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Abstract— Dynamic obstacle avoidance is a popular research
topic for autonomous systems, such as micro aerial vehicles
and service robots. Accurately evaluating the performance of
dynamic obstacle avoidance methods necessitates the estab-
lishment of a metric to quantify the environment’s difficulty,
a crucial aspect that remains unexplored. In this paper, we
propose four metrics to measure the difficulty of dynamic
environments. These metrics aim to comprehensively capture
the influence of obstacles’ number, size, velocity, and other
factors on the difficulty. We compare the proposed metrics
with existing static environment difficulty metrics and validate
them through over 1.5 million trials in a customized simulator.
This simulator excludes the effects of perception and control
errors and supports different motion and gaze planners for
obstacle avoidance. The results indicate that the survivability
metric outperforms and establishes a monotonic relationship
between the success rate, with a Spearman’s Rank Correlation
Coefficient (SRCC) of over 0.9. Specifically, for every planner,
lower survivability leads to a higher success rate. This metric
not only facilitates fair and comprehensive benchmarking but
also provides insights for refining collision avoidance methods,
thereby furthering the evolution of autonomous systems in
dynamic environments.

I. INTRODUCTION

Dynamic obstacle avoidance is a popular research topic
in the field of robotics [1]–[6]. To evaluate the obstacle
avoidance methods, most works handcraft their custom test
maps in simulation or the real world to demonstrate a
higher success rate. However, the difficulty of the chosen
maps is not stated or evaluated. This indication of difficulty
is vital. One method with a very high success rate in a
simple environment may drastically fail in a more difficult
environment. It is ideal to test the methods under different
difficulty levels. Furthermore, when comparing with other
obstacle avoidance methods, pointing out the difficulty or
creating environments with similar difficulties used in the
baselines can promote a fair comparison.

In static environments, the difficulty is usually evaluated
by the density of the environment [7], [8]. In dynamic
environments, defining a difficulty metric is much more
complicated because the difficulty is influenced by many
factors [9], such as obstacle size, number, velocity, and
motion profile. While Fig 1 makes it clear that Map (b) is
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Fig. 1: Dynamic environments with different difficulties. (a)
shows a map with two walking pedestrians and one running
pedestrian; (b) is with one walking pedestrian; (3) is with
two running pedestrians. While it is intuitively clear that
(b) represents a simpler environment than (a), determining
whether (c) is simpler or more difficult than (a) remains
unclear. The magnitude of the difficulty is hard to determine.

less challenging than (a), discerning whether Map (c), with
fewer but faster pedestrians, is more difficult than Map (a)
remains a hard task without a quantitative metric. Currently,
there is no existing metric to quantify the difficulty of a
dynamic map.

In this paper, we design four quantitative metrics from dif-
ferent perspectives, such as survivability, traversability, and
velocity obstacle (VO) feasibility, to evaluate the difficulty
of a dynamic environment. Recognizing the comprehensive
impact of various environmental factors on difficulty, our
metrics avoid constructing a formula with these factors but
try to capture the influence caused by them, starting from
one single foundational premise: a map with higher difficulty
should consistently result in a lower obstacle avoidance
success rate. To evaluate the effectiveness of these metrics,
we developed an efficient custom simulator that excludes the
influence of perception and control error and computational
power, while retaining the influence of environmental factors.
Numerous tests using different motion and gaze planners
are conducted to identify the best metric that aligns with
our foundational premise. We then delve into a discussion
of the merits and drawbacks of the metrics and present
guidelines for their utilization in both simulation and real-
world scenarios.

The code of using the metric and the simulator is
available at Code: https://github.com/smoggy-P/gym-
Drone2D-ActivePerception Homepage: https://smoggy-
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II. RELATED WORK

A. Collision avoidance in unknown dynamic environments

Robot collision avoidance in dynamic, unpredictable en-
vironments is a longstanding challenge in robotics, even
under full observability conditions. A plethora of solutions
have emerged to tackle this issue. Methods in [3]–[6] uti-
lize sampling-based methods to create multiple trajectories,
from which the one of lowest cost is selected. In contrast,
optimization-based methods like [10]–[12] treat collision
avoidance as an optimization problem, setting specific con-
straints to guide trajectory generation.

Gaze planning has proved to be important in dynamic
obstacle avoidance. With real-time perception, dynamic ob-
stacles require constant monitoring for future predictions.
While researchers like [13], [14] discuss generating collision-
free trajectories with 360 degrees of FOV, many real-world
situations limit the range of FOV. This necessitates gaze
planning to decide where the robot should look to gather
more information for better collision avoidance. Simple
strategies like those in [15]–[17] suggest looking in the
velocity or target direction. More intricate methods, found in
[1], [2], [6], [18], [19], treat gaze planning as an optimization
problem, directing the gaze based on various objectives.

B. Benchmarking for collision avoidance

To further advance dynamic collision avoidance methods,
it is essential to objectively compare them using benchmarks
that evaluate performance and robustness across different
conditions. The most common benchmarking approach for
collision avoidance methods involves comparing success
rates across manually designed test environments [1], [2],
[16]. Some studies have proposed more standardized bench-
marking suites for collision avoidance in static environments,
such as [20]–[24]. These benchmarking suites provide ran-
domly generated static maps and standardized evaluation
pipeline to guarantee fair comparison. Furthermore, some
metrics are defined to quantify the static environments diffi-
culty like obstacle density [25], [26] and traversability [27]–
[29]. These metrics provide more insights into the testing
maps and thus allow a more comprehensive comparison
between collision avoidance methods.

For benchmarking in dynamic collision avoidance, [9],
[30]–[32] provide standard benchmarking suites where colli-
sion avoidance methods can be tested in randomly generated
dynamic maps and be compared. [9] also mentions the non-
quantitative difficulty of dynamic maps. However, they lack a
comprehensive set of metrics to quantify the difficulty of the
dynamic environments and the validation of these metrics.

III. SIMULATOR DESIGN

These metrics will be introduced in Sec. IV. In this section,
the designed simulator is introduced to validate the proposed
difficulty metrics presented in Sec. IV.

Post Analysis

Experiment

Agent-Environment Loop

Map 
Generator

Environment Updater

Perception Module

Planning Module

Experiment 
Recorder

Metric Calculator Metric Analyzer

Fig. 2: The pipeline of the proposed custom simulator

A. Requirements and Assumptions

We validate the difficulty metrics by investigating their
correlation with the performance of typical planners (i.e.
How the success rate of planners changes when the difficulty
metrics change). Thus, an ideal simulator should adhere to
several criteria:

• Comprehensive and rapid assessment of different col-
lision avoidance methods(including trajectory planners
and gaze planners mentioned in Sec. V-A.3).

• Ensure the isolation of map difficulty as a variable
affecting the performance of various methods, excluding
the effect from factors such as perception error, control
error, and computational power.

Meanwhile, several assumptions have been made to sim-
plify the simulator: a) The environment is planar. b) Only
disc-shaped dynamic obstacles are employed.

B. Simulator Pipeline

We design our simulator following the OpenAI gym stan-
dard, informed by insights from [33] due to its lightweight
feature and its “agent-environment” loop design. Based on
that, we realize a sequential navigation pipeline that allows
us to exclude the perception noise, control noise, and compu-
tational time. As shown in Fig. 2, our simulator is composed
of the following components:

a) Map Generator creates random maps with varying
dynamic obstacles in terms of number, size, velocity, and
motion profiles. Motion profiles determine the movement of
dynamic obstacles, further detailed in the Sec. III-B. We craft
two map datasets using this generator. Dataset I assumes
uniform size and velocity for all obstacles in a map. The
map is thus characterized by the number of obstacles nobs,
obstacles’ size robs, and velocity vobs. A random seed is used
to initialize the obstacles’ position and direction. In contrast,
Dataset II is for more general scenarios with varying obstacle
sizes, velocities, and motion profiles. One example of the
generated map can be found in Fig. 3.

b) Environment Updater updates dynamic obstacles’ po-
sition according to the motion profile defined by Map Gener-
ator. In Dataset I, the motion profile is defined as the constant
velocity model (CVM). In Dataset II, it can be defined as

https://smoggy-p.github.io/Evaluating_Dynamic_Difficulty/


Fig. 3: Visualization of one experiment trial in the custom
simulator. : Unobserved Obstacle; : Observed Obstacle;

: Unexplored Area; : Unoccupied Area

the reciprocal velocity obstacle (RVO) [34] which makes
obstacles to avoid each other.

c) Perception Module applies a ray-casting algorithm to
simulate the FOV of the robot, producing a 2D occupancy
map and dynamic trackers. Grids can be unexplored, unoc-
cupied, or occupied. Observation of dynamic obstacles is
updated using a Kalman Filter (KF) tracker, with visible
grids and obstacles directly updated to their ground truth,
eliminating perception noise. The perception output can also
be seen in Fig. 3.

d) Planning Module processes perception outputs to gen-
erate the future trajectory and yaw angle velocity using the
planners to be evaluated in table III. If no trajectory is
feasible, a replan is triggered for the next step and outputs a
braking command. The output trajectory is directly executed,
ensuring no control errors impact planner performance.

e) Experiment Recorder logs results, categorizing out-
comes as Success, Collision, or Deadlock. Deadlock arises
when the robot fails to find a feasible trajectory after 5
consecutive replan attempts.

After achieving the experiment results, we calculate the
metrics of maps and analyze the correlation with the suc-
cess rates through Metric Calculator and Metric Analyzer .
Details of these two modules will be explained in Sec. IV

IV. METRICS DESIGN

In this section, metrics are defined to quantify dynamic en-
vironment difficulty corresponding to Metric Calculator in
Fig. 2 including Obstacle Density [7], Traversability [21],
[27], Dynamic Traversability, VO Feasibility, Survivability,
and Global Survivability. The expected correlation between
these metrics and map difficulty is shown in Tab. I. Obstacle
Density and Traversability are two existing difficulty metrics
for static environments and are introduced as baselines. The
other four metrics are designed by us to measure dynamic en-
vironment difficulty. Finally, we detail the evaluation method
for the metrics.

A. Difficulty Metrics

1) Obstacle Density: Obstacle density is a widely used
metric to quantify the difficulty of static environments [7],
[8]. It is defined as the areas occupied by obstacles divided
by the total area of the map:

Obstacle Density =
Aobs

Amap
(1)

Metric Expected
Correlation

with
Difficulty

Description

1) Obstacle
Density [7]

+ Maps with large obstacle density
are considered difficult.

2) Traversability
[21], [27]

− Maps with large traversable space
are considered simple.

3) Dynamic
Traversability

− Maps with large dynamic
traversable space are considered

simple.
4) VO Feasibility − Maps with more feasible

velocities are considered simple.
5) Survivability − Long survival time of sampled

position means the map is simple.
6) Global

Survivability
− Same as survivability.

TABLE I: Expected correlation between metrics, map diffi-
culty, and success rate of planner. We reverse some metrics
to make sure all metrics increase monotonously as difficulty
increases. Reversed metrics include Traversability, Dynamic
Traversability, VO Feasibility, Survivability, and Global Sur-
vivability. This preprocessing step will be further introduced
in Sec. V-B.

In dynamic maps, obstacle density is irrelevant with time and
thus will not change at different time steps as we suppose
that obstacles do not overlap with each other. Thus, we only
calculate it once when initializing the dynamic environment.

2) Traversability: Traversability is proposed in [21], [27]
to evaluate the difficulty of static environments. It is defined
as the average traversable distance for all uniformly sampled
positions and directions as shown in Fig. 4a:

Traversability =
1
N

N

∑
i=1

di (2)

where di represents the traversable distance at i-th sampled
position and direction, and N represents the total number of
sampled positions and directions.

3) Dynamic Traversability: The traversability at different
time steps might differ. We improve it for dynamic maps by
designing dynamic traversability. The dynamic traversability
is calculated by sampling the time step and averaging the
traversability over the sampled time step.

Dynamic Traversability =
1

MN

M

∑
j=1

N

∑
i=1

di(t j) (3)

where the di(t j) is the traversable distance at i-th sampled
position and direction and at the time step t j. The time step
is sampled uniformly from the beginning of the dynamic
map: t j = ( j−1) · tsample,∀ j ∈ {1,2 · · ·M}. N is the number
of sampled positions and directions, and M is the number of
sampled time steps.

4) VO Feasibility: The velocity obstacle (VO) is intro-
duced in [35] for multi-agent collision avoidance. The VO
for robot A regarding a collision with obstacle B is given



by:

VOB = {v⃗A|∃t > 0 : (v⃗A − v⃗B)t ∈ D(p⃗B − p⃗A,rA + rB)} (4)

where v⃗A and v⃗B are the velocities of A and B, p⃗A and p⃗B
are the positions of A and B, rA and rB are the radius of
A and B, and D(p⃗B − p⃗A,rA + rB) is the disk centered at
p⃗B− p⃗A with radius rA+rB. The union of all VOs determines
infeasible velocities for the ego-robot. Intuitively, a larger
VO area implies a more challenging environment. Hence,
we propose a VO feasibility metric, where we first sample
N positions around the map. At each position indexed by
i, we sample nvel velocities and calculate the percentage of
sampled velocities outside any VO:

VO Feasibility =
1
N

N

∑
i=1

n f easible(i)
n f easible(i)+nin f easible(i)

(5)

n f easible and nin f easible denote the number of sampled
velocities that lie outside and inside the VO area as shown in
Fig. 4b and nvel = n f easible(i)+nin f easible(i),∀i ∈ {1,2 · · ·N}.

5) Survivability: The aforementioned metrics mainly as-
sess discrete difficulty as they are calculated at certain time
steps. For example, Obstacle Density, Traversability, and
VO feasibility are only calculated at the initial step of the
dynamic map, and dynamic traversability samples M discrete
steps. These metrics neglect the continuous changes in the
environment. To address this issue, the survivability metric
is proposed. We assume that static robots are placed at
sampled positions and calculate their average survival time.
The survival time is defined as the duration from the initial
time step until one obstacle moves into and collides with the
static robot, as shown in Fig. 4c:

Survivability =
1
N

N

∑
i=1

min(ti,Tmax) (6)

where ti is the surviving time of the robot at the i-th sample,
N is the number of robot samples, and Tmax is the upper
bound of the survival time for normalization. The N positions
are sampled from a uniform grid with dsample as the distance
between two grid points.

Note that in the real-world tests, there is no need to
actually “place” static robots on the map. We can record the
trajectories of all obstacles and calculate the Survivability
by replaying these trajectories and recording survival time
in these replays.

6) Global Survivability: Instead of putting one static robot
on the map at each sample in the Survivability calculation,
Global Survivability is calculated by assuming that N robots
are simultaneously placed at different positions across the
map. For each deployment, the duration from time step
t j until any robot collides with an obstacle is recorded.
Global survivability quantifies this average survival time,
considering deployments from multiple start time steps t j:

Global Survivability =
1
K

K

∑
j=1

min(t1
j , t

2
j . . . , t

N
j ,Tmax) (7)

(a) Traversability (b) VO Feasibility (c) Survivability

Fig. 4: Examples of metrics calculation. In (a), traversability
is the average of traversable distances(shown by blue arrows)
in 8 uniformly distributed directions at one sampled position.
In (b), the white areas represent the infeasible VO regions.
4 velocity vectors(shown by blue arrows) are sampled at
the sampled position. Only the velocity pointing right lies
in the infeasible VO regions. So we have n f easible = 3 and
nin f easible = 1. The resulting VO feasibility is thus 3

4 . In (c),
a simple example of Survivability calculation is shown. The
static robot is assumed to be placed in two positions. The
static robot above does not intersect with any obstacle history
trajectories in Tmax while the static robot below survives 2
seconds until it collides with the obstacle heading toward the
left. The survivability is thus (Tmax +2)/2 = (3+2)/2 = 2.5

where tn
j is the surviving time of the n-th robot starting from

t j (i.e. The duration from t j until collision), and K is the
number of samples of start time steps.

B. Evaluation Methodology

We want to evaluate all metrics in Dataset I mentioned
in Sec. III-B. Assuming Dataset I contains n different maps,
each denoted by Mi. The dataset can be denoted as M =
{M1,M2, ...,Mn}. m different planners are tested on these
maps. The map difficulty is defined as a scalar function
D(Mi). The success rate of a planner j on map Mi is
defined as SR j

i . We introduce two quantitative indicators
for evaluating whether the metrics are representative of the
dynamic map difficulty:

Spearman’s Rank Correlation Coefficient (SRCC):
This metric evaluates the monotonic relationship between
two variables. For a given metric D(Mi), we evaluate its
monotonical relation with the success rate SR j

i for planner
j and denote it as SRCC j. The overall effectiveness of the
difficulty metric is the average of SRCC j.

Coefficient of Variation (CV): This metric suggests the
variation of the success rate SR j

i on maps with close difficulty
metrics. The smaller CV value means that if two maps
have very close metrics, the success rate of one planner on
these two maps will not differ too much, indicating a good
correlation between the metric and the success rate. Here,
we round the metric to the nearest integers to construct map
groups so that each group includes maps with similar metrics:

Mk = {Mi|D(Mi) ∈ [k,k+1]} k = 0,1,2, . . . ,9 (8)

For each group Mk, CV k
j for planner j denotes performance

stability:



CV k
j =

σ k
j

µk
j

(9)

σ k
j and µk

j are the standard deviation and the mean value
of the success rate of planner j in map group Mk. The CV
measure for the difficulty metric is given by the average of
CV k

j .

V. EXPERIMENT

To evaluate the metrics introduced in Sec. IV, we replicate
various trajectory and gaze planners, testing them within two
map datasets outlined in Sec. III-B. After testing, we com-
pute metrics for each map, aiming to explore the relationship
between these metrics and planner success rates.

A. Experiment Setup

1) Map Dataset: All maps are generated in a 50m×50m
square area. As mentioned in Sec. III, maps in Dataset I are
generated by defining 3 variables and one random seed. The
range of these variables is shown in Tab. II. For each variable
setting, we generate 20 maps with different random seeds.
We will thus have 3×3×3×20 = 540 maps in Dataset I.

Parameter nobs robs vobs

Range {10,20,30} {0.5,1,1.5}m {2,4,6}m/s

TABLE II: Range of variables for maps in Dataset I

If the metric performs well in Dataset I, it is further
evaluated in Dataset II, where assumptions are relaxed and
three more general map types are introduced: (a) obstacle
velocities within a map differ, sampled from the distribution
[2,6] m/s; (b) obstacle sizes within a map differ, sampled
from [0.5,1.5] m; (c) obstacles move using the RVO [34]
motion profile. For each type, we generate 40 maps. There-
fore, we have 120 maps in Dataset II.

2) Robot Parameters: We assume that the robot is a 2D
circle with a radius of 1m. The maximum acceleration of the
robot is 4m/s2. The depth of the FOV is 8m, and the range
of the FOV can be 90 to simulate a single depth camera or
360 degrees to simulate multiple depth cameras and LiDAR.
Since a larger yaw angle velocity will bring large errors in
depth estimation, the maximum yaw angle velocity is set to
1.4 rad/s according to [6].

3) Planners: We use multiple planners for trajectory and
gaze planner in Tab. III and Tab. IV to ensure that the
observed relationship remains consistent rather than being
specific to a particular planner.

Here the trajectory planners are chosen in terms of differ-
ent planning horizons ( [3] generates a global trajectory while
[6], [10] generate local trajectory) and planning methods( [3],
[6] are sampling-based methods while [10] is optimization-
based method).

Method Description

Global Motion
Primitive [3]

Samples trajectories, filters these trajectories with
collision checking and conducts a graph search in
these trajectories until reaching the goal.

Model Predictive
Control (MPC)

[10]

Defines the cost as the distance between future
trajectory and target position plus control input,
and defines the collision constraints as the distance
between the robot and obstacles which are modeled
as ellipsoids.

Local Primitive
[6]

Samples local targets, generates an optimal local
trajectory [4] towards the local target with the
lowest cost, and iteratively updates the local target
until reaching the global target.

TABLE III: Baselines of Trajectory Planner

Method Description

FullRange The perception range is expanded to 360 degrees.
No gaze planner is needed in this case.

LookAhead [15] Look at the current velocity direction.

LookGoal [17] Look at the current target direction.

Rotating Rotate in the largest rotating velocity

Finean et al. [1] Optimize an objective function to find a trade-
off between looking at the future trajectory and
looking at grids that have not been updated for a
long time.

Owl [6] Optimize multiple objectives, including looking
at the velocity direction, the target position, the
direction that has not been updated for a long time,
and the observed dynamic obstacles.

TABLE IV: Baselines of Gaze Planner

B. Experiment Results

For each planner on each map, we experiment with
multiple trials to calculate a corresponding success rate. In
these trials, we apply different start and target positions
and different robot velocities. There are 9 different position
candidates for the start and target positions, and the robot
velocity is chosen from {2,4,6} m/s. Therefore, we have(9

2

)
×3= 216 trials for each planner on each map to calculate

the success rate.
The metrics D(Mi) of these maps undergo two pre-

processing steps: normalization and reverse. Normalization
scales the metric value so that D(Mi) ∈ [0,10]. Reverse will
let D(Mi) = 10 − D(Mi) for some metrics to ensure that
the high metric always indicates difficult maps as explained
in Tab. I. Then we show the correlation figures between
the metrics and the success rate in Fig. 5. The quantitative
comparison of different metrics can also be seen in Tab. V.
The survivability metric achieves the best SRCC and CV,
and it can be demonstrated from the line plot in Fig. 5 (a)
that the survivability shows a good monotonical relationship
with the success rate of every planner.

VI. DISCUSSION

In this section, we further evaluate the difficulty metrics
from sec. IV using SRCC and CV evaluation method intro-
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Fig. 5: All experiment results of the proposed metrics. In (a), the plot shows the relationship between the success rate and
the pre-processed metrics for different planners. Different colors denote planners. The light-colored band surrounding the
curve represents one standard deviation of the success rate of each planner under each level of the difficulty metric. In (b),
the boxplot shows SRCC and CV values of different metrics.

Difficulty Metric SRCC CV Time

Obstacle Density 0.501±0.068 0.571±0.193 2s
Traversability 0.511±0.068 0.568±0.184 7s

Dynamic Traversability 0.551±0.073 0.516±0.173 30s
VO feasibility 0.651±0.077 0.461±0.161 7s
Survivability 0.932±0.023 0.230±0.095 20s

Global Survivability 0.607±0.044 0.242±0.078 20s

TABLE V: Evaluation of metrics in terms of their SRCC,
CV, and calculation time of the metric for one map.

duced in section IV-B. Sec. VI-A analyzes the reason why
each metric works or not, and Sec. VI-B presents the specific
use case of the best metric Survivability.

A. Scope of Metrics for Difficulty Evaluation

1) Obstacle density: Obstacle density mainly evaluates
static environment difficulty, explaining its weak correlation
with success rate in dynamic settings where velocity is not
considered. We further validate this by grouping maps based
on obstacle velocities and investigating the correlation in
each group. Tab. VI shows that the correlation in each group
improves significantly, as reflected by higher SRCC and
lower CV values.

2) & 3) Traversability and Dynamic Traversability: Similar
to obstacle density, the poor performance of traversability
and dynamic traversability can also be attributed to neglect-
ing obstacle velocity.

4) VO Feasibility: Since different configurations of ob-
stacle velocities can result in variations in VO feasibility
regions, it is expected to be a good metric for dynamic

Metric Obstacle Velocity SRCC CV

Obstacle Density

2.0−6.0m/s 0.501±0.068 0.571±0.193
2.0m/s 0.788±0.045 0.075±0.026
4.0m/s 0.784±0.030 0.158±0.050
6.0m/s 0.758±0.029 0.272±0.109

VO Feasibility

2.0−6.0m/s 0.651±0.077 0.461±0.161
2.0m/s 0.945±0.017 0.006±0.002
4.0m/s 0.953±0.005 0.124±0.038
6.0m/s 0.946±0.007 0.214±0.079

TABLE VI: SRCC and CV of metrics after grouping the
maps according to the obstacle velocity. The reported im-
provements are in comparison to their original values.

environments. However, it does not have a good correlation
with the success rate, featured by low SRCC and high CV. As
demonstrated in Tab. VI, the SRCC and CV values become
significantly better if the obstacle velocities are the same.
This indicates that the VO feasibility metric is similar to the
metrics for static environments, which are not sensitive to the
change in obstacle velocities. This limitation can be traced
back to the generation process of VO infeasible areas. For
two maps with obstacles at the same position but different
velocities, the infeasible area only shifts directionally. The
size of these infeasible regions remains unchanged. Thus, the
VO feasibility metric cannot capture dynamic environment
difficulty variations caused by different obstacle velocities.

5) Survivability: The Survivability metric consistently
scores the highest in SRCC and lowest in CV, revealing
a strong correlation between survivability and success rate,



meaning the metric is effective in assessing dynamic map
difficulty in Dataset I. We also test survivability with higher
sampling density. By reducing the distance between sample
positions, dsample from 12.5 m to 10 m, the number of
samples increases from 9 to 16 in each map. However, the
SRCC only demonstrates a small improvement from 0.932
to 0.941 at the cost of 2 times the calculation time.

We further investigate the generalization ability of surviv-
ability by fitting a Gaussian distribution to the success rate
of Dataset I under the same survivability metric and then
calculating the Mahalanobis Distance of the data points in
Dataset II to the fitted Gaussian distribution. The average
Mahalanobis Distance is 0.74, and 99.3% of the data points
in Dataset II lie within the 3σ range of the fitted distribution.
This suggests the survivability metric effectively evaluates
the dynamic map difficulty when the sizes and velocities of
obstacles differ in the map and when the motion profile is
RVO. For example, if there are two maps with CVM and
RVO motion profiles that have similar survivability, the suc-
cess rate of one planner in these two maps is expected to be
similar. The detailed analysis, including maps with different
motion profiles, will be presented in the supplementary file.

6) Global Survivability: It does not correlate better with
success rates than the original Survivability metric. Fig. 5
shows that the variance of success rates for maps with low
difficulty is small, while the variance of success rates for
maps with higher difficulty is large. Since we calculate
the minimum survival time of all sampled positions, most
maps have similarly small Global Survivability and are thus
considered difficult. It is hard to tell the difference between
them by Global Survivability.

B. Use Cases of Survivability Metric

There are three use cases of the survivability metric:
1) Comparison of Different Planners: Fig. 6 shows suc-

cess rates for three trajectory planners with varied surviv-
ability levels. The Local Primitive planner consistently out-
performs others. While Global Primitive starts stronger than
MPC, it is surpassed by MPC as the difficulty increases. The
conclusions here are based on the assumptions mentioned
when we design the simulator in Sec. III-A.

Fig. 6 also compares five gaze planners and FullRange
Perception against survivability levels. Here, FullRange sets
the upper bound. LookAhead and LookGoal are top perform-
ers, with Rotating lagging behind.

2) Generate Maps with Predefined Survivability Metric:
For benchmarking collision avoidance methods, it is also
important to generate maps with pre-defined difficulty so
that we can gradually test our method in harder scenarios.
In Dataset I, the survivability of a map is determined by:
nobs, robs, vobs. We use a linear regression model to fit this
relationship:

S = f (nobs,robs,vobs) = β0 +β1nobs +β2robs +β3vobs (10)

The resulting coefficients are -6.014, 0.226, 2.646, and
1.104 for β0, β1, β2, and β3, respectively. Using the fitted
model f , we can generate maps with a specified survivability
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Fig. 6: The comparison of planners using the survivability
metric.

(a) Metric Calculation (b) Gazebo Simulation

Fig. 7: The calculation of the survivability metric in a
gazebo simulation environment. In (a), the pillars represent
the moving pedestrians. The spheres represent the sampled
robot positions, where red ones have already collided with
obstacles and blue ones have not.

metric S. The process is formulated as an Integer Linear
Programming (ILP) optimization problem:

minimize | f (nobs,robs,vobs)−S| (11)
s.t. nobs ∈ Z,10 ≤ nobs ≤ 30, (12)

0.5 ≤ robs ≤ 1.5,2 ≤ vobs ≤ 6 (13)

3) Calculating Survivability Metric in Other Simulator
and real world: We can easily calculate survivability in
other high-fidelity simulators. An example using the gazebo
simulation is shown in Fig. 7. For the real-world test,
survivability can also be calculated by recording the obstacles
as mentioned in Sec. IV-A.5.

VII. CONCLUSIONS

In this paper, we propose four metrics to evaluate the en-
vironmental difficulty of dynamic environments for collision
avoidance problems. We validate their effectiveness through
extensive experiments on our custom simulator and provide
a detailed analysis of the results, aiming to demonstrate in-
sights into the limitations of these metrics and their potential
applications. Results show that the proposed survivability
metric is suitable for assessing the dynamic environment
difficulty. VO Feasibility metrics can also be used for rapid
evaluations in consistent obstacle velocities. Our future work
will explore the applicability of these metrics in 3D scenarios
to further expand their scope of usage.
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