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The polarized dipolar Fermi gas shows exotic properties at low temperatures, characterized by
an axially-deformed Fermi surface and anisotropic single-particle energy, due to the long-range
and anisotropic nature of dipole-dipole interaction. In cold-atom experiments such a system has
been realized, e.g., in degenerate gas of Er and Dy atoms. In the case that non-dipolar impurity
atoms are introduced in such system, they undergoes an induced interaction mediated by the density
fluctuations of the background dipolar Fermi gas. We derive the induced interaction potential to the
single-loop order of fluctuations and show that it becomes indeed an anisotropic Ruderman-Kittel-
Kasuya-Yosida-type potential which preserves the axial symmetry around the polarization axis. We
then solve the two-body problem of impurity atoms interacting via the anisotropic potential and
figure out the dependence of bound state and scattering properties on the parameters of dipolar
Fermi gas.

I. INTRODUCTION

Quantum many-body system with dipole-dipole inter-
action (DDI), due to its long range and anisotropic na-
ture, is expected to show a variety of interesting phases
which include supersolid states [1–3], quantum droplets
[4], and unconventional magnetism [5–8] & superfluids
[9–13]. In cold-atom experiments, the quantum many-
body system of dipolar atoms has been recently real-
ized using the atoms of Er and Dy isotopes with large
magnetic dipole moments, which are trapped and cooled
down to be Bose-Einstein condensates (BEC) [14–16] or
Fermi-degenerate states [17–19]. Such systems provide
the platform to investigate the above-mentioned exotic
phases caused by DDI experimentally in precise and well
controlled ways [20–22].
In dipolar Bose-atom systems, the attractive part of

DDI can induce the collapse of BEC or the instability
toward the formation of a finite momentum condensate,
which is triggered by a softening of roton excitation as a
precursor of supersolidity [1, 3, 23, 24]. Such systems of
dipolar Bose gas with the long-range attraction can be
sustained by the quantum corrections involving a short-
range repulsion, which appears as a higher-order density
term in the energy functional [25]. This sort of mecha-
nism works also on the stabilization of quantum droplets
[4, 26].
In fermionic systems, on the other hand, focusing on

the degenerate dipolar Fermi gas in which dipoles are
polarized along a specific direction by an external field
at low temperatures, theoretical studies so far have pre-
dicted that the Fermi surface undergoes ellipsoidal defor-
mations at weak DDIs [27–32]. As a consequence of the
phase-space deformation, collective excitations, e.g., zero
sound, propagate anisotropically, and exhibit the angular

dependence with respect to the direction of dipole polar-
ization [33–36]. In experiments, the Fermi-surface de-
formation has actually been observed using a trapped er-
bium gas (167Er) [37], and such a polarized dipolar Fermi
gas with a uniaxial symmetry provides a quantum ana-
log of nematic liquid crystals [38], in which transport or
thermalization properties exhibit similar anisotropy with
classical liquid crystals [39, 40].

Another interesting many-body system with DDI is
gaseous mixtures of dipolar Fermi atoms and non-dipolar
atoms. This kind of systems is feasible in experimental
setups, for instance, using gaseous mixtures of Dy & K
[41–43], Cr & Li [44, 45], and Er & Li atoms [46–48].
So far, theoretical studies of this kind of mixture have
been done about the superfluidity with dipolar and non-
dipolar atom pairing [49] and the density-density corre-
lation functions for zero sounds [36].

In the present paper, we study the mixture at zero
temperature in which the non-dipolar atomic gas is so
dilute as to be impurities immersed in the degenerate
dipolar Fermi gas. Quasiparticle property of such an im-
purity atom has been investigated previously to find that
its dispersion relation shows anisotropy attributed to the
deformation of Fermi surface [50]. The quasiparticle is
a variant of so-called Fermi polarons, which have been
actively studied in a recent decade in cold-atom systems
[51–55]. In Fermi-polaron problems, while one usually
looks into single-particle properties, in this work we fo-
cus on the two-body effective interaction between non-
dipolar impurity atoms induced by density fluctuations
of the medium of dipolar Fermi gas, and investigate the
two-body problem of the impurity atoms. It will provide
the basis for further studies in understanding of few-body
correlations of the minority particles in the medium of
majority fermions [56–59].
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In section II in the paper, we present the effective
Hamiltonian for the mixture of dipolar Fermi atoms and
non-dipolar impurity atoms, in which the medium dipo-
lar Fermi gas with deformed Fermi surface is described
in Hartree-Fock approximation and a contact interaction
between medium and impurity atoms is given in terms of
s-wave scattering length. In section III, we derive the in-
duced interaction potential between two impurity atoms
using the density-density correlation function of medium
dipolar fermions. The potential is found to be that
of anisotropic Ruderman-Kittel-Kasuya-Yosida (RKKY)
type [60–62]. In section IV, we solve Schrödinger equa-
tion with the RKKY potential to figure out the condi-
tions for two-body bound states to emerge. In section V,
we evaluate the two-impurity atom scattering amplitude
in Born approximation, and observe how its magnitude
depends on the directions of the initial and final mo-
menta and also the dipole polarization. We also make
the partial-wave analysis to find the angular momentum
mixing and the dominant channels in low energy scatter-
ing processes. The last section VI is devoted to summary
and outlooks. Throughout the paper we use the natural
units where h̄ = 1, µ0 = 1 for the vacuum magnetic per-
meability, and the volume of the system is fixed to be
unity. We also use the abbreviated notations for inte-
grals in real and momentum spaces as

∑

x ≡
∫

d3x and
∑

q ≡
∫

d3q/(2π)3.

II. EFFECTIVE HAMILTONIAN

We consider the spatially-homogeneous mixture of a
atomic Fermi gas with a large dipole moment and non-
dipolar impurity atoms at zero temperature, in which
all dipole moments are polarized in a specific direction.
For a while we do not specify the particle statistics of
impurity atoms. The model Hamiltonian of the system
is given by

H =
∑

k

ǫ1kc
†
1kc1k +

∑

k

ǫ2kc
†
2kc2k

+
1

2

∑

k,k′,q

Vdd(q)c
†
1kc

†
1k′+q

c1k′c1k+q

+g
∑

k,k′,q

c†1kc
†
2k′+qc2k′c1k+q (1)

where c1k and c†1k are canonical annihilation and cre-
ation operators of dipolar fermions of the mass m1 and
the spatial momentum k, and the single-particle energy

ǫ1k = k2/2m1. Similarly, c2k and c†2k are annihilation
and creation operators of non-dipolar impurity atoms
of the momentum k and the mass m2, and the single-
particle energy ǫ2k = k2/2m2.
The third term in (1) is the dipole-dipole interaction,

the potential of which is

Vdd(q) =
4π

3
d2
(

3 cos2 θq − 1
)

(2)

where d is the (magnetic) dipole moment, and θq is the
angle between q and d. The last term is the contact
interaction between dipolar and non-dipolar atoms; the
interaction strength is given by g = 2πa12/m12 with s-
wave scattering length a12 and the reduced mass m12 =
m1m2/(m1 +m2).
Now we construct an effective Hamiltonian based on

the self-consistent Hartree-Fock (HF) approximation for
degenerate dipolar fermions, as in the previous works
[27, 28, 34]. Introducing the annihilation and creation

operators, ak and a†k for the particle mode and bk and b†k
for the hole mode, for the dipolar fermions with the HF

single-particle energy ǫk, the operators c1k and c†1k can
be rewritten as

c1k = θ (ǫk − ǫF ) ak + θ (ǫF − ǫk) b
†
−k,

c†1k = θ (ǫk − ǫF ) a
†
k + θ (ǫF − ǫk) b−k, (3)

where ǫF is the Fermi energy. Consequently, the effective
Hamiltonian in the HF approximation becomes

HHF = E0 +
∑

k

ǫ2kc
†
2kc2k

+
∑

k

θ (ǫk − ǫF ) ǫka
†
kak −

∑

k

θ (ǫF − ǫk) ǫkb
†
kbk

+
1

2

∑

k,k′,q

Vdd(q)N
[

c†1kc
†
1k′+qc1k′c1k+q

]

+g
∑

k,k′,q

N
[

c†1kc
†
2k′+qc2k′c1k+q

]

(4)

where E0 is the Hartree rest energy, and N [· · ·] denotes
the normal ordering of particle and hole operators defined
by (3). The HF single-particle energy is determined from
the self-consistent equation [27, 28]

ǫk = ǫ1k +
1

2

∑

q

Vdd(q − k)fq (5)

where fq = θ (ǫF − ǫq) the Fermi-Dirac distribution func-
tion at zero temperature. In the case of the dipole mo-
ments polarized along the z axis, the HF single-particle
energy is well-described using two parameters λ and β
[34, 50]:

ǫk = ǫ0 + λ2
β−1

(

k2x + k2y
)

+ β2k2z
2m1

. (6)

Here ǫ0 is the rest energy, the parameters λ (λ2 ≥ 1)
and β (0 < β ≤ 1) determine the strength of the effective
mass and the anisotropy in momentum space, rspectively.
For instance, the perturbation theory gives the explicit

formula β = 1− 2m1d
2kF

9π [34], and it can be evaluated in

the variation method [28]. The parameter λ2 takes values
of the order of unity: as an example, λ2 ≃ 1.00037 for
Dy atoms with a peak density of 4×1013cm−3[36]. Using
these parameters, the Fermi energy becomes ǫF = ǫ0 +

λ2k2F /2m1, where kF =
(

6π2nf

)1/3
with nf the density

of dipolar fermions.
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III. INDUCED INTERACTION BETWEEN

TWO IMPURITY ATOMS

Now we consider two impurity atoms immersed in the
medium of the degenerate dipolar Fermi gas. The im-
purity atoms interact with each other via the induced
interaction in the medium even if no direct interaction
exists in vacuum. Since the interaction between impurity
and medium atoms is of the density-density type; such
induced interaction should be mediated by the density
fluctuation of the medium, which is described in terms
of the density-density correlation function [63] defined in
the frequency ω and the momentum q space by

Π(q, ω) = −i
∫

dt d3x e−iωt+ix·q 〈T [n̂(x)n̂(0)]〉 ,

= −i
∫

dte−iωt

×
〈

T
[

c†1k(t)c1k+q(t)c
†
1k′+q

(0)c1k′(0)
]〉

.(7)

In this study we approximate the correlation function to
the single-loop order, and denote its static limit ω → 0
by Π0:

Π0(|q̃β |) =
∑

k

fk − fk+q

ǫk − ǫk+q

= −m1kF
4π2λ2

(

1 +
4− |q̃β |2
4|q̃β|

ln

∣

∣

∣

∣

|q̃β |+ 2

|q̃β | − 2

∣

∣

∣

∣

)

(8)

where we indicate the dependence on parameter β ex-
plicitly through the dimensionless momentum q̃β defined
by

q̃β = k−1
F

(

β−1/2qx, β
−1/2qy, βqz

)

. (9)

For the detailed derivation of the correlation function (8),
see appendix A.

The inverse Fourier transform of the correlation func-
tion at the static limit gives the two-body potential of
the induced interaction in real space:

V (|r̃β |) = g2
∑

q

eix·q Π0(|q̃β |)

= g2
m1k

4
F

16π3λ2

(

2 cos 2|r̃β|
|r̃β |3

− sin 2|r̃β|
|r̃β |4

)

,(10)

where we have introduced a β-dependent dimensionless
coordinate r̃β :

r̃β =
(

β1/2x, β1/2y, β−1z
)

kF . (11)

For the derivation in detail, see appendix B. The re-
sultant potential (10) shows the RKKY type, but the

spacial anisotropy exists through the space coordinates
in r̃β , which is originated in the the momentum-space
anisotropy in the correlation function. The polarization
direction of the dipole moment can be taken arbitrarily;
then one can replace r̃β in (11) by x̃β:

x̃β = kFβ
1/2
(

x− x · d̂d̂
)

+ kFβ
−1x · d̂d̂ (12)

where d̂ = d/|d|. Since the anisotropic RKKY potential
is a function of |x̃β |, it always has the rotational symme-
try around the dipole moment. In the rest of this paper,
we mainly take the polarization direction along z-axis ex-
cept in Sec. V-A where the arbitrary directions are for
scattering problem.

IV. TWO-BODY BOUND STATES

We investigate the two-body problem for impurity
atoms interacting with the anisotropic RKKY poten-
tial (10), in which impurity atoms are treated quan-
tum mechanically. As a rigorous treatment for the in-
medium two-body problem, one can employ, for instance,
the in-medium T matrix approach [64, 65], which in-
corporates the self-energy effects such as single-particle
residue, effective mass, and decay width, or conventional
Brückner’s G-matrix theory for the effective interaction
in fermionic medium [66]. In the present treatment, on
the other hand, we assume the case where the quasipar-
ticle picture is well established for individual dressed im-
purity atom (polaron); the self-energy effects from loop
corrections are small in comparison with mean-field ef-
fects, the quasiparticle residue is not far from unity and
the inverse decay width is much smaller than the polaron
rest energy. According to the previous work [50], the po-
laron dispersion relation in the dipolar Fermi gas is given
in the form

Ep = E0 +
p2x + p2y
2mt

+
p2z
2mz

+O
(

p4
)

, (13)

where E0 is the mean-field rest energy due to
the impurity-medium interaction, and mt,z represent
anisotropic effective masses reflecting the Fermi surface
deformation. In this study we ignore the anisotropic ef-
fect on the effective mass, mt = mz = m2, since the
corrections for the mass-difference can be estimated to
be about 3% or less [50]. Also, it is to be noted that
since the introduction of single impurity atom into the
medium costs E0 which is negative (positive) for a12 < 0
(a12 > 0), the binding energy to be evaluated in this
paper should be measured from the two-impurity atom
threshold 2E0.
We first evaluate the condition of the bound-state for-

mation in parameter space, by solving the Schrödinger
equation for the relative coordinates between two impu-
rity atoms,
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Eψ(x) =

[

− k2F
2m22β2

∂2z − β
k2F

2m22

(

1

r2
∂2θ +

1

r
∂rr∂r

)

+ V (
√

r2 + z2)

]

ψ(x) (14)

where m22 = m2/2 is the reduced mass. We have em-
ployed the cylindrical coordinates and scaled the vari-
ables as

x = k−1
F

(

β−1/2r cos θ, β−1/2r sin θ, βz
)

, (15)

so that the anisotropic parameter β appears only in the
kinetic term and the space coordinates (r, z) become di-
mensionless. This manipulation reduces the numerical
costs significantly.

Substituting the partial-wave expansion of the wave
function for the angular momentum of z component lz:

ψ(r) =
∑

lz=0,±1,±2,···

1√
2π
eilzθψlz(r, z), (16)

into the Schrödinger equation, we obtain the equation for

each lz component:

0 =

[

1

β2
∂2z + β

1

r
∂rr∂r + β

lz
2

r2
− v(

√

r2 + z2) + ε

]

ψlz ,

(17)

where E =
k2
F

2m22
ε and V (r) =

k2
F

2m22
v(r). We have used

the dimensionless potential:

v(r) = G

(

2 cos 2r

r3
− sin 2r

r4

)

, (18)

where the dimensionless coupling constant G is defined
by

G ≡ 2m22

k2F
g2

m1k
4
F

16π3λ2
. (19)

A. Finite-range boundary conditions

To solve the eigenvalue problem of Eq. (17) numeri-
cally, we impose finite boundary conditions; the system
is periodic in z direction with interval −L/2 ≤ z ≤ L/2,
and confined in radial direction within 0 ≤ r ≤ R. As
the complete orthonormal systems for wave-function ex-
pansion, we use

un(z) :=







√

2−δn,0

L cos 2πnz
L , for lz = 0, 2, 4, · · ·

√

2
L sin 2πnz

L , for lz = 1, 3, 5, · · ·
,

∫ L/2

−L/2

dz u∗m(z)un(z) = δmn, (20)

Jlz;i(r) :=

√
2

RJlz+1(si)
Jlz (sir/R),

∫ R

0

drr Jlz;i(r)Jlz ;j(r) = δij , (21)

where n = 0, 1, 2, . . . , and si is the zero’s of the Bessel function, Jlz (si) = 0 (s1 < s2 < s3 < · · · ). Then, the wave
function is expanded by

ψlz(r, z) =
∑

n=0,1,2,···

∑

i=1,2,3,···

flz(n; i)un(z)Jlz;i(r). (22)

The eigenvalue problem reduces to the matrix form:

0 =
∑

n=0,±1,±2,···

∑

j=1,2,3,···

[(

1

β2

(

2πn

L

)2

+ β
(si
R

)2

− ε

)

δmnδij + vmi;nj

]

flz(n; j) (23)

where the matrix elements for the RKKY potential are defined by

vmi;nj ≡
∫ L/2

−L/2

dz

∫ R

0

dr r u∗m(z)Jlz;i(r) v(
√

r2 + z2)un(z)Jlz;j(r). (24)

The summation in the matrix equation (23) is taken within the truncated numbers nmax and imax: |m|, |n| ≤ nmax

and i, j ≤ imax.

B. Numerical results for bound states

In Fig. 1 we show the value of the lowest energy for lz =
0 as a function of the dimensionless coupling strength G

in (19) for various values of β, in which we have taken
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the size of the system and the dimension of matrix large
enough for convergence. The result does not depend on
β significantly, which can be understood from the fact
that the β-dependence of the kinetic-energy in (23) is
saturated around β = 1.

0.0 0.2 0.4 0.6

−0.2

−0.1

0.0

G

ε β  =  1.0

β  =  0.9

β  =  0.8

β  =  0.7

 (a)

0.47 0.48 0.49 0.50

−0.4

−0.2

0.0

0.2

0.4

0.6

G

ε 
×1

02

β  =  1.0

β  =  0.9

β  =  0.8

β  =  0.7

 (b)

FIG. 1. (a) the lowest energy eigenvalue (the first bound state
for lz = 0) as a function of coupling constant G, determined
from Eq. (23) in the case that nmax = imax = 30, L = 2R =
30k−1

F . Different lines correspond to β = 1.0, 0.9, 0.8, 0.7, re-
spectively. (b) blow-up of critical region.

From the numerical results, we can also determine the
critical value of the coupling constant, Gcrit, where the
first bound state just emerges, i.e., ε = 0 in the finite sys-
tem. In order to estimate Gcrit in the spatially uniform
system, we have employed an extrapolation procedure to
find the critical value at R,L → ∞. The results are
summarized in Table I. For the detail of the extrapola-
tion procedure, see the appendix D. The result implies
that the critical value decreases much dully and seems
saturated around β = 0.7 ∼ 0.8.
To check the accuracy in the present numerical calcula-

tion, we have examined the case of the spherical symme-

β = 1.0 0.9 0.8 0.7
Gcrit 0.488 0.485 0.4843 0.4847

TABLE I. Estimations of critical coupling constant for the
first bound state of lz = 0 in the uniform system for some
different values of β.

try, i.e., β = 1, by solving the same problem in the po-
lar coordinates with the dimension of integral reduced,
and found that the critical coupling is estimated to be
Gcrit = 0.501, which differs by a few % from Gcrit = 0.488
in the cylindrical coordinates. The details of the calcula-
tion in the spherical case is presented in appendix C. In
Fig. 2, we show the RKKY potential (18) and the wave
functions of the first bound state in the spherical case
(β = 1), obtained from both cylindrical and polar co-
ordinates systems, and find that the results seem to be
consistent as a whole.

Finally in Fig. 3 we show the potential shape and the
bound-state wave functions together with the value of
corresponding binding energy in the case of β = 0.8 for
different strengths of the coupling constant. We can ob-
serve in Fig. 3(a), (b) that, while at G = 0.496 (just
above the critical value) the value of binding energy al-
most overlaps the modulating part of the RKKY poten-
tial around zero and the wave functions show long tails,
they move deeper inside the potential at G = 0.8 to be-
come well-stabilized. At a larger coupling constant, for
instance, at G = 2.8, the second bound state emerges,
whose wave functions are shown in Fig. 3(c) together
with the first one.

0 2 4 6

−2

−1

0

1

2

r,  z

v,
 ψ

ε  =  −0.905

 G  =  1.0
 β  =  1.0

FIG. 2. Wave functions of bound state in the spherically
symmetric case β = 1 at G = 1.0. The dimensionless poten-
tial v(r) is presented by the modulated solid line. The wave
functions (22) in r and z directions are presented by solid and
dotted lines, respectively. We also show the wave function as
a function of r in the polar coordinates by dashed line, which
is made from spherical Bessel functions and scaled by some
factor for comparison.
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V. TWO-BODY SCATTERING

A salient future of the present system is spatial
anisotropy of the induced interaction potential; accord-
ingly, the scattering process becomes anisotropic with re-
spect to the direction of dipole polarization d. In the
present section, we figure out explicitly the directional-
dependence of the two-body scattering amplitude for im-
purity atoms on the angles among d, initial and final
momenta k and k′, and further make the partial-wave
analysis to observe transitions between different angular-
momentum states in the course of scatterings. It should
be noted again that in the present analysis we ignore the
self-energy effects on the single impurity atom, assuming
especially that the life-time of the impurity quasiparticle
(polaron) is much longer than the time-scale of scatter-
ing processes, which is realized at low temperatures below
the Fermi energy.

A. Scattering amplitude

We evaluate the scattering amplitude in the Born ap-
proximation. In the description of the scattering prob-
lem for the anisotropic potential, we take the z-axis of
the impurity’s relative coordinates to the direction of ini-
tial momentum k; those of d and k′ are taken arbitrary.
Since only the angle between d and k is relevant, the
parametrization of d, k and k′ are taken in the spherical
coordinates as

d̂ =





sinα
0

cosα



 , k = k





0
0
1



 , k′ = k





sin θ cosφ
sin θ sinφ

cos θ



 ,

(25)
where k = |k′| = |k|.
In general the T matrix for two-body scattering in the

center of mass frame is determined from the Lippmann-
Schwinger equation:

T̂ = V̂ + V̂
1

E − Ĥ0 + iη
T̂ . (26)

In momentum-space representation, it becomes

Tkk′ = Vkk′ +
∑

q

Vkq
1

E − q2/2m22 + iη
Tqk′ (27)

where 2m22E = k2 = k′2, Tkk′ = 〈k|T̂ |k′〉 and Vkk′ =

〈k|V̂ |k′〉. The scattering amplitude fk,k′ is represented
by

fk,k′ = −m22

2π
Tkk′ . (28)

In the Born approximation, we take the leading-order

0 2 4 6

−1.0

−0.5

0.0

0.5

r,  z

v,
 ψ

ε  =  −0.0033

 (a)

 G  =  0.496

 β  =  0.8

0 2 4 6

−1.0

−0.5

0.0

0.5

1.0

r,  z

v,
 ψ

ε  =  −0.399

 (b)

 G  =  0.8
 β  =  0.8

0 2 4 6

−2

0

2

r,  z

v,
 ψ

ε2nd  = −0.366

ε1st  = −8.24

 (c)

 1st

 2nd

 G  =  2.8
 β  =  0.8

FIG. 3. Numerical results of bound states for β = 0.8,
nmax = imax = 30, and L = 2R = 30. Figures (a), (b),
and (c) correspond to G = 0.496, 0.8, and 2.8, respectively.
Solid and dashed lines rising from negative side represent the
dimensionless potential v(β1/2r) as functions of r (z = 0), and
v(β−1z) as functions of z (r = 0) in (18), respectively. Hori-
zontal dotted lines represent the level of binding energies, and
the corresponding wave functions (22) in r and z directions,
i.e., ψ(r, 0)(solid lines) and ψ(0, z)(dotted lines), are shown
together.
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term in the iterative expansion for the T matrix :

Tkk′ = 〈k|V̂ |k′〉
=
∑

x

V (|x̃β |)eix·(k
′−k)

= g2
∑

x,q

eix̃β ·q̃1 Π0 (|q̃1|) eix·(k
′−k)

= g2 Π0(k̃β) (29)

where q̃1 = q̃β |β=1 in (9), and we have employed the po-

tential V (|x̃β |) (10) together with (12). The magnitude

of the scaled momentum k̃β is defined by

k̃β = k−1
F

√

β−1 [−k′x cosα+ (k′z − k) sinα]2 + β−1k′2y + β2 [k′x sinα+ (k′z − k) cosα]2

= k−1
F k

{

β−1 [− sin θ cosφ cosα+ (cos θ − 1) sinα]
2

+β−1 (sin θ sinφ)
2
+ β2 [sin θ cosφ sinα+ (cos θ − 1) cosα]

2
}1/2

. (30)

In the derivation of (29) we have also used the summation formula:

∑

x

eix̃β ·q̃1+ix·(k′−k) = (2π)
3
δ(3)

[

kFβ
1/2q + kF

(

β−1 − β1/2
)

d̂ · qd̂+ k′ − k
]

. (31)

In Fig. 4, we show the angle dependence of scattering amplitude at a low energy for various values of α, the angle
between d and k. The results show that the forward scattering (θ ≃ 0) dominates as a whole, which is usually expected
for non-singular interaction potentials. At α = 0 the rotational symmetry leads to independence of the scattering
amplitude from the azimuthal angle φ in the similar manner as the case of spherically symmetric potentials. In cases
of α 6= 0, on the other hand, the scattering amplitude gradually depends on φ when θ 6= 0 and develops a maximal
peak at φ = π (φ = 0) for 0 < α ≤ π/2 (π/2 ≤ α ≤ π). This result implies that a dilute gas of impurity atoms is
expected to exhibit anisotropic properties in transports [39, 40] and in propagation of collective excitations [33–36].

In relation to such dilute gas of impurity atoms at low
temperatures, we can incidentally derive the s-wave scat-
tering length as for the medium induced RKKY poten-
tial. In the low energy limit the correlation function be-
comes limq→0 Π0(q) = −2m1kF

4π2λ2 , thus as can be read off
as

lim
k→0

fk,k′ =
(

−m22

2π

)

g2
(

−2
m1kF
4π2λ2

)

= g2
m22m1kF
4π3λ2

≡ −as. (32)

The scattering length is negative as expected from the
attractive nature of RKKY potential attributed to the
fermionic single-loop contribution, and this result should
be compatible with the validity condition of the Born
approximation at the low energy limit:

2

π
≫ |as|kF . (33)

See appendix E for the derivation of this condition.

B. Partial-wave analysis

In the presence of the anisotropic RKKY potential for
β 6= 1 , the spherical symmetry reduces to uniaxial one
around the dipole moment. Therefore, the angular mo-
mentum is no longer conserved in the scattering pro-
cesses. To see this quantitatively, we make the partial-
wave analysis using the expansion of plane wave in terms
of spherical harmonics

eik·x =

∞
∑

l=0

il(2l + 1)jl (kr)Pl

(

k · x
kr

)

= 4π

∞
∑

l=0

l
∑

m=−l

iljl (kr)Y
∗m
l (Ωp)Y

m
l (Ωx)(34)

where Ωx and Ωk represent the solid angles of x and k,
respectively. Then we can express the T matrix in the
Born approximation as
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FIG. 4. Contour plots of scattering amplitude fk,k′ for k = 0.2kF and β = 0.8 in θ-φ plane. From left up to right down, α,
the angle between k and d, varies from 0 to 2π/3. The contours in smaller values of θ, i.e., the forward scattering region, take
larger values. Numerical values of contours typically ranges from 1.99 (highest) to 1.97 (lowest) in the unit of m22g

2/2π.

Tkk′ = 〈k|V̂ |k′〉
=
∑

x

V (x)eix·(k
′−k)

= (4π)2
∑

x

∞
∑

l=0

l
∑

m=−l

iljl (kr) Y
m
l (Ωk)Y

∗m
l (Ωx)V (x)

∞
∑

l′=0

l′
∑

m′=−l′

il
′

jl′ (kr)Y
m′

l′ (Ωx)Y
∗m

′

l′ (Ωk′)

=
∑

l,l′

∑

m,m′

Y m
l (Ωk)Vlm;l′m′(k)Y ∗m

′

l′ (Ωk′) (35)

where we have defined the matrix element by

Vlm;l′m′(k) = (4π)2il+l′
∫ ∞

0

drr2
∫

dΩxY
∗m
l (Ωx) jl (kr) V (x)jl′ (kr)Y

m′

l′ (Ωx) . (36)

Here it should be noted that in the present analysis we
have chosen the direction of d parallel to z axis; accord-
ingly V (x) used in the matrix element (36) is given by

(10). Since the potential is symmetric about the ro-
tation around the z axis, the matrix element becomes
diagonal with respect the magnetic quantum numbers:
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Vlm;l′m′(k) ∝ δm,m′ , while the angular momentum may
change from l to l′ in the course of scatterings. In
TABLE II, we present a sample of the matrix element
Vlm;l′m′ in the unit of the s-wave element V00;00 for a low
energy scattering.
It is found that among the diagonal elements the s-

wave contribution dominates at low energy, and also that
because of the parity conservation transitions between
different parity states, i.e., from odd(even) l to even(odd)

l′, are prohibited. Now we consider the particle statis-
tics of impurity atoms. For instance, in the case that
impurity atoms are single-component fermions, p-wave
scattering should be dominant at low energies, and tran-
sitions only with odd numbers of l, l′ are allowed. This
observation implies that a dilute gas of single-component
impurity Fermi atoms exhibits p-wave superfluidity with
a small fraction of f -wave pairs in the medium of degen-
erate dipolar Fermi gas at low temperatures.

l,m
l′,m′

0, 0 1, 0 1, ±1 2, 0 2, ±1 2, ±2

0, 0 1 0 0 −3.1 × 10−4 0 0
1, 0 0 8.0 × 10−4 0 0 0 0

1, ±1 0 0 1.6 × 10−3 0 0 0
2, 0 −3.1 × 10−4 0 0 −2.4 × 10−5 0 0

2, ±1 0 0 0 0 −1.2 × 10−6 0
2, ±2 0 0 0 0 0 −3.6 × 10−5

TABLE II. Matrix element Vlm;l′m′/V00;00 for k = 0.1kF , β = 0.8. V00;00 = −0.3175V0 with V0 = g2
m1k

4
F

4π3λ2 = |as|
k3
F

m22
.

VI. EXPERIMENTAL EXAMPLE

Here we estimate numerical values of parameters rele-
vant to the two-body problem from a gaseous mixture
of dipolar Fermi and non-dipolar Fermi atoms, which
is experimentally accessible. In the experiment of a
gaseous mixture of polarized dipolar 161Dy atoms and
non-dipolar 40K atoms [41], the number imbalance is
set to be relatively large nDy/nK ∼ 5, and the tem-
perature of majority gas of 161Dy is lowered to T ∼
45 nK, much smaller than Fermi energy TkB/EF ∼ 0.09,
that is to say, the Fermi degeneracy is achieved. Here
nDy(nK) is a peak density of Dy(K) atoms in trap, and
nDy ∼ 1014 cm−3 is left after evaporative cooling. From
this experimental situation we estimate the parameters
G =

(

1 + r−1
m

)

(1 + rm) (a12kF )
2
/4πλ2 and askF = −2G

as follows:

7.3× 10−4 ≤ G ≤ 4.1, (37)

−1.46× 10−3 ≤ askF ≤ −8.2, (38)

where rm = m1/m2 ≃ 4 the mass ratio, λ2 ∼ 1. We

have employed kF =
(

6π2nDy

)1/3 ∼ 1.81× 107m−1 and

−3000 a0 ≤ a12 ≤ −40 a0 with a0 = 5.29 × 10−11m
the Bohr radius, tunable from weak coupling to uni-
tarity regime via interspecies Feshbach resonance [42].
As for the dipolar length ad = m1d

2/3, we find that
ad ∼ 131a0 for the magnetic dipole moment of dyspro-
sium |d| ∼ 10µB where µB is the Bohr magneton µB

[22].
While these numerical values for G and askF are ball-

park estimation as we have employed the Born approx-
imation for a12 and as, it seems quite possible that the
effective interaction between impurity atoms are tunable
in experiments from weak to strong coupling regime by
means of adjusting parameters of surrounding dipolar
Fermi gas. In this experimental setup, the deformation
parameter is estimated to be β = 1− 2adkF

3π ∼ 0.97, i.e.,
the deformation is just a little. To get smaller values of
β, it is reasonable in experiment to increase kF , i.e., the
peak density, rather than ad.

VII. SUMMARY AND OUTLOOK

In summary, we have derived the induced interaction
potential acting between two impurity atoms immersed
in polarized dipolar Fermi gas at zero temperature, and
found that it becomes an anisotropic RKKY potential.
The anisotropy of the potential reflects the density fluc-
tuation of the medium dipolar Fermi gas under the in-
fluence of deformed Fermi surface. Then we have treated
two-body problem of impurity atoms interacting with the
induced potential. We have first solved the Schrödinger
equation to obtain eigenenergies of two impurity atoms,
and determined a critical coupling strength above which
the first bound state emerges. We have also investi-
gated the scattering amplitude for two impurity atoms
in the Born approximation to figure out its angle depen-
dence with respect to dipole polarization direction, and
made the partial-wave analysis to observe transitions be-
tween different angular momentum states in scattering
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processes.
As outlook, it is interesting to extend the present two-

body system of impurity atoms to a many-body one,
since in reality impurity (minority) atoms usually exist as
a dilute gas in the experiments for population imbalanced
mixtures of majority and minority atoms. The extension
involves effects of the particle statistics and self-energy
of impurity atoms, and intraspecies interactions among
impurity atoms such as the induced interaction obtained
in this work, which is to be incorporated into, e.g., in-
medium T matrix approach for the two-body correlation
of impurity atoms [56–59].

ACKNOWLEDGMENTS

This work was supported by Grants-in-Aid for Scien-
tific Research through Grant No. 21K03422, provided by
JSPS. E. N. is grateful to Shuichiro Ebata, Kei Iida, Hi-
royuki Tajima, Kosai Tanabe, Atsushi Umeya, and Nao-
taka Yoshinaga for helpful discussion about in-medium
few nucleon correlations.

[1] H. Kadau, M. Schmitt, M. Wenzel, C. Wink,
T. Maier, I. Ferrier-Barbut, and T. Pfau, Observ-
ing the rosensweig instability of a quantum ferrofluid,
Nature 530, 194 (2016).

[2] L. Tanzi, E. Lucioni, F. Famà, J. Catani, A. Fioretti,
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[49] J. E. Baarsma and P. Törmä, Fermi surface deforma-
tions and pairing in mixtures of dipolar and non-dipolar
fermions (2017), arXiv:1612.07953 [cond-mat.quant-gas].

[50] K. Nishimura, E. Nakano, K. Iida, H. Tajima,
T. Miyakawa, and H. Yabu, Ground state of
the polaron in an ultracold dipolar fermi gas,
Phys. Rev. A 103, 033324 (2021).

[51] F. Chevy and C. Mora, Ultra-cold polarized fermi gases,
Reports on Progress in Physics 73, 112401 (2010).

[52] P. Massignan, M. Zaccanti, and G. M.
Bruun, Polarons, dressed molecules and itin-
erant ferromagnetism in ultracold fermi gases,
Reports on Progress in Physics 77, 034401 (2014).

[53] R. Schmidt, M. Knap, D. A. Ivanov, J.-S. You,
M. Cetina, and E. Demler, Universal many-
body response of heavy impurities coupled
to a fermi sea: a review of recent progress,
Reports on Progress in Physics 81, 024401 (2018).

[54] H. Tajima, J. Takahashi, S. Mistakidis, E. Nakano, and
K. Iida, Polaron problems in ultracold atoms: Role of a
fermi sea across different spatial dimensions and quantum
fluctuations of a bose medium, Atoms 9, 18 (2021).

[55] F. Scazza, M. Zaccanti, P. Massignan, M. M. Parish, and
J. Levinsen, Repulsive fermi and bose polarons in quan-
tum gases, Atoms 10, 55 (2022).

[56] A. Camacho-Guardian, L. A. P. Ardila, T. Pohl, and
G. M. Bruun, Bipolarons in a bose-einstein condensate,
Phys. Rev. Lett. 121, 013401 (2018).

[57] H. Moriya, H. Tajima, W. Horiuchi, K. Iida, and
E. Nakano, Binding two and three alpha particles in cold
neutron matter, Phys. Rev. C 104, 065801 (2021).

[58] H. Tajima, H. Moriya, W. Horiuchi, K. Iida, and
E. Nakano, Resonance-to-bound transition of in neu-
tron matter and its analogy with heteronuclear feshbach
molecules, Phys. Rev. C 106, 045807 (2022).

[59] J. B. Muir, J. Levinsen, S. K. Earl, M. A. Con-
way, J. H. Cole, M. Wurdack, R. Mishra, D. J. Ing,
E. Estrecho, Y. Lu, D. K. Efimkin, J. O. Tollerud,
E. A. Ostrovskaya, M. M. Parish, and J. A. Davis, In-
teractions between fermi polarons in monolayer WS2,
Nature Communications 13, 6164 (2022).

[60] M. Ruderman and C. Kittel, Indirect exchange coupling
of nuclear magnetic moments by conduction electrons,
Physical Review 96, 99 (1954).

[61] T. Kasuya, A theory of metallic ferro-
and antiferromagnetism on zener’s model,
Progress of Theoretical Physics 16, 45 (1956).

[62] K. Yoshida, Magnetic properties of cu-mn alloys,
Physical Review 106, 893 (1957).

[63] A. L. Fetter and J. D. Walecka, Quantum Theory of

Many-Particle Systems (Dover Publication, 2003).
[64] T. Kashimura, R. Watanabe, and Y. Ohashi, Spin

susceptibility and fluctuation corrections in the BCS-
BEC crossover regime of an ultracold fermi gas,
Phys. Rev. A 86, 043622 (2012).

https://doi.org/10.1088/1367-2630/11/5/055017
https://doi.org/https://doi.org/10.1143/JPSJ.78.104003
https://doi.org/10.1103/physreva.81.033617
https://doi.org/10.1103/physrevlett.108.145304
https://doi.org/10.1103/physreva.104.l061302
https://doi.org/10.1103/physreva.81.023602
https://doi.org/10.1103/physreva.81.033601
https://doi.org/10.1103/physreva.84.063633
https://doi.org/https://doi.org/10.7566/JPSCP.38.011014
https://doi.org/10.1126/science.1255259
https://doi.org/10.1088/1367-2630/11/10/103003
https://doi.org/10.1103/physrevlett.113.263201
https://doi.org/10.1103/physreva.103.063320
https://doi.org/10.1103/physreva.98.063624
https://doi.org/10.1103/physrevlett.124.203402
https://doi.org/10.1103/physreva.106.043314
https://doi.org/10.1103/physrevlett.129.093402
https://doi.org/10.1103/physreva.106.053318
https://doi.org/10.1103/physreva.105.012816
https://doi.org/10.7566/jpsj.92.054301
https://doi.org/10.1103/physreva.107.l031306
https://arxiv.org/abs/1612.07953
https://doi.org/10.1103/physreva.103.033324
https://doi.org/10.1088/0034-4885/73/11/112401
https://doi.org/10.1088/0034-4885/77/3/034401
https://doi.org/10.1088/1361-6633/aa9593
https://doi.org/10.3390/atoms9010018
https://doi.org/10.3390/atoms10020055
https://doi.org/10.1103/physrevlett.121.013401
https://doi.org/10.1103/physrevc.104.065801
https://doi.org/10.1103/physrevc.106.045807
https://doi.org/10.1038/s41467-022-33811-x
https://doi.org/https://doi.org/10.1103/PhysRev.96.99
https://doi.org/https://doi.org/10.1143/PTP.16.45
https://doi.org/https://doi.org/10.1103/PhysRev.106.893
https://doi.org/10.1103/physreva.86.043622


12

[65] H. Tajima and S. Uchino, Many
fermi polarons at nonzero temperature,
New Journal of Physics 20, 073048 (2018).

[66] P. Ring and P. Shuck, The Nuclear Many-Body Problem

– 3rd edition (Springer, 2004).

Appendix A: Polarization function at static limit

The density-density correlation function of dipolar
fermions to the single-loop order reduces to the polar-
ization function. Its static limit is calculated as follows:

Π0(q) =
∑

k

fk − fk+q

ǫk − ǫk+q

= 2
∑

k

fk
ǫk − ǫk+q

=
4m1

(2π)3λ2

∫ kF /β

−kF /β

dkz

∫

kt≤
√

βk2
F
−β3k2

z

d2kt

× 1

β−1k2
t + β2k2z − β−1 (kt − qt)

2 − β2 (kz − qz)
2 ,

(A1)

with kt = (kx, ky) and qt = (qx, qy) being the momenta
projected in the transverse plane. Here changing of the

variables as (kt, kz) =
(

β1/2k̃t, β
−1k̃z

)

kF and (qt, qz) =
(

β1/2q̃t, β
−1q̃z

)

kF in order for the spherical symmetry
to be restored in the integral, we obtain

Π0(q) =
m1kF
2π3λ2

∫

|k̃|≤1

d3k̃
1

k̃2 −
(

k̃ − q̃
)2

=
m1kF
2q̃π2λ2

∫ 1

0

dk̃k̃

∫ 1

−1

dx
1

x− q̃/2k̃

=
m1kF
2qπ2λ2

∫ 1

0

dk̃k̃ log

∣

∣

∣

∣

∣

k̃ − q̃/2

k̃ + q̃/2

∣

∣

∣

∣

∣

= −m1kF
4π2λ2

[

1 +
4− q̃2

4q̃
log

∣

∣

∣

∣

1 + q̃/2

1− q̃/2

∣

∣

∣

∣

]

(A2)

where q̃ = |q̃| with q̃ = k−1
F

(

β−1/2qt, βqz
)

.

Appendix B: Induced interaction potential

We calculate the induced interaction potential between
two probe impurities using the static density-density cor-

relation function to the single-loop order as follows:

V (x) = g2
∑

q

eix·q Π0(|q̃β |)

= −g2m1kF
4π2λ2

∫

d3q

(2π)3
eix·q

[

1 +
4− q̃2

4q̃
ln

∣

∣

∣

∣

q̃ + 2

q̃ − 2

∣

∣

∣

∣

]

= −g2m1k
4
F

4π2λ2

∫

d3q̃

(2π)3
eir̃·q̃

[

1 +
4− q̃2

4q̃
ln

∣

∣

∣

∣

q̃ + 2

q̃ − 2

∣

∣

∣

∣

]

= −g2 m1k
4
F

16π4λ2ir̃

∫ ∞

−∞

dq̃ eir̃q̃ q̃

[

1 +
4− q̃2

4q̃
ln

∣

∣

∣

∣

q̃ + 2

q̃ − 2

∣

∣

∣

∣

]

(B1)

where the anisotropy has been taken over by the coordi-
nate vector:

r̃ =
(

β1/2x, β1/2y, β−1z
)

kF , (B2)

r̃ =
√

β (x2 + y2) + β−2z2kF . (B3)

Hereafter we will change the notation as r̃ → r and q̃ → q
for notational simplicity for a while. In the last line of
(B1) the integrand has branch points at q = ±2, thus we
can make a cut between them. Now we consider that loop

FIG. 5. (a) Integral contour C in complex q plane. Cross
symbols represent the branch points q = ±2. (b) Deformation
of contour C. The path in real axis is extended to q → ±∞.

integral I defined just below, along the path C enclosing
the branch cut as depicted in Fig 5(a), which is calculated
with analytic functions defined around the cut as

I ≡
∫

C

dq eirq

[

q +
4− q2

8
ln

(

q + 2

q − 2

)2
]

=

∫ −2+ǫ

2−ǫ

ds eirs
4− s2

4
ln

s+ 2

(2− s)eπi

+

∫ 2−ǫ

−2+ǫ

ds eirs
4− s2

4
ln

(s+ 2)e2πi

(2 − s)e−πi

= 4πi

∫ 2

−2

ds eirs
4− s2

4
. (B4)

https://doi.org/10.1088/1367-2630/aad1e7
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On the other hand, the integral I has an another form,
that is, I is equivalent to the integral along the real axis
since the contribution from the upper hemisphere van-
ishes as shown in Fig 5(b). Using the same analytic
functions around the cut used above, we obtain

I =

∫ ∞

−∞

dq eirq

[

q +
4− q2

8
ln

(

q + 2

q − 2

)2
]

=

(∫ −2−ǫ

−∞

+

∫ ∞

2+ǫ

)

dq eirq
[

q +
4− q2

4
ln

(

q + 2

q − 2

)]

+

∫ 2−ǫ

−2+ǫ

dq eirq
[

q +
4− q2

4
ln

(q + 2)e2πi

(2 − q)e−πi

]

=

∫ ∞

−∞

dq eirq
[

q +
4− q2

4
ln

∣

∣

∣

∣

q + 2

q − 2

∣

∣

∣

∣

]

+3πi

∫ 2

−2

dq eirq
4− q2

4
. (B5)

Comparing the two expressions of I, we find

∫ ∞

−∞

dq eirq
[

q +
4− q2

4
ln

∣

∣

∣

∣

q + 2

q − 2

∣

∣

∣

∣

]

= πi

∫ 2

−2

dq eirq
4− q2

4

=
πi

2

(

2 sin 2r

r3
− 4 cos 2r

r2

)

. (B6)

Getting all together, after recovering the original nota-
tion of r̃ we obtain

V (x) = g2
m1k

4
F

16π3λ2

(

2 cos 2r̃

r̃3
− sin 2r̃

r̃4

)

. (B7)

This is nothing but the RKKY potential except for the
anisotropy in r̃ for β 6= 1.

Appendix C: Critical coupling strength in

spherically symmetric case

In this appendix, we present the numerical results for
the spherically symmetric RKKY potential in the po-
lar coordinates to confront with the case of β = 1 in
the cylindrical coordinates. In this case the Schrödinger
equation for the radial coordinate r, corresponding to
(17), becomes

0 =

[

1

r2
∂r

(

1

r2
∂r

)

+
L(L+ 1)

r2
− v(r) + ε

]

ψL(r),

(C1)
where L = 0, 1, 2, · · · denotes the angular momentum.
Now we expand the wave function as

ψL(r) =
∑

i=1,2,3,···

fL(i) jL;i(r) (C2)

in terms of the spherical Bessel function of the first kind
jL(r):

jL;i(r) :=
1√Ni

jL(sir/R) (C3)

with Ni ≡ −πR3
J
L−

1
2

(si)JL+3
2

(si)

4si
and si being the zero’s

of the Bessel function JL+ 1
2
(si) = 0, so that it satisfies

the normalization condition

∫ R

0

drr2 jL;i(r)jL;j(r) = δij . (C4)

Truncation of the number of the spherical Bessel func-
tions within i ≤ imax leads to the matrix eigenvalue equa-
tion

∑

j=1,2,··· ,imax

[

(si
R

)2

δij + vij − ǫδij

]

fL(j) = 0 (C5)

where vij ≡
∫ R

0
dr r2 jL;i(r) v(r) jL;j(r). Solving the ma-

trix equation, we show the numerical result of the criti-
cal coupling strength for the first bound state in Fig. 6
to examine its dependence on (a) the number of basis
functions imax and (b) the system size R. In order to
estimate the critical value in the spatially uniform sys-
tem, we make the extrapolation procedure explained in
Appendix D in detail, and find that Gcrit = 0.501 at
R → ∞.

Appendix D: Critical coupling strength for bound

state

Here we examine the finite size effect on numerical re-
sults, and estimate a critical value of the dimensionless
coupling strength (19), above which the first bound state
emerges in the spatially uniform system. In the wave
function expansion, we denote the maximum quantum
number of a truncated set of the plane wave functions
(20) by nmax and that of the Bessel functions (21) by
imax, and consider some cases where nmax = imax =
15, 20, 30 and L = 2R = 10, 15, 22.5, 30 for the sizes of
cylinder in the unit of k−1

F .

• In Fig. 7(a) we first show the numerical result for
the critical coupling strength G as a function of
nmax (symbols) for L = 2R = 30, together with
the result from the fitting function given by

Gfit(x) = a+ b e−cx. (D1)

We determine parameters a, b, c using χ-square fit-
ting to the symbols, and estimate a critical cou-
pling strength Gcrit = a at nmax → ∞. From these
results we expect that nmax = imax = 30 already
gives a good convergence.
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FIG. 6. (a) Numerical values of critical coupling strength G
as a function of imax in the case of R = 15. Cross symbols cor-
respond to imax = 10, 15, 20, 30, respectively. Solid line cor-
responds to the function (D1), in which parameters a, b, c are
determined by the χ-square fitting of those symbols; Dashed
line corresponds to the parameter a = Gcrit, a critical cou-
pling strength deduced for nmax → ∞. (b) Numerical values
of critical coupling strength G as a function of R in the case
of imax = 30. Symbols correspond to R = 5, 7.5, 11.25, 15,
respectively. Solid line is the χ-square fitting of these sym-
bols using the function (D1). Dashed line corresponds to the
parameter a = Gcrit: a deduced critical coupling strength at
R → ∞ i.e, in the spatially uniform system.

• Then, in Fig. 7(b) we show Gcrit as a function of
L (symbols), and implement the extrapolation for
L(= 2R) → ∞ using the same fitting function (D1)
in order to deduce a critical coupling strength in
spatially uniform system finally by Gcrit = a.

• Subsequently, we repeat the same procedure im-
plemented above but for different values of β =
1.0, 0.9, 0.7 to obtain corresponding critical cou-
pling strengths in spatially uniform system, which
are summarized in Table I.

10 12 14 16 18 20 22 24 26 28 30
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FIG. 7. (a) Numerical values of critical coupling strength
G as a function of nmax(= imax) in the case of β = 0.8
and L(= 2R) = 30. Cross symbols correspond to nmax =
10, 15, 20, 30, respectively. Solid line is made by the function
(D1), in which parameters a, b, c are determined by the χ-
square fitting of those symbols; Dashed line corresponds to
the parameter a = Gcrit that is a critical coupling strength
given by the extrapolation to nmax → ∞. (b) Numerical val-
ues of critical coupling strength G as a function of L(= 2R)
in the case of β = 0.8 and nmax(= imax) = 30. Symbols
correspond to L = 10, 15, 22.5, 30, respectively. Solid line is
the χ-square fitting of these symbols using the function (D1)
again. Dashed line corresponds to the parameter a = Gcrit:
a deduced critical coupling strength for the spatially uniform
system, i.e, at L(= 2R) → ∞.

Appendix E: Validity condition of the Born

approximation

In this appendix we evaluate the validity condition of
the Born approximation for the RKKY potential in the
spherical case, i.e., β = 1. The condition demands that
in the scattering processes the initial plane wave gives a
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primary contribution and the next leading order is neg-
ligible, which is rendered into

1 ≫ 2m22

4π

∣

∣

∣

∣

∫

d3x
eikr

r
V (x)eik·x

∣

∣

∣

∣

=
2m22

4πk2F

∣

∣

∣

∣

V0
4π

k̃

∫ ∞

0

dr̃ eik̃r̃
(

2 cos 2r̃

r̃3
− sin 2r̃

r̃4

)

sin(k̃r̃)

∣

∣

∣

∣

=
2m22V0

3k2F k̃

∣

∣

∣
πk̃
(

k̃2 − 3
)

+ i2k̃
(

k̃2 − 3
)

arctanh(k̃)

−i2k̃2 − i2 log
(

1− k̃2
)∣

∣

∣ , (0 < k̃ < 1)

(E1)

where k̃ = k/kF , r̃ = rkF , and V0 = g2
m1k

4
F

16π3λ2 . For low

energies k̃ ≪ 1, the condition reduces to

1 ≫ 2m22V0π

k2F
+O

(

k̃2
)

→ 1

π
≫ G, (E2)

where G is the dimensionless coupling constant (19). The
condition can also be expressed in terms of the scattering
length as

1

π
≫ |as|kF

2
. (E3)


