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Abstract—Utilizing widely distributed communication nodes to
achieve environmental reconstruction is one of the significant sce-
narios for Integrated Sensing and Communication (ISAC) and a
crucial technology for 6G. To achieve this crucial functionality, we
propose a deep learning based multi-node ISAC 4D environment
reconstruction method with Uplink-Downlink (UL-DL) coopera-
tion, which employs virtual aperture technology, Constant False
Alarm Rate (CFAR) detection, and Mutiple Signal Classification
(MUSIC) algorithm to maximize the sensing capabilities of single
sensing nodes. Simultaneously, it introduces a cooperative envi-
ronmental reconstruction scheme involving multi-node coopera-
tion and Uplink-Downlink (UL-DL) cooperation to overcome the
limitations of single-node sensing caused by occlusion and limited
viewpoints. Furthermore, the deep learning models Attention
Gate Gridding Residual Neural Network (AGGRNN) and Multi-
View Sensing Fusion Network (MVSFNet) to enhance the density
of sparsely reconstructed point clouds are proposed, aiming to
restore as many original environmental details as possible while
preserving the spatial structure of the point cloud. Additionally,
we propose a multi-level fusion strategy incorporating both data-
level and feature-level fusion to fully leverage the advantages of
multi-node cooperation. Experimental results demonstrate that
the environmental reconstruction performance of this method
significantly outperforms other comparative method, enabling
high-precision environmental reconstruction using ISAC system.

Index Terms—Integrated Sensing and Communication, En-
vironmental Reconstruction, Virtual Aperture, Constant False-
Alarm Rate, Mutiple Signal Classification, Multi-Node Cooper-
ation, Uplink-Downlink Cooperation, Multi-Level Fusion, Deep
Learning.

I. INTRODUCTION

A. Background and Motivation

Integrated Sensing and Communication (ISAC) has been
defined as a new feature of next-generation cellular networks
by ITU-R as one of the six visions of IMT2030 (6G) [1].
The rapid development of 5th Generation (5G), Beyond 5G
(B5G) and 6th Generation (6G) wireless communication has
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conferred communication signals a larger bandwidth and
higher frequency bands, which have significantly improved
their sensing capabilities. In ISAC scenarios, cellular network
devices not only serve as communication nodes to realize
the interconnection of everything, but also can be used as
sensing nodes to realize functions such as environmental
imaging and reconstruction. The multi-node cooperation be-
tween the widely distributed communication infrastructure and
User Equipment (UE) makes multi-view and omnidirectional
environmental imaging and reconstruction possible. Mean-
while, the use of deep neural networks and multilevel fusion
strategies can further improve the precision of environmental
imaging and reconstruction and maximize the details of the
sensing results.

B. Related Works

Most of the current research on 3D and 4D environmental
sensing based on wireless signals utilizes Frequency Modu-
lated Continuous Wave (FMCW) waveform which primarily
uses Fast Fourier Transform (FFT)-based algorithms for echo
signal processing [2]. Santra et al. [3] and Sun et al. [4]
proposed the high-resolution Multiple Input Multiple Output
(MIMO) radar imaging system based on FMCW waveform.
The above works use FFT-based algorithms to process the
echoes, which are lacking in terms of environmental sens-
ing resolution compared to MUSIC-based methods. And the
FMCW waveform-based environmental sensing scheme is not
suitable for ISAC scenarios [5], [6]. In recent years the
research about single target [7]–[10] and multi-target [11]
sensing based on Orthogonal Frequency Division Multiplex-
ing (OFDM) signals in ISAC scenarios have achieved good
performance. However, there is still a lack of research on
OFDM radar-based 4D environmental reconstruction scenarios
with massive targets. Guan et al. [12] built a single-node
high-resolution 3D radar imaging system using 5G millimeter
wave (mmWave) signals. However, due to the existence of
occlusions, the system is unable to achieve a complete envi-
ronmental reconstruction of the sensing area.

Utilizing multi-node cooperation to build a multi-view
environmental reconstruction system can overcome the lim-
itations of single-node sensing [13], [14]. Ren et al. [15]
determined the weights of each sensing node by considering
factors such as consistency, stability and correlation between
parameters. Nuss et al. [16] performed multi-target sensing
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based on MIMO-OFDM radar through measurement matrix
superposition algorithm. Gao et al. [17] proposed a grid-
based probabilistic fusion framework to mitigate the effects
of radar ghosting. The partly multi-radar sensing fusion based
approach defines a maximum likelihood function for each
position grid, which is estimated as the position corresponding
to the maximum value of the function [18], [19]. Most of
the above related works are cooperative schemes based on
multi-base radar, which cannot utilize the inherent advantages
of integrating communication node UL with DL and are not
applicable to ISAC scenarios as compared to the cooperative
schemes based on multiple communication nodes.

Since the sensing capability in ISAC scenario is limited by
the frequency and bandwidth resources used by the commu-
nication nodes, the beam-pointing situation, and the electro-
magnetic environment, the point cloud density of the envi-
ronmental reconstruction results from multi-node cooperation
is similarly limited [20], [21]. In order to make the multi-
node cooperative environmental reconstruction result with
higher point cloud density to recover the detail information
of the original scenario more completely, it is necessary to
introduce a point cloud complementation algorithm for low-
density reconstruction point cloud density enhancement [22],
[23]. More recently, several attempts [24], [25] have been
made to incorporate Graph Convolutional Networks (GCN)
[26] to build local graphs in the neighborhood of each point
in the point cloud. However, constructing the graph relies on
the K-Nearest Neighbor (KNN) algorithm, which is sensitive
to the point cloud density [27]. In addition to the above,
there are almost no open source datasets related to ISAC-
based 4D environmental reconstruction, resulting in a lack of
work related to low-density point cloud enhancement networks
based on ISAC environmental reconstruction scenarios.

C. Contributions

To solve the above problems, we propose a deep learning
based Multi-Node with Downlink-Uplink Cooperative (MN-
DUC) ISAC 4D environmental reconstruction method. The
main contributions and innovations of this paper are summa-
rized as follows.

• A Base Station (BS) side ISAC 4D (velocity, 3D posi-
tion information) environmental reconstruction algorithm
based on a virtual receiver array with CFAR detection
is proposed. The algorithm uses the standard 5G NR
mmWave signal as the signal carrier, processes the echo
signal using 2D-FFT with with 2D-MUSIC algorithm,
and performs environment scatterers detection based on
CFAR.

• A multi-node UL-DL cooperative 4D environmental re-
construction method is proposed. This method realizes
active sensing at the BS side during the DL time slot and
passive sensing at the BS side in cooperation with the
UE during the UL time slot. And it achieves data-level
ISAC 4D environmental reconstruction result fusion.

• A density-enhanced network Attention Gate Gridding
Residual Neural Network (AGGRNN) for low-density re-
construction of point clouds for data-level fusion result is

proposed. We also apply distributed learning with Multi-
modal inputs for feature-level fusion on the foundation
of AGGRNN, and build a Multi-View Sensing Fusion
Network (MVSFNet) to further optimize the ISAC 4D
environmental reconstruction result.

We use Chamfer Distance (CD) and F-Score@1% to mea-
sure the performance of the reconstruction results. The simu-
lation results show that, our proposed ISAC 4D environmental
reconstruction method has better performance compared to the
comparison methods.

The rest of the paper is organized as follows. Section II
presents our system and signal model. The processing scheme
of DL and UL ISAC sensing signal is introduced in Section III.
In Section IV, the schemes of sensing result fusion and
enhancement are proposed. Section V discusses our simula-
tion results. Finally, we conclude the work of this paper in
Section VI.

II. SYSTEM AND SIGNAL MODEL

This section presents the scenario setup, ISAC channel
models, and transmit-received signal models for a Multi-
Node Downlink-Uplink Cooperative (MNDUC) ISAC imaging
method.

A. Scenario Setup of MNDUC ISAC 4D Environmental Re-
construction Method
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UE-BS
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BS-BS

DL

UL

Slots

BS

UE

UL Rx data Echo-UE

UL Tx data

ISAC Chanel

DL Tx data Echo-BS

DL Rx data

ISAC Chanel ......

Multi-level Fusion

Data-level Feture-level
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Fig. 1. MNDUC ISAC 4D environmental reconstruction scenario.

As shown in Fig. 1, we consider a MNDUC ISAC 4D
environmental reconstruction scenario between BS, UE, and
the environment. The BS is equipped with two spatially well-
separated Uniform Planar Arrays (UPAs). The transmit and
receive arrays of the BS have dimensions Pt×Qt and Pr×Qr,
whose array element spacing and the arrangement will be
described in detail below. The UE is equipped with antenna
array size Prt ×Qrt.

The modes of sensing in the DL and UL periods are
active and passive sensing, respectively. To obtain a complete
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environmental reconstruction result, we consider a multi-level
fusion strategy to fuse and match the sensing results of
multiple sensing nodes in DL and UL periods.

B. UPAs Model and Virtual Aperture
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Fig. 2. MIMO array design with the transmitting array, the receiving array
and the corresponding virtual Rx (vRx) array.

We have designed a transmit-receive UPAs as shown in
Fig. 2 to improve the sensing resolution. The receiving UPA is
a 2× 2 array with an element spacing of 8d, the transmitting
UPA is an 8× 8 array with a spacing of d, and the corre-
sponding receive UPA is a 16× 16 array with a spacing of
d.

x

z...

y

Scatter k

k

k

(a) Scatterer position.

x

z

y

Scatterers

(b) BS position.

Fig. 3. Schematic diagram of geometric relationships.

The geometric relationship between the kth scattering point
and BS is shown in Fig. 3, with the azimuth and pitch
angles noted as (θk, φk). The antenna array element in the
virtual receiving array is denoted as Arv (prv , qrv ), and the
reference antenna array element is Arv (1, 1), then the phase
difference between Arv (prv , qrv ) and Arv (1, 1) caused by the
kth scattering point can be expressed as [28]

∆ϕrv (prv , qrv )(θk,φk)

= e−ξj2π
d[(prv−1) cos θk+ψ(qrv−1) sin θk] cosφk

λ

ξ = 1 ψ = 1, θk < 90
◦
, φk < 90

◦

ξ = −1 ψ = −1, θk > 90
◦
, φk < 90

◦

ξ = 1 ψ = −1, θk < 90
◦
, φk > 90

◦

ξ = −1 ψ = 1, θk > 90
◦
, φk > 90

◦

(1)

As shown in (2), the vRx array phase difference matrix
Aq

k in DL sensing period corresponding to the kth target is
obtained from (1).

AD
k (prv , qrv ) =∆ϕrv (prv , qrv )(θk,φk) (2)

As shown in (3), the Rx array phase difference matrix Aq
k in

UL sensing period corresponding to the kth target is obtained
from (1).

AU
k (pr, qr) =∆ϕr(pr, qr)(θk,φk) (3)

where q = D or U are for DL or UL ISAC signals,
respectively.

C. Transmitted ISAC Signals

To adapt to current mobile wireless communication network
systems, OFDM signals are used for both DL and UL signals.
The continuous time domain OFDM ISAC signal is defined
as [29]

yq (t) =

Nqsys−1∑
m=0

Nqc−1∑
n=0

sqTx (n,m)ej2π(fc+n∆fq)trect

(
t−mT q

OFDM
T q

OFDM

)
(4)

where sqTx (n,m) represents the modulated OFDM symbol in
the nth subcarrier of mth OFDM symbol, Nq

sys − 1 is the
number of OFDM symbols and Nq

c − 1 is the number of
subcarriers, T q

OFDM is the total duration of the OFDM symbol
which satisfies T q

OFDM = T q + T q
CP, where T q is the effective

OFDM symbol duration and T q
CP is the cyclic prefix duration,

fc is the carrier frequency, ∆fq = 1/T q is the frequency
interval of subcarriers, rect

(
t

T qOFDM

)
is the rectangular function

which is equal to 1 for 0 ≤ t ≤ T q
OFDM and 0 for otherwise.

D. DL and UL ISAC Channel Models

Scatterers

lth N
L

oS
P

athBS

UE

Scatterers

BS

UE

DL UL

Fig. 4. Channel models of DL and UL Channel.

We denote the UL communication channel as the UL ISAC
channel; the DL communication channel is a transposition
of the ISAC UL channel due to channel reciprocity; the DL
sensing channel consists of the echo path from the scatterers as
shown in Fig. 4. We only consider the echo reflected directly
from the scatterers.

1) UL ISAC Channel Model: The UL ISAC channel re-
sponse matrix on the nth subcarrier of the mth OFDM symbol
is defined as [30]

HU
C,n,m =

L−1∑
l=0

bC,le
j2π(fc,d,l)mTUOFDMe

−j2πn∆fU(τc,l)

× a
(
pU
Rx,l

)
aT
(
pU
Tx,l

)
 (5)

where HU
C,n,m ∈ CPtQt×PrtQrt , l = 0 is for the chan-

nel response of the LoS (Line of Sight) path, and l ∈
{1, ..., L− 1} is for the paths involved with the lth scatterer;
a
(

pU
Rx,l

)
∈ CPtQt×1 and a

(
pU
Tx,l

)
∈ CPrtQrt×1 are the

steering vectors for UL reception and transmission, pU
Rx,l

and pU
Tx,l are the corresponding Angle of Arrival (AoA) and

Angle of Departure (AoD), respectively; fc,d,0 = v0
λ and

τc,0 =
r0,1
c are the Doppler shift and time delay with v0 and

r0,1 corresponding to the velocity and range between the UE
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and BS of the LoS path, respectively; fc,d,l = fd,l,1 + fd,l,2
and τc,l = τc,l,1 + τc,l,2 are the total Doppler shift and time
delay of the lth NLoS (Non Line of Sight) path, respectively;
fd,l,1 =

vr,l,1
λ and fd,l,2 =

vr,l,2
λ are the Doppler shifts

between the UE and the lth scatterer, and between the lth
scatterer and the BS, respectively, with vr,l,1 and vr,l,2 being
the velocities; τc,l,1 =

rl,1
c and τc,l,2 =

rl,2
c are the time delays

between the user and the lth scatterer, and between BS and the
lth scatterer, respectively, with rl,1 and rl,2 being the ranges.
The attenuation bC,l =

√
λ2

(4πr0,1)
2 , l = 0 for the LoS path and

bC,l = βC,l×
√

λ2

(4π)3rl,12rl,22 , l ∈ {1, ..., L− 1} for the NLoS
paths, where βC,l is the reflecting factor of the lth scatterer,
following CN

(
0, σ2

Cβ,l

)
.

2) DL Communication Channel Model: From the channel
reciprocity, the transpose of the UL communication channel
response is the DL communication channel response.

HD
C,n,m =

L−1∑
l=0

bC,le
j2π(fc,d,l)mTDOFDMe

−j2πn∆fD(τc,l)

× a
(
pD
Rx,l

)
aT
(
pD
Tx,l

)
 (6)

where HD
C,n,m ∈ CPtQt×PrtQrt , a

(
pD
Rx,l

)
∈ CPtQt×1 and

a
(

pD
Tx,l

)
∈ CPrtQrt×1 are the steering vectors for DL

transmission, pD
Rx,l = pU

Tx,l and pD
Tx,l = pU

Rx,l are the DL
communication AoA and AoD, respectively.

3) DL Sensing Channel Model: The DL sensing channel
response matrix on the nth subcarrier of the mth OFDM
symbol is defined as [30]

HD
S,n,m =

L−1∑
l=0

bS,lej2π(fs,l,1)mTDOFDMe
−j2πn∆fD(τs,l)

× a
(
pDS
Rx,l

)
aT
(
pD
Tx,l

)
 (7)

where a
(

pDS
Rx,l

)
∈ CPrvQrv×1 and aT

(
pD
Tx,l

)
∈ CPrvQrv×1

are the steering vectors for DL echo reception and DL trans-
mission, respectively; pDS

Rx,l and pD
Tx,l are the AoD and AoA of

the ISAC sensing receiver and transmitter array, respectively.
Since mmWave arrays are typically small and equivalent to vir-
tual receiver arrays during the DL sensing period as shown in
Fig. 2, pDS

Rx,l = pD
Tx,l. Where fs,0,1 = 2v0

λ and fs,l,1 =
2vr,l,2

λ
are the total Doppler shift of the lth echo path with v0 and
vr,l,2 being the velocities; τs,0 =

2r0,1
c and τs,l =

2rl,2
c are

the time delays of the lth echo path with r0,1 and rl,2 being
the ranges. bS,l = βS,l ×

√
λ2

(4π)3dl,24 , l ∈ {0, ..., L− 1} is the
attenuation for the echo path,where βS,l is the reflecting factor
of the lth scatterer, following CN

(
0, σ2

Sβ,l

)
.

E. Received ISAC Signals

1) Received Communication Signals: The received com-
munication signal on the nth subcarrier of the mth OFDM
symbol is defined as [28], [30]

yqC,n,m = sqTx (n,m)Hq
C,n,mwq

Tx + nq
t,n,m

= sqTx (n,m)

L−1∑
l=0

bC,le
j2π(fc,d,l)mT

q
OFDMe

−j2πn∆fq(τc,l)

× a
(

pq
Rx,l

)
χq
Tx,l

+ nq
t,n,m

(8)

where q = D or U are for DL or UL ISAC signals,
respectively; nq

t,n,m is the noise vector and each element
of nq

t,n,m follow CN
(
0, σ2

N

)
; yq

C,n,m,nq
t,n,m ∈ CPtQt×1

and yq
C,n,m,nq

t,n,m ∈ CPr tQr t×1 when q = U and q =
D, respectively; sqTx (n,m) represents the modulated OFDM
symbol; wq

Tx is the transmit Beamforming (BF) vector, and
χq
Tx,l = aT

(
pq
Tx,l

)
wq

Tx is the transmit BF gain.
2) Received Sensing Signals: The received signal when the

OFDM signal shown in (4) reflected by the kth scatterer is
defined as [28]

yqk (t) = Gk

Nq
sym−1∑
m=0

ej2πfd(k)t
Nq
c−1∑
n=0

sqRx (n,m, k)×

e
j2π(fc+n∆fq)

(
t− 2Rk

c

)
× rect

(
t−mT q

OFDM − 2Rk
c

T q
OFDM

) (9)

where Rk and fd (k) is the range and Doppler shift of
kth scatter, respectively. Gk represents the attenuation factor
associated with the path loss, radar cross section (RCS) of the
kth scatter. The relationship between the received modulation
symbols sqRx (n,m, k) and the transmitted modulation symbol
sTxq (n,m) can be defined as

sqRx (n,m, k) = Gks
q
Tx (n,m) e−j2πfqn

2Rk
c ej2πfd(k)mT qOFDM

(10)
where fq

n = fc + n∆fq .
The CSI(Channel State Information) matrix information

matrix sqg is defined as

sqg =
sqRx

sqTx

= Gk (kq
r ⊗ kq

d) (11)

where kq
r =

(
0, e−j2π∆f

2Rk
c , · · · , e−j2π(Nq

c−1)∆f
2Rk
c

)
and

kq
d =

(
0, ej2πT

q
OFDMfd(k), · · · , ej2π(N

q
sym−1)T qOFDMfd(k)

)
are the

two vectors carrying the Doppler and range information. ⊗
refers to a dyadic product [29].

The Direction of Arrival (DoA) information matrix Aq
S of

all array elements is defined as

Aq
S =

∑
k

sqgA
q
k (12)

It is worth noting that during the DL sensing period, the DoA
satisfies the Far-field assumption that the AoAs are in the same
direction and thus the vRx arrays can be used, while in the
UL sensing period, the above assumption is not satisfied and
thus only real aperture Rx arrays could be used [31].

The Aq
S in our simulation work exists in the form of 4D

arrays which contain the dimensions of fast time dimension,
slow time dimension, horizontal antenna array dimension and
vertical antenna array dimension. In actual ISAC 4D environ-
mental reconstruction system, Aq

S represents the environmental
scatterer reflection signal received by UPA of BS.

III. METHODOLOGY OF ISAC SENSING SIGNAL
PROCESSING

The DL and UL ISAC sensing signal processing scheme
is shown in Fig. 5. The multi-level fusion strategy and en-
hancement method of the sensing results will be shown in
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Fig. 5. The illustration of DL and UL ISAC signal processing and multi-level
fusion strategy.

Section IV. In this section, we first introduce the DL sensing
signal processing algorithm, then we introduce the UL sensing
signal processing algorithm. We abstract the description of the
scenario in Fig. 1 as shown in Fig. 6.
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0 20 040 60 80 100
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)
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40
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Fig. 6. Simulation scenario modeling.

A. DL ISAC Sensing Signal Processing

In this section, we first introduce the Doppler and range
estimation based on 2D-FFT and OSCA (Ordered Statistics
& Cell Averaging)-CFAR algorithms, then introduce the DoA
estimation based on 2D-MUSIC and CA (Cell Averaging)-
CFAR algorithms.

1) Range and Doppler Estimation: kq
r, q = D is the linear

phase shift vector along the fast time axis caused by range
R. We initially process the received signal of each vRX
antenna array element by using (11) and then performing

the Inverse Discrete Fourier Transform (IDFT) along the
subcarrier dimension [29].

rD (α) = IDFT
[
kDr (n)

]
=

1

ND
c

ND
c −1∑
n=0

kDr (n) e
jnα 2π

NDc

=
1

ND
c

ND
c −1∑
n=0

e−j2πn∆fD 2R
c e

jnα 2π

NDc , α = 0, . . . , ND
c − 1

(13)
where rD (α) obtains peak value when α =

⌊
2R∆fDND

c

c

⌋
.

kq
d, q = D is the linear phase shift vector along the slow

time axis caused by velocity vk. Similarly vk can be estimated
by performing a Discrete Fourier Transform (DFT) along the
OFDM symbol dimension [29].

vD (β) = DFT
[
kDd (m)

]
=

ND
sym−1∑
m=0

kDd (m) e
−jmβ 2π

NDsym

=

ND
sym−1∑
m=0

ej2πmTDOFDM
2vkf

D
c

c e
−jmβ 2π

NDsym , β = 0, . . . , ND
sym − 1

(14)
where vD (β) obtains peak value when β in (14) satisfies β =⌊

2vkf
D
c TDOFDMND

sym

c

⌋
.

R
an

g
e(

S
u
b
ca

rr
ie

rs
)

Doppler(OFDM Symbols)

O
S
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F

A
R

CA-CFAR

(a) 2D OSCA-CFAR.

50

1500

Velocity(m/s)
Range(m)

100

-50 50

(b) RDM.

50

150

Velocity(m/s)
0

Range(m)
100

-50 50

(c) Threshold.

Fig. 7. (a) is the sliding reference window design for 2D OSCA-CFAR,
(b) and (c) are the Radar Doppler Map (RDM) and its detection threshold,
respectively.

The RDM can be obtained by processing sDg in (11) using
the 2D-FFT algorithm, denoted as sD,R,v

g
. As shown in Fig. 7

(a), we use the 2D OSCA-CFAR detection algorithm to
estimate the range and velocity information of the scatterers
by detecting the RDM. We select a reference window of size
9× 9 within the RDM to show the detection process.

• We apply 1D OS-CFAR to the sliding reference window
by column and the γth value of each colum is selected as
the estimated noise intensity of this sliding window. We
take γ = ⌊0.75N⌋, where N is the number of reference
cells durning the sliding reference window.

• As shown in (15), the estimated values of noise intensity
µ̄(γ) are averaged by row as the noise threshold of the
Center Detection Unit (CUT) in reference window.

µ̄(γ) =
1

N

N∑
n=1

X(γ),n (15)

where X(γ),n represents the noise reference value se-
lected by OS-CFAR, since the size of the sliding reference
window we select is 9× 9, N = 9.
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• The detection threshold factor Tf of the selected CUT is
only related to the number of reference units N with the
specified false alarm probability Pfa, which is given by
(16).

Tf = (Pfa)
− 1
N − 1 (16)

We can calculate the detection threshold for the selected
CUT T by T = Tf × µ̄(γ), and the 2D adaptive
detection threshold can be obtained by applying the above
operations to all CUTs in the RDM as shown in Fig. 7.
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(c) Threshold.

Fig. 8. (a) is the sliding reference window design for 2D CA-CFAR, (b) and
(c) are the MUSIC pseudo-spectrum and its detection threshold, respectively.

2) DoAs Estimation: The peak of the RDM indicates the
presence of targets with velocity v and range R but φ, θ of the
DoAs are unknown.The linear phase shift of the corresponding
sD,R,v
g

value due to R and v has been removed [29], which
carries only the linear phase shift caused by the wave range
difference of the receiving antenna array elements. As shown
in (17), we combine the RDM peaks detected by 2D OSCA-
CFAR of all receiving antenna elements into km (km < k)
manifolds for MUSIC-based DoA estimation.

AD
km

(prv , qrv ) =
∑
t

GtA
D
t =

∑
t

Gt∆ϕrv (prv , qrv )(θt,φt) (17)

x

z d

d_v rQ

_v rP

1D MUSIC

1D MUSIC

Virtual Rx Array

Equivalent 2D search result



Fig. 9. Using the pseudo-spectrum multiplication of two 1D-MUSIC searches
instead of 2D-MUSIC searches to reduce complexity.

We take
(
AD

km

)
1,:

and
(
AD

km

)
:,1

of AD
km

to construct
the searching manifolds, which are related to the 2D angle
p = (θ, φ) of the targets simultaneously, and eventually just
multiply the two search results to get the 2D angle information
of t targets in AD

km
. The visualized image of the MUSIC

search results of the above two sets of 1D line arrays and
their multiplication is shown in Fig. 9.

The algorithmic flow of the MUSIC DoA search through(
AD

km

)
:,1

is as follows, and the processing of
(
AD

km

)
1,:

can
be obtained in the same way.

• We need to ensure the availability of the MUSIC al-
gorithm by spatial smoothing algorithm to decoherence
the individual scatterer echoes. As shown in Fig. 10,

we can define the forward spatial smoothing matrix

Rf = 1
L

L∑
l=1

Rf
l , and similarly the backward spatial

smoothing matrix Rb = 1
L

L∑
l=1

Rb
l , where Rf

l and Rb
l

are the covariance matrices of the subarray and L is the
number of subarray elements. Then use the average of
them RX =

Rf+Rb

2 to replace the original covariance
matrix.

...

1 2 sN _ 1v r sp N− +

...

_v rp

Subarray 1 Subarray L

Forward spatial smoothing

Backward spatial smoothing

Subarray 1Subarray L

Subarray 2

Subarray 2

Fig. 10. Schematic of the forward and backward space smoothing algorithm.

• We can get (18) by applying eigenvalue decomposition
to RX.

[Ux,Σx] = eig (RX) (18)

where Σx is the real-valued eigenvalue diagonal matrix
and Ux is the orthogonal eigenmatrix. We obtain the
number of targets ks by performing 1D CA-CFAR de-
tection on Σx.

• Construct UN = Ux (:, 1 : Ns −Nx) as the noise sub-
space basis.Then we can obtain the spatial angular spec-
trum function as [32]

fa (p;UN ) = aH (p)UN (UN )
H
a (p) (19)

where p = (θ, φ) is the 2D angle, a (p) is given in AD
k as

shown in (2). The spatial pseudo-spectrum is represented
as [32]

Srow
a (p;UN ) =

[
aH (p)UN (UN )

H
a (p)

]−1

(20)

Similarly we can obtain Scol
a (p;UN ) by taking the above

operation for
(
AD

km

)
1,:

.

We obtained the estimated DoAs by performing 2D CA-CFAR
detection on Sa (p;UN ) = Scol

a (p;UN ) ⊙ Srow
a (p;UN ), ⊙

represents Hadamard product and Sa (p;UN ) is shown in
Fig. 9.

As shown in Fig. 8(a), the noise of the 2D CA-CFAR is
determined by averaging the NR reference cells excluding the
protection cell and the CUT.

µ̄ =
1

NR

NR∑
n=1

Xn (21)

where Xn represents the reference unit value. The detection
threshold of this CUT can be calculated from T = Tf × µ̄
where Tf is given by (16), and the 2D adaptive detection
threshold can be obtained by applying the above operations to
all CUTs in Sa (p;UN ) as shown in Fig. 8 (b)-(c).
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Fig. 11. The geometric relationship between the UE, BS, and scatterer.

B. UL ISAC Sensing Signal Processing

The positional relationship of the scatterers and the UE Tx
array does not satisfy the far-field assumption [31]. Therefore
we can’t receive the echoes of UL signal with the vRx array
during the UL sensing period, but only with the BS-side real
Rx array.

The UL sensing based on UL signal echoes from l NLos
paths. The methodology for estimating the scatterers’ 4D
information is essentially the same as shown in III-A. As
shown in Fig. 11, the DoAs of the UL signal echoes can be
correctly estimated, but due to the time delay τ of the lth path
sourced with the two distances rl,1 and rl,2, the scatterer’s
range information from the BS cannot be correctly estimated.
The position of the scatterer of the lth path estimated by the
BS in this case is the mirror position of the UE concerning the
reflection plane, denoted as Virtual UE (vUE). We determine
the real position of the scatterer by the geometrical relationship
between the vUE, UE, and BS.

We denote the positions of the real scatterer, vUE, UE, and
BS as xl = [xl, yl, zl], xvl = [xvl, yvl, zvl], x1 = [x1, y1, z1],
and x0 = [x0, y0, z0], respectively. Then the midpoint of UE
and vUE is M1,vl =

[
x1+xvl

2 , y1+yvl
2 , z1+zvl

2

]
. The normal

vector u⃗1,vl of a line segment in space consisting of UE and
vUE is defined as

u⃗1,vl =
[xvl − x1, yvl − y1, zvl − z1]

|[xvl − x1, yvl − y1, zvl − z1]|
(22)

Substituting M1,vl into (22) gives the equation of the perpen-
dicular plane of the above line segment

u⃗1,vl · (r⃗ − M1,vl) = 0 (23)

The coordinate of the intersection of the line where BS and
vUE are located and the above plane is the true position of
the scatterer. The normal vector of the line between BS and
vUE is given by

u⃗0,vl =
[xvl − x0, yvl − y0, zvl − z0]

|[xvl − x0, yvl − y0, zvl − z0]|
(24)

The parametric equation of the above line with unknown
parameter t after substituting x0 is defined as

Q⃗0,l = x0 + tu⃗0,vl (25)

Joining (22) and (25) gives

u⃗0,vl · ((x0 + tu⃗0,vl)− M1,vl) = 0 (26)

We can calculate the unknown parameter t by substituting the
relevant data into (26). And the position information of the
real scatterer can be solved by applying t into (25).

IV. METHODOLOGY OF SENSING RESULT FUSION AND
ENHANCEMENT

In this section, we demonstrate the fusion method of DL-
UL ISAC 4D environmental reconstruction results. Firstly,
we show the data-level fusion strategy based on the simple
solution of the theory of Sphere Packings; then we show the
AGGRNN network model based on deep learning for improv-
ing the point cloud density of the environmental reconstruction
results after data-level fusion; and finally, we present the
feature-level fusion reconstruction network MVSFNet based
on the multi-view feature-level fusion strategy.

A. Data Level Fusion Strategy
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(a) Original reconstruction result.
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(b) Data-level fusion result.

Fig. 12. (a) and (b) are the result of the original ISAC 4D environmental
reconstruction and the data-level fusion result, respectively.

1) Cartesian Coordinate System Rotation and Unification:
In order to realize the environmental reconstruction, it is
necessary to restore their coordinates to the world coordinate
system from the BS coordinate system by using the Eulerian
rotation operators RZYX .

RZY X = RZ(γ)RY (β)RX(α)

=

cos γ − sin γ 0
sin γ cos γ 0
0 0 1

 cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

1 0 0
0 cosα − sinα
0 sinα cosα


(27)

The coordinates of a certain scatterer in the world coordinate
system is given by

PWorld = PBS × RZYX + POffset (28)

where POffset = [xo, yo, zo] is the positional offset of the BS
with respect to the reference point of the world coordinate
system, PBS = [x, y, z] is the scatterer coordinates of the BS
coordinate system, and PWorld = [x′, y′, z′] is the scatterer
coordinates of the transformed world coordinate system; and
α, β, and γ are the angles of rotation of the BS coordinate
system around the x, y, and z axes, respectively.

2) Offset Scatterers Fusion: The ISAC 4D environmental
reconstruction results after directly stitching the sensing results
from multiple nodes are shown in Fig. 12(a). It can be seen
that the coordinates of the same scatterer are slightly shifted.
The key to data-level fusion is to select the appropriate fusion
radius Rc.
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Fig. 13. Schematic of the relationship between the fusion radius of the covered
sphere and the growth rate of the number of points in the sphere.

We randomly select 10 scatterers and create expanding
covering spheres with radius Rc, and we define the growth
rate hi of the number of scatterers in the covering sphere as
a monitoring metric as

hi =
Cn − Cb

Cb
(29)

where Cn is the number of scatterers in the current coverage
sphere and Cn is the number of scatterers in the coverage
sphere at the previous differential radius. We calculate the hi

variation curve when Rc ∈ [0, 10] as shown in Fig. 13.
Fig. 13 shows that this interval is an selectable interval for

the fusion radius Rc when the radius of all covered spheres
increases but the growth rate of the number of scatterers in
the sphere satisfied hi → 0.

B. AGGRNN: Low-density Reconstruction Point Cloud En-
hancing Method

As shown in Fig. 14, AGGRNN contains four components
are Gridding module (GM), Gridding Feature Extraction Mod-
ule (GFEM), Detail Recovery Module (DRM) and Gridding
Reverse Module (GRM). GM first transforms the input low-
density point cloud into a 3D grid ξ = ⟨V,K⟩, where V and
K are the vertex set and value set of ξ, respectively. Then
GFEM extracts ξ’s high dimensional spatial features output as
K ′ through AGUNet. The DRM then works with the GRM
to generate the spatial features F c of the coarse point cloud
P c and uses the Multi-Layer Perceptron (MLP) to generate
the adjustment vector W c of P c. Finally, GRM superimposes
the adjustment vector W c on the generated coarse point cloud
P c to output the high-density point cloud P f [33]. The Loss
function for our supervised model training is GriddingLoss.

1) Gridding Module (GM): In GM we introduce 3D
grids as intermediate representations of regularized point
clouds, and further introduce a differentiable Gridding layer
that converts a disordered, irregular point cloud P =
{pi}ni=1 into an ordered, regular point cloud ξ = ⟨V,K⟩
while preserving the spatial layout of the point cloud,
where pi ∈ R3, V = {vi}N

3

i=1, K = {ki}N
3

i=1, vi ∈{(
−N

2 ,−
N
2 ,−

N
2

)
, ...,

(
−N

2 − 1,−N
2 − 1,−N

2 − 1
)}

, ki ∈
R, n is the number of points in P , and N is the resolution of
the 3D grid ξ. As shown in Fig. 15(a), the 3D Grid contains

a number of Cells, and each Cell contains 8 vertices, for each
vertex vi = (xv

i , y
v
i , z

v
i ) in the Cell, if the point p = (x, y, z)

in the low-density point cloud satisfies 30,then p falls in the
neighborhood N of vertex vi, denoted as p ∈ N (vi).

xvi − 1 < x < xvi + 1

yvi − 1 < y < yvi + 1

zvi − 1 < z < zvi + 1

(30)

As shown in Fig. 15(a), for a given vertex vi with N , the
corresponding weight ki of the vertex is defined as

ki =
∑

p∈N (vi)

k (vi, p)

|N (vi)|
(31)

where ki (vi, p) = (1− |xv
i − x|) (1− |yvi − y|) (1− |zvi − z|),

in particular, for|N (vi)| = 0, ki = 0.
2) Gridding Feature Extraction Module (GFEM): GFEM

aims to extract the depth features of low-density point clouds
in terms of spatial arrangement and spatial distribution. Its
basic structure is AGUNet, which is a 3D encoder-decoder
structure introducing AG modules with U-net connections
[34]. The details of the network parameters and network
structure are shown in Fig. 14. For a given set K of values
of a 3D Grid, the GFEM process can be given formally as
K ′ = GFEM (K), where K ′ = {k′i}N

3

i=1 , k
′ ∈ R.

3) Detail Recovery Module(DRM): DRM is composed of
Cubic Feature Sampling (CFS) layer and MLP. We introduce
a CFS layer [33] to extract features at different depths of the
point cloud from the up-sampled 3D feature maps and preserve
the contextual information.

As shown in Fig. 16, the feature set F ={
fv
1 , f

v
2 , ..., f

v
t3

∣∣ fv
i ∈ Rc

}
of a certain feature map of

AGUNet and a certain point pci in the coarse point cloud
P c are given, and the feature f c

i corresponding to pci can
be denoted as f c

i =
[
fv
θi1
, fv

θi2
, ..., fv

θi8

]
, where [·] is the

concatenation operation,
{
fv
θij

}8

j=1
denotes the set of features

of the eight vertices of the Cell where pci is located, the
coarse point cloud P c is obtained from the GRM in Section
IV-B4. We randomly sample 2048 points from the coarse
point cloud P c, and the CFS layer extracts features from the
three up-sampled feature maps of AGUNet and generates the
feature F c of the above 2048 points, as shown in Fig. 16.

The MLP estimates r offsets for each point pci to generate
the final point cloud. Specifically, given a coarse point cloud
P c with its corresponding feature F c, the MLP and GM
eventually collaborate to generate a high-density point cloud
P f =

{
pfi

}n

i=1
.

P f = MLP (F c) + GM (P c, r) (32)

where pfi ∈ R3, n is the number of points in the final
high-density point cloud P f . GM creates a new tensor by
replicating P c r times. As shown in Fig. 14, we take r = 8
and the output of MLP is reshaped to r×m×3 = 16384×3,
which corresponds to the offsets of the coordinates of 16384
points.
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Fig. 14. Overall framework of AGGRNN.
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Fig. 16. Overall framework of CFS layer.

4) Gridding Reverse Module (GRM): GM consists of
GriddingReverse with tail processing of AGGRNN.
GriddingReverse is the inverse of Gridding which converts
the 3D Grid back to a point cloud. GriddingReverse takes
the 3D Grid ξ′ = ⟨V,K ′⟩ generated by AGUNet as input to
generate a coarse point cloud P c = {pci}

m
i=1, where pci ∈ R3

and m is the number of points in the coarse point cloud P c.
As shown in Fig. 15(b), GriddingReverse generates a point
pci for each Cell in ξ′, whose coordinates can be obtained by
weighting the coordinates of the 8 vertices of the current Cell
with the weights.

pci =

∑
θ∈Θi w

′
θvθ∑

θ∈Θi w
′
θ

(33)

where Θi =
{
θij
}8
j=1

represents the set of subscript indexes
of the vertices of this Cell,

{
vθ| θ ∈ Θi

}
and

{
w′

θ| θ ∈ Θi
}

represent the set of vertices and values of the Cell, respectively.
In particular, if

∑
θ∈Θi w

′
θ = 0, then GriddingReverse will

not generate a point pci for the Cell. The tail processing section
is described in Section IV-B3 and will not be repeated here.

Gridding

Gridding

L1 Distance Gridding Loss

Fig. 17. Gridding Loss.

5) Gridding Loss: We introduce a new loss function
GriddingLoss based on GM, defined as the L1 distance
between two 3D Grids value sets ξPred =

〈
V Pred,KPred

〉
and ξGT =

〈
V GT ,KGT

〉
, respectively [33].

LGridding

(
KPred,KGT

)
=

1

N3
G

∑∥∥KPred −KGT
∥∥
(34)

Where KPred ∈ RN3
G ,KGT ∈ RN3

G , NG is the resolution of
the two 3D Grids.

C. MVSFNet: Feature Level Fusion Strategy

As shown in Fig. 18, MVSFNet consists of two parts, Multi-
Viewpoint Feature Extraction Module (MVFEM) and Multi-
Viewpoint Feature Fusion Module (MVFFM).

1) Multi-Viewpoint Feature Extraction Module (MVFEM):
The coarse point cloud set P =

{
P c
g , P

c
1 , ..., P

c
31

}
of recon-

struction results from different viewpoints can be obtained
after GM, GFEM, and GriddingReverse, where P c

g is the
coarse point cloud generated from the global low-density point
cloud after data-level fusion, P c

η (η ∈ [1, 31]) is the coarse
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Fig. 18. Overall framework of MVSFNet.

point cloud generated from a multi-view low-density point
cloud. F c

full =
[
F c
g , F

c
1 , ..., F

c
31

]
, where [·] is the concatenation

operation, F c
g corresponds to the feature map of global low-

density point cloud P c
g after data-level fusion, F c

η (η ∈ [1, 31])
corresponds to the feature map of multi-view low-density point
cloud.

We specify the maximum number of channels of F c
full to

be 32, so the maximum number of viewpoints supported by
MVSFNet is 31 after removing the stationary-occupied global
feature map F c

g . If the number of viewpoints is less than 31,
the corresponding F c

η (η ∈ [1, 31]) adopts an all-zero Tensor.
2) Multi-Viewpoint Feature Fusion Module (MVFFM): We

use a two-dimensional encoder-decoder structure for fusing
multi-view feature maps in MVFEM, replacing the stationary
feature map weights by trainable network parameters. The
specific network parameters and network structure of MVFFM
are shown in Fig. 18. It is worth noting that the point cloud
that is complemented in the tail processing is still the coarse
point cloud P c

g from the global low-density point cloud.

V. SIMULATION RESULTS AND ANALYSIS

This section first introduces the evaluation metrics of MN-
DUC ISAC 4D environmental reconstruction method; then in-
troduces the methods of generating the training and evaluation
data; then introduces the parameter settings of the simulation;
and finally, the qualitative and quantitative evaluations of
the MNDUC ISAC 4D environmental reconstruction method
proposed in this research are conducted.

A. Dataset Generation

As shown in Fig. 19(a), we first randomly generate sta-
tionary buildings and moving vehicles of different sizes but
not overlapping each other in a fixed-size 3D space, and then
randomly place sensing nodes such as BSs, UEs, UAVs, and
so on, in the areas that are not covered by the buildings
and vehicles. As shown in Fig. 19(b), we construct a set
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(d) Data-level fusion.

Fig. 19. (a)-(d) show the generation process of our dataset.

of scatterers in the scenario space by extracting scattering
points on the surfaces of buildings and vehicles. As shown
in Fig. 20(a)(c)(e), we calculate the scatterers locate on the
LoS paths and single reflection NLoS paths in DL and UL
period of different sensing nodes by Raytracing and occlusion
detection algorithms. The environmental reconstruction results
of the corresponding selected sensing nodes are shown in
Fig. 20(b)(d)(f), and their direct fusion results are shown in
Fig. 19(c). As shown in Fig. 19(d), we apply the data-level
fusion strategy in Section IV-A to process the direct fusion
results to obtain a low-density reconstructed point cloud as
the training data for AGGRNN. For the Multi-Modal Model
MVSFNet, one of its inputs is the low-density point cloud
training data of the AGGRNN described above, and the other
input is the feature maps extracted from the multi-view sensing
result, and the extraction method is described in Section IV-C1.
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The specifications of this dataset are 10,000 data for the
training set, 100 data for the validation set, and 100 data for
the test set. And it is labeled in ShapeNet format.

B. Simulation Parameters and Environment Setting

TABLE I
SIMULATION PARAMETERS OF SYSTEM FOR DL AND UL PERIODS.

Parameter names DL UL

MIMO size 8× 8 Tx, 2× 2 Rx
16× 16 vRx 1× 1 Tx, 8× 8 Rx

Carrier frequency 70 GHz 70 GHz
Bandwidth 491.52 MHz 209.76 MHz

Subcarrier spacing 240 kHz 240 kHz
Subcarrier count 2048 1024

OFDM symbol count 224 224
Slot count 16 16

Spatially smoothed subarray size 8 4

The signal and array parameters in the DL period and the
UL period are set as shown in Table I.

The experiments are all implemented on an Intel@ CoreTM

i9-13900KF CPU (4.3GHz, 64GB RAM) and an NVIDIA
GeForce RTX 4090 GPU (CUDA version 11.6) with Python
3.8.18 (PyTorch 2.1.2) in 64 Bit Ubuntu 22.04.1 Long Term
Support operating system. We select the Adaptive Moment
Estimation (Adam) optimizer with β1 = 0.9, β2 = 0.99 for
finding the optimal parameters, the initial learning rate is
0.00001 and the Batchsize is set to 32.

C. Evaluation metrics

In our experiments, we use both Chamfer Distance (CD)
and F-Score as quantitative evaluation metrics.

1) Chamfer Distance: The distance between T and R are
defined as (35) [35], [36]

DCD =
1

|T |
∑
t∈T

min
r∈R

∥t− r∥22 +
1

|R|
∑
r∈R

min
t∈T

∥t− r∥22 (35)

where T = {(xi, yi, zi)}nT
i=1 is the Ground Truth(GT) and R =

{(xi, yi, zi)}nR
i=1 is the reconstructed point set being evaluated,

nT and nR are the numbers of points in T and R, respectively.
2) F-Score: We introduce F-Score as an extended metric to

evaluate the performance of low-density point cloud enhance-
ment networks, which can be defined as [33]

F-Score (d) =
2P (d)R (d)

P (d) +R (d)
(36)

where P (d) = 1
nR

∑
r∈R

[
min
t∈T

∥t− r∥ < d

]
and R (d) =

1
nT

∑
t∈T

[
min
r∈R

∥t− r∥ < d

]
are the precision and recall for a

distance threshold d, respectively.

D. Qualitative Analysis of Simulation Results

1) Comparison of Single Node and Multi-Node Cooper-
ative ISAC 4D Environmental Reconstruction Results: The
environmental reconstruction results of some sensing nodes
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(f) UL, Result, UAV1 to BS2.

Fig. 20. Original points cloud and reconstruction result of a few sensing
nodes in the DL and UL periods.

are shown in Fig. 20, and the multi-node cooperative sensing
environmental reconstruction results are shown in Fig. 12.

By comparing the single-node and multi-node sensing re-
sults, we can find that the multi-node cooperative ISAC 4D
environmental reconstruction scheme can well overcome the
problem of reconstructed point cloud disability caused by the
single-node case due to the singularity of viewpoints.

2) Comparison of Low-Density Point Cloud Enhancement
Results: The enhancement performance for the selected ran-
domly generated scenarios of the proposed low-density recon-
struction point cloud enhancement network AGGRNN with
MVSFNet is shown in Fig. 21. The simulation results show
that,

• Firstly, the results of the data-level fusion multi-node UL-
DL collaborative ISAC 4D environmental reconstruction
will lose a large amount of surface details, although it
can basically depict the contours of the environment’s
scatterers.

• Second, the data-level fusion reconstructed point cloud
enhanced by AGGRNN is significantly higher in density
and can recover partial environmental surface details.

• Finally, MVSFNet with multi-view feature-level fusion
can recover more surface details compared with AG-
GRNN, and reconstruction deviation is smaller compared
with the original scenario.

E. Quantitative Analysis of Simulation Results

1) Comparative Experiments on High-Density Point Cloud
Generation: The quantitative results in Table II show that
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Original 3D scenario
Low-density data-level 

fusion point cloud
Reconstruction results of 

AGGRNN
Reconstruction results of 

MVSFNet Original 3D scenario
Low-density data-level 

fusion point cloud
Reconstruction results of 

AGGRNN
Reconstruction results of 

MVSFNet

Fig. 21. Selected images of original 3D scenario, low-density data-level fusion point cloud, AGGRNN reconstruction results, and MVSFNet reconstruction
results.

TABLE II
LOW-DENSITY RECONSTRUCTION POINT CLOUD ENHANCEMENT RESULTS
ON THE GENERATED DATASET COMPARED USING F-SCORE@1% AND CD.

Methods F-Score@1% CD

AtlasNet [37] 0.566 0.268
PCN [38] 0.589 0.314

FoldingNet [39] 0.237 0.499
TopNet [35] 0.414 0.336
MSN [40] 0.601 0.287

GRNet [33] 0.613 0.352
Data-level Fusion(Ours) - 0.517

AGGRNN(Ours) 0.652 0.270
MVSFNet(Ours) 0.751 0.191

our proposed Multi-Modal model MVSFNet outperforms the
other compared schemes in both Chmafer Distance and F-
Score@1% metrics, and outperforms our proposed AGGRNN
without supplemental local features.

2) Ablation Study: In order to demonstrate the superiority
of our proposed model more completely, we will perform
ablation study for transfer learning and fusion&enhancement
strategies.

• We perform an ablation study for transfer learning of
MVSFNet, where the GFEM of MVSFNet loads a pre-
trained weight file based on the ShapeNet dataset [41]
when using transfer learning, and conversely without
using that pre-trained weights. The quantitative results
in Table III show that transfer learning can optimize
the performance of MVSFNet with other experimental
conditions being the same.

TABLE III
ABLATION STUDY (TRANSFER LEARNING)

Transfer Learning F-Score@1% CD

0.716 0.238
✓ 0.751 0.191

• We perform ablation study for Fusion&Enhancement
strategies, where MVSFNet cannot perform ablation
study alone since the feature-level fusion strategy
MVSFNet is based on the enhancement strategy AG-
GRNN. Quantitative results show in Table IV that the

ISAC environmental reconstruction performance is best
when the multi-level fusion strategy is applied together
with the low-density point cloud enhancement strategy,
which proves the superiority and rationality of our pro-
posed method. It is worth noting that direct low-density
point cloud enhancement without applying a data-level
fusion strategy can lead to deterioration of the envi-
ronmental reconstruction performance, since the unfused
point cloud accumulates weights to the corresponding 3D
Grids, which in turn leads to disruption of the overall
spatial structure.

TABLE IV
ABLATION STUDY (FUSION & ENHANCEMENT)

Fusion&Enhancement F-Score@1% CD
Data-level

Fusion
Enhancement
(AGGRNN)

Feature-level
Fusion(MVSFNet)

✓ - 0.517
✓ ✓ 0.652 0.270

✓ 0.545 0.391
✓ ✓ 0.674 0.332

✓ ✓ ✓ 0.751 0.191

VI. CONCLUSION

We propose a deep learning based MNDUC ISAC 4D
environmental reconstruction method in this research, which
is based on the MUSIC algorithm in the echo processing part,
and introduces multi-node UL and DL cooperation as well
as multi-level fusion strategy, and optimizes the results of
the environmental reconstruction by the deep learning models
AGGRNN and MVSFNet. We have performed a large number
of comparison and ablation studies for the proposed method,
and the experimental results show that

• The proposed multi-node cooperative sensing scheme
combining the active and passive sensing can make up
for the shortcomings of the single-node scheme’s single
viewpoint, and realize the comprehensive, multilevel,
multifaceted environmental reconstruction results;

• The proposed reconstruction points cloud density en-
hancement networks AGGRNN and MVSFNet can sig-
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nificantly reduce the gap between the multi-node coopera-
tive ISAC 4D reconstruction results and the real scenario,
and reduce the dependence of ISAC-based 4D environ-
mental reconstruction methods on frequency bands and
bandwidth resources.
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papier-mâché approach to learning 3d surface generation,” in Proceed-
ings of the IEEE conference on computer vision and pattern recognition,
2018, pp. 216–224.

[38] W. Yuan, T. Khot, D. Held, C. Mertz, and M. Hebert, “Pcn: Point
completion network,” in 2018 international conference on 3D vision
(3DV). IEEE, 2018, pp. 728–737.

[39] Y. Yang, C. Feng, Y. Shen, and D. Tian, “Foldingnet: Point cloud
auto-encoder via deep grid deformation,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 206–
215.

[40] M. Liu, L. Sheng, S. Yang, J. Shao, and S.-M. Hu, “Morphing and
sampling network for dense point cloud completion,” in Proceedings of
the AAAI conference on artificial intelligence, vol. 34, no. 07, 2020, pp.
11 596–11 603.

[41] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3d
shapenets: A deep representation for volumetric shapes,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2015, pp. 1912–1920.


	Introduction
	Background and Motivation
	Related Works
	Contributions

	System and Signal Model
	Scenario Setup of MNDUC ISAC 4D Environmental Reconstruction Method
	UPAs Model and Virtual Aperture
	Transmitted ISAC Signals
	DL and UL ISAC Channel Models
	UL ISAC Channel Model
	DL Communication Channel Model
	DL Sensing Channel Model

	Received ISAC Signals
	Received Communication Signals
	Received Sensing Signals


	Methodology of ISAC Sensing Signal Processing
	DL ISAC Sensing Signal Processing
	Range and Doppler Estimation
	DoAs Estimation

	UL ISAC Sensing Signal Processing

	Methodology of Sensing Result Fusion and Enhancement
	Data Level Fusion Strategy
	Cartesian Coordinate System Rotation and Unification
	Offset Scatterers Fusion

	AGGRNN: Low-density Reconstruction Point Cloud Enhancing Method
	Gridding Module (GM)
	Gridding Feature Extraction Module (GFEM)
	Detail Recovery Module(DRM)
	Gridding Reverse Module (GRM)
	Gridding Loss

	MVSFNet: Feature Level Fusion Strategy
	Multi-Viewpoint Feature Extraction Module (MVFEM)
	Multi-Viewpoint Feature Fusion Module (MVFFM)


	Simulation Results and Analysis
	Dataset Generation
	Simulation Parameters and Environment Setting
	Evaluation metrics
	Chamfer Distance
	F-Score

	Qualitative Analysis of Simulation Results
	Comparison of Single Node and Multi-Node Cooperative ISAC 4D Environmental Reconstruction Results
	Comparison of Low-Density Point Cloud Enhancement Results

	Quantitative Analysis of Simulation Results
	Comparative Experiments on High-Density Point Cloud Generation
	Ablation Study


	Conclusion
	References
	References

