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SUPERIORITY OF STOCHASTIC SYMPLECTIC METHODS VIA THE
LAW OF ITERATED LOGARITHM

CHUCHU CHEN, XINYU CHEN, TONGHE DANG, JIALIN HONG

ABSTRACT. The superiority of stochastic symplectic methods over non-symplectic counter-
parts has been verified by plenty of numerical experiments, especially in capturing the as-
ymptotic behaviour of the underlying solution process. How can one theoretically explain
this superiority? This paper gives an answer to this problem from the perspective of the
law of iterated logarithm, taking the linear stochastic Hamiltonian system in Hilbert space
as a test model. The main contribution is twofold. First, by fully utilizing the time-change
theorem for martingales and the Borell-TIS inequality, we prove that the upper limit of the
exact solution with a specific scaling function almost surely equals some non-zero constant,
thus confirming the validity of the law of iterated logarithm. Second, we prove that stochastic
symplectic fully discrete methods asymptotically preserve the law of iterated logarithm, but
non-symplectic ones do not. This reveals the good ability of stochastic symplectic methods in
characterizing the almost sure asymptotic growth of the utmost fluctuation of the underlying
solution process. Applications of our results to the linear stochastic oscillator and the linear
stochastic Schrodinger equation are also presented.

1. INTRODUCTION

The stochastic Hamiltonian system (SHS) serves as a fundamental model in various physical
and engineering sciences. One of the most relevant feactures of the SHS is that its phase flow
preserves the stochastic symplectic structure pathwisely. Concerning the numerical approx-
imation of the SHS, one may anticipate that numerical methods preserve the symplecticity,
leading to the pioneering works (see [11} [12]) of G. N. Milstein and co-authors on stochastic
symplectic methods. The construction and analysis of stochastic symplectic methods have fur-
ther been developed in recent decades; see monographs e.g. [7, 8, [13] and references therein.
There have been plenty of numerical experiments that demonstrate the superiority of sto-
chastic symplectic methods over non-symplectic counterparts in the long-term computation,
especially in capturing the asymptotic behaviour of the underlying solution process.

The study on the rigorous explanation of the superiority is a recent subject, and different
perspectives are provided. One of the perspectives is based on the stochastic modified equa-
tion and the backward error analysis, providing insights into the convergence properties of
the truncated stochastic modified equation and the estimate of the Hamiltonian deviation for
stochastic symplectic methods. For instance, for the stochastic Langevin equation, which is a
special SHS, the backward error analysis of stochastic symplectic methods is performed by the
corresponding stochastic modified equation at the level of the stochastic differential equation
(see [I5]) and at the level of the associated Kolmogorov equation (see [I7), 10]). For the SHSs
with additive noise or with multiplicative noises for which the Hamiltonian H,(p,q),r > 1
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associated to the diffusion parts depend only on p or only on ¢, authors in [16] develop the
approach of constructing the stochastic modified equations of weak k + &’ order (k' > 1) apart
from the weak k order stochastic symplectic methods via their generating functions. The
author in [2] presents a backward error analysis for a stochastic symplectic method of weak
order one by constructing the stochastic modified equation at the level of the associated Kol-
mogorov equation, and obtains an expansion of the weak error associated with the numerical
scheme. For the SHS driven by rough path, authors in [3] construct a new type of stochastic
modified equation for stochastic symplectic method, which is proved to have a Hamiltonian
formulation, and obtain the pathwise convergence order of the truncated stochastic modified
equation. Authors in [6] consider both the It6 SHS with separable Hamiltonian and additive
noise and the Stratonovich SHS, and present long-term estimates of the Hamiltonian devi-
ation for stochastic symplectic methods by virtue of the corresponding stochastic modified
equations and the backward error analysis.

Another perspective to theoretically explain the superiority of stochastic symplectic meth-
ods is via the large deviation principle, which indicates the good ability in approximating
the exponential decay speed of rare event probabilities related to the exact solution. To be
specific, authors in [5] and [4], taking the linear stochastic oscillator and the linear stochas-
tic Schrodinger equation as the test equations, respectively, prove that stochastic symplectic
methods asymptotically preserve the large deviation principle of observables of the exact so-
lution, but non-symplectic ones do not. From these results, atypically large deviations of
observables from the average value are illustrated for the SHS and its stochastic symplectic
methods.

In order to comprehend the good ability of stochastic symplectic methods in capturing the
asymptotic behaviour of the underlying solution process, this paper presents a new perspec-
tive to quantify the typical fluctuation of solution processes of the SHS and its stochastic
symplectic methods as time goes to infinity. In classical probability theory, the fundamental
probabilistic limit theorem for describing the maximum possible fluctuation of a stochas-
tic process pathwisely over the long term is known as the law of iterated logarithm (LIL),
providing the specific scaling function that characterizes the almost sure asymptotic growth
of the process. Omne of the most important examples possessing the LIL is the standard

Brownian motion B(t), which satisfies limsup,_, . \?((:)) | = \/2 a.s. with the scaling function

f(t) = V/tloglogt; see e.g. [14]. This result shows that the utmost fluctuation of Brown-

ian motion asymptotically grows as y/2tloglogt. With the aid of the LIL, we are going to
investigate the following questions:

(i) Does the SHS obey the LIL with some scaling function f? Namely, is the upper limit
of the exact solution with the scaling function f a.s. equal to some non-zero constant
7

(ii) If so, is there a numerical method that also obeys the LIL with the same scaling
function f? Namely, is the upper limit of the numerical solution with the scaling
function f a.s. equal to some non-zero constant v which may depend on the mesh-
size A?

(iii) Further, can the numerical method asymptotically preserve the LIL of the exact so-
lution? Namely, does 7 converge to v as A takes limit?

In this paper, we take the linear SHS in the Hilbert space U x U

1(30) = (s o) G) e () v (56)=G) o
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as a test model, and investigate the LILs for both the exact solution and its numerical methods.
Here, X,Y € U with (U, (-,-)r) being a real-valued separable Hilbert space, Xo,Yy € U
are deterministic, {W(¢)}>0 is a U-valued Q-Wiener process on a filtered probability space
(Q, F, {Fi}+>0,P), B is a self-adjoint linear operator. Precise assumptions on W and B are
given in Section[2l To prove the LIL for the exact solution of (), the difficulty lies in that the
stochastic convolution in the mild form of the exact solution is not a martingale, leading to
the non-trivial analysis. To overcome this difficulty, the key is to extract a suitable martingale
difference series providing the predominant contribution to the upper limit, where the time-
change theorem is fully utilized to prove the remainder after the extraction converges to 0.
Based on this analysis, we present the lower bound of the LIL. To further prove the upper
bound of the LIL, we introduce an approach based on the Borell-TIS inequality, through
which the delicate estimate of the small probability that the exact solution deviates from the
scaling function is established. With the detailed analysis, we finally obtain the LIL for 2" (¢)
with the scaling function f(t) = v/tloglogt, namely,
2 (t)

lim sup = a%—i—a% sup /1; a.s.,

tooo \/tloglogt jeN+

where 2'(t) € {|X(®)]z, [IY ()llz, (IX(DIZ + [Y (#)[|2)2}, and {n;}jen+ is the sequence of
eigenvalues of Q).

To further study the LIL for numerical methods, we apply the spectral Galerkin method in
spatial direction, and a class of one-step numerical methods in temporal direction to obtain a
general class of fully discrete numerical methods { X7 (t,,), YM7(t,)},ent . Here, M, T are
the spectral projection dimension and time step-size, respectively. The compact form of the
numerical solution is formulated based on dimensionality reduction and iteration argument,
with the explicit expression of coefficients being presented. The key in the proof of the LIL
lies in the technical estimates for the discrete stochastic convolution of the numerical solution.
We prove that the stochastic symplectic methods obey the LIL with the same scaling function
f as that of the exact solution case. Further, we present that as 7 — 0 and M — oo, the
limit for the LIL of stochastic symplectic methods coincide with the one for that of the exact
solution, namely,

M,
lim lim lim sup Loyt (tn) a% + a% sup /1; a.s.,

M—00o7—=0 pnooo +/tyloglogt, N JEN+

where %%’f(tn) denotes the numerical counterpart of 2 for stochastic symplectic methods.
By contrast, we prove that the non-symplectic methods do not obey the LIL. Finally, we
apply theoretical results to the linear stochastic oscillator and the linear stochastic Schrodinger
equation and obtain the LILs for both exact solutions and their stochastic symplectic methods.

This paper is organized as follows: In Section 2] we prove the LIL for the exact solution
of the linear SHS based on the time-change theorem for martingales and the Borell-TIS
inequality. In Section Bl we establish the LIL for stochastic symplectic methods of the linear
SHS, and prove the asymptotic preservation of the LIL of the exact solution. Section [ is
devoted to applications of theoretical results to the linear stochastic oscillator and the linear
stochastic Schrodinger equation, respectively.

At the end of this section, we give some notations for the following content. We use logt to
denote the natural logarithm log, ¢ and use (M)(t) to denote the quadratic variation process
of a martingale M(t). Let R = O (h”) denote |R| < ChP for all sufficiently small h and
f(h) ~ hP claim that f(h) and h? are equivalent infinitesimal. Denote by Var(-) the variance
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for random variables. Let i be the imaginary unit. For a complex-valued number z, let Rz be
its real part and Sz be its imaginary part. Throughout this paper, let C' denote an arbitrary
constant which may vary from one line to another.

2. LIL FOR EXACT SOLUTION OF LINEAR SHS

In this section, we investigate the LIL for the linear SHS (II) based on the time-change
theorem for martingales and the Borell-TIS inequality.

We consider a densely defined, linear, self-adjoint and positive definite operator B : dom(B) C
U — U which is not necessarily bounded but with compact inverse. Suppose Bep = e
for some non-decreasing sequence {A;}, oy, Where {eg}, o forms an orthonormal basis of
(U, (-, )r). Let W(t) be a U-valued @Q-Wiener process on a complete filtered probability space
(0, F, {Fi}t>0,P), which can be represented as W(t) = Y75 /eBe(t)er. Here, {8},
is a sequence of independent standard one-dimensional Brownian motions, and @ is a non-
negative symmetric operator on U with finite trace, whose eigenvalues and eigenvectors are,
respectively, n;, and ey, k € NT.

The exact solution of () reads as

t t
X(t) = cos(Bt) X + sin(BH)Yp + o / cos((t — )B)dW (s) + as / sin((t — s)B)dW (s),
0 0
t t
Y (t) = —sin(Bt) X + cos(Bt)Yy — o / sin((t — s)B)dW (s) + ozg/ cos((t — s)B)dW (s).
0 0
Below, we give the LIL result for the exact solution of the linear SHS.

Theorem 2.1. For Z°(t) € {||X#)||g, |Y (¢)|lr, (| X (®)|IZ + HY(t)H]%{)%}, the LIL holds:
2 (t)

lim sup = /a2 + a2 sup n; a.s.

tooo V/tloglogt jeN+
To prove Theorem 211 we introduce the following auxiliary process

X (t) := cos(Bt) X + sin(Bt)Yy + /Ot cos((t — s)B)dW (s) + ag /Ot sin((t — s)B)dW (s)

with a1, as € C, and study the LIL for X (t) in a complex-valued Hilbert space. To proceed,
we give some notations. Let H be the complex-valued Hilbert space corresponding to U with
the complex inner product (-,-)c and the real inner product (-,-)r = R(-,-)c. We would like
to mention that {ey};cy also forms an orthonormal basis of (H, (-,-)c).

Proposition 2.2. X (t) obeys the following LIL:

lim sup M = sup o(p),
t—soo /tloglogt (P2 403 ;)=1

where p = Z;‘;l (p1,; +1ip2j)ej with p1j,p2; € R, and

o(p) == Z((%alpl,j + Saipa,;)? + (Razp1; + Sazpa;)?)n;-

o]
J=1
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Proof of Theorem 21l (i) Proof of the LIL for {||X(t)||r}t>0. Using Proposition with
a1 = aq,as = ag, we have

, AXOlg _ 2 ko]
limsup ————= = /a2 + a3 sup (> piin)z < /a2 + a3 sup /7.
t—oo  Vtloglogt 3021 (03 403 5)=1 ]2:21 ! JENT

Since the operator @) has finite trace, there exist Ny € N and jo € {1,..., Ny} such that
SUpPjen+ 1j = SUPjef1,2,...No} 1 = Mjo- Letting

_{17 j:j07
PLI=N0, j+ jo

and py j = 0 for all j € NT, we have

(0.0]
1
sup "t mi)2 = mj, = sup i,

521 (PF 03 =1 =1 JENT
which leads to

sup JX Olle _

2 2
=/ af + a5 sup /n;.
oo A/tloglogt ! 2jeNp+ i

(11) Proof of the LIL for {||Y (t)||r}+>0. Similar to the proof of the LIL for {||X(¢)|r }+>0,
by taking a; = ag,as = —ay, we obtain the LIL result for {||Y (¢)||r}+>o0-

(iii) Proof of the LIL for {(| X (t)|Z2 + ||Y(t)||%§)%}t20. Notice that Z(t) := X (t) +1iY(¢)
satisfies

Z(t) = cos(Bt)(Xo +iYp) + sin(Bt)(Yp — iXop)
(o1 + o) /0 cos((t — s)B)AW (s) + (az — ian) /0 sin((t — 5)B)dW (s),

and || Z(t)||lr = (IX(®)|3 + HY(t)H%%)% According to Proposition Z2 with a; = a1 +iag, as =
ao — i, we derive

. 1Z()= = 2 2 2
limsup ——~— = sup (Z ((Oélﬂl,j + Oé2p2,j) + (Oézpl,j - Oélﬂz,j) ) 77j>
t—o0 \/thgIOgt Z 1(P1]+P23) 1 =
o 1
2
= sup \/a1+a2<z P13+P2g 77]) Sva%—i-a% sup /1.
Z;iﬂpij""p%,j):l j=1 JENT
By letting

2 2 17 j:j07
pw*”d‘%,j¢m

we conclude

1
: (XOIE +IY®IR)= _ . 1Z(®) |l /5
1 =1 V/
im sup Toslog [ imsup ——— TTog o 7 al + a2 sup /1;,

t—o0 t—o00 jENT

which finishes the proof. O
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In the following proposition, we present LILs for some martingales by means of the time-
change theorem, which plays an important role in the proof of Proposition[2Z.2l Define M;(t) :=
fg cos (sB) dW (s), Ms(t) := fg sin (sB) dW (s). Then for all 7 € N, we have

M, ;(t) == (Mi(t),ej)r = </0 cos (sB) (Z VikdBrer), ej)r = \/77_]/0 cos (sAj) dp;,
k=1

t o0 ¢
My j(t) == (Ma(t),ej)r = </0 sin (sB) (Y v/ilkdBrex), €;)r = \/%/0 sin (sA;) df;.
k=1
Proposition 2.3. For j € NT, k = 1,2, My ;(t) is a real-valued martingale obeying the

following LIL:

: [ My, (D)

1 RGO as.

lﬁsc;lp tloglogt i @S
Proof. Note that M; ;(t) is a real-valued martingale with

I _tm o
(M ;)(t) =mn; | cos®(sAj)ds = —= + ——sin(2t\;).
’ 0 2 4)\7

It follows from [9, Theorem 3.4.6] that W ;(t) := M ;(11,;(t)) is a one-dimensional Brownian
motion with M, ;(t) = Wi ; ((My ) (t)), where Ti ;(t) := inf {s > 0: (M ;)(s) > t}. Since

limy oo M = 1j, we obtain
tmsup 2O (W (M) (1)) V2 (M) (t)loglog (M) (t))
t—o0o V/tloglogt tsoo /2 (M ;) (t)loglog (M ;) (1)) Vitloglogt
o 2(My) (1)
S himy T =V sy @)

where the LIL for the Brownian motion Wi ;(¢) is used. Similarly, M ;(t) is a martingale
with

! tnj — mj
2i)(t) =n; Sin“(sA;)ds = — s (2tA;),
(o) (0) =y [ sin(sh,)ds = T = Hosin(aen,)

2 4
and it can be proved that limsup,_, . % = ,/Mj a.s. The proof is completed. O

With Proposition in hand, we present the proof of Proposition below.

Proof of Proposition [2.2 For the sake of simplicity, we define Wi, (t) := fot sin((t—s)B)dW (s),
Weos(t) = fot cos((t — s)B)dW (s), and for j € N, we define Wyin j(t) := (Wein(t), €j)p,
Weos,j(t) := (Weos(t), €j)p. Using the Riesz representation theorem, we have
IXOIE = sup  [(X(), )l
pEML||pllr=1
Hence, for all p =322, (p1,; +1ip2,;) ; € H with p1 j, p2 ; € R such that ol = Z;-’il(pij +
pg,j) = 1, we obtain
X% = SIFII)I |{cos(Bt) X + sin(Bt) Yo, p)r + (a1 Weos (t) + a2Wein(t), p)r |
pEL || pllr=1

(o]
2
= sup (cos(Bt) X + sin(Bt)Yp, p)r + Z 1,9, Weos,j(t) + 02,5 Wein j(t)|
21 (ot 403 ;) =1 j=1



SUPERIORITY OF STOCHASTIC SYMPLECTIC METHODS VIA LIL 7

~ ~ 0o
where a1, ; 1= Raip1 j+Saipa j, a2 p j := Ragpr ;j+Sagps ;. For each sequence {(pLj,pg,j)}j:l

such that Y227 (7 ; + 5 ;) = 1, let Win cos p(t) = D321 81,p,jWeos, () + 82,p,jWein (t). Then
we divide the proof into two steps.
IX(®)llr
Vitloglogt’
Let m > 2, and t,, := m" for n € N. We first give the estimate of Win cos,p(tn), which can
be decomposed as

Step 1: Lower bound of limsup,_,

Wsin,cos,p (tn) = An,p + Bn,p-

Here,
0o tn
Anpi= S / (81,5 (08 (tn — 5) B) + i (50 (tn — ) B))AW (s), ;)
]:1 tn—1
and
> tn—1
By, = ( (A1,p,j (cos (tn — 8) B) + @z, (sin (t, — s) B))dW (s),€;)5
j=1 70

are independent Gaussian random variables for any given n € NT. It is proved that {A, ,},en+
is a martingale difference series with E [A,, ;] = 0 and

[e.9]
At,Q At
Var (Any) = 3@y + 8,00 22 %; 050, + T (0, ) = Z220 4 (At ),
7=1
where At,, :=t, — t,—1 and
[ee) .
o -9 o\ SIn(2N\;AL,)n; nj  cos(2X;Aty,)n;
T (Aty, p) = ; ((ﬂl,p,j - a2,p,j)Tj + al,m“lp](”\ T))
Since {A;}32, is non-decreasing, we know that
- ) o a7, a3, )
’j(Ath)’ < Z (’aip,j - a2,p,j‘4 + ‘al,walw‘ Z EE + ‘al,p,jalp,j‘))\_jl'
j=1 J=1
Letting amax := max{|Ra; |, |Sai], [Raz|, |Saz|}, it holds that
|aip] Cl%,pj| é 2ar2nax(pij + p%,j) é 2ar2nax7 |aLPJa2,PJ| S ar2nax(|p17j| + |,02,j|)2 é 2ar2nax7
which leads to
5a2
T (Bt )] < 2022 5(Q) = T < cx. (3)

1
Thus, we have Var (4, ,) < %qﬁ(p)—i—jo. Define Cy, , := (%qﬁ(p) loglogty,)? withn > 2,3 €
(1,2]. Based on the fact that A, , is Gaussian, we derive
An,p Ch.p
\/Var(4,, \/Var
1 1 Cy

> exp{— ).
V 27T Cn,p + Var(Anyp) 2Val“(An’p)
\/Var(An,p) Cn,p

P{An, > Cnp} =P{
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499

1
For any €; € (0, %], there exists Ny := No(e1,m, p) = max{{ Oi(g"’;i )W, [lggiﬂﬂ} such that
for all n > Ny, it holds that
Cop 12 1 .2
: = —loglogt, < ————)—=loglogt
Var(A,,,) (1 + —jA{n)ﬂ ! \/ (1 - 2 )B !

1 .2 2
< — loglo tn§2\/—10 logt,,
\/(1_61)ﬁ g log 5 loglog

and
27
Var(A,,,) - 1+ ¢At < L+ Gair < 1 + Jo <1< gloglogt
< < < <1< n
Ch,p %loglogtn %log logt, > ALy b
Hence,
1 1 loglog t,,
P{A,,>Cn,} > & { B 7}
Voo = o = e e P f-a)
\/Var(An,p) Cn,p
1 1 1 )—ﬁ ~ 5D
> ogm = n R
V2T 3\/% (logn + loglogm)
1
Taking € = +5/2 <}, which implies 8 (1 — 1) = 232 > 1, we have 307 y n” 0= = oc.

This leads to

o0

o No
ZIP’{An,p > Chp} = (Z + Z )P{An,p > Chp} = 0.
n=2

n=2 n=Np+1

Noticing that {An,}.~, is a sequence of independent random variables, it follows from the
Borel-Cantelli lemma that

P{{An, > Cn,} io}=1 (4)
By Proposition and the Cauchy—Schwarz inequality, we obtain

| Bnpl

lim su
n—>oop \/tn 1loglogt, 1
[ee]
. 1 - ~ .
= lim sup E [((1,p,5 cos(tnB) + ag,p,j sin(t, B)) My (tp—1)

n— 00 =1 \/tn—l log log tn—1
+ (al 0.j Sin(tnB) — Cl2 X COS(tnB))Mg(tn 1) >R|
o
1 1 1
<3 207 it + [ sl) £ 23 (1l + s Zm ? < 4V200a(00(Q))7  aus,
7=1 7=1

which implies

B
lim inf e
n=oo [/t 1loglogtn_1

> 4V 200 (t1(Q)) 2 a.s. (5)
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According to the decomposition of Wiin cos,p(t), @), and (G, there exists a set Q c Q with
P(Q) = 1 such that for any w € Q and £, > 0,

Wsm cos,p( ) > Cn N + Bn N

_ 1
> Vi 08108 T (1] = 6(0) — (4v Bt (t£(Q))

Vtn—1loglogt, 1 )

1
2 +e¢
B 2 Vitnloglogt,

(6)
holds for infinitely many n > 1. Noticing lim,, ~, - o tlllsggllsggfn : @/ with m > 2, and
then letting m — oo, 8 — 1, we deduce from (@) that

. |W51n COs p(t)| Wsm Ccos p(t )

lim su > lim sup . > a.s.

t_mop Vtloglogt n—oo Vitnloglogt, 4(p)
Consequently,
Bt) X in(Bt)Y( Wi t
oy IX@IE o {eos(BOXo + sin(B1) Y, 0}z + Wiincossl0)
tsoo tloglogt t=o0 R (p2 42 =1 Vtloglogt
J=1\1,5 T2,
Wi t
> limsupM >Volp) as

t—woo  Vtloglogt

Since lim sup;_, % is independent of p, taking supremum over all {(p1j, p2,7)}72; with

Z;’;l (p%j + p% j) = 1 on the right-hand side of the above inequality, we have the lower bound

result
lim sup ——=— IX ( Il > sup #p) as. "
t—oo Viloglogt ™ shee (g2 oz yoy

Step 2: Upper bound of limsup,_, %.

Let m € (1,2], and t, := m™ for n € N. Define f(t,p) := /m2¢(p)tloglogt. According
to the Burkholder—-Davis—Gundy inequality and the Cauchy—Schwarz inequality, for all n >

og( <L
Ny := Ni(m) = max{[1 {go(;;;) —1],0}, we have
E[ sup Wiincosp(t)] < Z(!&l,m[ + |a2p; ) (E[ sup |Mi ;)] +E[ sup [Ma;(t)]])
t€[0,tn+1] j=1 te[0,tn+1] te[0,tn+1]
< C(fa5 + 82,0, ) (B((M ) (b)) + E(((Ma3)(tn41))2))
j=1
> N N a1 1
< 20 (81,951 + (82,05 ) ( +2177] + %) ’
j=1 !
> 1
< Z 20( |al7m| + |ag7p7j| ) (tn_|_1’l’}j) 2 < 4\/§C’amax tr(Q)tn+1.
j=1
c? tr(Q)
Hence, there exists Ny := No(m, p) = max { {%—‘,Nl} such that for all n > No,
E[ sup Wsin,cos,p(t)] < Cl V tI‘(Q) V tpi1 < f(tna p)v (8)

t€[0,tn]
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where Oy 1= 4v/2C a0 - Therefore, for all n > Ns, we obtain

(F(tn:p) ~E[ _sup Wain con,p(t)])’

te[ovtn+1]

C? wQ) 2C4 \/m% loglog t,

= m?t,¢(p)loglogt, (1 + #e) > .
mloglogt,
For any given ey > 0, there exists N3 := N3(ea,m, p) = max{ {e 102gm —‘,Ng} such that for
. 201 mt;gi))) loglogtn .. .
all n > N3, it holds that oz Iog T, < €9. This implies that for all n > Nj,
2
(f(tn, p) — E[ sup Wsin,cos,p(t)]) > (1 — e3) m2p(p)t, loglogt,. (9)
te[0,tn+1]
Notice that
Jt2n+1,p ‘= Sup E[WSimCOSvP(t)] = Sup {Z A1.p. + 83 i) 9 e],ej> +J(t,p)}
te[0,tn+1] te[0,tn+1] j=1

2

where Jp is given in ([B). Then for ey, there exists Ny := Ny(e2, m, p) = max{ Folgo(gi%) — 11 , O}
such that for all n > Ny,

201‘%“7[) <mo(p)tn(1 + €2). (10)
Applying the Borell-TIS inequality (see [I, Theorem 2.1.1]) to Wiin,cos,p(t) with t € [0, ,41],
and combining (@) and (I0), we have that for all n > N5 := max{N3, N4},

IP’{ sup  Win,cos,p(t) > f(tnvp)}

te[0,tnt1]
= P{ sup Wsin,coS,P(t) - E[ sup Wsin,cos,p(t)] > f(tn, p) — E[ sup Wsin,cos,p(t)] }
(0] (€0,tn 1] €l0.tns1]
2
< exp{ - (f(tny P) - E[Supte[07tn+1} Wsin,cos,p(t)]) }

2Utn+1 P

(1 — e2) m2¢(p)ty loglogtn,\ “m(i2) —m (i3
Sexp{— L+ a)malp)t, }—(logm) ( >n ( )

Taking ey < ;527 which implies m(};ii) > 1, we have > 7, n—m(h—zg) < oo. This leads
to

o0

ZP{ sup Wsin,cos,p(t) 2 f(tna p)}

el te[0,tn+1]

:<Z+ Z )P{ sup Wsin,cos,p(t)Zf(tn,p)}<oo.

n=1 n=N5+1 te[0,tn11]
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Using the Borel-Cantelli lemma yields ]P’{{ SUD€(0,4,11] Wiin,cos,p(t) > f(tn,p)} i.o.} =0,
SUPt€0,t,, 4 1] Wsin,cos,p (1)
V/m2é(p)ty loglog tn

lim sup WSinvCOSm(t) S lim sup SuptE[tnvthrl} Wsin,cos,p(t)
t—oo y/mZtloglogt = n—oo Vm?2t,loglogt,
< lim sup SUPtE(0,tn 1] Wiin cos,p(t)

n—»00 \ m2tn log log tn

which implies lim sup,, <1 a.s. Hence, we arrive at

¢(p) a.s.

Letting m — 1, Wiin cos p(t) obeys

S

sin,cos,p( )

(11)

lim sup

t—oo  Vtloglogt —

Using the same method, we can also prove

tsoo  Vtloglogt

t
lim sup _Wsin,cos,p(t)
Combining (1)) and (I2), it shows that
|

<Vo(p) as.
<+Volp) a.s. (12)
lim sup [Wein.cos,p(t)] <+Volp) a.s.

tsoo  /tloglogt

Due to the fact that sup, = (f,z) = (f, ) with = ﬁ, for any given w € Q, we have

’WSiH,COS,ﬁ(t7 w)‘ = sup ‘Wsin,cos,p(ta w)’ ) (13)
Z]o'il(p%j'i'p%,j):l
P Wsin t, Wcos t,
where p(w) = 0 aTWsin(St,:))J:—a?Woos(St,:))llR' Therefore,
HX(t,W)H ‘Wsincos ~(t w)‘
lim sup —————"B — lim su A < p(w)) < su .
t—)oop Vtloglogt t—)oop Vitloglogt (P(w)) = %, (2 3 2 )=1 “(p)
G=1\P1,; P2,
Combining Step 1 and Step 2, we finish the proof of Proposition O

3. LIL FOR STOCHASTIC SYMPLECTIC METHODS OF LINEAR SHS

In this section, we study the LIL for fully discrete numerical methods of the linear SHS;,
whose spatial direction is based on the spectral Galerkin method and temporal direction is
a class of one-step numerical methods. It is shown that the stochastic symplectic methods
obey the LIL, but non-symplectic ones do not. Further, we show that stochastic symplectic
methods asymptotically preserve the LIL of the exact solution case.

3.1. LIL for %%T(tn). For M € N*, we define the M-dimensional subspace of (U, (-, -)r)
as Uy := span{ej,ea,...,ep} and the projection operator Py : U — Uy as Pyx =
E,ﬁil (z,ex)pex for each € U. Then Py : H — Hjs is also a projection operator such
that Pyz = Zg/lzl(az,ewcek for each x € H. Denote BM = PyB, WM = Py W, XM =
PMXO,YOM = PyYy. Using these notations, we obtain the following spectral Galerkin ap-
proximation:

() - (o %) (s () (320 - (50 o
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Letting X®M (t) := (XM (1), er)r, YEOM (1) := (YM(t), ex)r, (@) is equivalent to the following
M subsystems

Xk’M (t) o 0 )\k Xk’M (t) aq o
d<yk,M(t) Tl 0 Yk’M(t) dt + /nx s dpe(t), k=1,2,..., M.
We further apply a class of one-step numerical methods in temporal direction to deriving the

general full discretization {(XX™7 v,F AT+, which satisfies the following equation

XSMT (an (wr) azs (Aer) XkMT by (\er)
(507) = () 0 (S607) o v () o 09

Here, 7 is the temporal step-size, 05k := Bk (tnt1) — Bi (tn) with ¢, = n7,n =1,2,..., and
a;j,b; © (0,400) = R,i,j = 1,2 are determined by a concrete numerical method.

Defining
_ (@1(h) ax2(h) _ (ba(R)
A(h) == <a;(h) a;z(h)>, b(h) == <b;(h)>, Yh >0,

we rewrite (IT) into

Xk,M,T Xﬁ’M’T
ng\/lfﬁ = A(M\7) kM + Vb (\eT) 6Bk, n=0,1,2,... (16)
n+1 n

We make the following assumption to obtain the compact form for the solution of (LG).
Assumption 1. There exists some hy > 0 such that
ddet (A(h)) — (tr(A(h))* >0, Vh<h.

Under Assumption [T, it follows from [4] that for k € {1,2,..., M} and sufficiently small 7,
{(Xﬁ’M’T, Yf’M’T) }n€N+ can be written into the compact form

X,’i’M’TZ—det(A)AfL 1 Xo M 4 a (an Xp T 4+ arYy )

+\/_Z —det(A n 9 jb1+(a11b1+a12b2) 1 ])5,8]67),

7=0
Yr{f,Mﬂ' — as Oéka M, + &n+1YE)k7M’ _ all&fLYE)k7M’T
n—1
+ ik Y ((agiby — annbe) &y + badh ;) Bs j,
=0
n—1 )
where 6% = = (detl4 )gggkim(nek) with 0 € (0,7) such that cos (0;) = 2% and sin (0;) =

V/ . .
4d;t\/d a (tr(4))" . Here, det(A), ai;,b; (1,7 = 1,2) are computed at Ap7. For convenience, we
€

always omlt the argument A\,7 in det(A), a;;, b; (i, j = 1,2) when no confusion occurs.
Let XM7(t,) = M XEMTe € Up, YM7(8,) = M v MTe, € Uy The stochastic
symplectic fully discrete method obeys the LIL, which is stated in the following theorem.

Theorem 3.1. Let Assumption[d hold. If the numerical method ([I8) is symplectic, then the
LILs hold as follows:

lim sup W = max /&M a.s., (17)
n—oo Viploglogt,  ke{1,2,..M} ”
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YM,T tn
oy Y7l _

\/ - .5., 18
n—oo  Vinloglogt, ke{{l,lz?L LM} Sh2rTlk -5 (18)

XM,T tn YM,T tn L
lim sup (Il (tn)ll + | (tn)|1R)? _ sup OM7(p) a.s., (19)

n—00 tnloglogty Zﬁil(piﬁﬁg,k):l

where

b% + (allbl + a12b2)2 — 2by (allbl + a12b2) cos (Qk)
sin? () ’

b% + (aglbl — a11b2)2 + 2[)2 (aglbl — a11b2) COS (Qk)
sin? (6;) ’

5]{,1,7’ =

ék,2,‘r =

and oM (p) == Y4l (Ek1.r07 j + Ek2mP5 1 + Ek3rPLEP2E) M With p = Sl (o + ipag)en,
—blbg COS(QQk) + [bg(allbl + algbg) — bl (a21b1 — allbg)] COS(@k)
sin?(6;,)
(@11b1 + a12b2) (ag1b1 — a11b2)
sin?(6y) '

&@3,7 =

To prove Theorem B, we provide some preliminaries. For k € NT, define real-valued
martingales as follows

n—1
1
M .(n) == = [ by cos((7 + 1)0x) + (a11b1 + a12b9) cos(g@k)]éﬁk,],
’ sin(6y) =
~ 1 n—1
Mgk(n) = () jz:% [ bysin((7 4+ 1)0x) + (a11b1 + a12b9) sm(g@k)]éﬁk,],
1 n—1
M?,Tk(n) = Sn(p) jz:; [bg cos((j — 1)0k) + (a21b1 — aq1b2) cos(y@k)]éﬁkd,
~ 1 n—1
My (n) == = [basin((j — 1)0x) + (a21b1 — a11b2) sin(j0y)] 6By, ;.
’ sin () =

Then it is proved in the following proposition that M;k(n), j=1,...,4 obey the LILs.

Proposition 3.2. For k € NT, martingales M]Tk(n), j=1,...,4 obey the following LILs:

| M) —
h;isolip \/W gk,l,T a.s. - 72)7

M
lim sup | ]k( )‘

L e 1 - a.s. (j=3,4).
A7 e e = Vékor a.s. (J )
Proof. Using

— . ) cos® — cos ((2n —1)0
Zsm(2g€) = 281(119 Zcos (250) =
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we derive the quadratic variation processes of the martingales
- T £k717 Y T gk‘,l,
(M7 ) (n) = TTtn + Ki(k,n,7),  (Mgy)(n) = TTtn — Ki(k,n, 1),

(NI 0) = 270, 4 Ko(hm ), (WD) (n) = 5274, — Kok, 7),

where
ICl(k?,TL,T)
o 1 sin((2n — 1)9k) 2
= 4Sin2(9k) ( sin(@k) > (bl COS(QQk) + (allbl + a12b2) — 2 (a11b1 + a12b2) COS(@k)>T
1 . cos(fx) — cos((2n — 1)6;)
+ 2 (0r) [—b1 cos(0k) + (ar1b1 + a12b2)] by SIH(Hk)< 3sin(0y) )T,
]CQ(k7n7T)
B 1 sin((2n — 1)9k) 9
= 4Sin2(0k) ( sin(@k) > (b2 COS(29k) + (a21b1 — allbg) + 2b2 (a21b1 — allbg) COS(@k)>T

1 cos(fy) — cos((2n — 1)0)
T 20y 25in(05) )

Since K1 (k,n,7), Ko(k,n,7) are uniformly bounded with respect to n, similar to the proof of
@), we finish the proof. O

(b2 COS(@k) + a21b1 — a11b2) b2 Sin(@k)<

Based on Proposition B.2] we give the proof of Theorem B.]1

Proof of Theorem 31l At first, we prove the LIL for (|| X7 (¢,)|3 + HYM’T(tn)H%K)%. Let
uM7(t,) = XM (t,)+iY M7 (¢,). By the Riesz representation theorem, we have ||u7(t,,)[|3 =
SUD{petiyy [ ple=1} | (W7 (), p)r|*. Hence, for all p = SoL (prk +ipag) ex € Hag with py g, pay, €
R and [|plg = 3205 (p7 ), + p3 ) = 1, we obtain

) 2
[ () || = sup ‘ Z (XpMTer, prier)r + (YoM Tey, P2,kek>R)‘
Sl (P2 k03 k) L k=1

For convenience, we denote X" = CFM7(n) + e GEMT () and YiEMT = B MT () 4
1/77;§G]2€’M’T(n) with

Cf,M,T(n) — _dn 1Xk,M,T + dk (alle, T T ays YkMT)
OS,M,T(TL) ‘= a9 & nXkMT+ An+1Y _allakYkMT
n—1
Glf’M’T(n) = (— O/:L 9_ ]bl + (a11b1 + a12b2) Q1 J)5ﬁk,],
=0
n—1
GS’M’T(H) = ( b2 + (ag1by —anbe) &F_,_ ])551@7]
7=0

- 2 k,M,r kM, M,T 2
Then H’LLM7 (tn)HR = Supzé/lzl(p%k_,’_p% k)zl ‘ Z;ngl (kaCl ( )+p2 kC ( )) +Gp (n)‘ N

where G)T(n) == M /i (pl,kGlf’M’T(n) +p2,kG§’M’T(n)). Now we divide the proof of (9]
into two steps.
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[ )|

Step 1: Lower bound of limsup,,_, . T ToaTosl.
Let m > 2. We decompose G5 (m™) as Go''T(m™) = AMT + BMT > Where

M m"—1
M,r
Amn,p' Z(ﬂlk Z (—afnn 9_ Jb1+(a11b1+a12b2) mt—1— ])55k,]
k=1 ] mnfl

+,02k Z mn_Jb2 + (a21b1 _a11b2) Apn 1 ])55k,]>\/n—k

j=mn— 1
and
M m"71—1
M,
By 1= Z (pl,k (- Qpn o b1+ (anby + aaba) G5 )08k,
k=1 j=0
mnr—1-1
+ P2k Z (Oé bg+(a21b1—a11b2) Qpon 1 j)éﬁk,])*/nk
j=0
are independent Gaussian random variables for any given n. Note that {Amn otny s

martingale difference series satisfying

M m"—1
2
Var mn Z Z (plk mn 9_ ]bl+(a11b1+a12b2) mr—1— ]]
k= 1] mn— 1

2
+sz[ m"—gb2+ (a21by — ajibg) GF il

+ prgpag| — G o Jbl+(a1151+a12b2) mn 1 5] %

|:Oémn_]b2 + (ag1by — a11be) Gy y])nkT

At
2

Where Amn — mn —_ mn_l, Atm" = tmn — tmnfl = Am"T, and

¢ (p) + THTE(Am"),

M
- " b? + (ai1by + a12bo)? "
o) = 30 (o] - PG )
=1
b

1 (a11b1 + a12b2)

sin?(6},)

b3 + (a21b1 — a11by)? sin?((Am”™ + 1))
+ 5| — = + 1 (Am™ + 1)] + b3
P2k [ sin® (6 [ Yau(Am” )} 2 sin?(0y)

bs (a21b1 — a11b2)
— 0r) + Am™ +1
sin2(9k) [cos( k) + ok (Am )H
biby  -cos(26k)
+ P1,EP2,k {SmQ(ek) [ D)

[2 cos(0k) + a1 (Am™)] + (a11b1 + a12b2)2(%)2}

+

+ Y1 s (Am™ +1) — sinz(ﬁk)]

b1 (a21b1 — a11b2) — ba(a11b1 + ai2b
n 1 (2101 — an 2? . 2(a11b1 + a1z 2)(2cos(9k)+¢2)k(Am"))
2sin”(0y)
sin((Am™ + 1)0) sin(Am™0y)
sin2(9k)

)

+ bo(a11b1 + a12b2)(

15

a
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 (a21b1 — an1bs) (a11b1 + ai2bs)

(5 +dr(am™ + 1)]})77;@7]

sin2(9k)
Here, we denote vy i (n) := Sm((2n4_§i)r?(k€)155m(€k)7¢2,k(n) = Sin(z(n_zlszﬁ’zg;in(%k), and use
= 2 1 n—2 sin((2n — 3)0y) — sin(0y)
Z(Oé]) = . 9 - . )7
— sin®(6) 2 4sin(6y)
. (21)
— .. 1 sin(2(n — 1)6;,) — sin(26,)
k~k o o
2 ;::1 aiay ) = T ((n—2) cos(by) Ssin(0r) )

for the stochastic symplectic method. Since [sin(fx)| < 1 and |cos(fx)| < 1, we can prove
that | JM7P(Am™)| < jOM’T with some constant jOM’T independent of n. Define C’%{Tp =

1
(%qﬁM’T(p) loglogtpn)?. Then for any ¢ € (0, %], there exists a positive integer Ny :=
M,
log(w})ffq)

logm

No(€r,m, p) = max {{ 1,1 e?? 1, Pog(e/ﬂ}} such that for all n > N,

logm logm
1 1

1 1
NG (log )~ PU—e0) p~ B—e1) |
27 3\/% (log n + loglog m)

P{ANT, > O} >

v
m7 9 7p

Taking ¢; = 1_21/ B < % and then using the Borel-Cantelli lemma, we obtain

P{{ANT, > Cali} o} =1. (22)
By Proposition 3.2, we derive
| BTl

mnt,p

lim sup
n—o00  \/tyn-1loglogt, a1

M sin (m™y,) M7, (m"~1) — cos(m™8;) M7, (m™~1)
<3 (jpaftimsup (/ L D Lm Dl
=1 n—00 \/tmn—l og logt,,n—1
<| sin (m"0) M?:k(m”_l) — cos(m"@k)Mik(m"_l)‘

\/tmnﬂ loglog t,,n—1

M
< Z 2V (1p1,6 1/ &k pr + 102,60/ Ek,2,7)
=1

+ |p2.%|lim sup

n—oo

)i

S

M
< 20> (o1l Vs + o2kl V&2 D) 2 (D mi) 2 = 200" V0 (@) as.,

k=1 k=1

M, . .
where Cy"" is some constant independent of n. Therefore,

By
lim inf = > —2Cé\/[’T\/tr(Q) a.s. (23)
n—0o0 \/tmnfl log log tmnfl
Combining ([22) and (23), and using the same procedure as that for () yield
M,r
u™ (L
lim sup M >« sup »MT(p)  a.s.

n—oo tnloglogt, ka:l(pik_Fpg’k):l
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Step 2: Upper bound of lim su M
p . pp pn—)oo /tn log log tn .
Let m € (1,2]. Define fM7(tyn,p) = /m2¢M-7(p)tn loglogt,n. By the Burkholder—
Davis—Gundy inequality, we obtain

E[ sup G%T(r)}
re{l,2,...mnt1}

k=1
+ f: pa.kC (E[(<MT )(m" L)) } +E [((MT Y(m™t)) D N
k=1

M
gk, T 1 Sk, T 1
< E 2w/77k0<;01,k( 21 tyn+1 + |/C1(k;’mn+l77-)|)2) +p2,k( 22 tn+1 + |’C2(k’,mn+1,7)|)2>.
k=1

Notice that

1 1
k <
[Ki(k,n,7)]| < 4sin?(6y) (sin(Qk)

1
+ 27|( — by cos(0x) + (a11b1 + a12b2) b1 |7 =: K1,0(k,T),
sin”(6)

1 1
k < 1) (b2 by — ai1b)? + 2|ba(az1by — ayib
Ko (k,n,7)| < Tsin2(0r) <sin(0k) + )( 5 + (a21b1 — a11b2)” + 2[b2(az1by — an 2)!)7

’(bg COS(@k) + as1b1 — allbg)bg‘T = ]Cgp(k,T).

+ 1) (b% + (allbl + a12b2)2 + 2’[)1 (a11b1 + a12b2) ‘)T

1
_l’_ R —
sin?(6y)
Define Ko(k, 7) := max{/Cy o(k, 7), K2,0(k,7)}. Then we have that for alln > Ny := Ny(m,7) =

log(TgL(_))
#—ﬂ 21{:21,27---’M7j:1’2}’

logm

max {0, [

M
E[ sup Gﬂ“(r)] <20 Z \/n—k<ﬂ1,k VEk 1 rtmnt1 + P26/ fk,z;tmnH) =: C1\/tynt1.
k=1

re{l1,2,...,mnt+1}

2
. . . emf]&f,‘r .
Similar to the proof of (), for all n > Ny := No(m, p,7) = max{{ Tog —‘,Nl}, we arrive
at
E sup Gﬂ/[’T(T)] < Cry/tyn+1 < fM’T(tmn,p). (24)
re{1,2,...,mnt+1}

Moreover, we have

= T 1 T M.

Ut277l7l+17M7p = SuP E[(Géw’ (T))2:| S §¢M7 (p)tmn+1 +j0 77-' (25)

re{l,2,...,mn+1}

Applying the Borell-T1IS inequality to G%T(T) withr € {1,2,...,m"} and combining (24]) and

log LOT
(25, it yields that for any given €3 > 0, when n > N3 := N3(ez, m, p) = max {Ng, {M—

logm
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] {(T_)
) W1}’

IP’{ sup G%T(T) > fM’T(tm"aP)}

re{1,2,...,mnt+1}

M, 2
(fM7T(tm”7 /0) —-E [Supre{l,l...,m’“rl} GP 7’(7,,):|)
o - . }
20tmn+17M7P
(1 — €)™ 7 (p)m>t,n log log tyyn “m(i2) log 7\ —m(i=<2)
<ex {— }: logm I+ez’(n + Itez’,
P (1 + €e2)pM7 (p)mt pn (logm) ( logm)

M,

Using the Borel-Cantelli lemma, similar to the proof of (IIl), we obtain lim sup,,_, zquI(:g)m <
M,
M7 (p) a.s. Similarly, we have lim sup,,_, o fﬁﬁ& < /M7 (p) a.s. This leads to
G (n ST
n—oo V1nloglogt,
Therefore, for a.s. w € €2, by taking po(w) such that |Gor™ (n,w)| = sup G (n,w)],
Zﬁ;@ik*’ﬁg,k):l
we have
- 2 - 2.1
li ([[ X7 (tn) || + Y7 () [ )2
im sup ——
n—oo tTL 10g log tTL
M,t M,T
u (T G
= lim sup H ( n)HR = lim sup [Coo” () < sup oM (p)  a.s.

n—oo Vtnloglogt,  heo Vitnloglogt, — SM (02, 402, )=1

Combining Step 1 and Step 2, we finish the proof of (I9]).

Now we give proofs of ([7) and 8. Define G3""(n) := M /oGP (n) and
Gy (n) = oM \/n_kpg,ng’M’T(n). Using the above result on Gp""(n) with {pos = 0 :
k=1,2,...,M} and {p1, = 0: k = 1,2,..., M}, respectively, and noticing the relation
holds as supszzlpikzl \/22/‘;1 Pikfk,j,rnk = maxXpe(1,2,.. M} \/Ek,jrh> J = 1,2, we finish the
proof. O

3.2. Asymptotic preservation for LILs. Recalling that in Theorem 22] and Theorem B.1]
we acquire the LILs for the exact solution of the linear SHS and the numerical solution of
the stochastic symplectic method. This subsection is devoted to showing the asymptotic
preservation of the LIL by the stochastic symplectic method. As a comparison, we also give
the result on non-symplectic methods, which fail to obey the LIL. To this end, we need the
following assumption on the convergence of numerical methods.

Assumption 2. The coefficients A,b of the numerical method (I0) satisfy
lar — 1] + |age — 1| + |a12 — 7| + |agr + 7| = O (7'2) and by — aq1| + |b2 — ag| = O(7).

It follows from [5] that Assumptionlensures at least one order convergence of the numerical
method in the mean-square sense. The main result on the asymptotic preservation of the LILs
by stochastic symplectic methods is stated as follows.
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Theorem 3.3. Let Assumptions[d and[@ hold. For the stochastic symplectic method, the LILs
for Z'(t) are asymptotically preserved, i.e.,

lim lim limsu HXMT HR 2 2
prYV— aj +assup/n,  a.s., (26)
k

M—007=0 nooo +/tyloglogt,

MT
Il _ 75
lim lim lim sup ——= aj +azsup/n,  a.s., (27)
k

M—0oT20 pooo Vin loglogtn N

(XM )l + IV E)lg)?
lim lim limsu R R. — /a2 + aZsup ./ a.s. 28
M—00 7—0 n_mop Vit loglogt, 1 2 kp Mk ( )

Proof. Combining Assumption [ and [5, Lemma 4.2], we have

lain — 1+ |age — 1| + |arz — 7| + az1 + 7| = O(7),  |by — au| + [b2 — aa| = O(7),
tr(A) =2 as 7—0, (1—tr(A)+det(A))~ 12
which leads to

by — aj1b; — ajaby b1 (a11b1 + a12b2) (2 — tr(A)) 2

b by — b b by — bo) (2 — tr(A
Jim 2202100 7 duby —ay, lim = (azby a1122)( () = —aj
70 T =0 T

Therefore, we obtain

(b1 — (a11b1 + a12b2))? + 2by (a11b1 + a1zba) (1 — cos 6,

(o-=2)

lim &1 = lim
T—0 " T—0

4 (b1 — an1by — a19be)® by (a11by 4 araby) (2 — tr(A)) 9 . o
— 1 g
7502 + tr(A) < 2 — tr(A) 2 — tr(A) ) o1t o
(29)
lim &, = lim (by + (ag1by — a11bz))? + 2b22(a21b1 —anby) (cos by — 1)
T—=0 7 T—0 (1 0 Co)) (A)>
1
) 4 (by + agiby — a11be)® by (agiby — aniby) (2 — tr(A)) 9 o
g 1 — =
7502 + tr(A) ( 2 — tr(A) 2 — tr(A) ) o1t o
(30)
which yields
hm lim sup ———— HXMT HR a?4+a3 max _/nr  a.s.
70 nooo \/t lOg logt 1 k€{1727 7M} 7
MT
YY)l /=

hm limsup ———= +0ao2 max

@
=0 pooo Vin loglogtn ! 2ke{1,2,...,M}\/77_k
Letting M — oo and using the fact that limp/ oo maxgeqi 2. a1y /7 = SUPE /T @.S., We

derive (26]) and (27]).
For the proof of (28], by calculating

a.S.

tr2(A)

9 +1+4+aptr(4) — a%l + a12a91

Ch,r1 = —cos(20y) + 2ayq cos(bx) — a%l + ajpa9 = —

_ u(4)
2

(— tl"(A) + 2(111) + (1 + an)(l — a11) + aj2a91
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= (2= tr(4) + (1 + a1 — 2)(1 — a1) + arzaz1) (1 + O(7))
= O0(r*) + O(r") — O(7%) = O(r"),
Chyr2 1= —ag1 cos(0) + ar1a21 = o(r3), Chr3 1= a2 cos(fy) — arnain = o(7?),

we arrive at

<—blbg cos(20x) + (ba(a11b1 + ajzbs) — by (a21by — a11b2)) cos(Ox)
12+ tr(A4))(2 — tr(A))
(a11b1 + a12b2) (ag1b1 — anbz))
%(2 +tr(A))(2 — tr(A))

2 2
. 0qaCk 1+ QCk 2 T Q5CK 13
= lim
7—0 2 — tr(A)

Combining (29), (30), and (3II), for any given € > 0, there exists 79(€) > 0 such that for all
7 € (0,79(€)), it holds that

a%—ka% —e<&pir <a%+a§+e, a%+a%—e<§k,2¢ <a%+a%+e, —€ < &3, <€
Hence, for all 7 € (0,79(¢)),

lim & 3, = lim
T—0 7 7—0

(31)

= 0.

sup o™ (p)
Zﬁ;(@,k‘i‘ﬁ%,k):l
M
< sup D (Pl x+ P3)(af + a3 + €) + elprrpoil ) mi
SrL (P2 403 ) =1 k=1
M Mo
S(k max k) sup ((af + a3 +¢) Zpl,k+p2k +Z§mk+ﬂzk)
e{1.2,....M} ZQQ1(P%,k+P§,k)=1 k=1 k=1
3
< (a2 403 + ¢ max .
< (o1 + a3 2 )ke{l,Z,...,M} 1Tk
There exists ko € {1,2,..., M} such that ng, = maxgeq12. a) M- Let
1, k= kOv
ne={o kot
and pg = 0 for all k € N*. Then it follows that for all 7 € (0, 79(e)),
sup O (P) 2 et 2 (0] + 05 —€) _ max 7.
les-w:l(pik—l—pg,k)zl {12, M}
This leads to that for all 7 € (0, 79(€)),
3
2 2 M,r 2 2
ai +a5 — € max < su ’ < (af + a5+ <€ max ,
(a7 + o )ke{l,z,...,M} Mk I klip% - ¢ (p) < (af + a3 5 )ke{l,z,...,M} M
which is equivalent to lim,_g Supy-~ar L0 )= ¢MT( ) = (a2 + a%)maxke{m,m,M} Ni;-
Hence, we have
e )]lg
hm limsup ————= = /af+a3 max /x a.s.

=0 nooo +tyloglogt,

Letting M — oo completes the proof of (28]). O

ke{1,2,...,M}
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If the numerical method (I6]) applied to the SHS does not preserve the symplecticity, then
the method is called non-symplectic method. Notice that for the case det(A) > 1, the upper
limit of the solution scaled by polynomials of ¢ may not exist in R. We only discuss the case
0 < det(A) < 1 here, for which we show that the upper limit of the solution scaled by ¢¢ with
any given € > 0 equals 0 almost surely. This is stated as follows.

Theorem 3.4. Let Assumptions O and [2 hold. For the non-symplectic method with 0 <

- 1
det(A) < 1, 2 (tn) € {IXM7 ()l 1Y M7 () [ (XM () IE + 1Y M7 (£0)]3)2 ) sat-
isfies that

M (¢t
lim syp 220/ Syem( n)
n—00 n

=0 a.s., Ve>O0.

Proof. We only give the proof for || X7 (t,)||r here since the proofs for |[YM:7(t,)||z and

(| XM (t,) |13 + ||YM’T(tn)||%§)% are similar. Define f(t,) = % with ¢ > 0. Based on
0 < det(A) < 1, we have

n—2 n—1
Do(@h? < Ka(On). |23 akaf | < Kaor).
Jj=0 j=1
which imply that
Var(G)'™! (n))
M n—1 )
=Y > pia( = bidg o + (anibi + arobs) G _y_;) T
k=0 j=0
M

< Z%T([b% + (a11br + a12b2)?1 K1 (0%) + b1 (a11b1 + a12b2) [Ka(0x) + (a11br + a12b2)? (&% _1)?)
k=0

= K(0) < oc.
(32)
Since G%T’l(n) is a Gaussian random variable, we obtain
PG ) > f(tn)} € Z= e { ~ o)
om Sl 2Var(G, " (n))

\/ Var(G" ™ (n))

1 K(0) (n1)° K(0) (nT)¢
< — — < _
= V2r (nr)<? exp { 2K(9)} [y < { 2K (0) g
which leads to Y 2 | P {G%’T’l(n) > f (tn)} < 00. By the Borel-Cantelli lemma, we arrive
M,r,1
at ]P’{{G%T’l(n) > f(tn)} z'.o.} = 0, which yields limsqu”tei/Q(n) < 1 a.s. Therefore, it
n—oo n
M,r,1 M,T,1 €/2 €/2
shows that lim sup G”T(n) = lim sup Gpéi/z(") b < lim “- =0 a.s. Since Var(—Gf)V[’T’l(n))
n—00 " n—o00 tn " n—0oo
X i i G]W,T,l(n) . _G]W,T,l(n) €/2
has the same expression as ([32), we have liminf “2——= = —limsup —“z—— == > 0 a.s.
n—00 n n—00 tn n
M,r,1
Hence, lim ™ _ g a.s., which finishes the proof. O

t€
n—oo n
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4. APPLICATIONS TO FINITE-DIMENSIONAL AND INFINITE-DIMENSIONAL SHSS

In this section, we give the applications of theoretical results to concrete examples, including
the linear stochastic oscillator and the linear stochastic Schrodinger equation, respectively.

4.1. LIL for linear stochastic oscillator. Consider the linear stochastic oscillator X (t) +
X(t) = aW(t) with a > 0 and W(t) being a one-dimensional standard Brownian motion
defined on (Q, F,{F:}+>0,P). Let U = R,B(z) = xz,a1 = 0,0 = «, the linear stochastic
oscillator can be rewritten into an SHS in the form of (), namely,

X@®)\ (0 1Y /[/X(t) 0 X(0)\ (X
J(EO) (5 D) (R o (o, (K0) = ().
By Theorems 2] and Bl we have that the exact solution X () of the linear stochastic
oscillator and the numerical solution X, of the stochastic symplectic method obey the LILs:

X(t Xn
limsupM =a a.s. lim sup X & oas., (33)

t—oo /tloglogt ' nooo \/tnloglogt,
2 2_
respectively, where &, := bit(anbitaizby) Sijzb(le(;l 11b1¥aroby) cos(f) Further, by Theorem [3.3] we
derive that the stochastic symplectic method asymptotically preserves the LIL of the exact
solution:

| X : _X@
AP VT losty ren? Viloglogt ¢

4.2. LIL for linear stochastic Schrédinger equation. Consider the linear stochastic
Schrodinger equation du(t) = iAu(t)dt + iadW (t), t > 0 with u(0) = up, where a > 0, A
denotes the Laplace operator with Dirichlet boundary conditions, and W (¢) is an L%(0, ; R)-
valued Q-Wiener process on a complete filtered probability space (Q, F, {F; }1>0,P).

Let U = L?(0,m;R),H = L?(0,7;C). The corresponding complex inner product and real
inner product are defined as (f, g)c = foﬂ f(©)g($)d¢ and (f,g)r = §Rf0 g(Q)d¢ for f g €

H, respectively. The sequence {ey : e;(¢) = \/j sin(k¢),¢ € [0, }k N+ forms an orthonormal
basis of both U and H. Set B = —A,a; = 0,0 = «a, X9 = Rug, Yy = Sug. Let u(t) =
X(t) + 1Y (t), then X (¢),Y (t) can be written into an SHS in the form of (), namely,

()= (3 0) G0) e (v (56) - (5n):
By Theorem 1] we have the LIL of the exact solution u(t):

' X2 + Y (@)|2)3
lim sup lu @Ol _ p(H g+ | ()HR)zzasup T as.

—_— su
t—oco /tloglogt t—00 Vtloglogt jEN+

According to Theorem BI], the solution ud' = XM 41,7 of the stochastic symplectic
method obeys the following LIL:

M,r
lim sup ln " Il sup oM (p)  a.s.,

n—o00 tnloglogty, Zﬁil(f’?,ﬁpg,k):l

where ¢M:7(p) is given in Theorem B} Further, by Theorem B3, we derive that the stochastic
symplectic method asymptotically preserves the LIL of the exact solution:

"7 [l [[u(t) e
lim lim lim sup ————— = limsup ——— = « sup

. a.s.
M—007=0 nooo Vinloglogt, t—soco /tloglogt JEN+ W
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