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Abstract

The generalized Gauss-Newton (GGN) optimization method incorporates curvature estimates
into its solution steps, and provides a good approximation to the Newton method for large-scale
optimization problems. GGN has been found particularly interesting for practical training of deep
neural networks, not only for its impressive convergence speed, but also for its close relation with
neural tangent kernel regression, which is central to recent studies that aim to understand the
optimization and generalization properties of neural networks. This work studies a GGN method for
optimizing a two-layer neural network with explicit regularization. In particular, we consider a class
of generalized self-concordant (GSC) functions that provide smooth approximations to commonly-
used penalty terms in the objective function of the optimization problem. This approach provides an
adaptive learning rate selection technique that requires little to no tuning for optimal performance.
We study the convergence of the two-layer neural network, considered to be overparameterized, in
the optimization loop of the resulting GGN method for a given scaling of the network parameters.
Our numerical experiments highlight specific aspects of GSC regularization that help to improve
generalization of the optimized neural network. The code to reproduce the experimental results is
available at https://github.com/adeyemiadeoye/ggn-score-nn.

1. Introduction

Despite their superior convergence rates compared to first-order methods, (approximate) second-order
methods are still rarely used — and as such, underexplored — for training large-scale machine learning
and neural network (NN) models. This is due to their highly prohibitive computations and memory
footprints at each iteration. Some past and recent works have, however, made efforts to reduce this
overhead by proposing different approximations to the Hessian of the loss function, which the methods
ultimately exploit to achieve their impressive convergence properties (see e.g., [1, 2, 3, 4, 5, 6, 7, 8, 9]).

One of the most appealing approximations to the Hessian matrix within the context of practical
deep learning and nonlinear optimization in general is the generalized Gauss-Newton (GGN) approx-
imation of [10], which uses a positive semi-definite (PSD) matrix to model the curvature about an
arbitrary convex loss function. In fact, the Fisher information matrix (FIM) — a curvature approxi-
mating matrix which most other approximate second-order methods seek to estimate — is shown to
have direct connections with the GGN matrix in many practical cases [4, 11]. Despite its close connec-
tion with the GGN matrix, the FIM, unlike the GGN matrix, potentially leads to over-approximating
the second-order terms in more general loss functions, throwing away relevant curvature information
[10]. In addition to the desirable property of maintaining positive-definiteness throughout the train-
ing procedure, other nice properties of the GGN matrix, in comparison with the Hessian matrix, are
discussed in [12, Section 8.1]; see also [13] for discussions in the context of nonlinear least-squares
estimation and [14] for efficient training of (deep) recurrent neural networks with a GGN approach.

∗Email address: adeyemi.adeoye@imtlucca.it

ar
X

iv
:2

40
4.

14
87

5v
1 

 [
cs

.L
G

] 
 2

3 
A

pr
 2

02
4

https://github.com/adeyemiadeoye/ggn-score-nn


Regularized Gauss-Newton for Optimizing Overparameterized Neural Networks

Towards understanding the theoretical working of deep neural networks, a line of work [15, 16, 17,
18, 19, 20, 21, 22, 23, 24] attributes their optimization and generalization success in many applications
to their immense overparameterization, that is, the property of having way more parameters than
the number of data points they are being trained on. These generalization properties of the NN
are known to have connections with the implicit regularization of the overparameterized NN by the
gradient descent (GD) method [25, 26, 27, 28, 29, 30, 31, 32, 33]. For the (generalized) Gauss-
Newton and its related FIM (or natural gradient), some recent works [8, 34, 35, 36, 37, 38] have
shown similar approximation properties and global convergence in the overparameterized regime, also
mostly attributing generalization to the implicit regularization effect of the Gauss-Newton via the
NTK [8, 34, 35, 36, 37] and the mean-field [38].

In many of the works showing the implicit regularization effect of gradient-based optimizers, it is
suggested that explicit regularizers are not needed at all in order to see the impressive generalization
results. However, recent works such as [39, 40, 41] argue that explicit regularization of the network
indeed matters and should at least be given as much attention, both from a generalization and an
optimization point of view. In particular, [39] proved an approximation bound (in number of sam-
ples), via the lens of margin theory, for an infinite-width one-hidden-layer NN weakly-regularized by
the ℓ2-norm, which significantly improves upon other results that rely on the NTK and/or implicit
regularization formalism. In addition, they proved a global polynomial convergence rate for the noisy
gradient descent, an improvement over related works that similarly study NN optimization in the
infinite-width limit. In [8], the interpretation of the GGN updates as an explicit solution of the NTK
regression is used to prove a global linear convergence in the mini-batch setting. Apart from the ex-
plicit addition of a regularization term to the objective function, explicit regularization is also induced
in other forms [42, 43, 44, 45, 40, 41].

In this paper, we study the optimization of a one-hidden-layer NN by the GGN method, and by
drawing inspiration from their performance in convex optimization, we consider explicit self-concordant
regularization of the GGN. To the best of our knowledge, our convergence result is the first in this kind
of setting: optimization of an explicitly regularized NN by the GGN method in the overparameterized
regime. The structure of the class of regularization functions considered not only helps to control
the local rate of change of their second derivatives [46], but is also used in the selection of adaptive
learning rates. Unlike [39], we do not assume an arbitrarily weak regularization under our setting;
instead the smoothing framework covered by our study allows to choose a regularization strength
which may depend only on the initialization of the NN, and is characterized by a smoothing parameter.
However, for a proper choice of the regularization strength, the final trained NN model can be made
to be reasonably small and “simple” in spite of the overparameterization, and we can have a tradeoff
between test error and training error.

1.1. Notation

The standard Euclidean norm is denoted by∥·∥ or∥·∥2 and the 1-norm by∥·∥1. We denote the standard
inner product between two vectors by ⟨·, ·⟩, i.e., ⟨x, y⟩ ≜ x⊤y for x, y ∈ Rp. For a positive integer
m, we define [m] ≜ {1, 2, . . . ,m}. We let R≥0 and R>0 denote the set of nonnegative and positive
real numbers, respectively. For an extended real-valued function g : Rp → R ∪ {+∞}, we denote by
dom g ≜ {x ∈ Rp | g(x) < +∞} the (effective) domain of g. Γ0(X ) denotes the set of proper convex
lower-semicontinuous (lsc) functions from X ⊆ Rp to R ∪ {+∞}. We denote by Ck(Rp), the class of
k-times continuously-differentiable functions on Rp, k ∈ R≥0. For g ∈ C3(dom g), we let g′(t), g′′(t)
and g′′′(t) denote the first, second, and third derivatives of g, at t ∈ R, respectively. The gradient,
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Hessian, and third-order derivative tensor of g at x ∈ Rp are respectively written as ∇x g(x), ∇2
x g(x),

and ∇3
x g(x). We omit the subscripts if the variables with respect to which the derivatives are taken

are clear from the context. For a symmetric matrix H ∈ Rp×p, we write H ≻ 0 (resp. H ⪰ 0) to say
H is positive definite (resp., positive semidefinite). We let λ1(H) denote the maximum eigenvalue of
a matrix H ∈ Rp×p, and λp(H) its minimum eigenvalue; tr(H) denotes the trace of H. The scalars
σmax(A) and σmin(A) respectively denote the maximum and minimum singular values of an m × p
matrix A. Given that ∇2 g(x) ≻ 0, the local norm ∥·∥x with respect to g at x is the weighted norm

induced by ∇2 g(x), i.e., ∥d∥x ≜
〈
∇2 g(x)d, d

〉1/2
. The dual norm is ∥v∥∗x ≜

〈
∇2 g(x)−1v, v

〉1/2
. We

also define the notations∥x∥H ≜ ⟨Hx, x⟩
1
2 ,∥x∥∗H ≜

〈
H−1x, x

〉 1
2 , for H ≻ 0, x ∈ Rp. An Euclidean ball

of radius r centered at x̄ is denoted by Br(x̄) ≜ {x ∈ Rp | ∥x− x̄∥ ≤ r}. The (Dikin) ellipsoid of radius
r centered at x̄ is defined by Er(x̄) ≜ {x ∈ Rp | ∥x− x̄∥H < r}, for H ≻ 0. We define set convergence
in the sense of Painlevé-Kuratowski [47, Chapter 4]. Given {gt}k∈R≥0

with gt : Rp → R ∪ {−∞,+∞},
e– lim gt = g denotes the epigraphic convergence (epi-convergence) of {gt}k∈R≥0

to a function g : Rp →
R ∪ {−∞,+∞}.

2. GGN for Learning Neural Networks

Given the sequence of data points S ≜ {(xi, yi)}i∈[m] with xi ∈ Rn0 , yi ∈ RnL , an L-layer fully-
connected feedforward NN is defined as follows. Starting with an input z0 ∈ Rn0×m, and for l =
1, . . . , L,

al = W (l)zl−1 + b(l), zl = ϱl(al), (1)

where W (l) ∈ Rnl×nl−1 and b(l) ∈ Rnl are the l-th layer weights and biases of the network, respectively;
each ϱl : R → R is an element-wise activation function. Let Φ(·; θ) =: zL be the output of the NN,
where θ = [θ1, θ2, . . . , θL]⊤ ∈ Rp with θl ≜ vec([W (l) b(l)]), the stacked vectorization of W (l) and
b(l). In the supervised learning task, we look for the parameter vector θ minimizing the regularized
empirical risk

min
θ∈Rp
L(θ) ≜ R̂s(Φ) + g(θ), R̂s(Φ) ≜

1

m

m∑
i=1

ℓ(Φ(xi; θ), yi), (2)

where R̂s(Φ) is the empirical risk associated with the NN learning task, ℓ : RnL × RnL → R is a loss
function, and g : Rp → R is a regularization function. We denote by Φ∗ an output function that best
interpolates the data set S.

Let n1 ≡ n (number of hidden neurons), W (1) ≡ u = [u1, u2, . . . , un]⊤ ∈ Rn×n0 and W (2) ≡ v =
[v1, v2, . . . , vn] ∈ Rn. Without loss of generality, we consider a biasless one-hidden layer NN:

Rn0 ∋ x 7→ Φ(x; θ) ≜ κ(n)

n∑
i=1

viϱ(uix), (3)

where κ(n) is some scaling that depends on n, e.g., κ(n) = 1/
√
n as in [17]. We remark that for an

(L − 1)-hidden layer NN written in the biasless form, the bias vectors can always be recovered by
redefining

x←

[
x
1

]
, θl ← vec

[W (l) b(l)

0 1

] ,
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for l ∈ [L− 1], and θL ← vec([W (L) b(L)]). We assume the following about the activation function ϱ,
which is satisfied by most activation functions but piecewise linear ones.

A.1 The activation function ϱ is twice differentiable, Lipschitz, and smooth.

Below, we briefly describe the NTK regression and its connection with GGN for overparameterized
networks by first considering the case g = 0 in (2).

The NTK and Gradient Descent. In the infinite-width limit, there is an established [21] relation
between the steps obtained via a gradient-based method for NNs and the so-called kernel gradient de-
scent in function space. In particular, it is shown that, as n→∞, ∀i, j ∈ [m], ⟨∇θΦ(xi, θ0),∇θΦ(xj , θ0)⟩
converges to some positive definite deterministic kernel k(xi, xj) = k(xi, xj)

⊤ ∈ RnL×nL (the limiting
NTK), and remains unchanged during training. Consider the case g = 0 in (2). In the infinite-width
limit, the gradient descent for solving the resulting problem reduces to the kernel gradient descent:

Φt+1 = Φt − αtGt∇ΦtR̂s(Φt), (4)

where Φt ≜ (Φ(xi; θt))i∈[m] ∈ Rm denotes the network outputs on xi’s at iteration t, αt ∈ R>0

is a step-size (or learning rate), and Gt is an m × m matrix whose (i, j)-th entry is given by
⟨∇θΦ(xi, θt),∇θΦ(xj , θt)⟩; see, e.g., [48, Lemma 3.1] which considers the continuous-time evaluation
of Φt, t ∈ R≥0.

GGN and the NTK regression. An important feature of GGN for infinite-width NNs is its
direct relation with the NTK regression solution in the overparameterized regime. We introduce the
notations Qt ≡ ∇2

Φt
R̂s(Φt), et ≡ ∇ΦtR̂s(Φt), and consider again the case g = 0 in problem (2). The

GGN for the resulting problem is given by the following iterative process:

θt+1 = θt − αt(J
⊤
t QtJt)

−1J⊤
t et, (5)

where Jt = (∇θΦ(x1, θt), . . . ,∇θΦ(xm, θt))
⊤ ∈ Rm×p is the Jacobian matrix (of features) at iteration

t. For overparameterized networks, if ℓ is the squared loss, Qt becomes the identity matrix and we
can conveniently rewrite the GGN updates with respect to the NTK matrix Gt as

θt+1 = θt − αtJ
⊤
t G−1

t et. (6)

On the other hand, corresponding to (4), the updates to the parameters θ via θt can be obtained by
solving the regression problem (cf. [8])

θt+1 = argmin
θ

1

2

∥∥∥⟨Jt, θ − θt⟩+∇ΦtR̂s(Φt)
∥∥∥2 , (7)

which results from the linearization of Φ around θt. For an overparameterized NN, this linearization
provides a good approximation to Φ, and hence the Hessian (with respect to θ) of the resulting
empirical risk by replacing Φ by its linearization, which gives the GGN approximation (see, e.g., [49]),
is expected to provide a good approximation of the actual Hessian. In terms of kernel “ridgeless”
regression solution to problems of the form (2) (with g = 0) and ℓ taken as the squared loss, the
update (6) provides a minimum-norm interpolating solution in the so-called Reproducing Kernel
Hilbert Space (RKHS) [50, 51]. Hence, the GGN, in this case, provides a closed-form solution to the
NTK regression, which efficiently replaces gradient descent in the NTK formalism.

4
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2.1. Regularized GGN for Overparameterized Neural Networks

If g ̸= 0, the relation between gradient descent and NTK will probably break [39]. Apart from the NTK
parameterization, a commonly studied parameterization in the context of overparameterized NNs is
the random feature (RF) model [52, 53] which, due to its close connection with a one-hidden layer NN,
often provides a prototype for studying realistic NNs. Whether the NTK or the RF parameterization
is used, one of the key properties we desire about the dynamics of the optimizer is stability which,
when established, can help to still benefit a lot from overparameterization in the optimization scope.
To this end, we first present the definition of generalized self-concordant (GSC) functions on Rp from
[54] as follows.

Definition 1. A convex function g ∈ C3(dom g), with dom g open, is said to be (Mg, ν)-GSC of the

order ν ∈ R>0, with Mg ∈ R≥0, if ∀x ∈ dom g, ∀u, v ∈ Rp,
∣∣∣〈∇3 g(x)[v]u, u

〉∣∣∣ ≤Mg∥u∥2x∥v∥
ν−2
x ∥v∥3−ν ,

where ∇3g(x)[v] ≜ lim
t→0

{(
∇2g(x + tv)−∇2g(v)

)
/t
}
.

We now assume the following about g:

G.1 The regularization function g is convex and (Mg, ν)-GSC.

The class of regularization functions satisfying condition G.1 includes the self-concordant smooth-
ing functions for commonly used regularizers such as the ℓ1- and ℓ2-norms (see Definition 2 below). The
resulting smooth approximation has the key property that it epi-converges to the original regularizer,
providing useful features that can be exploited on the epigraph of g for optimization.

Definition 2 ([55]). The parameterized function g : Rp × R>0 → R is said to be a self-concordant
smoothing function for a function ḡ ∈ Γ0(Rp) if e– lim

µ↓0
g = ḡ and g(·;µ) is (Mg, ν)-GSC, where

µ ∈ R>0 is a smoothing parameter.

For the regularized problem (2) (with g satisfying G.1), the corresponding GGN update is obtained
by augmenting the terms Qt, et and Jt, respectively by 0, 1 and ∇g(θt) in the appropriate dimensions
[9]. Let us denote these augmented counterparts by Q̂t, êt and Ĵt. We then write for the GGN

θt+1 = θt − αt(Ĵ
⊤
t Q̂tĴt + Ht)

−1Ĵ⊤
t êt, (8)

or in its convenient form for overparameterized models as [9]

θt+1 = θt − αtH
−1
t Ĵ⊤

t (I + Q̂tĴtH
−1
t Ĵ⊤

t )−1êt, (9)

where Ht ≡ ∇2 g(θt). Relative to the minimal assumptions required to control the dynamics of the
network outputs for the unregularized case, e.g., positive definiteness of Gt (which indeed holds in the
overparameterized regime), we need the following standard regularity assumptions on R̂s, Q̂t and êt
(see Appendix B for details on the regularity terms):

R.1 R̂s is γR-strongly convex, and has upper-bounded gradients and Hessian; g, Q̂t and êt are locally
bounded.

An important consequence of condition A.1 is that, in addition to g admitting a Lipschitz continu-
ous gradient (see Lemma 2 in Appendix A.2), we get that Jt is (locally) Lipschitz continuous (see
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Appendix A.1). Then, together with R.1 and the stability of Ht, we can control the key terms
H−1

t Ĵ⊤
t (I + Q̂tĴtH

−1
t Ĵ⊤

t )−1 and êt appearing in (9).
Corresponding to (4), the overparameterized NN trained according to (9) evolves in discrete-time

as

Φt+1 = Φt − αtĜtêt, (10)

where Ĝt ≜ JtH
−1
t Ĵ⊤

t (I + Q̂tĴtH
−1
t Ĵ⊤

t )−1 ∈ Rm×(m+1). One major observation about the behaviour
of the dynamics of Gt in (4) in the overparameterized setting is its stability throughout the training
process, which characterizes the optimizer’s global optimality [18]. In the analysis of gradient descent,
most stability and convergence results in the literature heavily rely on the (strictly positive) minimum
eigenvalue of Gt. These kinds of results are not immediate with Ĝt or, in general, with explicit
regularization. However, the self-concordant condition on g ensures that its Hessian is at least locally
stable1, and hence for an appropriate parameterization of the NN, we can ensure the stability of the
dynamics of Ĝt. In addition to these, also noteworthy is an immediate deduction from the Lipschitzness
of ϱ and ∇g: the boundedness of the singular values of Ĵt away from zero.

3. Theoretical Result

We study the convergence of self-concordant-regularized GGN for the one-hidden layer network. In
line with the settings of Section 2, the learning rate selection rule we consider throughout is

αt =
ᾱt

1 + Mgηt
, (11)

where 0 < ᾱt ≤ 1 and ηt = ∥∇g(θt)∥∗θt . Without any emphasis on the particular choice of the target
function Φ∗, we assume it is given by any universally consistent2 algorithm as a minimum requirement.
An example, in the case ℓ(Φ, y) ≜ 1

2(Φ − y)2 in (2), is the regularized least squares algorithm which,
for a kernel prediction function ΦRF ≡ Φ∗ is defined by

Rn0 ∋ x 7→ ΦRF(x; (u∞, v∗)) ≜
n∑

i=1

v∗i ϱ(u∞i x). (12)

This yields the estimator v∗ = [v∗1, v
∗
2, . . . , v

∗
n] ∈ Rn, the unique minimizer of the ℓ2-regularized

empirical loss 1
2m

∑m
i=1(ΦRF(xi; v) − yi)

2 + λ
2∥v∥

2, for some λ ∈ R≥0, where the entries of u∞ =
[u∞1 , u∞2 , . . . , u∞n ]⊤ ∈ Rn×n0 remain fixed iid random variables.

We state our main result of this section in Theorem 1 below. The detailed proof is given in
Appendix B. We let Φ̃t ∈ Rm+1 denote the vector obtained by augmenting Φt by 1. This Φ̃t corresponds
to augmenting the rows of Jt in the definition of Ĝt by the vector whose entries are all zeros except
the last entry which has the value ϕ̃t = 1/ϕm+1

t−1 ∈ R, where ϕm+1
t denotes the last entry of H−1

t Ĵ⊤
t (I +

1As noted in the introduction, self-concordance helps to control the rate at which the Hessian of g changes locally,
and this property has been recently formalized and studied for the notion of local and global Hessian stability in convex
optimization (see, e.g., [56, 57, 58]).

2Informally speaking, a learning algorithm is said to be universally consistent if the error of its estimate tends to zero
as the sample size tends to infinity, for all distributions of the sample space such that the second moment of the output
variable is finite. For a more precise context, see, e.g., [59] and the references therein.
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Q̂tĴtH
−1
t Ĵ⊤

t )−1êt ∈ Rn×1 at a time t. Let this augmented version of Jt be denoted by J̃t. Then, we
define G̃t ≜ J̃tH

−1
t Ĵ⊤

t (I + Q̂tĴtH
−1
t Ĵ⊤

t )−1 ∈ R(m+1)×(m+1), and

Φ̃t+1 = Φ̃t − αtG̃têt. (13)

We also let Φ̃∗ ∈ Rm+1 denote the vector obtained by augmenting Φ∗
t by 0. Additional regularity

terms are explicitly defined in Appendix B.

Theorem 1. Suppose that conditions A.1, G.1 and R.1 hold for problem (2). Let Φ∗ be a universally
consistent target function that best interpolates the training data set S. Let BR, BΦ, Bg, dg, dq, β, Dg

and DR be the regularity terms given by condition R.1, and denote β̂m ≜ σmin(J) ≡ σmin(J⊤). Then,
in the ellipsoid Er(θ0) for some r ∈ R>0 and an initialization θ0, the regularized GGN for problem (2)
satisfies the following properties:

P.1 Fix 0 < ᾱt ≡ ᾱ < 1, and choose T ≜
1

ᾱ
log(∥Φ̃0 − Φ̃∗∥2/ϵ) for any ϵ ∈ (0, 1). It holds that∥∥∥Φ̃T − Φ̃∗

∥∥∥2 ≤ ϵ + 1 after T iterations, if 1 + Mgηt ≤ ∥G̃t∥F and |G̃22| ≥ |⟨G̃⊤
21 + G̃12, ṽ⟩| for

some ṽ depending on t when t ≤ T where, given a 2 × 2 block partitioning of G̃t, G̃22 ∈ R1×1,
G̃21 ∈ R1×(m+1), and G̃12 ∈ R(m+1)×1 respectively denote the lower right, lower left and upper
right blocks of G̃t,

P.2 L(θt+1) ≤ L(θt)−
[
ϑL2

Dt
(1 + Dgϖt)− ξLDt

]
, for t ∈ R≥0, where LDt ≜

αtββ̂1Dg

dg(Dg+dqβ̂2
m)

, ξ ≜ BRBΦ+

Bg, ϑ ≜ B2
Φ(γR −DR), ϖt ≜ ων(dν(θt, θt+1))− ων(−dν(θt, θt+1)), ων is an increasing univariate

function, dν is a scaled metric term associated with the self-concordance of g, and we assume
dν(θt, θt+1) < 1.

Remark 1. The condition that 1 + Mgηt ≤ ∥G̃t∥F in P.1 highlights an important aspect of the
regularization. We often want to control the regularization strength via a parameter τ ∈ R>0. Consider
this general case in which g takes the form g(θ) = τ ḡ(θ). Here, we only require that ḡ is GSC so that

g satisfies G.1. Observe that ∥G̃t∥F ≤
√

(m + 1)λ1(G̃⊤
t G̃t) for all t. Then since Mgηt can become

arbitrarily small, it is only reasonable to choose τ satisfying 1+τMgη0 ≤
√

(m + 1)λ1(G̃⊤
0 G̃0) in order

to have the theoretical guarantee. In this setting, we essentially rely on the local stability of G̃t via
overparameterization and the self-concordance of g.

Since the direct relation between GGN and NTK probably breaks with an explicit regularization,
our main proof step in Theorem 1 involves analyzing a partitioning of the matrix Ĝt. In this way,
we determine what conditions on the separate blocks help to combine certain spectral properties of
G̃t with our regularity conditions and the self-concordance of g. The second result becomes almost
immediate in the optimization scope under the regularity conditions.

Under the strong convexity assumption on R̂s, the global convergence of GGN can be guaranteed
in the case of no regularization, for example, by training only the last layer of the NN given the
property of no blow-up of the GGN dynamics [38, Proposition 1, Proposition 3]. Consider the matrix
G∞ whose (i, j)-th entry is given by ⟨∇v Φ(xi; (v, u∞)),∇v Φ(xj ; (v, u∞))⟩, where u∞ is as defined in
(12). The main observation here is that the function v 7→ r(v) = R̂s(Φ(·; (v, u∞))) can be shown

to satisfy a certain Polyak- Lojasiewicz (PL) inequality, that is [38, Proposition 4] 1
2

∥∥∇v l(v)
∥∥2 ≥

γRσ
2
∞n

(l(v) − R̂s(Φ
∗)), where σ∞n is the minimum singular value of G∞. With a self-concordant

7
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regularization function g, this kind of global property is retained, provided that g and R̂s do not
conflict. Consider, for example, the sublevel set Sg(θ)(g) ≜

{
θ̄ ∈ dom g | g(θ̄) ≤ g(θ)

}
of g. Then,

following [54, Theorem 4], we get that Sg(θ)(g) is bounded for ν ∈ [2, 3], and hence g attains its
minimum.

4. Experiments

We present numerical results from experiments performed on GGN with self-concordant regularization
(GGN-SCORE) for overparameterized NNs on synthetic datasets as well as on the MNIST dataset.
Results of additional experiments on the FashionMNIST and three UCI datasets are reported in
Appendix C. The code to reproduce the experimental results is available at https://github.com/

adeyemiadeoye/ggn-score-nn.

Experimental setup. We consider the teacher-student setting in which Φ defined by (3) with
κ(n) = 1/

√
n is the student NN, while the teacher NN is the target function Φ∗, a one-hidden layer

NN given as

Rn0 ∋ x 7→ Φ∗(x; θ∗) ≜
n∗∑
i=1

v∗i ϱ(u∗ix), (14)

where θ∗ ≡ (u∗, v∗). In both teacher and student networks, we use the SiLU activation function [60]
ϱ(x) ≜ x/(1 + exp(−x)). In each experiment, we generate m training data points (xi, yi)i∈[m], where

the inputs xi are uniformly sampled on the unit sphere Sn0−1 ≜ {x | ∥x∥ = 1} and the corresponding
target outputs are given by yi = Φ∗(xi; θ

∗). The weights of the teacher NN are randomly generated as
in [23]: they are normalized random weights satisfying ∥v∗i u∗i ∥ = 1 for i = 1, . . . , n∗. The student NN
is initialized with randomly generated weights from the Gaussian distribution. In all the experiments,
we fix n = 500 and n∗ = 5. The student NN is trained by minimizing the regularized empirical risk in
(2) with the squared loss ℓ (the empirical risk is unregularized for GD), and we consider regularization
of the form g(θ) = τ ḡ(θ), where τ ∈ R>0 and ḡ is given by [55, Example 1]: ḡ(θ) = (∥ · ∥1□hµ)(θ) =∑n

i=1
µ2−µ
√

µ2+θ2i+θ2i√
µ2+θ2i

, hµ(·) ≜ µh(·/µ), h(θ) =
∑n

i=1((1 +|θi|2)1/2 − 1), which gives the (Mg, ν)-GSC

function

g(θ) = τ

n∑
i=1

µ2 − µ
√
µ2 + θ2i + θ2i√
µ2 + θ2i

, (15)

with Mg = 2µ−0.7p0.2, ν = 2.6 (see Lemma 2). We choose µ = 1/κ(n) and τ = 10−4, except for where
we consider different values for comparison. We set ᾱt ≡ ᾱ = 0.95 in (11) for GGN and use a learning
rate of 1 for GD. All experiments are performed on a laptop with 16× 2.30GHz Intel Core i7-11800H
CPU and 32GB RAM.

4.1. Results and discussion

Test loss vs. smoothing parameter. We compare the performance of GGN-SCORE for different
values of the regularization smoothing parameter µ evenly spaced in the range [10−3, 10], giving 41
different values in total. We use a reasonable amount of training samples, 500, which allows to
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perform several independent runs for each value of µ considered. We use a test size of 1000 to measure
generalization of the student NN for each µ. We perform 10 independent runs for each value of µ
considered and took the average value of the results. These are shown in Figure 1. We observe that
larger values of µ yields better performance in the optimization scope and also better generalization.
This result is quite intuitive, since by definition of the regularization function, the size of µ should
scale with the size of the variable θ in order to have an adequate smooth approximation of the original
nonsmooth function. For this reason, it is recommended to choose µ = c/κ(n) for any c > 0 when
scaling with κ(n) = 1/

√
n.
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Fig. 1: Performance of GGN-SCORE with g(θ) as in (15). Left: Results for different values of µ, with τ = 10−4.
Right: Results for different values of τ , with µ = 1/

√
n. Results are averaged over 10 independent runs for

each value of µ and τ , resp.; the total computation time is ∼ 21 hours, 2 minutes on CPU.

Test loss vs. regularization strength. We study the influence of the regularization strength on
the evolution of the test loss within the optimization loop of GGN-SCORE. We consider different
values of τ evenly spaced in the range [10−8, 1], giving 41 different values in total, and set µ = 1/

√
n.

Here, we also use a training size of 500 and a test size 1000 which allows to perform several independent
runs for each value of τ considered. We perform 10 independent runs for each value of τ and compute
the average value of the results. These average values are shown in Figure 1. We observe that smaller
values of τ yield smaller training and test errors for the overparameterized NN. This observation
corroborates with the analysis of [39] for GD. However, contrarily to [39], what we observe for the
GGN-SCORE is not an arbitrarily small regularization strength to achieve a good generalization
performance. In fact, any value of τ slightly smaller than 10−4 in our experiment gives a similar
generalization error as the choice τ = 10−6 (and smaller). Figure 1 also displays the average number
of zero entries in the value of θ at the end of training. As observed, larger values of τ yields a
sparser/simpler model. In principle, a desirable value of τ is one which helps to avoid overfitting of
the NN model such that a simpler model implies better generalization.

Performance comparison in the optimization loop. We generate training and test datasets
of sizes 1000 and 2000, respectively, and compare the training and test losses per iteration and time
in seconds between GD and GGN-SCORE for training the student NN. The results are displayed
in Figure 2. The dimension of the input data in this experiment is 20, and the number of hidden
neurons for the student network is 500. Choosing a much smaller number of hidden neurons n∗ = 5
for the teacher network keeps the optimization loop in the overparameterized regime. For the GD,
we use a learning rate of 1 which yields a much better performance than smaller values. While larger
learning rates could yield faster learning at the beginning of training, we notice traces of divergence

9
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Fig. 2: Performance of GD and GGN-SCORE per iteration number (left) and time in seconds (right) with
g(θ) as in (15) for GGN-SCORE, τ = 10−4, µ = 1/

√
n.

later on; a learning rate of 1 gives a reasonably good descent and good performance of GD. We run
GD for a total of 10000 steps and GGN-SCORE for a total of 4000 steps. GGN is well-known for its
faster convergence in terms of number iterations, while sometimes, we may have to train for a longer
time. Results here show that we do not trade total training time for better performance with our
GGN-SCORE setup.

4.2. Experiments on real datasets

The computations involved in full-batch GD and/or GGN are intractable on real-world datasets. We
study the performance of GGN-SCORE in the mini-batch setting on the standard MNIST dataset
[61] with n0 = 784, m = 60000 : 10000 (training:test splits). Experimental results in the teacher-
student setup according to [38, Appendix C.4] with the SiLU activation function are reported in
Appendix C. Additional experiments on three UCI datasets, as well as those on the FashionMNIST
dataset, are also considered in the appendix. Here, we consider a NN of the form (3) with a hidden
size n = 512, a scaling κ(n) = 1/

√
n and the ReLU [62] activation function. The NN is initialized with

randomly generated weights from the Gaussian distribution, and is trained with the squared loss. The
regularization function g used in GGN-SCORE is given by (15). All results shown for GGN-SCORE
are for a training batch size of 16 (i.e., 3750 training steps) and a single epoch. In addition to the
test loss and prediction accuracy of the trained model, we adopt a time-invariance “T-I” measure,
representing the average proportion (in percentage) of the entries of the pre-activation al ∈ Rn×n0

that satisfy sgn(astartij ) = sgn(afinalij ), where sgn is the signum function, astartij are positional entries of

al at initialization and afinalij are its entries at the end of training. This metric was used in [23] to
measure the “stability of activations” where high values indicate an effective linearization of the NN
model. See additional details and remark in Appendix C.1.

Influence of the regularization parameters. We investigate the performance of the GGN-
SCORE-trained model for different values of the regularization smoothing parameter µ and the regu-
larization strength τ on MNIST dataset. First, we fix µ = 1/

√
n and measure the performance of the

trained model for different values of τ . Similarly, we fix τ = 10−4 and measure the trained model’s
performance for varying values of µ. In each of the two cases, we use 7 different values of τ and µ as is
respectively shown in Figure 3 and Figure 4. As in the case with synthetic datasets, optimal choices
for τ and µ are seen to necessarily yield good generalization of the model, and are such that give a
relatively simple model and stable dynamics (as indicated by the number of zeros in the parameters of
the final optimized model and the T-I measure). The total computation time to generate the results

10
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Fig. 3: Test loss evaluation of the GGN-SCORE-trained NN on MNIST dataset for different values of the
regularization smoothing parameter µ fixing τ = 10−4 (left) and different values of the regularization strength
τ fixing µ = 1/

√
n (right). The regularization function g(θ) is given by (15).

in Figure 3 and Figure 4 is ∼ 23 hours, 5 minutes on CPU.
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Fig. 4: Evaluation of GGN-SCORE on MNIST dataset for different values of the regularization smoothing
parameter µ, fixing τ = 10−4 (left), and different values of the regularization strength τ , fixing µ = 1/

√
n

(right). The regularization function g(θ) is given by (15).

5. Conclusion

We studied a Generalized Gauss-Newton method for optimizing a two-layer neural network with ex-
plicit regularization and for a specific type of two-layer neural network. We considered the class of
generalized self-concordant regularization under which we proved convergence of the neural network
predictions to the outputs of a given target function, and have quantified the decay of the problem’s
objective function throughout the training iterations. Our experimental findings revealed that good
generalization of the optimized neural network model can be achieved with the regularization frame-
work. In future research, we will further investigate the regularization framework with GPU-supported
experiments for wider and deeper neural networks and higher dimensional datasets.

References

[1] Nicolas Roux, Pierre-Antoine Manzagol, and Yoshua Bengio. Topmoumoute online natural gra-
dient algorithm. Advances in Neural Information Processing Systems, 20, 2007.

11



Regularized Gauss-Newton for Optimizing Overparameterized Neural Networks

[2] James Martens et al. Deep learning via Hessian-free optimization. In ICML, volume 27, pages
735–742, 2010.

[3] Oriol Vinyals and Daniel Povey. Krylov subspace descent for deep learning. In Artificial Intelli-
gence and Statistics, pages 1261–1268. PMLR, 2012.

[4] James Martens and Roger Grosse. Optimizing neural networks with Kronecker-factored approx-
imate curvature. In International Conference on Machine Learning, pages 2408–2417. PMLR,
2015.

[5] Aleksandar Botev, Hippolyt Ritter, and David Barber. Practical gauss-newton optimisation for
deep learning. In International Conference on Machine Learning, pages 557–565. PMLR, 2017.

[6] Michael Arbel, Arthur Gretton, Wuchen Li, and Guido Montúfar. Kernelized wasserstein natural
gradient. arXiv preprint arXiv:1910.09652, 2019.

[7] Yi Ren and Donald Goldfarb. Efficient subsampled Gauss-Newton and natural gradient methods
for training neural networks. arXiv preprint arXiv:1906.02353, 2019.

[8] Tianle Cai, Ruiqi Gao, Jikai Hou, Siyu Chen, Dong Wang, Di He, Zhihua Zhang, and Liwei
Wang. Gram-gauss-newton method: Learning overparameterized neural networks for regression
problems. arXiv preprint arXiv:1905.11675, 2019.

[9] Adeyemi D Adeoye and Alberto Bemporad. SCORE: approximating curvature information un-
der self-concordant regularization. Computational Optimization and Applications, 86(2):599–626,
2023. ISSN 0926-6003. doi: 10.1007/s10589-023-00502-2.

[10] Nicol N Schraudolph. Fast curvature matrix-vector products for second-order gradient descent.
Neural Computation, 14(7):1723–1738, 2002.

[11] Razvan Pascanu and Yoshua Bengio. Revisiting natural gradient for deep networks. arXiv preprint
arXiv:1301.3584, 2013.

[12] James Martens. New insights and perspectives on the natural gradient method. The Journal of
Machine Learning Research, 21(1):5776–5851, 2020.

[13] Pei Chen. Hessian matrix vs. Gauss–Newton hessian matrix. SIAM Journal on Numerical Anal-
ysis, 49(4):1417–1435, 2011.

[14] Alberto Bemporad. Training recurrent neural networks by sequential least squares and the alter-
nating direction method of multipliers. Automatica, 156:111183, 2023.

[15] Amit Daniely. SGD learns the conjugate kernel class of the network. Advances in Neural Infor-
mation Processing Systems, 30, 2017.

[16] Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic gradient
descent on structured data. Advances in Neural Information Processing Systems, 31, 2018.

[17] Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. arXiv preprint arXiv:1810.02054, 2018.

12



Regularized Gauss-Newton for Optimizing Overparameterized Neural Networks

[18] Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. In International Conference on Machine Learning, pages 1675–
1685. PMLR, 2019.

[19] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International Conference on Machine Learning, pages 242–252. PMLR,
2019.

[20] Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Stochastic gradient descent optimizes
over-parameterized deep relu networks. arXiv preprint arXiv:1811.08888, 2018.

[21] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. Advances in Neural Information Processing Systems, 31, 2018.

[22] Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of
optimization and generalization for overparameterized two-layer neural networks. In International
Conference on Machine Learning, pages 322–332. PMLR, 2019.

[23] Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable program-
ming. Advances in Neural Information Processing Systems, 32, 2019.

[24] Greg Yang. Scaling limits of wide neural networks with weight sharing: Gaussian process behavior,
gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760,
2019.

[25] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–
115, 2021.

[26] Yuanzhi Li, Tengyu Ma, and Hongyang Zhang. Algorithmic regularization in over-parameterized
matrix sensing and neural networks with quadratic activations. In Conference On Learning
Theory, pages 2–47. PMLR, 2018.

[27] Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Characterizing implicit bias
in terms of optimization geometry. In International Conference on Machine Learning, pages
1832–1841. PMLR, 2018.

[28] Ziwei Ji and Matus Telgarsky. The implicit bias of gradient descent on nonseparable data. In
Conference on Learning Theory, pages 1772–1798. PMLR, 2019.

[29] Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparam-
eterized neural networks, going beyond two layers. Advances in Neural Information Processing
Systems, 32, 2019.

[30] Lenaic Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural
networks trained with the logistic loss. In Conference on Learning Theory, pages 1305–1338.
PMLR, 2020.

[31] Zhiyuan Li, Tianhao Wang, and Sanjeev Arora. What Happens after SGD Reaches Zero Loss?–A
Mathematical Framework. arXiv preprint arXiv:2110.06914, 2021.

13



Regularized Gauss-Newton for Optimizing Overparameterized Neural Networks

[32] Salma Tarmoun, Guilherme Franca, Benjamin D Haeffele, and Rene Vidal. Understanding the
dynamics of gradient flow in overparameterized linear models. In International Conference on
Machine Learning, pages 10153–10161. PMLR, 2021.

[33] Julius Berner, Philipp Grohs, Gitta Kutyniok, and Philipp Petersen. The modern mathematics
of deep learning. arXiv preprint arXiv:2105.04026, pages 86–114, 2021.

[34] Guodong Zhang, James Martens, and Roger B Grosse. Fast convergence of natural gradient
descent for over-parameterized neural networks. Advances in Neural Information Processing Sys-
tems, 32, 2019.

[35] Ryo Karakida and Kazuki Osawa. Understanding approximate fisher information for fast con-
vergence of natural gradient descent in wide neural networks. Advances in Neural Information
Processing Systems, 33:10891–10901, 2020.
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A. Preliminary results

A.1. Lipschitz continuity of J

Here, we look at the Lipschitz property of the Jacobian matrix J . For this, we need the following
additional standard assumptions:

J.1 ∥x∥ = ∥x⊤∥ ≤ 1.

J.2 ∃Lϱ such that ∥ϱ(x̄)− ϱ(x̃)∥ ≤ Lϱ∥x̄− x̃∥ and ∥ϱ′(x̄)− ϱ′(x̃)∥ ≤ Lϱ∥x̄− x̃∥ for all x̄, x̃ ∈ R.

J.3 ∃Lv such that ∥v∥ ≤ Lv at all time t until the training is stopped.

Condition J.2 simply restates the Lipschitzness and smoothness assumptions in A.1 explicitly. This
kind of condition has been used, for example in [18, Condition 3.1], to show the stability of the training
process of NNs via gradient descent. A consequence of the condition is that it also provides an upper
bound on the gradients of ϱ, that is, ∥ϱ′(x̄)∥ ≤ Lϱ for all x̄ ∈ R (see, e.g., Lemma 3 below).

Proposition 1 (Lipschitz constant of J ; training both layers). Under assumptions J.1, J.2 and J.3,
J is LJ -Lipschitz continuous, where LJ ≜ mκ(n)(1 + Lv)Lϱ

√
2.

Proof. Let (ū, v̄) ≡ θ̄, (ũ, ṽ) ≡ θ̃ for any θ̄, θ̃ ∈ Rp. We have

∥∥∥J(θ̄)− J(θ̃)
∥∥∥ ≤ κ(n)

 n∑
i=1

∣∣∣ϱ′(ūix)v̄ix
⊤ − ϱ′(ũix)ṽix

⊤
∣∣∣+

n∑
i=1

∣∣ϱ(ūix)− ϱ(ũix)
∣∣

≤ κ(n)

 n∑
i=1

(∣∣∣ϱ′(ūix)v̄ix
⊤ − ϱ′(ũix)v̄ix

⊤
∣∣∣+
∣∣∣ϱ′(ũix)v̄ix

⊤ − ϱ′(ũix)ṽix
⊤
∣∣∣)

+

n∑
i=1

∣∣ϱ(ūix)− ϱ(ũix)
∣∣
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≤ κ(n)

 n∑
i=1

(∣∣ϱ′(ūix)− ϱ′(ũix)
∣∣|v̄i|∥x∥+|v̄i − ṽi|

∣∣ϱ′(ũix)
∣∣∥x∥)+

n∑
i=1

∣∣ϱ(ūix)− ϱ(ũix)
∣∣

≤ mκ(n)
(
(1 + Lv)Lϱ∥ū− ũ∥+ Lϱ∥v̄ − ṽ∥

)
≤ mκ(n)(1 + Lv)Lϱ

(
∥ū− ũ∥+∥v̄ − ṽ∥

)
= mκ(n)(1 + Lv)Lϱ

(∥∥(ū, 0)− (ũ, 0)
∥∥+

∥∥(0, v̄)− (0, ṽ)
∥∥) . (16)

Next, we recall Peter-Paul inequality for two quantities a, b ∈ R≥0 which reads 2ab ≤ a2 + b2, from
which we obtain

(a + b)2 = a2 + 2ab + b2 ≤ a2 + a2 + b2 + b2 = 2(a2 + b2). (17)

We also derive the expression∥∥(ū, 0)− (ũ, 0)
∥∥2 +

∥∥(0, v̄)− (0, ṽ)
∥∥2 =

∥∥(ū, 0)
∥∥2 − 2⟨(ū, 0), (ũ, 0)⟩+

∥∥(ũ, 0)
∥∥2

+
∥∥(0, v̄)

∥∥2 − 2⟨(0, v̄), (0, ṽ)⟩+
∥∥(0, ṽ)

∥∥2
=
∥∥(ū, v̄)

∥∥2 − 2⟨(ū, v̄), (ũ, ṽ)⟩+
∥∥(ũ, ṽ)

∥∥2
=
∥∥(ū, v̄)− (ũ, ṽ)

∥∥2 . (18)

Now, using (17) and (18) in (16) with a =
∥∥(ū, 0)− (ũ, 0)

∥∥ and b =
∥∥(0, v̄)− (0, ṽ)

∥∥, we get∥∥∥J(θ̄)− J(θ̃)
∥∥∥ ≤ mκ(n)(1 + Lv)Lϱ

√
2
∥∥(ū, v̄)− (ũ, ṽ)

∥∥ ,
which proves the result.

A.2. Useful results on the generalized self-concordance of g

We define the following metric term for the regularization function g (under condition G.1). As is
customary, our results are restricted to the case ν ∈ [2, 3].

dν(θ̄, θ̃) ≜


Mg

∥∥∥θ̃ − θ̄
∥∥∥ if ν = 2,(

ν
2 − 1

)
Mg

∥∥∥θ̃ − θ̄
∥∥∥3−ν

2

∥∥∥θ̃ − θ̄
∥∥∥ν−2

θ̄
if ν > 2.

(19)

Lemma 1. [54, Proposition 10] Under condition G.1, we have for any θ̄, θ̃ ∈ dom g

ων(−dν(θ̄, θ̃))
∥∥∥θ̃ − θ̄

∥∥∥2
θ̄
≤ g(θ̃)− g(θ̄)− ⟨∇ g(θ̄), θ̃ − θ̄⟩ ≤ ων(dν(θ̄, θ̃))

∥∥∥θ̃ − θ̄
∥∥∥2
θ̄
, (20)

in which, if ν > 2, the right-hand side inequality holds if dν(θ̄, θ̃) < 1, and

ων(r) ≜



exp(r)−r−1
r2

if ν = 2,
−r−ln(1−r)

r2
if ν = 3,

(1−r) ln(1−r)+r
r2

if ν = 4,(
ν−2
4−ν

)
1
r

[
ν−2

2(3−ν)r

(
(1− r)2(3−ν)

2−ν − 1
)
− 1

]
otherwise.

(21)

17
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In case g is nonsmooth and hence does not satisfy the condition G.1 but is closed, proper and con-
vex, the following result from [55, Proposition 2] shows some properties of a self-concordant smoothing
function for g constructed in the sense of Definition 2.

Lemma 2. Let ḡ, h be two functions in Γ0(Rp). Suppose that h is (Mh, ν)-GSC and supercoercive,

and define g ≜ ḡ□hµ for all µ ∈ R>0, where hµ(·) ≜ µh
(

·
µ

)
and ḡ□hµ denotes the infimal convolution

of ḡ and hµ defined by

(ḡ□hµ)(θ̄) ≜ inf
θ̃∈Rp

{
ḡ(θ̃) + hµ(θ̄ − θ̃)

}
. (22)

Then,

(i) g ∈ Γ0(Rp) and is exact.

(ii) g is (Mg, ν)-GSC with

Mg =

{
p

3−ν
2 µ

ν
2
−2Mh, if ν ∈ (0, 3],

µ4− 3ν
2 Mh, if ν > 3.

(iii) g is locally Lipschitz continuous.

Lemma 3. Let g be a convex and (locally) L-Lipschitz function. Then,∥∥∇ g(θ̄)
∥∥ ≤ L,

for some θ̄ in a set X ⊂ Rp.

Proof. Take some θ̃ = θ̄ + α∇ g(θ̄) for α ∈ R>0 small enough. By the convexity and Lipschitzness of
g, we have ∥∥α∇ g(θ̄)

∥∥2 = α2
∣∣⟨∇ g(θ̄),∇ g(θ̄)⟩

∣∣
= α

∣∣∣⟨θ̃ − θ̄,∇ g(θ̄)⟩
∣∣∣

≤ α
∣∣∣g(θ̃)− g(θ̄)

∣∣∣
≤ αL

∣∣∣θ̃ − θ̄
∣∣∣

= α2L
∥∥∇ g(θ̄)

∥∥ ,
which completes the proof.

B. Proof of the main result

Detailed regularity assumptions in R.1. We detail missing regularity terms in condition R.1 as
follows. For this, we define the ball Br0(θ0) ⊂ Er(θ0) for some initialization θ0. Note that, correspond-
ing to the ellipsoid Er(θ0), we compute local norms with respect to g.

RR.1 R̂s(Φ(·, θ̄)) ≥ R̂s(Φ(·, θ̃))+ ⟨∇Φ R̂s(Φ(·, θ̃)),Φ(·, θ̄)−Φ(·, θ̃)⟩+ γR
2

∥∥∥Φ(·, θ̄)− Φ(·, θ̃)
∥∥∥2 ∀θ̄, θ̃ ∈ Rp,

and ∃BR, DR such that
∥∥∥∇Φ R̂s(Φ(·, θ̄))

∥∥∥ ≤ BR,
∥∥∥∇2

Φ R̂s(Φ(·, θ̄))
∥∥∥
op
≤ DR ∀θ̄ ∈ Br0(θ0).

18
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RR.2 dgI ≤ Ht ≤ DgI with Dg ≥ dg > 0, dqI ≤ Q̂t ≤ DqI with Dq ≥ dq ≥ 0, and ∥êt∥ ≤ β
∀θt ∈ Br0(θ0).

Using the Lipschitness of ϱ, one can easily find some BΦ satisfying
∥∥∥Φ(·, θ̄)− Φ(·, θ̃)

∥∥∥ ≤ BΦ

∥∥∥θ̄ − θ̃
∥∥∥

for some θ̄, θ̃ ∈ Rp at least near the initialization. Hence, we do not impose this regularity property

as an additional assumption. Subsequently, we recall the following notations: LDt ≜ αtββ̂1Dg

dg(Dg+dqβ̂2
m)

,

ξ ≜ BRBΦ + Bg, ϑ ≜ B2
Φ(γR − DR), ϖt ≜ ων(dν(θt, θt+1)) − ων(−dν(θt, θt+1)), β̂m ≜ σmin(Ĵt). We

also introduce the notations β̂1 ≜ σmax(Ĵt) and δt ≜ θt+1 − θt.

Lemma 4. Under assumption RR.2, we have

∥δt∥ ≤ LDt , ∥δt∥θt ≤
√
DgLDt .

Proof. We obtain the following estimate∥∥∥H−1
t Ĵ⊤

t

∥∥∥ ≤∥∥∥H−1
t

∥∥∥∥∥∥Ĵ⊤
t

∥∥∥ ≤ β1
dg

. (23)

We have also ∥∥∥I + Q̂tĴtH
−1
t Ĵ⊤

t

∥∥∥ ≥ 1 +
dqβ̂

2
m

Dg
. (24)

From (9), we have

∥δt∥ ≤ αt

∥∥∥H−1
t Ĵ⊤

t (I + Q̂tĴtH
−1
t Ĵ⊤

t )−1êt

∥∥∥ . (25)

Using (23) and (24) in (25), we obtain

∥δt∥ ≤ LDt .

The result follows, noting that ∥δt∥θt =
∥∥∥H1/2

t δt

∥∥∥ by definition.

We obtain the following slightly loose estimate of the Lipschitz constant of the objective function
L in problem (2).

Lemma 5. Let g be constructed under the settings of Lemma 2 such that condition G.1 holds. Then,
under the additional condition RR.1, the objective function L is (BRBΦ + Bg)-Lipschitz continuous,
where Bg is the local Lipschitz constant of g in Lemma 2(iii).

Proof. By the convexity of R̂s and g, we have

R̂s(Φ(·, θ̃)) ≥ R̂s(Φ(·, θ̄)) + ⟨∇ R̂s(Φ(·, θ̃)),Φ(·, θ̃)− Φ(·, θ̄)⟩, g(θ̃) ≥ g(θ̄) + ⟨∇ g(θ̃), θ̃ − θ̄⟩,

for some θ̃, θ̄ in the vicinity of θ0. Then, using L ≜ R̂s + g and the Cauchy-Schwarz inequality, we get∣∣∣L(θ̄)− L(θ̃)
∣∣∣ ≤∥∥∥∇Φ R̂s(Φ(·, θ̄))

∥∥∥∥∥∥Φ(·, θ̄)− Φ(·, θ̃)
∥∥∥+

∥∥∇ g(θ̄)
∥∥∥∥∥θ̄ − θ̃

∥∥∥ .
19
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By assumption RR.1, we have
∥∥∥∇Φ R̂s(Φ(·, θ̄))

∥∥∥ ≤ BR. By Lemma 2(iii), g is locally Lipschitz, and

hence we have
∥∥∇ g(θ̄)

∥∥ ≤ Bg for some Bg, according to Lemma 3. Then, using the local Lipschitz
property of Φ, we obtain ∣∣∣L(θ̄)− L(θ̃)

∣∣∣ ≤ BRBΦ

∥∥∥θ̄ − θ̃
∥∥∥+ Bg

∥∥∥θ̄ − θ̃
∥∥∥

= (BRBΦ + Bg)
∥∥∥θ̄ − θ̃

∥∥∥ .
The following result from [63, Lemma 1] provides a useful inequality for the trace of the product

of two symmetric matrices, one of which is positive semidefinite.

Lemma 6. Let P,Q ∈ Rn×n. If P = P⊤ ⪰ 0 and Q is symmetric, then

tr(P )λn(Q) ≤ tr(PQ) ≤ tr(P )λ1(Q).

The next result concerns the 2 × 2 block partitioning of G̃t, and characterizes the positive-
definiteness of its leading principal blocks. For this, we require that the function g is such that
Ht ≻ 0. This, indeed, is a property of many functions constructed from the ℓ1-norm in the sense of
Definition 2. An example is the pseudo-Huber function or the function ḡ considered in Section 4.

Lemma 7. Consider a 2 × 2 block partitioning of G̃t, and let G̃11 ∈ Rm×m, G̃22 ∈ R1×1 respectively
denote the upper left and lower right blocks. If Ht ≻ 0, then it holds that G̃22 ∈ R>0 and G̃11 ≻ 0.

Proof. By the definition of G̃t and using (8), we have G̃t = J̃t(Ĵ
⊤
t Q̂tĴt + Ht)

−1Ĵ⊤
t . We note that for

the squared loss that we consider, Qt is the identity matrix and that we can write G̃t = J̃t(J
⊤
t QtJt +

Ht)
−1Ĵ⊤

t = J̃t(J
⊤
t Jt + Ht)

−1Ĵ⊤
t . Notice the removal of the augmentations, as the last diagonal entry

of Q̂t is zero. We have ⟨v̂, J⊤
t Jtv̂⟩ = ∥Jv̂∥2 ≥ 0 for all non-zero v̂ ∈ Rn, and hence Bt ≜ J⊤

t Jt+Ht ≻ 0.
Next, observe that G̃11 results from removing the augmentations on J̃ and Q̂t in G̃t, that is, G̃11 ≡
JtB

−1
t J⊤

t . Let û ≜ Btv̂; we have ⟨û, B−1
t û⟩ = ⟨Btv̂, B

−1
t Btv̂⟩ = ⟨v̂, B⊤

t v̂⟩ ≻ 0. Then, in a similar way,
if Jt does not have all its entries equal to zero, we get that G̃11 ≻ 0.

To show G̃22 ∈ R>0, we note that since Bt ≻ 0, it has a non-zero determinant, and hence by
Sylvester’s criterion, we have 1

det(Bt)
((−1)2nMn,n) > 0, where det(Bt) denotes the determinant of Bt

and Mn,n denotes the (n, n)-th minor of Bt. Then, G̃22 ∈ R>0 follows from the definition of J̃ .

We are now ready to prove our main result.

Proof of Theorem 1.

Proof. Consider the time evolution of the regularized NN given by (10). Using the augmentation
specified by (13), we have∥∥∥Φ̃t+1 − Φ̃∗

∥∥∥2 =
∥∥∥Φ̃t − αtG̃têt − Φ̃∗

∥∥∥2
=
∥∥∥Φ̃t − Φ̃∗

∥∥∥2 − 2αt⟨Φ̃t − Φ̃∗, G̃t(Φ̃t − Φ̃∗)⟩+ α2
t

∥∥∥G̃t(Φ̃t − Φ̃∗)
∥∥∥2 . (26)
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Let us partition Φ̃t − Φ̃∗ and G̃t as follows (omitting dependence on t in the blocks for brevity):

Φ̃t − Φ̃∗ ≡

[
Φ̃1

Φ̃2

]
, G̃t ≡

[
G̃11 G̃12

G̃21 G̃22

]
, (27)

where Φ̃1 = Φt − Φ∗ ∈ Rm, Φ̃2 = 1 and hence G̃11 ∈ Rm×m. Then, we have

⟨Φ̃t − Φ̃∗, G̃t(Φ̃t − Φ̃∗)⟩ = ⟨Φ̃1, G̃11Φ̃1⟩+ ⟨Φ̃2, G̃21Φ̃1⟩+ ⟨Φ̃1, G̃12Φ̃2⟩+ ⟨Φ̃2, G̃22Φ̃2⟩
= ⟨Φ̃1, G̃11Φ̃1⟩+ ⟨G̃21 + G̃⊤

12, Φ̃1⟩+ G̃22, (28)

where we have used Φ̃2 = 1. Recall that by Lemma 7, we get G̃22 ∈ R>0 and G̃11 ≻ 0.
Using the block partitioning of G̃t in (27), the product G̃⊤

t G̃t gives the following block structure

G̃⊤
t G̃t =

[
(G̃⊤

t G̃t)11 (G̃⊤
t G̃t)12

(G̃⊤
t G̃t)21 (G̃⊤

t G̃t)22

]
≜

[
G̃⊤

11G̃11 + G̃⊤
21G̃21 G̃⊤

11G̃12 + G̃⊤
21G̃22

G̃⊤
12G̃11 + G̃⊤

22G̃21 G̃⊤
12G̃12 + G̃⊤

22G̃22

]
.

Consider the congruence[
(G̃⊤

t G̃t)11 (G̃⊤
t G̃t)12

(G̃⊤
t G̃t)21 (G̃⊤

t G̃t)22

]
∼[

(G̃⊤
t G̃t)

−1/2
11 0

0 (G̃⊤
t G̃t)

−1/2
22

][
(G̃⊤

t G̃t)11 (G̃⊤
t G̃t)12

(G̃⊤
t G̃t)21 (G̃⊤

t G̃t)22

][
(G̃⊤

t G̃t)
−1/2
11 0

0 (G̃⊤
t G̃t)

−1/2
22

]

=

[
I (G̃⊤

t G̃t)
−1/2
11 (G̃⊤

t G̃t)12(G̃
⊤
t G̃t)

−1/2
22

(G̃⊤
t G̃t)

−1/2
22 (G̃⊤

t G̃t)21(G̃
⊤
t G̃t)

−1/2
11 I

]
.

Using this relation, one can show that G̃⊤
t G̃t ≻ 0; since (G̃⊤

t G̃t)21 = (G̃⊤
t G̃t)

⊤
12, we only require that

∥(G̃⊤
t G̃t)

−1/2
11 (G̃⊤

t G̃t)12(G̃
⊤
t G̃t)

−1/2
22 ∥ ≤ 1. We assert that this holds with a high probability by our

assumptions, for example, by overparameterization and the condition that |G̃22| ≥ |⟨G̃21 + G̃12, ṽ⟩| for
any ṽ ∈ Rm+1. As a result, we invoke Lemma 6 and obtain∥∥∥G̃t(Φ̃t − Φ̃∗)

∥∥∥2 = tr(G̃⊤
t G̃t(Φ̃t − Φ̃∗)(Φ̃t − Φ̃∗)⊤)

≤ tr(G̃⊤
t G̃t)λ1((Φ̃t − Φ̃∗)(Φ̃t − Φ̃∗)⊤)

= tr(G̃⊤
t G̃t)

∥∥∥Φ̃t − Φ̃∗
∥∥∥2 . (29)

Using (28) and (29) in (26), we have∥∥∥Φ̃t+1 − Φ̃∗
∥∥∥2 ≤∥∥∥Φ̃t − Φ̃∗

∥∥∥2 − 2αt

∥∥∥G̃1/2
11 Φ̃1

∥∥∥2 − 2αt⟨G̃⊤
21 + G̃12, Φ̃1⟩ − 2αtG̃22

+ α2
t tr(G̃⊤

t G̃t)
∥∥∥Φ̃t − Φ̃∗

∥∥∥2 .
Now, using the inequality −

∣∣∣⟨G̃⊤
21 + G̃12, Φ̃1⟩

∣∣∣ ≤ ⟨G̃⊤
21 + G̃12, Φ̃1⟩ ≤

∣∣∣⟨G̃⊤
21 + G̃12, Φ̃1⟩

∣∣∣, we get that

−⟨G̃⊤
21 + G̃12, Φ̃1⟩ ≤

∣∣∣⟨G̃⊤
21 + G̃12, Φ̃1⟩

∣∣∣ ,
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and then, ∥∥∥Φ̃t+1 − Φ̃∗
∥∥∥2 ≤∥∥∥Φ̃t − Φ̃∗

∥∥∥2 − 2αt

∥∥∥G̃1/2
11 Φ̃1

∥∥∥2 + 2αt

∣∣∣⟨G̃⊤
21 + G̃12, Φ̃1⟩

∣∣∣− 2αtG̃22

+ α2
t tr(G̃⊤

t G̃t)
∥∥∥Φ̃t − Φ̃∗

∥∥∥2 .
Setting ṽ = Φ̃1 in the condition |G̃22| ≥ |⟨G̃21 + G̃⊤

12, ṽ⟩|, it holds that |G̃22| > |⟨G̃21 + G̃⊤
12, Φ̃1⟩| − C1

for any arbitrary constant C1 > 0. Set C1 = 1
αtC2

for some constant C2 > 0, noting that αt > 0 for
all t, then we get

−G̃22 ≤ −
∣∣∣⟨G̃21 + G̃⊤

12, Φ̃1⟩
∣∣∣+

1

αtC2
.

Consequently,∥∥∥Φ̃t+1 − Φ̃∗
∥∥∥2 ≤∥∥∥Φ̃t − Φ̃∗

∥∥∥2 − 2αt

∥∥∥G̃1/2
11 Φ̃1

∥∥∥2 +
2

C2
+ α2

t tr(G̃⊤
t G̃t)

∥∥∥Φ̃t − Φ̃∗
∥∥∥2 .

Now, if the condition 1 + Mgηt ≤ ∥G̃t∥F is such that∥∥∥G̃1/2
11 Φ̃1

∥∥∥2
tr(G̃⊤

t G̃t)
∥∥∥Φ̃t − Φ̃∗

∥∥∥2 ≥ αt ≜
ᾱt

1 + Mgηt
≥ ᾱt∥∥∥G̃t

∥∥∥
F

≡ ᾱt√
tr(G̃⊤

t G̃t)
,

by fixing 0 < ᾱt ≡ ᾱ < 1, then∥∥∥Φ̃t+1 − Φ̃∗
∥∥∥2 ≤ (1− ᾱ)

∥∥∥Φ̃t − Φ̃∗
∥∥∥2 +

2

C2
. (30)

The recurrence in (30) can be expanded as follows:∥∥∥Φ̃t+1 − Φ̃∗
∥∥∥2 ≤ (1− ᾱ)

∥∥∥Φ̃t − Φ̃∗
∥∥∥2 +

2

C2

≤ (1− ᾱ)

(
(1− ᾱ)

∥∥∥Φ̃t−1 − Φ̃∗
∥∥∥2 +

2

C2

)
+

2

C2

≤ (1− ᾱ)

(
(1− ᾱ)

(
(1− ᾱ)

∥∥∥Φ̃t−2 − Φ̃∗
∥∥∥2 +

2

C2

)
+

2

C2

)
+

2

C2

= (1− ᾱ)3
∥∥∥Φ̃t−2 − Φ̃∗

∥∥∥2 + (1− ᾱ)2
2

C2
+ (1− ᾱ)

2

C2
+

2

C2
,

and so on. This gives, for any T ≥ 1,∥∥∥Φ̃T − Φ̃∗
∥∥∥2 ≤ (1− ᾱ)T

∥∥∥Φ̃0 − Φ̃∗
∥∥∥2 +

2

C2

T−1∑
j=0

(1− ᾱ)T−j−1. (31)

Since C2 > 0 is arbitrary, we set C2 = 2
∑T−1

j=0 (1− ᾱ)T−j−1. We also have that since ᾱ > 0, it satisfies
the inequality 1− ᾱ ≤ exp(−ᾱ). Then (31) gives∥∥∥Φ̃T − Φ̃∗

∥∥∥2 ≤ exp(−ᾱT )
∥∥∥Φ̃0 − Φ̃∗

∥∥∥2 + 1. (32)
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Substituting our choice of T into (32) gives∥∥∥Φ̃T − Φ̃∗
∥∥∥2 ≤ ϵ + 1,

which is result P.1.
To prove P.2, we first notice that the local condition

∥∥∥∇2
Φ R̂s(Φ)

∥∥∥
op
≤ DR in RR.1 implies local

DR-Lipschitz continuity of ∇Φ R̂s(Φ) with respect to Φ, that is, for θ̄, θ̃ around the initialization, we
have ∥∥∥∇ R̂s(Φ(·, θ̄))−∇ R̂s(Φ(·, θ̃))

∥∥∥ ≤ DR

∥∥∥Φ(·, θ̄)− Φ(·, θ̃)
∥∥∥ ,

or equivalently,

R̂s(Φ(·, θ̄)) ≤ R̂s(Φ(·, θ̃)) + ⟨∇ R̂s(Φ(·, θ̃)),Φ(·, θ̄)− Φ(·, θ̃)⟩+
DR

2

∥∥∥Φ(·, θ̄)− Φ(·, θ̃)
∥∥∥2 . (33)

We recall the notation Φt ≜ Φ(·, θt) for all t ∈ R≥0. Then, using L ≜ R̂s + g, Lemma 1, and (33), we
get

L(θt+1) ≤ L(θt) + ⟨∇ R̂s(Φt),Φt+1 − Φt⟩+
DR

2
∥Φt+1 − Φt∥2 + ⟨∇ g(θt), θt+1 − θt⟩

+ ων(dν(θt, θt+1))∥θt+1 − θt∥2θt
≤ L(θt)−

γR
2
∥Φt+1 − Φt∥2 − L(θt) + L(θt+1)− ων(−dν(θt, θt+1))∥θt+1 − θt∥2θt

+
DR

2
∥Φt+1 − Φt∥2 + ων(dν(θt, θt+1))∥θt+1 − θt∥2θt .

Using the γR-strong convexity assumption on R̂ in RR.1 and the Lipschitz property of L in Lemma 5,
this gives

L(θt+1) ≤ L(θt) + (BRBΦ + Bg)∥θt+1 − θt∥+
DR − γR

2
∥Φt+1 − Φt∥2

+
(
ων(dν(θt, θt+1))− ων(−dν(θt, θt+1))

)
∥θt+1 − θt∥2θt

≤ L(θt) + (BRBΦ + Bg)∥θt+1 − θt∥+
B2

Φ(DR − γR)

2
∥θt+1 − θt∥2

+
(
ων(dν(θt, θt+1))− ων(−dν(θt, θt+1))

)
∥θt+1 − θt∥2θt . (34)

Recalling the notation δt ≜ θt+1 − θt and substituting the estimates on ∥δt∥ and ∥δt∥θt from Lemma 4
into (34) yields result P.2.

C. Additional experimental details and results

C.1. Remark on the T-I measure

The time-invariance measure provides a way to measure stability of the optimizer’s dynamics from
initialization. However, since the signum function does not account for indices (i, j) of al with aij = 0,
i.e.,

sgn(aij) ≜

{
+1 if aij > 0,

−1 if aij < 0,
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and, as we have seen, the GGN-SCORE framework potentially produces many of this instance (with
aij = 0) to reduce the model’s complexity and/or improve generalization, a natural question is what
state should be assumed for neuron aij when it is exactly zero. For this, we follow the standard
convention that if aij = 0, then the (i, j)-th neuron remains unchanged from its initial state [64,
Section 13.7]. Under this convention, the proportion of the indices (i, j) of afinall satisfying sgn(astartij ) ̸=
sgn(afinalij ) with afinalij = 0 contribute to the stability of activations, and hence should be accounted for
in the T-I measure. However, this contribution appear to be insignificant for the values of τ and µ
that give the best test accuracies. From what we observe in Figure 3 and Figure 4, proper choices
of µ and τ reliably produces stable dynamics of the optimizer as well as a good generalization of the
final trained model.

C.2. MNIST teacher-student setting

In order to evaluate GGN-SCORE on the MNIST dataset such that we are close to the theoretical
framework, we consider a teacher-student setup for the MNIST dataset in a similar way as [38,
Appendix C.4]:
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Fig. 5: Test loss of the GGN-SCORE-trained NN on MNIST dataset (teacher-student) with g(θ) given by (15).
Left: Results for different values of the regularization smoothing parameter µ with τ = 10−4 fixed. Right:
Results for different values of the regularization strength τ with µ = 1/

√
n fixed.
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Fig. 6: Accuracy and T-I measure of the GGN-SCORE-trained NN on MNIST dataset (teacher-student) for
different values of µ (left) and different values of τ (right), with the regularization function g(θ) given by (15).
In the left figure, τ = 10−4 is used. In the right figure, µ = 1/

√
n is used.

• We create a custom training dataset by combining the original MNIST test dataset (containing
10000 sample points) and a balanced subset of the original training dataset. This balanced subset
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is created by “undersampling” the first 3000 samples of the original training dataset to give 2610
sample points. In total, the custom training dataset contains 12610 sample points.

• We then train a teacher NN Φ∗ of the form (14) and hidden size n∗ = 16 on this training dataset
with the cross-entropy loss function and the SiLU activation function.

• A training “target” dataset is created from Φ∗ (with the softmax function applied on each output
of Φ∗).

• The student NN of the form (3) with the SiLU activation and hidden size n = 1024 is then trained
on the custom training input samples and their corresponding target samples constructed from Φ∗.
The trained student NN is tested on the original MNIST test dataset.

The training and test results are displayed Figure 5 and Figure 6. We follow a similar evaluation
procedure as in Section 4.2, i.e., the results are evaluated on the basis of the test loss, training and
test accuracy, and T-I measure of the trained student NN. Interestingly, similar observations as in
Section 4.2 are made from the displayed results. The total computation time to generate the results
in Figure 5 and Figure 6 is ∼ 8 hours, 39 minutes on CPU.

C.3. FashionMNIST experiments

We perform experiments on the FashionMNIST dataset [65] under the same setting as the MNIST
experiments in Section 4.2. While the FashionMNIST classification tends to be a harder task than
the MNIST, results shown in Figure 7 and Figure 8 indicate similar behaviours as those described in
Section 4.2 regarding the influence of the regularization parameters.

C.4. Comparison with GD

We now compare GGN-SCORE with GD on three UCI benchmark datasets3: pendigits, letter, and
avila, summarized in Table 1. As in Section 4, we use a learning rate of 1 for GD, and set the hidden
size n = 128 in all the experiments for a NN of the form (3), and a scaling κ(n) = 1/

√
n. The function

g in GGN-SCORE is given by (15) with τ = 10−4. The results are shown Figure 9 and Table 2.
We observe faster convergence and better generalization in most cases for GGN-SCORE, and as in
the case for the full-batch deterministic setting in Section 4 on synthetic datasets, we achieve this
performance in faster time compared to GD. Note that much of the computational burden associated
with the regularized GGN is greatly reduced by using the stylized expression (9), since the mini-batch
size is typically much smaller than p, the size of the optimization variable θ.

Table 1: Summary of UCI datasets used for comparison.

Num. of samples

Dataset Training Test Input dim. Num. of classes

pendigits 7494 3498 16 10
letter 10500 5000 16 26
avila 10430 10437 11 12

3https://archive.ics.uci.edu.
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Fig. 7: Test loss evaluation of the GGN-SCORE-trained NN on FashionMNIST dataset for different values
of the regularization smoothing parameter µ fixing τ = 10−4 (left) and different values of the regularization
strength τ fixing µ = 1/

√
n (right), where the regularization function g(θ) is given by (15).
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Fig. 8: Evaluation of GGN-SCORE on FashionMNIST dataset for different values of the regularization strength
µ (left) and different values of the regularization smoothing parameter τ (right). The regularization function
g(θ) is given by (15). In the left figure, µ = 1/

√
n is used. In the right figure, τ = 10−4 is used.

Table 2: Stability of activation measure.

T-I measure (%) T-I meas. incl. aij = 0 (%)

Dataset Batch-size µ GD GGN-SCORE GD GGN-SCORE

pendigits 8 0.001/
√
n 50.066 52.7331 50.1041 52.7331

letter 64 10/
√
n 55.9237 55.2016 55.925 55.2112

avila 64 10/
√
n 73.318 71.4815 73.3189 71.4833
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Fig. 9: Test loss and accuracy evolution for GD and GGN-SCORE on pendigits, letter and avila datasets. The
regularization function g(θ) in GGN-SCORE is given by (15) with τ = 10−4 and µ given in Table 2.

27


	Introduction
	Notation

	GGN for Learning Neural Networks
	Regularized GGN for Overparameterized Neural Networks

	Theoretical Result
	Experiments
	Results and discussion
	Experiments on real datasets

	Conclusion
	Preliminary results
	Lipschitz continuity of J
	Useful results on the generalized self-concordance of g

	Proof of the main result
	Additional experimental details and results
	Remark on the T-I measure
	MNIST teacher-student setting
	FashionMNIST experiments
	Comparison with GD


