii) Proof of the LIL for {‖Y (t)‖R}t≥0. Similar to the proof of the LIL for {‖X(t)‖R}t≥0,
by taking a1 = α2, a2 = −α1, we obtain the LIL result for {‖Y (t)‖R}t≥0.

(iii) Proof of the LIL for {(‖X(t)‖2
R
+ ‖Y (t)‖2

R
)
1
2 }t≥0. Notice that Z(t) := X(t) + iY (t)

satisfies

Z(t) = cos(Bt)(X0 + iY0) + sin(Bt)(Y0 − iX0)

+ (α1 + iα2)

∫ t

0
cos((t− s)B)dW (s) + (α2 − iα1)

∫ t

0
sin((t− s)B)dW (s),

and ‖Z(t)‖R = (‖X(t)‖2
R
+ ‖Y (t)‖2

R
)
1
2 . According to Proposition 2.2 with a1 = α1 + iα2, a2 =

α2 − iα1, we derive

lim sup
t→∞

‖Z(t)‖R√
t log log t

= sup
∑∞

j=1(ρ
2
1,j+ρ22,j)=1

(

∞
∑

j=1

(

(α1ρ1,j + α2ρ2,j)
2 + (α2ρ1,j − α1ρ2,j)

2
)

ηj

)
1
2

= sup
∑

∞
j=1(ρ

2
1,j+ρ22,j)=1

√

α2
1 + α2

2

(

∞
∑

j=1

(ρ21,j + ρ22,j)ηj

)
1
2 ≤

√

α2
1 + α2

2 sup
j∈N+

√
ηj.

By letting

ρ21,j + ρ22,j =
{1, j = j0,

0, j 6= j0,

we conclude

lim sup
t→∞

(‖X(t)‖2
R
+ ‖Y (t)‖2

R
)
1
2

√
t log log t

= lim sup
t→∞

‖Z(t)‖R√
t log log t

=
√

α2
1 + α2

2 sup
j∈N+

√
ηj ,

which finishes the proof. �
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In the following proposition, we present LILs for some martingales by means of the time-
change theorem, which plays an important role in the proof of Proposition 2.2. DefineM1(t) :=
∫ t
0 cos (sB) dW (s), M2(t) :=

∫ t
0 sin (sB)dW (s). Then for all j ∈ N

+, we have

M1,j(t) := 〈M1(t), ej〉R = 〈
∫ t

0
cos (sB) (

∞
∑

k=1

√
ηkdβkek), ej〉R =

√
ηj

∫ t

0
cos (sλj) dβj ,

M2,j(t) := 〈M2(t), ej〉R = 〈
∫ t

0
sin (sB) (

∞
∑

k=1

√
ηkdβkek), ej〉R =

√
ηj

∫ t

0
sin (sλj) dβj .

Proposition 2.3. For j ∈ N
+, k = 1, 2, Mk,j(t) is a real-valued martingale obeying the

following LIL:

lim sup
t→∞

|Mk,j(t)|√
t log log t

=
√
ηj a.s.

Proof. Note that M1,j(t) is a real-valued martingale with

〈M1,j〉(t) = ηj

∫ t

0
cos2(sλj)ds =

tηj

2
+

ηj

4λj
sin(2tλj).

It follows from [9, Theorem 3.4.6] thatW1,j(t) :=M1,j(T1,j(t)) is a one-dimensional Brownian
motion with M1,j(t) = W1,j (〈M1,j〉 (t)) , where T1,j(t) := inf {s ≥ 0 : 〈M1,j〉(s) > t}. Since

limt→∞
2〈M1,j〉(t)

t = ηj , we obtain

lim sup
t→∞

|M1,j(t)|√
t log log t

= lim sup
t→∞

|W1,j (〈M1,j〉 (t))|
√

2 〈M1,j〉 (t) log log (〈M1,j〉 (t))

√

2 〈M1,j〉 (t) log log (〈M1,j〉 (t))√
t log log t

= lim
t→∞

√

2 〈M1,j〉 (t)
t

=
√
ηj a.s., (2)

where the LIL for the Brownian motion W1,j(t) is used. Similarly, M2,j(t) is a martingale
with

〈M2,j〉(t) = ηj

∫ t

0
sin2(sλj)ds =

tηj

2
− ηj

4λj
sin(2tλj),

and it can be proved that lim supt→∞
|M2,j(t)|√
t log log t

=
√
ηj a.s. The proof is completed. �

With Proposition 2.3 in hand, we present the proof of Proposition 2.2 below.

Proof of Proposition 2.2. For the sake of simplicity, we defineWsin(t) :=
∫ t
0 sin((t−s)B)dW (s),

Wcos(t) :=
∫ t
0 cos((t − s)B)dW (s), and for j ∈ N

+, we define Wsin,j(t) := 〈Wsin(t), ej〉R,
Wcos,j(t) := 〈Wcos(t), ej〉R. Using the Riesz representation theorem, we have

‖X̃(t)‖2R = sup
ρ∈H,‖ρ‖R=1

|〈X̃(t), ρ〉R|2.

Hence, for all ρ =
∑∞

j=1 (ρ1,j + iρ2,j) ej ∈ H with ρ1,j, ρ2,j ∈ R such that ‖ρ‖2
R
=
∑∞

j=1(ρ
2
1,j +

ρ22,j) = 1, we obtain

‖X̃(t)‖2R = sup
ρ∈H,‖ρ‖R=1

|〈cos(Bt)X0 + sin(Bt)Y0, ρ〉R + 〈a1Wcos(t) + a2Wsin(t), ρ〉R|2

= sup
∑∞

j=1(ρ21,j+ρ22,j)=1

∣

∣

∣
〈cos(Bt)X0 + sin(Bt)Y0, ρ〉R +

∞
∑

j=1

ã1,ρ,jWcos,j(t) + ã2,ρ,jWsin,j(t)
∣

∣

∣

2
,
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where ã1,ρ,j := ℜa1ρ1,j+ℑa1ρ2,j, ã2,ρ,j := ℜa2ρ1,j+ℑa2ρ2,j . For each sequence {(ρ1,j , ρ2,j)}∞j=1

such that
∑∞

j=1(ρ
2
1,j + ρ22,j) = 1, let Wsin,cos,ρ(t) :=

∑∞
j=1 ã1,ρ,jWcos,j(t) + ã2,ρ,jWsin,j(t). Then

we divide the proof into two steps.

Step 1: Lower bound of lim supt→∞
‖X̃(t)‖R√
t log log t

.

Let m > 2, and tn := mn for n ∈ N. We first give the estimate of Wsin,cos,ρ(tn), which can
be decomposed as

Wsin,cos,ρ (tn) = An,ρ +Bn,ρ.

Here,

An,ρ :=

∞
∑

j=1

〈

∫ tn

tn−1

(ã1,ρ,j (cos (tn − s)B) + ã2,ρ,j (sin (tn − s)B))dW (s), ej
〉

R

and

Bn,ρ :=

∞
∑

j=1

〈

∫ tn−1

0
(ã1,ρ,j (cos (tn − s)B) + ã2,ρ,j (sin (tn − s)B))dW (s), ej

〉

R

are independent Gaussian random variables for any given n ∈ N
+. It is proved that {An,ρ}n∈N+

is a martingale difference series with E [An,ρ] = 0 and

Var (An,ρ) =
∞
∑

j=1

〈

(ã21,ρ,j + ã
2
2,ρ,j)

∆tnQ

2
ej, ej

〉

R
+ J (∆tn, ρ) =

∆tnφ(ρ)

2
+ J (∆tn, ρ),

where ∆tn := tn − tn−1 and

J (∆tn, ρ) :=
∞
∑

j=1

(

(ã21,ρ,j − ã
2
2,ρ,j)

sin(2λj∆tn)ηj
4λj

+ ã1,ρ,j ã2,ρ,j(
ηj

2λj
− cos(2λj∆tn)ηj

2λj
)
)

.

Since {λj}∞j=1 is non-decreasing, we know that

|J (∆tn, ρ)| ≤
∞
∑

j=1

(

|ã21,ρ,j − ã
2
2,ρ,j|

ηj

4λj
+ |ã1,ρ,j ã2,ρ,j |

ηj

λj

)

≤
∞
∑

j=1

( |ã21,ρ,j − ã
2
2,ρ,j|

4
+ |ã1,ρ,j ã2,ρ,j|

) ηj

λ1
.

Letting amax := max{|ℜa1|, |ℑa1|, |ℜa2|, |ℑa2|}, it holds that

|ã21,ρ,j − ã
2
2,ρ,j | ≤ 2a2max(ρ

2
1,j + ρ22,j) ≤ 2a2max, |ã1,ρ,j ã2,ρ,j | ≤ a

2
max(|ρ1,j |+ |ρ2,j |)2 ≤ 2a2max,

which leads to

|J (∆tn, ρ)| ≤
5a2max

2λ1
tr(Q) =: J0 <∞. (3)

Thus, we have Var (An,ρ) ≤ ∆tn
2 φ(ρ)+J0. Define Cn,ρ :=

(

∆tn
β φ(ρ) log log tn

)
1
2 with n ≥ 2, β ∈

(1, 2]. Based on the fact that An,ρ is Gaussian, we derive

P
{

An,ρ > Cn,ρ

}

= P
{ An,ρ
√

Var(An,ρ)
>

Cn,ρ
√

Var(An,ρ)

}

≥ 1√
2π

1

Cn,ρ√
Var(An,ρ)

+

√
Var(An,ρ)

Cn,ρ

exp
{

−
C2
n,ρ

2Var(An,ρ)

}

.
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For any ǫ1 ∈ (0, 34 ], there exists N0 := N0(ǫ1,m, ρ) = max
{

⌈ log(
4J0
φǫ1

)

logm

⌉

,
⌈

e2β

logm

⌉

, 2
}

such that

for all n > N0, it holds that

Cn,ρ
√

Var(An,ρ)
=

√

( 1

1 + 2J
φ∆tn

) 2

β
log log tn ≤

√

( 1

1− 2J0
φ∆tn

) 2

β
log log tn

≤
√

( 1

1− ǫ1

) 2

β
log log tn ≤ 2

√

2

β
log log tn

and

√

Var(An,ρ)

Cn,ρ
≤

√

√

√

√

1 + 2J
φ∆tn

2
β log log tn

≤
1 + 2J0

φ∆tn
√

2
β log log tn

≤ 1

2
+

J0

φ∆tn
≤ 1 ≤

√

2

β
log log tn.

Hence,

P
{

An,ρ > Cn,ρ

}

≥ 1√
2π

1

Cn,ρ√
Var(An,ρ)

+

√
Var(An,ρ)

Cn,ρ

exp
{

− log log tn
β(1− ǫ1)

}

≥ 1√
2π

1

3
√

2
β (log n+ log logm)

(logm)
− 1

β(1−ǫ1) n
− 1

β(1−ǫ1) .

Taking ǫ1 = 1−1/β
2 ≤ 1

4 , which implies β (1− ǫ1) =
β+1
2 > 1, we have

∑∞
n=N0

n
− 1

β(1−ǫ1) = ∞.
This leads to

∞
∑

n=2

P
{

An,ρ > Cn,ρ

}

=
(

N0
∑

n=2

+

∞
∑

n=N0+1

)

P
{

An,ρ > Cn,ρ

}

= ∞.

Noticing that {An,ρ}∞n=2 is a sequence of independent random variables, it follows from the
Borel–Cantelli lemma that

P

{

{

An,ρ > Cn,ρ

}

i.o.
}

= 1. (4)

By Proposition 2.3 and the Cauchy–Schwarz inequality, we obtain

lim sup
n→∞

|Bn,ρ|
√

tn−1 log log tn−1

= lim sup
n→∞

∞
∑

j=1

1
√

tn−1 log log tn−1

|
〈(

ã1,ρ,j cos(tnB) + ã2,ρ,j sin(tnB)
)

M1(tn−1)

+
(

ã1,ρ,j sin(tnB)− ã2,ρ,j cos(tnB)
)

M2(tn−1), ej
〉

R
|

≤
∞
∑

j=1

2
√
ηj (|ã1,ρ,j |+ |ã2,ρ,j |) ≤ 2(

∞
∑

j=1

(|ã1,ρ,j|+ |ã2,ρ,j|)2)
1
2 (

∞
∑

j=1

ηj)
1
2 ≤ 4

√
2amax(tr(Q))

1
2 a.s.,

which implies

lim inf
n→∞

Bn,ρ
√

tn−1 log log tn−1

≥ −4
√
2amax(tr(Q))

1
2 a.s. (5)
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According to the decomposition of Wsin,cos,ρ(t), (4), and (5), there exists a set Ω̃ ⊂ Ω with

P(Ω̃) = 1 such that for any ω ∈ Ω̃ and ε1 > 0,

Wsin,cos,ρ(tn) > Cn,ρ +Bn,ρ

≥
√

tn log log tn
(

√

1− 1
m

β
φ(ρ)− (4

√
2amax(tr(Q))

1
2 + ε1)

√

tn−1 log log tn−1√
tn log log tn

)

(6)

holds for infinitely many n > 1. Noticing limn→∞

√
tn−1 log log tn−1√

tn log log tn
=
√

1
m with m > 2, and

then letting m→ ∞, β → 1, we deduce from (6) that

lim sup
t→∞

|Wsin,cos,ρ(t)|√
t log log t

≥ lim sup
n→∞

Wsin,cos,ρ(tn)√
tn log log tn

≥
√

φ(ρ) a.s.

Consequently,

lim sup
t→∞

‖X̃(t)‖R√
t log log t

= lim sup
t→∞

sup
∑∞

j=1(ρ
2
1,j+ρ22,j)=1

|〈cos(Bt)X0 + sin(Bt)Y0, x〉R +Wsin,cos,ρ(t)|√
t log log t

≥ lim sup
t→∞

|Wsin,cos,ρ(t)|√
t log log t

≥
√

φ(ρ) a.s.

Since lim supt→∞
‖X̃(t)‖R√
t log log t

is independent of ρ, taking supremum over all {(ρ1,j , ρ2,j)}∞j=1 with
∑∞

j=1

(

ρ21,j + ρ22,j

)

= 1 on the right-hand side of the above inequality, we have the lower bound

result

lim sup
t→∞

‖X̃(t)‖R√
t log log t

≥ sup
∑

∞
j=1(ρ

2
1,j+ρ22,j)=1

√

φ(ρ) a.s. (7)

Step 2: Upper bound of lim supt→∞
‖X̃(t)‖R√
t log log t

.

Let m ∈ (1, 2], and tn := mn for n ∈ N. Define f(t, ρ) :=
√

m2φ(ρ)t log log t. According
to the Burkholder–Davis–Gundy inequality and the Cauchy–Schwarz inequality, for all n >

N1 := N1(m) = max{⌈
log( 1

2λ1
)

logm − 1⌉, 0}, we have

E
[

sup
t∈[0,tn+1]

Wsin,cos,ρ(t)
]

≤
∞
∑

j=1

(

|ã1,ρ,j|+ |ã2,ρ,j |
)(

E
[

sup
t∈[0,tn+1]

|M1,j(t)|
]

+ E
[

sup
t∈[0,tn+1]

|M2,j(t)|
])

≤
∞
∑

j=1

C
(

|ã1,ρ,j |+ |ã2,ρ,j |
)(

E
(

(〈M1,j〉(tn+1))
1
2
)

+ E
(

(〈M2,j〉(tn+1))
1
2
))

≤
∞
∑

j=1

2C
(

|ã1,ρ,j|+ |ã2,ρ,j |
)(tn+1ηj

2
+

ηj

4λj

)
1
2

≤
∞
∑

j=1

2C
(

|ã1,ρ,j|+ |ã2,ρ,j |
)(

tn+1ηj
)

1
2 ≤ 4

√
2Camax

√

tr(Q)tn+1.

Hence, there exists N2 := N2(m,ρ) = max
{⌈

e
C2
1 tr(Q)

mφ

logm

⌉

, N1

}

such that for all n > N2,

E
[

sup
t∈[0,tn]

Wsin,cos,ρ(t)
]

≤ C1

√

tr(Q)
√

tn+1 ≤ f(tn, ρ), (8)
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where C1 := 4
√
2Camax. Therefore, for all n > N2, we obtain

(

f(tn, ρ)− E
[

sup
t∈[0,tn+1]

Wsin,cos,ρ(t)
])2

= m2tnφ(ρ) log log tn

(

1 +
C2
1
tr(Q)
φ(ρ) − 2C1

√

m
tr(Q)
φ(ρ) log log tn

m log log tn

)

.

For any given ǫ2 > 0, there exists N3 := N3(ǫ2,m, ρ) = max
{⌈

e
(
4C2

1 tr(Q)

ǫ2
2
mφ

)

logm

⌉

, N2

}

such that for

all n > N3, it holds that
2C1

√

m tr(Q)
φ(ρ)

log log tn

m log log tn
≤ ǫ2. This implies that for all n > N3,

(

f(tn, ρ)− E
[

sup
t∈[0,tn+1]

Wsin,cos,ρ(t)
])2 ≥ (1− ǫ2)m

2φ(ρ)tn log log tn. (9)

Notice that

σ2tn+1,ρ := sup
t∈[0,tn+1]

E
[

Wsin,cos,ρ(t)
]2

= sup
t∈[0,tn+1]

{

∞
∑

j=1

〈

(ã21,ρ,j + ã
2
2,ρ,j)

tQ

2
ej , ej

〉

R
+ J (t, ρ)

}

≤ tn+1

2
φ(ρ) + J0,

where J0 is given in (3). Then for ǫ2, there exists N4 := N4(ǫ2,m, ρ) = max
{⌈ log(

2J0
ǫ2φ

)

logm −1
⌉

, 0
}

such that for all n > N4,

2σ2tn+1,ρ ≤ mφ(ρ)tn(1 + ǫ2). (10)

Applying the Borell–TIS inequality (see [1, Theorem 2.1.1]) to Wsin,cos,ρ(t) with t ∈ [0, tn+1],
and combining (9) and (10), we have that for all n > N5 := max{N3, N4},

P

{

sup
t∈[0,tn+1]

Wsin,cos,ρ(t) ≥ f(tn, ρ)
}

= P

{

sup
t∈[0,tn+1]

Wsin,cos,ρ(t)− E
[

sup
t∈[0,tn+1]

Wsin,cos,ρ(t)
]

≥ f(tn, ρ)− E
[

sup
t∈[0,tn+1]

Wsin,cos,ρ(t)
]

}

≤ exp
{

−
(

f(tn, ρ)− E
[

supt∈[0,tn+1]Wsin,cos,ρ(t)
])2

2σ2tn+1,ρ

}

≤ exp
{

− (1− ǫ2)m
2φ(ρ)tn log log tn

(1 + ǫ2)mφ(ρ)tn

}

= (logm)
−m

(

1−ǫ2
1+ǫ2

)

n
−m

(

1−ǫ2
1+ǫ2

)

.

Taking ǫ2 <
1−1/m
1+1/m , which implies m

(

1−ǫ2
1+ǫ2

)

> 1, we have
∑∞

n=1 n
−m
(

1−ǫ2
1+ǫ2

)

< ∞. This leads
to

∞
∑

n=1

P

{

sup
t∈[0,tn+1]

Wsin,cos,ρ(t) ≥ f(tn, ρ)
}

=
(

N5
∑

n=1

+
∞
∑

n=N5+1

)

P

{

sup
t∈[0,tn+1]

Wsin,cos,ρ(t) ≥ f(tn, ρ)
}

<∞.



SUPERIORITY OF STOCHASTIC SYMPLECTIC METHODS VIA LIL 11

Using the Borel–Cantelli lemma yields P

{

{

supt∈[0,tn+1]Wsin,cos,ρ(t) ≥ f(tn, ρ)
}

i.o.
}

= 0,

which implies lim supn→∞
supt∈[0,tn+1]

Wsin,cos,ρ(t)√
m2φ(ρ)tn log log tn

≤ 1 a.s. Hence, we arrive at

lim sup
t→∞

Wsin,cos,ρ(t)
√

m2t log log t
≤ lim sup

n→∞

supt∈[tn,tn+1]Wsin,cos,ρ(t)
√

m2tn log log tn

≤ lim sup
n→∞

supt∈[0,tn+1]Wsin,cos,ρ(t)
√

m2tn log log tn
≤
√

φ(ρ) a.s.

Letting m→ 1, Wsin,cos,ρ(t) obeys

lim sup
t→∞

Wsin,cos,ρ(t)√
t log log t

≤
√

φ(ρ) a.s. (11)

Using the same method, we can also prove

lim sup
t→∞

−Wsin,cos,ρ(t)√
t log log t

≤
√

φ(ρ) a.s. (12)

Combining (11) and (12), it shows that

lim sup
t→∞

|Wsin,cos,ρ(t)|√
t log log t

≤
√

φ(ρ) a.s.

Due to the fact that sup‖x‖=1〈f, x〉 = 〈f, x̃〉 with x̃ = f
‖f‖ , for any given ω ∈ Ω̃, we have

|Wsin,cos,ρ̃(t, ω)| = sup
∑∞

j=1(ρ
2
1,j+ρ22,j)=1

|Wsin,cos,ρ(t, ω)| , (13)

where ρ̃(ω) := a1Wsin(t,ω)+a2Wcos(t,ω)
‖a1Wsin(t,ω)+a2Wcos(t,ω)‖R . Therefore,

lim sup
t→∞

∥

∥X̃(t, ω)
∥

∥

R√
t log log t

= lim sup
t→∞

∣

∣Wsin,cos,ρ̃(t, ω)
∣

∣

√
t log log t

≤
√

φ(ρ̃(ω)) ≤ sup
∑∞

j=1(ρ21,j+ρ22,j)=1

√

φ(ρ).

Combining Step 1 and Step 2, we finish the proof of Proposition 2.2. �

3. LIL for stochastic symplectic methods of linear SHS

In this section, we study the LIL for fully discrete numerical methods of the linear SHS,
whose spatial direction is based on the spectral Galerkin method and temporal direction is
a class of one-step numerical methods. It is shown that the stochastic symplectic methods
obey the LIL, but non-symplectic ones do not. Further, we show that stochastic symplectic
methods asymptotically preserve the LIL of the exact solution case.

3.1. LIL for X
M,τ
sym (tn). For M ∈ N

+, we define the M-dimensional subspace of (U, 〈·, ·〉R)
as UM := span {e1, e2, . . . , eM} and the projection operator PM : U → UM as PMx =
∑M

k=1 〈x, ek〉R ek for each x ∈ U. Then PM : H → HM is also a projection operator such

that PMx =
∑M

k=1〈x, ek〉Cek for each x ∈ H. Denote BM = PMB,W
M = PMW,X

M
0 =

PMX0, Y
M
0 = PMY0. Using these notations, we obtain the following spectral Galerkin ap-

proximation:

d

(

XM (t)
YM (t)

)

=

(

0 BM

−BM 0

)(

XM (t)
YM (t)

)

dt+

(

α1

α2

)

dWM (t),

(

XM (0)
YM (0)

)

=

(

XM
0

YM
0

)

. (14)
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Letting Xk,M (t) := 〈XM (t), ek〉R, Y k,M(t) := 〈Y M (t), ek〉R, (14) is equivalent to the following
M subsystems

d

(

Xk,M (t)
Y k,M(t)

)

=

(

0 λk
−λk 0

)(

Xk,M (t)
Y k,M(t)

)

dt+
√
ηk

(

α1

α2

)

dβk(t), k = 1, 2, . . . ,M.

We further apply a class of one-step numerical methods in temporal direction to deriving the

general full discretization {(Xk,M,τ
n , Y

k,M,τ
n )}n∈N+ , which satisfies the following equation

(

X
k,M,τ
n+1

Y
k,M,τ
n+1

)

=

(

a11 (λkτ) a12 (λkτ)
a21 (λkτ) a22 (λkτ)

)

(

X
k,M,τ
n

Y
k,M,τ
n

)

+
√
ηk

(

b1 (λkτ)
b2 (λkτ)

)

δβk,n. (15)

Here, τ is the temporal step-size, δβk,n := βk (tn+1) − βk (tn) with tn = nτ, n = 1, 2, . . ., and
aij, bi : (0,+∞) → R, i, j = 1, 2 are determined by a concrete numerical method.

Defining

A(h) :=

(

a11(h) a12(h)
a21(h) a22(h)

)

, b(h) :=

(

b1(h)
b2(h)

)

, ∀h > 0,

we rewrite (15) into
(

X
k,M,τ
n+1

Y
k,M,τ
n+1

)

= A (λkτ)

(

X
k,M,τ
n

Y
k,M,τ
n

)

+
√
ηkb (λkτ) δβk,n, n = 0, 1, 2, . . . (16)

We make the following assumption to obtain the compact form for the solution of (16).

Assumption 1. There exists some h1 > 0 such that

4 det
(

A(h)
)

−
(

tr(A(h))
)2
> 0, ∀h < h1.

Under Assumption 1, it follows from [4] that for k ∈ {1, 2, . . . ,M} and sufficiently small τ ,
{(

X
k,M,τ
n , Y

k,M,τ
n

)}

n∈N+ can be written into the compact form

Xk,M,τ
n = − det(A)α̂k

n−1X
k,M,τ
0 + α̂k

n

(

a11X
k,M,τ
0 + a12Y

k,M,τ
0

)

+
√
ηk

n−1
∑

j=0

(

− det(A)α̂k
n−2−jb1 + (a11b1 + a12b2) α̂

k
n−1−j

)

δβk,j ,

Y k,M,τ
n = a21α̂

k
nX

k,M,τ
0 + α̂k

n+1Y
k,M,τ
0 − a11α̂

k
nY

k,M,τ
0

+
√
ηk

n−1
∑

j=0

(

(a21b1 − a11b2) α̂
k
n−1−j + b2α̂

k
n−j

)

δβk,j,

where α̂k
n = (det(A))

n−1
2 sin(nθk)

sin(θk)
with θk ∈ (0, π) such that cos (θk) =

tr(A)

2
√

det(A)
and sin (θk) =

√
4 det(A)−(tr(A))2

2
√

det(A)
. Here, det(A), aij , bi (i, j = 1, 2) are computed at λkτ . For convenience, we

always omit the argument λkτ in det(A), aij , bi (i, j = 1, 2) when no confusion occurs.

Let XM,τ (tn) =
∑M

k=1X
k,M,τ
n ek ∈ UM, Y

M,τ (tn) =
∑M

k=1 Y
k,M,τ
n ek ∈ UM. The stochastic

symplectic fully discrete method obeys the LIL, which is stated in the following theorem.

Theorem 3.1. Let Assumption 1 hold. If the numerical method (16) is symplectic, then the
LILs hold as follows:

lim sup
n→∞

‖XM,τ (tn)‖R√
tn log log tn

= max
k∈{1,2,...,M}

√

ξk,1,τηk a.s., (17)
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lim sup
n→∞

‖Y M,τ (tn)‖R√
tn log log tn

= max
k∈{1,2,...,M}

√

ξk,2,τηk a.s., (18)

lim sup
n→∞

(‖XM,τ (tn)‖2R + ‖YM,τ (tn)‖2R)
1
2

√
tn log log tn

= sup
∑M

k=1(ρ
2
1,k+ρ22,k)=1

√

φM,τ (ρ) a.s., (19)

where

ξk,1,τ :=
b21 + (a11b1 + a12b2)

2 − 2b1 (a11b1 + a12b2) cos (θk)

sin2 (θk)
,

ξk,2,τ :=
b22 + (a21b1 − a11b2)

2 + 2b2 (a21b1 − a11b2) cos (θk)

sin2 (θk)
,

and φM,τ (ρ) :=
∑M

k=1

(

ξk,1,τρ
2
1,k + ξk,2,τρ

2
2,k + ξk,3,τρ1,kρ2,k

)

ηk with ρ :=
∑M

k=1(ρ1,k + iρ2,k)ek,

ξk,3,τ :=
−b1b2 cos(2θk) + [b2(a11b1 + a12b2)− b1 (a21b1 − a11b2)] cos(θk)

sin2(θk)

+
(a11b1 + a12b2) (a21b1 − a11b2)

sin2(θk)
.

To prove Theorem 3.1, we provide some preliminaries. For k ∈ N
+, define real-valued

martingales as follows

M̃ τ
1,k(n) :=

1

sin(θk)

n−1
∑

j=0

[

− b1 cos((j + 1)θk) + (a11b1 + a12b2) cos(jθk)
]

δβk,j ,

M̃ τ
2,k(n) :=

1

sin(θk)

n−1
∑

j=0

[

− b1 sin((j + 1)θk) + (a11b1 + a12b2) sin(jθk)
]

δβk,j ,

M̃ τ
3,k(n) :=

1

sin(θk)

n−1
∑

j=0

[

b2 cos((j − 1)θk) + (a21b1 − a11b2) cos(jθk)
]

δβk,j ,

M̃ τ
4,k(n) :=

1

sin(θk)

n−1
∑

j=0

[

b2 sin((j − 1)θk) + (a21b1 − a11b2) sin(jθk)
]

δβk,j .

Then it is proved in the following proposition that M̃ τ
j,k(n), j = 1, . . . , 4 obey the LILs.

Proposition 3.2. For k ∈ N
+, martingales M̃ τ

j,k(n), j = 1, . . . , 4 obey the following LILs:

lim sup
n→∞

∣

∣M̃ τ
j,k(n)

∣

∣

√
tn log log tn

=
√

ξk,1,τ a.s. (j = 1, 2),

lim sup
n→∞

∣

∣M̃ τ
j,k(n)

∣

∣

√
tn log log tn

=
√

ξk,2,τ a.s. (j = 3, 4).

Proof. Using

n−1
∑

j=0

sin(2jθ) =
cos θ − cos

(

(2n − 1)θ
)

2 sin θ
,

n−1
∑

j=0

cos(2jθ) =
1

2
+

sin
(

(2n − 1)θ
)

2 sin θ
, (20)
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we derive the quadratic variation processes of the martingales

〈M̃ τ
1,k〉(n) =

ξk,1,τ

2
tn +K1(k, n, τ), 〈M̃ τ

2,k〉(n) =
ξk,1,τ

2
tn −K1(k, n, τ),

〈M̃ τ
3,k〉(n) =

ξk,2,τ

2
tn +K2(k, n, τ), 〈M̃ τ

4,k〉(n) =
ξk,2,τ

2
tn −K2(k, n, τ),

where

K1(k, n, τ)

:=
1

4 sin2(θk)

(sin((2n − 1)θk)

sin(θk)
+ 1
)(

b21 cos(2θk) + (a11b1 + a12b2)
2 − 2b1 (a11b1 + a12b2) cos(θk)

)

τ

+
1

sin2(θk)
[−b1 cos(θk) + (a11b1 + a12b2)] b1 sin(θk)

(cos(θk)− cos((2n − 1)θk)

2 sin(θk)

)

τ,

K2(k, n, τ)

:=
1

4 sin2(θk)

(sin((2n − 1)θk)

sin(θk)
+ 1
)(

b22 cos(2θk) + (a21b1 − a11b2)
2 + 2b2 (a21b1 − a11b2) cos(θk)

)

τ

+
1

sin2(θk)
(b2 cos(θk) + a21b1 − a11b2) b2 sin(θk)

(cos(θk)− cos((2n − 1)θk)

2 sin(θk)

)

τ.

Since K1(k, n, τ),K2(k, n, τ) are uniformly bounded with respect to n, similar to the proof of
(2), we finish the proof. �

Based on Proposition 3.2, we give the proof of Theorem 3.1.

Proof of Theorem 3.1. At first, we prove the LIL for (‖XM,τ (tn)‖2R + ‖YM,τ (tn)‖2R)
1
2 . Let

uM,τ (tn) := XM,τ (tn)+iYM,τ (tn). By the Riesz representation theorem, we have ‖uM,τ (tn)‖2R =

sup{ρ∈HM ,‖ρ‖R=1} |〈uM,τ (tn), ρ〉R|2.Hence, for all ρ =
∑M

k=1 (ρ1,k + iρ2,k) ek ∈ HM with ρ1,k, ρ2,k ∈
R and ‖ρ‖2

R
=
∑M

k=1(ρ
2
1,k + ρ22,k) = 1, we obtain

∥

∥uM,τ (tn)
∥

∥

2

R
= sup

∑M
k=1(ρ21,k+ρ22,k)=1

∣

∣

∣

M
∑

k=1

(

〈Xk,M,τ
n ek, ρ1,kek〉R + 〈Y k,M,τ

n ek, ρ2,kek〉R
)

∣

∣

∣

2
.

For convenience, we denote Xk,M,τ
n = C

k,M,τ
1 (n) +

√
ηkG

k,M,τ
1 (n) and Y k,M,τ

n = C
k,M,τ
2 (n) +

√
ηkG

k,M,τ
2 (n) with

C
k,M,τ
1 (n) := −α̂k

n−1X
k,M,τ
0 + α̂k

n

(

a11X
k,M,τ
0 + a12Y

k,M,τ
0

)

,

C
k,M,τ
2 (n) := a21α̂

k
nX

k,M,τ
0 + α̂k

n+1Y
k,M,τ
0 − a11α̂

k
nY

k,M,τ
0 ,

G
k,M,τ
1 (n) :=

n−1
∑

j=0

(

− α̂k
n−2−jb1 + (a11b1 + a12b2) α̂

k
n−1−j

)

δβk,j ,

G
k,M,τ
2 (n) :=

n−1
∑

j=0

(

α̂k
n−jb2 + (a21b1 − a11b2) α̂

k
n−1−j

)

δβk,j .

Then
∥

∥uM,τ (tn)
∥

∥

2

R
= sup∑M

k=1(ρ
2
1,k+ρ22,k)=1

∣

∣

∣

∑M
k=1

(

ρ1,kC
k,M,τ
1 (n)+ρ2,kC

k,M,τ
2 (n)

)

+GM,τ
ρ (n)

∣

∣

∣

2
,

where GM,τ
ρ (n) :=

∑M
k=1

√
ηk
(

ρ1,kG
k,M,τ
1 (n)+ρ2,kG

k,M,τ
2 (n)

)

. Now we divide the proof of (19)
into two steps.
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Step 1: Lower bound of lim supn→∞
‖uM,τ (tn)‖

R√
tn log log tn

.

Let m > 2. We decompose GM,τ
ρ (mn) as GM,τ

ρ (mn) = A
M,τ
mn,ρ +B

M,τ
mn,ρ, where

A
M,τ
mn,ρ :=

M
∑

k=1

(

ρ1,k

mn−1
∑

j=mn−1

(

− α̂k
mn−2−jb1 + (a11b1 + a12b2) α̂

k
mn−1−j

)

δβk,j

+ ρ2,k

mn−1
∑

j=mn−1

(

α̂k
mn−jb2 + (a21b1 − a11b2) α̂

k
mn−1−j

)

δβk,j

)√
ηk

and

B
M,τ
mn,ρ :=

M
∑

k=1

(

ρ1,k

mn−1−1
∑

j=0

(

− α̂k
mn−2−jb1 + (a11b1 + a12b2) α̂

k
mn−1−j

)

δβk,j

+ ρ2,k

mn−1−1
∑

j=0

(

α̂k
mn−jb2 + (a21b1 − a11b2) α̂

k
mn−1−j

)

δβk,j

)√
ηk

are independent Gaussian random variables for any given n. Note that {AM,τ
mn,ρ}∞n=1 is a

martingale difference series satisfying

Var
(

A
M,τ
mn,ρ

)

=

M
∑

k=1

mn−1
∑

j=mn−1

(

ρ21,k
[

− α̂k
mn−2−jb1 + (a11b1 + a12b2)α̂

k
mn−1−j

]2

+ ρ22,k
[

α̂k
mn−jb2 + (a21b1 − a11b2) α̂

k
mn−1−j

]2

+ ρ1,kρ2,k
[

− α̂k
mn−2−jb1 + (a11b1 + a12b2) α̂

k
mn−1−j

]

×
[

α̂k
mn−jb2 + (a21b1 − a11b2) α̂

k
mn−1−j

]

)

ηkτ

=
∆tmn

2
φM,τ (ρ) + JM,τ,ρ(∆mn),

where ∆mn := mn −mn−1,∆tmn := tmn − tmn−1 = ∆mnτ , and

JM,τ,ρ(∆mn) :=
M
∑

k=1

[

(

ρ2
1,k

[

− b2
1
+ (a11b1 + a12b2)

2

sin2(θk)
[1 + ψ1,k(∆m

n)]− b2
1

+
b1 (a11b1 + a12b2)

sin2(θk)
[2 cos(θk) + ψ2,k(∆m

n)] + (a11b1 + a12b2)
2
( sin(∆mnθk)

sin(θk)

)2
]

+ ρ2
2,k

[

− b2
2
+ (a21b1 − a11b2)

2

sin2(θk)

[1

2
+ ψ1,k(∆m

n + 1)
]

+ b2
2

sin2((∆mn + 1)θk)

sin2(θk)

− b2 (a21b1 − a11b2)

sin2(θk)

[

cos(θk) + ψ2,k(∆m
n + 1)

]

]

+ ρ1,kρ2,k

[ b1b2

sin2(θk)

[cos(2θk)

2
+ ψ1,k(∆m

n + 1)− sin2(θk)
]

+
b1 (a21b1 − a11b2)− b2(a11b1 + a12b2)

2 sin2(θk)
(2 cos(θk) + ψ2,k(∆m

n))

+ b2(a11b1 + a12b2)(
sin((∆mn + 1)θk) sin(∆m

nθk)

sin2(θk)
)
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− (a21b1 − a11b2) (a11b1 + a12b2)

sin2(θk)

[1

2
+ ψ1,k(∆m

n + 1)
]

])

ηkτ

]

.

Here, we denote ψ1,k(n) :=
sin((2n−3)θk)−sin(θk)

4 sin(θk)
, ψ2,k(n) :=

sin(2(n−1)θk)−sin(2θk)
2 sin(θk)

, and use

n−2
∑

j=0

(α̂k
j )

2 =
1

sin2(θk)

(n− 2

2
− sin((2n − 3)θk)− sin(θk)

4 sin(θk)

)

,

2

n−1
∑

j=1

α̂k
j α̂

k
j−1 =

1

sin2(θk)

(

(n− 2) cos(θk)−
sin(2(n − 1)θk)− sin(2θk)

2 sin(θk)

)

(21)

for the stochastic symplectic method. Since | sin(θk)| ≤ 1 and | cos(θk)| ≤ 1, we can prove

that |JM,τ,ρ(∆mn)| ≤ JM,τ
0 with some constant JM,τ

0 independent of n. Define CM,τ
mn,ρ :=

(∆tmn

β φM,τ (ρ) log log tmn

)
1
2 . Then for any ǫ1 ∈ (0, 34 ], there exists a positive integer N0 :=

N0(ǫ1,m, ρ) = max
{

⌈
log(

4J
M,τ
0

φM,τ ǫ1
)

logm

⌉

,
⌈

e2β

logm

⌉

,
⌈ log(e/τ)

logm

⌉

}

such that for all n > N0,

P
{

A
M,τ
mn,ρ > C

M,τ
mn,ρ

}

≥ 1√
2π

1

3
√

2
β (log n+ log logm)

(logm)
− 1

β(1−ǫ1) n
− 1

β(1−ǫ1) .

Taking ǫ1 =
1−1/β

2 ≤ 1
4 and then using the Borel–Cantelli lemma, we obtain

P

{

{

A
M,τ
mn,ρ > C

M,τ
mn,ρ

}

i.o.
}

= 1. (22)

By Proposition 3.2, we derive

lim sup
n→∞

|BM,τ
mn,ρ|

√

tmn−1 log log tmn−1

≤
M
∑

k=1

(

|ρ1,k| lim sup
n→∞

(

∣

∣ sin (mnθk) M̃
τ
1,k(m

n−1)− cos(mnθk)M̃
τ
2,k(m

n−1)
∣

∣

√

tmn−1 log log tmn−1

)

+ |ρ2,k| lim sup
n→∞

(

∣

∣ sin (mnθk) M̃
τ
3,k(m

n−1)− cos(mnθk)M̃
τ
4,k(m

n−1)
∣

∣

√

tmn−1 log log tmn−1

))√
ηk

≤
M
∑

k=1

2
√
ηk
(

|ρ1,k|
√

ξk,1,τ + |ρ2,k|
√

ξk,2,τ
)

≤ 2
(

M
∑

k=1

(|ρ1,k|
√

ξk,1,τ + |ρ2,k|
√

ξk,2,τ )
2
)

1
2
(

M
∑

k=1

ηk
)

1
2 =: 2CM,τ

0

√

tr(Q) a.s.,

where CM,τ
0 is some constant independent of n. Therefore,

lim inf
n→∞

B
M,τ
mn,ρ

√

tmn−1 log log tmn−1

≥ −2CM,τ
0

√

tr(Q) a.s. (23)

Combining (22) and (23), and using the same procedure as that for (7) yield

lim sup
n→∞

∥

∥uM,τ (tn)
∥

∥

R√
tn log log tn

≥ α sup
∑M

k=1(ρ
2
1,k+ρ22,k)=1

√

φM,τ (ρ) a.s.
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Step 2: Upper bound of lim supn→∞
‖uM,τ (t)‖

R√
tn log log tn

.

Let m ∈ (1, 2]. Define fM,τ (tmn , ρ) :=
√

m2φM,τ (ρ)tmn log log tmn . By the Burkholder–
Davis–Gundy inequality, we obtain

E

[

sup
r∈{1,2,...,mn+1}

GM,τ
ρ (r)

]

≤
M
∑

k=1

ρ1,kC
(

E

[

(

〈M̃ τ
1,k〉(mn+1)

)
1
2

]

+ E

[

(

〈M̃ τ
2,k〉(mn+1)

)
1
2

])√
ηk

+
M
∑

k=1

ρ2,kC
(

E

[

(

〈M̃ τ
3,k〉(mn+1)

)
1
2

]

+ E

[

(

〈M̃ τ
4,k〉(mn+1)

)
1
2

])√
ηk

≤
M
∑

k=1

2
√
ηkC

(

ρ1,k
(ξk,1,τ

2
tmn+1 + |K1(k,m

n+1, τ)|
)

1
2 ) + ρ2,k

(ξk,2,τ

2
tmn+1 + |K2(k,m

n+1, τ)|
)

1
2

)

.

Notice that

|K1(k, n, τ)| ≤
1

4 sin2(θk)

( 1

sin(θk)
+ 1
)(

b21 + (a11b1 + a12b2)
2 + 2|b1 (a11b1 + a12b2) |

)

τ

+
1

sin2(θk)
|
(

− b1 cos(θk) + (a11b1 + a12b2)
)

b1|τ =: K1,0(k, τ),

|K2(k, n, τ)| ≤
1

4 sin2(θk)

( 1

sin(θk)
+ 1
)(

b22 + (a21b1 − a11b2)
2 + 2|b2(a21b1 − a11b2)|

)

τ

+
1

sin2(θk)
|
(

b2 cos(θk) + a21b1 − a11b2
)

b2|τ =: K2,0(k, τ).

DefineK0(k, τ) := max{K1,0(k, τ),K2,0(k, τ)}. Then we have that for all n > N1 := N1(m, τ) =

max
{

0,
⌈
log(

2K0
τξk,j,τ

)

logm − 1
⌉

: k = 1, 2, . . . ,M, j = 1, 2
}

,

E

[

sup
r∈{1,2,...,mn+1}

GM,τ
ρ (r)

]

≤ 2C

M
∑

k=1

√
ηk

(

ρ1,k
√

ξk,1,τ tmn+1 + ρ2,k
√

ξk,2,τ tmn+1

)

=: C1

√

tmn+1 .

Similar to the proof of (8), for all n > N2 := N2(m,ρ, τ) = max
{⌈

e

C2
1

mφM,τ

logm

⌉

, N1

}

, we arrive

at

E

[

sup
r∈{1,2,...,mn+1}

GM,τ
ρ (r)

]

≤ C1

√

tmn+1 ≤ fM,τ (tmn , ρ). (24)

Moreover, we have

σ̃2tmn+1 ,M,ρ := sup
r∈{1,2,...,mn+1}

E

[

(GM,τ
ρ (r))2

]

≤ 1

2
φM,τ (ρ)tmn+1 + JM,τ

0 . (25)

Applying the Borell–TIS inequality toGM,τ
ρ (r) with r ∈ {1, 2, . . . ,mn} and combining (24) and

(25), it yields that for any given ǫ2 > 0, when n > N3 := N3(ǫ2,m, ρ) = max
{

N2,
⌈ log

(

2J0
ǫ2φ

M,τ

)

logm −
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1
⌉

,
⌈

e

(

4C2
1

ǫ2
2
mφM,τ

)

logm

⌉}

,

P

{

sup
r∈{1,2,...,mn+1}

GM,τ
ρ (r) ≥ fM,τ (tmn , ρ)

}

≤ exp
{

−
(

fM,τ (tmn , ρ)− E

[

supr∈{1,2,...,mn+1}G
M,τ
ρ (r)

]

)2

2σ̃2tmn+1 ,M,ρ

}

≤ exp
{

− (1− ǫ2)φ
M,τ (ρ)m2tmn log log tmn

(1 + ǫ2)φM,τ (ρ)mtmn

}

= (logm)
−m(

1−ǫ2
1+ǫ2

)(
n+

log τ

logm

)−m(
1−ǫ2
1+ǫ2

)
.

Using the Borel–Cantelli lemma, similar to the proof of (11), we obtain lim supn→∞
GM,τ

ρ (n)√
tn log log tn

≤
√

φM,τ (ρ) a.s. Similarly, we have lim supn→∞
−GM,τ

ρ (n)√
tn log log tn

≤
√

φM,τ (ρ) a.s. This leads to

lim sup
n→∞

∣

∣G
M,τ
ρ (n)

∣

∣

√
tn log log tn

≤
√

φM,τ (ρ) a.s.

Therefore, for a.s. ω ∈ Ω, by taking ρ0(ω) such that |GM,τ
ρ0 (n, ω)| = sup

∑M
k=1(ρ

2
1,k+ρ22,k)=1

|GM,τ
ρ (n, ω)|,

we have

lim sup
n→∞

(
∥

∥XM,τ (tn)
∥

∥

2

R
+
∥

∥YM,τ (tn)
∥

∥

2

R
)
1
2

√
tn log log tn

= lim sup
n→∞

∥

∥uM,τ (tn)
∥

∥

R√
tn log log tn

= lim sup
n→∞

|GM,τ
ρ0 (n, ω)|√
tn log log tn

≤ sup
∑M

k=1(ρ
2
1,k+ρ22,k)=1

√

φM,τ (ρ) a.s.

Combining Step 1 and Step 2, we finish the proof of (19).

Now we give proofs of (17) and (18). Define GM,τ,1
ρ (n) :=

∑M
k=1

√
ηkρ1,kG

k,M,τ
1 (n) and

G
M,τ,2
ρ (n) :=

∑M
k=1

√
ηkρ2,kG

k,M,τ
2 (n). Using the above result on G

M,τ
ρ (n) with {ρ2,k = 0 :

k = 1, 2, . . . ,M} and {ρ1,k = 0 : k = 1, 2, . . . ,M}, respectively, and noticing the relation

holds as sup∑M
k=1 ρ

2
j,k=1

√

∑M
k=1 ρ

2
j,kξk,j,τηk = maxk∈{1,2,...,M}

√

ξk,j,τηk, j = 1, 2, we finish the

proof. �

3.2. Asymptotic preservation for LILs. Recalling that in Theorem 2.2 and Theorem 3.1,
we acquire the LILs for the exact solution of the linear SHS and the numerical solution of
the stochastic symplectic method. This subsection is devoted to showing the asymptotic
preservation of the LIL by the stochastic symplectic method. As a comparison, we also give
the result on non-symplectic methods, which fail to obey the LIL. To this end, we need the
following assumption on the convergence of numerical methods.

Assumption 2. The coefficients A, b of the numerical method (16) satisfy

|a11 − 1|+ |a22 − 1|+ |a12 − τ |+ |a21 + τ | = O
(

τ2
)

and |b1 − α1|+ |b2 − α2| = O(τ).

It follows from [5] that Assumption 2 ensures at least one order convergence of the numerical
method in the mean-square sense. The main result on the asymptotic preservation of the LILs
by stochastic symplectic methods is stated as follows.
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Theorem 3.3. Let Assumptions 1 and 2 hold. For the stochastic symplectic method, the LILs
for X (t) are asymptotically preserved, i.e.,

lim
M→∞

lim
τ→0

lim sup
n→∞

∥

∥XM,τ (tn)
∥

∥

R√
tn log log tn

=
√

α2
1 + α2

2 sup
k

√
ηk a.s., (26)

lim
M→∞

lim
τ→0

lim sup
n→∞

∥

∥YM,τ (tn)
∥

∥

R√
tn log log tn

=
√

α2
1 + α2

2 sup
k

√
ηk a.s., (27)

lim
M→∞

lim
τ→0

lim sup
n→∞

(
∥

∥XM,τ (tn)
∥

∥

2

R
+
∥

∥YM,τ (tn)
∥

∥

2

R
)
1
2

√
tn log log tn

=
√

α2
1 + α2

2 sup
k

√
ηk a.s. (28)

Proof. Combining Assumption 2 and [5, Lemma 4.2], we have

|a11 − 1|+ |a22 − 1|+ |a12 − τ |+ |a21 + τ | = O(τ2), |b1 − α1|+ |b2 − α2| = O(τ),

tr(A) → 2 as τ → 0, (1− tr(A) + det(A)) ∼ τ2,

which leads to

lim
τ→0

b1 − a11b1 − a12b2

τ
= −α2, lim

τ→0

b1 (a11b1 + a12b2) (2− tr(A))

τ2
= α2

1,

lim
τ→0

b2 + a21b1 − a11b2

τ
= −α1, lim

τ→0

b2 (a21b1 − a11b2) (2− tr(A))

τ2
= −α2

2.

Therefore, we obtain

lim
τ→0

ξk,1,τ = lim
τ→0

(b1 − (a11b1 + a12b2))
2 + 2b1 (a11b1 + a12b2) (1− cos θk)
(

1− tr2(A)
4

)

= lim
τ→0

4

2 + tr(A)

((b1 − a11b1 − a12b2)
2

2− tr(A)
+
b1 (a11b1 + a12b2) (2− tr(A))

2− tr(A)

)

= α2
1 + α2

2,

(29)

lim
τ→0

ξk,2,τ = lim
τ→0

(b2 + (a21b1 − a11b2))
2 + 2b2 (a21b1 − a11b2) (cos θk − 1)
(

1− tr2(A)
4

)

= lim
τ→0

4

2 + tr(A)

((b2 + a21b1 − a11b2)
2

2− tr(A)
− b2 (a21b1 − a11b2) (2− tr(A))

2− tr(A)

)

= α2
1 + α2

2,

(30)
which yields

lim
τ→0

lim sup
n→∞

∥

∥XM,τ (tn)
∥

∥

R√
tn log log tn

=
√

α2
1 + α2

2 max
k∈{1,2,...,M}

√
ηk a.s.,

lim
τ→0

lim sup
n→∞

∥

∥YM,τ (tn)
∥

∥

R√
tn log log tn

=
√

α2
1 + α2

2 max
k∈{1,2,...,M}

√
ηk a.s.

Letting M → ∞ and using the fact that limM→∞maxk∈{1,2,...,M}
√
ηk = supk

√
ηk a.s., we

derive (26) and (27).
For the proof of (28), by calculating

ck,τ,1 := − cos(2θk) + 2a11 cos(θk)− a211 + a12a21 = −tr2(A)

2
+ 1 + a11 tr(A)− a211 + a12a21

=
tr(A)

2
(− tr(A) + 2a11) + (1 + a11)(1− a11) + a12a21
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=
(

(2− tr(A)) + (1 + a11 − 2)(1 − a11) + a12a21
)

(1 +O(τ))

= O(τ2) +O(τ4)−O(τ2) = O(τ4),

ck,τ,2 := −a21 cos(θk) + a11a21 = O(τ3), ck,τ,3 := a12 cos(θk)− a11a12 = O(τ3),

we arrive at

lim
τ→0

ξk,3,τ = lim
τ→0

(−b1b2 cos(2θk) + (b2(a11b1 + a12b2)− b1 (a21b1 − a11b2)) cos(θk)
1
4(2 + tr(A))(2 − tr(A))

+
(a11b1 + a12b2) (a21b1 − a11b2)

1
4(2 + tr(A))(2 − tr(A))

)

= lim
τ→0

α1α2ck,τ,1 + α2
1ck,τ,2 + α2

2ck,τ,3

2− tr(A)
= 0.

(31)

Combining (29), (30), and (31), for any given ǫ > 0, there exists τ0(ǫ) > 0 such that for all
τ ∈ (0, τ0(ǫ)), it holds that

α2
1 + α2

2 − ǫ < ξk,1,τ < α2
1 + α2

2 + ǫ, α2
1 + α2

2 − ǫ < ξk,2,τ < α2
1 + α2

2 + ǫ, −ǫ < ξk,3,τ < ǫ.

Hence, for all τ ∈ (0, τ0(ǫ)),

sup
∑M

k=1(ρ
2
1,k+ρ22,k)=1

φM,τ (ρ)

≤ sup
∑M

k=1(ρ
2
1,k+ρ22,k)=1

M
∑

k=1

(

(ρ21,k + ρ22,k)(α
2
1 + α2

2 + ǫ) + ǫ|ρ1,kρ2,k|
)

ηk

≤
(

max
k∈{1,2,...,M}

ηk
)

sup
∑M

k=1(ρ
2
1,k+ρ22,k)=1

(

(α2
1 + α2

2 + ǫ)

M
∑

k=1

(ρ21,k + ρ22,k) +

M
∑

k=1

ǫ

2
(ρ21,k + ρ22,k)

)

≤ (α2
1 + α2

2 +
3

2
ǫ) max

k∈{1,2,...,M}
ηk.

There exists k0 ∈ {1, 2, . . . ,M} such that ηk0 = maxk∈{1,2,...,M} ηk. Let

ρ1,k =
{1, k = k0,

0, k 6= k0,

and ρ2,k = 0 for all k ∈ N
+. Then it follows that for all τ ∈ (0, τ0(ǫ)),

sup
∑M

k=1(ρ
2
1,k+ρ22,k)=1

φM,τ (ρ) ≥ ξk0,1,τηk0 ≥ (α2
1 + α2

2 − ǫ) max
k∈{1,2,...,M}

ηk.

This leads to that for all τ ∈ (0, τ0(ǫ)),

(α2
1 + α2

2 − ǫ) max
k∈{1,2,...,M}

ηk ≤ sup
∑M

k=1(ρ
2
1,k+ρ22,k)=1

φM,τ (ρ) ≤ (α2
1 + α2

2 +
3

2
ǫ) max

k∈{1,2,...,M}
ηk,

which is equivalent to limτ→0 sup∑M
k=1(ρ

2
1,k+ρ22,k)=1 φ

M,τ (ρ) = (α2
1 + α2

2)maxk∈{1,2,...,M} ηk.

Hence, we have

lim
τ→0

lim sup
n→∞

∥

∥uM,τ (tn)
∥

∥

R√
tn log log tn

=
√

α2
1 + α2

2 max
k∈{1,2,...,M}

√
ηk a.s.

Letting M → ∞ completes the proof of (28). �
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If the numerical method (16) applied to the SHS does not preserve the symplecticity, then
the method is called non-symplectic method. Notice that for the case det(A) > 1, the upper
limit of the solution scaled by polynomials of t may not exist in R. We only discuss the case
0 < det(A) < 1 here, for which we show that the upper limit of the solution scaled by tǫ with
any given ǫ > 0 equals 0 almost surely. This is stated as follows.

Theorem 3.4. Let Assumptions 1 and 2 hold. For the non-symplectic method with 0 <

det(A) < 1, X
M,τ
n-sym(tn) ∈ {‖XM,τ (tn)‖R, ‖Y M,τ (tn)‖R, (‖XM,τ (tn)‖2R + ‖YM,τ (tn)‖2R)

1
2 } sat-

isfies that

lim sup
n→∞

X
M,τ
n-sym(tn)

tǫn
= 0 a.s., ∀ ǫ > 0.

Proof. We only give the proof for ‖XM,τ (tn)‖R here since the proofs for ‖Y M,τ (tn)‖R and

(‖XM,τ (tn)‖2R + ‖YM,τ (tn)‖2R)
1
2 are similar. Define f(tn) := t

ǫ/2
n with ǫ > 0. Based on

0 < det(A) < 1, we have

n−2
∑

j=0

(α̂k
j )

2 ≤ K1(θk),
∣

∣2

n−1
∑

j=1

α̂k
j α̂

k
j−1

∣

∣ ≤ K2(θk),

which imply that

Var(GM,τ,1
ρ (n))

=

M
∑

k=0

n−1
∑

j=0

ρ21,k
(

− b1α̂
k
n−2−j + (a11b1 + a12b2) α̂

k
n−1−j

)2
ηkτ

≤
M
∑

k=0

ηkτ
(

[b21 + (a11b1 + a12b2)
2]K1(θk) + |b1 (a11b1 + a12b2) |K2(θk) + (a11b1 + a12b2)

2 (α̂k
n−1)

2
)

=: K(θ) <∞.

(32)

Since GM,τ,1
ρ (n) is a Gaussian random variable, we obtain

P
{

GM,τ,1
ρ (n) > f(tn)

}

≤ 1√
2π

1
f(tn)

√

Var(GM,τ,1
ρ (n))

exp
{

− tǫn

2Var(GM,τ,1
ρ (n))

}

≤ 1√
2π

√

K(θ)

(nτ)ǫ/2
exp

{

− (nτ)ǫ

2K(θ)

}

≤
√

K(θ)

2πτ
ǫ
2

exp
{

− (nτ)ǫ

2K(θ)

}

,

which leads to
∑∞

n=1 P

{

G
M,τ,1
ρ (n) > f(tn)

}

< ∞. By the Borel–Cantelli lemma, we arrive

at P

{

{

G
M,τ,1
ρ (n) > f(tn)

}

i.o.
}

= 0, which yields lim sup
n→∞

GM,τ,1
ρ (n)

t
ǫ/2
n

≤ 1 a.s. Therefore, it

shows that lim sup
n→∞

GM,τ,1
ρ (n)

tǫn
= lim sup

n→∞
GM,τ,1

ρ (n)

t
ǫ/2
n

t
ǫ/2
n
tǫn

≤ lim
n→∞

t
ǫ/2
n
tǫn

= 0 a.s. Since Var(−GM,τ,1
ρ (n))

has the same expression as (32), we have lim inf
n→∞

GM,τ,1
ρ (n)

tǫn
= − lim sup

n→∞
−GM,τ,1

ρ (n)

t
ǫ/2
n

t
ǫ/2
n
tǫn

≥ 0 a.s.

Hence, lim
n→∞

GM,τ,1
ρ (n)

tǫn
= 0 a.s., which finishes the proof. �
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4. Applications to finite-dimensional and infinite-dimensional SHSs

In this section, we give the applications of theoretical results to concrete examples, including
the linear stochastic oscillator and the linear stochastic Schrödinger equation, respectively.

4.1. LIL for linear stochastic oscillator. Consider the linear stochastic oscillator Ẍ(t) +

X(t) = αẆ (t) with α > 0 and W (t) being a one-dimensional standard Brownian motion
defined on (Ω,F , {Ft}t≥0,P). Let U = R, B(x) = x, α1 = 0, α2 = α, the linear stochastic
oscillator can be rewritten into an SHS in the form of (1), namely,

d

(

X(t)
Y (t)

)

=

(

0 1
−1 0

)(

X(t)
Y (t)

)

dt+ α

(

0
1

)

dW (t),

(

X(0)
Y (0)

)

=

(

X0

Y0

)

.

By Theorems 2.1 and 3.1, we have that the exact solution X(t) of the linear stochastic
oscillator and the numerical solution Xn of the stochastic symplectic method obey the LILs:

lim sup
t→∞

|X(t)|√
t log log t

= α a.s., lim sup
n→∞

|Xn|√
tn log log tn

=
√

ξτ a.s., (33)

respectively, where ξτ :=
b21+(a11b1+a12b2)

2−2b1(a11b1+a12b2) cos(θ)

sin2(θ)
. Further, by Theorem 3.3, we

derive that the stochastic symplectic method asymptotically preserves the LIL of the exact
solution:

lim
τ→0

lim sup
n→∞

|Xn|√
tn log log tn

= lim sup
t→∞

|X(t)|√
t log log t

= α a.s.

4.2. LIL for linear stochastic Schrödinger equation. Consider the linear stochastic
Schrödinger equation du(t) = i∆u(t)dt + iαdW (t), t > 0 with u(0) = u0, where α > 0, ∆
denotes the Laplace operator with Dirichlet boundary conditions, and W (t) is an L2(0, π;R)-
valued Q-Wiener process on a complete filtered probability space (Ω,F , {Ft}t≥0,P).

Let U = L2(0, π;R),H = L2(0, π;C). The corresponding complex inner product and real
inner product are defined as 〈f, g〉C =

∫ π
0 f(ζ)ḡ(ζ)dζ and 〈f, g〉R = ℜ

∫ π
0 f(ζ)ḡ(ζ)dζ for f, g ∈

H, respectively. The sequence
{

ek : ek(ζ) =
√

2
π sin(kζ), ζ ∈ [0, π]

}

k∈N+ forms an orthonormal

basis of both U and H. Set B = −∆, α1 = 0, α2 = α,X0 = ℜu0, Y0 = ℑu0. Let u(t) =
X(t) + iY (t), then X(t), Y (t) can be written into an SHS in the form of (1), namely,

d

(

X(t)
Y (t)

)

=

(

0 −∆
∆ 0

)(

X(t)
Y (t)

)

dt+ α

(

0
1

)

dW (t),

(

X(0)
Y (0)

)

=

(

ℜu0
ℑu0

)

.

By Theorem 2.1, we have the LIL of the exact solution u(t):

lim sup
t→∞

‖u (t)‖
R√

t log log t
= lim sup

t→∞

(‖X(t)‖2
R
+ ‖Y (t)‖2

R
)
1
2

√
t log log t

= α sup
j∈N+

√
ηj a.s.

According to Theorem 3.1, the solution u
M,τ
n = X

M,τ
n + iY

M,τ
n of the stochastic symplectic

method obeys the following LIL:

lim sup
n→∞

‖uM,τ
n ‖R√

tn log log tn
= sup

∑M
k=1(ρ

2
1,k+ρ22,k)=1

√

φM,τ (ρ) a.s.,

where φM,τ (ρ) is given in Theorem 3.1. Further, by Theorem 3.3, we derive that the stochastic
symplectic method asymptotically preserves the LIL of the exact solution:

lim
M→∞

lim
τ→0

lim sup
n→∞

‖uM,τ
n ‖R√

tn log log tn
= lim sup

t→∞

‖u(t)‖R√
t log log t

= α sup
j∈N+

√
ηj a.s.
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